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Abstract—Most existing indoor localization algorithms based 

on Wi-Fi signals mainly rely on wireless access points (APs), i.e. 

hotspots, with fixed deployment, which are easily affected by the 

non-line of sight (NLOS) factors and the multipath effect. There 

also exist many other problems, such as positioning stability and 

blind spots, which can cause decline in positioning accuracy at 

certain positions, or even failure of positioning. However, it will 

increase the hardware cost by adding more static APs; if the 

localization mechanism integrates different wireless signals is 

adopted, it tends to cause high cost of positioning and long 

complex positioning process, etc. In this paper, we proposed a 

novel hybrid Wi-Fi access point-based localization algorithm 

(HAPLA), which utilizes the received signal strength indications 

(RSSI) from static APs and dynamic APs to determine location 

scenes. It flexibly selects available AP signals and dynamically 

switches the positioning methods, thus to achieve efficient 

positioning. HAPLA only relies on the Wi-Fi signal strength 

values, which can reduce the cost of hardware and the complexity 

of localization system. The proposed method can also be able to 

effectively prevent interference from different signal sources. In 

our test scenario, we deployed typical indoor scenes with the 

NLOS factors and the multipath effect for experiments. The 

experiments demonstrate the effectiveness of proposed method 

and the results show that, compared with the classic K nearest 

neighbor-based location algorithm (KNN) and the variance-based 

fingerprint distance adjustment algorithm (VFDA), HAPLA has 

better adaptability and higher positioning accuracy, and can 

effectively solve the problem of positioning blind spots. 

Keywords—indoor localization; hybrid Wi-Fi access points; 

fingerprint; triangulation localization;  trilateration localization 

I.  INTRODUCTION 

The location based services (LBS) have attracted wide 
attention and concern from the researchers, and how to achieve 
efficient and accurate positioning is the key point in current 
research. The localization technologies can be divided into two 
types: the outdoor localization and the indoor localization. So 
far, the global positioning system (GPS) [1-3] is commonly 
used in outdoor localization. However, it is difficult for GPS to 
provide satisfactory indoor positioning services [4]. At present, 
the localization methods based on wireless fidelity, infrared 
beam, Bluetooth, radio frequency identification (RFID) and 

sensor are mainly used in the indoor environment. 

The Wi-Fi access points (APs) are widely deployed at 
various indoor locations, and the smart phones, tablets, laptops 
as well as other mobile terminals are also generally equipped 
with wireless transceiver modules which can receive Wi-Fi 
signals. Compared with the location methods based on infrared 
beam, Bluetooth and other wireless technologies, the method 
based on Wi-Fi signals has significant advantages, including 
wider range, higher stability, and no requirements for 
additional hardware devices or transformation of infrastructure, 
etc. [5]. At present, the algorithms widely used in the field of 
indoor location based on Wi-Fi include the angle of arrival 
localization algorithm (AOA), the time of arrival localization 
algorithm (TOA), the time difference of arrival localization 
algorithm (TDOA), the received signal strength indication 
localization algorithm (RSSI), the fingerprint-based 
localization algorithm, and so on [6-13]. 

However, existing indoor localization algorithms based on 
Wi-Fi signals significantly rely on APs with fixed deployment 
(i.e. static APs), and there are still many problems needed to be 
solved. For example, the signal propagation is easily affected 
by doors, furniture and other obstacles as well as human 
activities, which will cause problems like reflection, refraction, 
etc., due to the non-line of sight (NLOS) factors, the multipath 
effect and so on. Moreover, other indoor wireless signals and 
electromagnetic interferences can also affect the positioning 
accuracy [5]. To carry out fingerprint-based localization or 
other similar algorithms, based on RSSI and other techniques, 
it has strict requirements of the number of APs and their 
locations. Either too many or too few APs maybe affect the 
positioning accuracy. In some cases, the indoor environment 
could be too large, where localization based on fingerprints 
cannot be proceeded [14]. For example, the positioning 
premise of indoor localization algorithms based on fingerprints 
is that it must be able to receive no less than 4 specified 
intensity values of AP signals in the area where the location is 
going to be measured, because the positioning accuracy mainly 
relies on the number of APs operating during the localization 
phase, and the positioning results will have smaller errors when 
the same number of APs are used in both off-line and 
localization phases. In the actual localization phase, if the 
positioning region is larger, or static APs are failed, the 
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location to be measured cannot obtain desired intensity values 
of AP signals at all, which results in that currently obtained 
number of AP used to locate will be insufficient for the 
fingerprint-based localization. Therefore, the positioning 
accuracy of algorithms will decline significantly, and may even 
be unable to complete the localization. On the other hand, more 
static APs will increase the cost of hardware, which cannot 
even be achieved in some circumstances.  

To solve the above problems, researchers have proposed 
different approaches based on data fusion, including: 
combining the positioning algorithms of WLAN channel 
propagation model and the intensity value of RSSI signals to 
achieve indoor fingerprint-based localization [15]; integrating 
positioning methods of the Ultra-Wideband (UWB) with the 
differential global positioning system (DGPS) [16]; the 
AOA/TDOA-based hybrid localization algorithm[17]; the 
collaborative indoor localization method based on Wi-Fi and 
Bluetooth [18]; the indoor localization system based on RSSI 
and low power Bluetooth [19]; the real-time indoor localization 
mechanism based on RFID and Bluetooth [20]; the indoor 
localization system based on the combination of inertial 
sensors and Wi-Fi [21]; the comprehensive pedestrian and 
indoor localization system of Wi-Fi and geomagnetic 
information [22]; the indoor localization mechanism based on 
the data fusion of multi-sensors [23]; the hybrid indoor 
localization system based on multi-sensors, Wi-Fi and Low 
Energy Bluetooth (BLE)_ [24]; the hybrid indoor localization 
based on wireless signals, multi-sensors and video data [25], 
etc. In brief, these hybrid localization algorithms usually need 
to rely on a variety of sensors and different types of wireless 
signals to improve the positioning accuracy, which have the 
defects of high cost, long process of localization and 
difficulties of positioning and deployment, etc. 

During specific investigation of indoor environments where 
the localization is conducted based on the intensity values of 
wireless signals, the relative positions of static APs are fixed. 
Moreover, many mobile terminals with the function of Wi-Fi 
hotspot (i.e. mobile terminals can be dynamic APs.) are also 
distributed in indoor environments, and the channel 
transmission of Wi-Fi and APs are both consistent with the 
WLAN channel transmission model. We can receive relevant 
information of the surrounding APs while opening the Wi-Fi 
sensor of terminals to scan the AP signals. In addition to 
obtaining RSSIs used in fingerprint-based localization, we can 
also obtain signal parameters of other APs, such as basic 
service set identifier (BSSID), service set identifier (SSID) and 
channel [26] etc. When the mobile terminal opens the hotspot 
function, the current mobile terminal can also serve as a 
dynamic AP, which also has a unique BSSID and the signal 
intensity values of RSSI and SSID. 

In accordance with the scenarios mentioned above, a hybrid 
Wi-Fi access point-based localization algorithm (HAPLA) is 
proposed in this work. Based on the function of hotspot 
equipped on the mobile terminals, the target terminals to be 
located can determine the localization and flexibly choose 
available AP signals to switch positioning methods according 
to the RSSIs received from the static and dynamic APs to 
achieve efficient hybrid localization. HAPLA is only based on 
the values of Wi-Fi signals, without using other wireless 

positioning signals, which can reduce the hardware costs and 
the complexity of localization. It can also effectively prevent 
different positioning signal sources from interfering with each 
other during the process of localization. 

II. RELATED WORKS 

The localization algorithm proposed in [15] combines the 
WLAN channel propagation model with the intensity values of 
RSSI signals to achieve indoor fingerprint-based localization. 
The wireless channel model for indoor propagation is based on 
WLAN, and considering the relation between the intensity and 
distance in signal propagation and the loss of RSSI generated 
by the multipath effect and NLOS in the propagation process, it 
does not need to carry out the collection for the off-line 
fingerprint database, and it can also adapt to the changes of 
positioning regions soon. However, the computation is 
complex and the positioning error is larger in this model; it 
uses the fingerprint localization for the off-line collection of 
RSSI and collects data for the establishment of the fingerprint 
database of signal intensity, the physical location and intensity 
values of each AP for the periodic signal are corresponded to 
the coordinate. But the labor and time cost in the off-line phase 
can be very high, and the fingerprint-based localization 
database needs to be rebuilt when the network environment 
changes. 

The UWB signal can handle the multipath effect well, and 
the positioning technology based on UWB can achieve higher 
positioning accuracy and real-time performance. Reference 
[16] proposed a positioning technology combining UWB and 
DGPS, which uses a mixture of the particle filter and the 
Savitzky-Golay filter to achieve the integration of multi-signal 
sources, and it can realize the seamless positioning switch 
between indoor and outdoor environments. Reference [17] 
proposes applying the smart antenna array to ensure that the 
service base can provide more accurate wireless signal AOA 
measurements of mobile terminals, which can also improve the 
TDOA, and it also proposes an AOA/TDOA hybrid poisoning 
algorithm, which achieves better positioning performance 
when AOA measurements reach a certain precision. Reference 
[18] proposes a collaborative indoor positioning method based 
on Wi-Fi and Bluetooth, which calculates the position 
coordinates of neighbor mobile devices as well as the distance 
between them, and then uses a spring model to correct the 
positioning errors. Reference [19] constructs an indoor 
localization system based on RSSI and low power Bluetooth, 
and proposes a dilatation algorithm with low complexity and 
easy implementation based on hardware, and this system has 
better positioning performance in a multi-node deployment. 
Reference [20] proposes a real-time indoor localization 
mechanism based on RFID and Bluetooth, two or more tags 
with radio frequency identification source are deployed on the 
walls in an indoor room with a single door, then the indoor 
positioning device can be held with hand to match the 
Bluetooth ID on RFID readers, and after that, it connects with 
corresponding RFID to achieve localization. Reference [21] 
proposes an indoor localization system based on the integration 
of inertial sensors and Wi-Fi, which can achieve better 
positioning performance by installing inertial sensors on the 
foot of users and continue to modify the accumulated errors of 



inertial navigation system. Reference [22] proposes the 
comprehensive pedestrian and indoor localization system of 
Wi-Fi and geomagnetic information to achieve high accuracy 
of indoor positioning. Reference [23] proposes an indoor 
localization method based on signal data fusion of multiple 
sensors to achieve higher positioning accuracy and better 
robustness. Reference [24] combines the three-dimensional 
accelerometer, the gyroscope, the magnetic field sensor, Wi-Fi 
and low power Bluetooth to achieve hybrid indoor localization. 
Reference [25] proposes a data fusion algorithm based on 
particle filters, combining wireless signals, videos and sensors 
together to achieve accurate indoor localization. 

In this work, we integrate and optimize the methods 
mentioned above, and choose the suitable model of signal 
propagation to establish the fingerprint database. Then, we 
measure related reference points at certain locations according 
to the measurement, and the measured RSSI fingerprint-based 
localization has high accuracy; after that, we combine the RSSI 
fingerprint localization with the database generated by the 
wireless channel model to modify the database predicted by the 
channel model. 

III. INDOOR LOCALIZATION ALGORITHM BASED ON HYBRID WI-

FI HOTSPOTS 

A. Localization scenarios 

According to the indoor location where the mobile 
terminals are placed, the localization scenarios can be divided 
into the following three typical scenarios: localization 
algorithm based on hybrid Wi-Fi hotspots 

Scenario 1: Static AP-based method. Six static APs are 
placed in the indoor positioning region, and 4 or more 
positioning signals of static APs can be received at most 
locations. The static APs are distributed around the positioning 
area, and mobile terminals can receive a sufficient number of 
static AP signals. 

Scenario 2: Dynamic AP-based method. The mobile 
terminals roam to the blind spots of positioning where not 
enough AP signals can be received. Although the terminals to 
be located in these blind spots cannot receive effective static 
AP signals for localization, there are dynamic APs nearby, and 
the terminals to be located measure the received intensity of 
dynamic AP signals, and then realize localization according to 
existing coordinates of these dynamic APs. 

Scenario 3: Hybrid APs. The number of static APs used to 
locate is not enough to support high accuracy of indoor 
localization. However, some dynamic APs are close to the 
terminals to be located. Therefore, the available static and 
dynamic APs can be combined together to achieve more 
efficient localization. 

B. Algorithm 

The proposed HAPLA can flexibly conduct dynamic switch 
according to the actual localization scenarios. HAPLA prefers 
to can choose static APs based on fingerprint to conduct 
localization. In the localization scenarios where localizations 
do not or partially rely on the static APs, HAPLA will 

automatically introduce dynamic APs to assist localization, that 
is combining the indoor fixed static APs and the current 
dynamic APs to realize more accurate localization, without the 
fingerprint-based localization method at this moment. The 
fingerprint-based localization methods will map fingerprints 
for positioning regions first in the off-line phase, and then 
establish databases. Notice that it cannot be achieved using 
mobile terminals with continuously changing locations. The 
positioning results of mobile terminals with dynamic APs 
based on the fingerprint and BSSID would be transmitted to the 
positioning server timely. The terminals to be located obtain 
lists from the positioning server when receiving signals from 
the static and dynamic APs. As shown in Table1, the terminals 
to be located can know the coordinates of surrounding dynamic 
APs. 

TABLE I.  POSITIONING INFORMATION LIST 

Information of BSSID Coordinates of Terminals 

BSSID1 (x, y) 

 

Both static and dynamic APs can satisfy the channel 
propagation model of indoor WLAN. Due to human 
movements and various changing physical factors, the fading 
characteristics of the signal intensity are closely related to 
specific indoor layouts. The quality of channels will decline, 
since human movements can affect the propagation of signals, 
and it will have a greater impact on the intensity of signals near 
the source of signal transmission. The channel propagation is 
based on the following lognormal model [11]: 
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where d is the physical distance (m) between the receiving 

devices and the emission sources; 0d  is a reference distance; 

 PL d  and  0PL d  are intensity values of received signals 

corresponding to d  and 0d  respectively; X  is a Gaussian 

random variable with a mean value of 0; and n  is an exponent 
of path loss. 

Terminals to be located receive the intensity values of 
dynamic AP signals which are greater than or equal to the 
preset thresholds (e.g. -40dbm). The channel propagation 
model of indoor WLAN demonstrates that the actual physical 
location of terminals to be located is very close to the location 
of dynamic AP, which means the difference of calculated 
coordinates is very small, and it can use the physical locations 
of dynamic APs as the approximate locations to be tested. If 
multiple dynamic APs meet this condition, the weighted 
average method can be used to correct results: 
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where  ,x y  is the final positioning coordinates; n  is the 

number of dynamic APs whose RSSI values are greater than 



the preset threshold values of signals; kr  is the kth intensity 

value of AP signals, which is greater than or equal to the value 

of preset threshold; and kw  is the weight parameter. 

 If no dynamic Aps available, according to the channel 
propagation model, HAPLA will utilize the intensity values of 
signals radiating from the static and other dynamic APs to 
calculate and obtain corresponding physical distances. HAPLA 
consists of two phases: distance measurement and localization. 
In the phase of distance measurement, the location obtains the 
intensity values of hotspot signals from three known 
coordinates first, and then calculates the distance between the 
location to be measured and APs according to the wireless 
channel propagation model. In the phase of localization, when 
calculating the position of locations to be measured with TOA, 
the physical locations of any 3 known APs are chosen as the 
center of a circle, then the intensity values of received AP 
signals are calculated at the location to be measured. After that, 
the distance between the location to be measured and APs is 
calculated according to the channel propagation model of 
indoor WLAN. 

As shown in Figure. 1, the coordinates of location M to be 

measured are set as  ,M x y , the physical location coordinates 

of 3 APs: , ,CA B  are set as       , y , , y ,C , ya a b b c cA x B x x , and 

the distances from the location M to be measured to 3 APs, 

, ,a b cd d d , are calculated according to the channel propagation 

model of indoor WLAN. Then, the position of the location to 
be measured is calculated with 
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Fig. 1. Measurement of Trilateration Localization 

However, the positioning results obtained from this are not 
stable and accurate, and easy to generate errors. We make 
further optimization in this paper. In the actual process of the 
channel propagation of indoor WLAN, because of the multi-
path effect and NLOS factors, the values of estimated distances 

, ,a b cd d d  are greater than that of the actual distance according 

to the unknown location M of signals, as shown in Fig. 2.  

A
B

C
F

ED

 
Fig. 2. The Actual Condition of Hybrid Localization 

With 3 APs as the origin for circles with corresponding 

radius, the intersections are , ,D E F , and then, we can calculate 

the coordinates of D  with 
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Similarly, we can calculate the coordinates of E and F. 
Calculate the coordinates of these 3 points, then form a triangle 
with these 3 points, and the centroid coordinates are calculated. 
The result is used as the location M to be measured. According 

to (4),  , yd dD x  is calculated, and    , y , , ye e f fE x F x  is 

obtained in similar way. The triangle centroid is calculated 
with 
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               (5) 

During the process of localization, there are usually more 
than 3 AP signals obtained, and the combination of the selected 
APs is uncertain in the region where triangles are used for 
localization. The higher the intensity values of signals are, the 
closer the APs, and the more influenced they are by the multi-
path effect and NLOS. The distances between APs and 
measured coordinates M are sorted in ascending order 
according to in the phase of localization, and the top 4 shortest 
distances are chosen for the calculation of coordinates M. Then, 
4 sets of coordinates of the location are obtained, denoted as 

       1 1 1 2 2 2 3 3 3 4 4 4, y , , y , , y , , yM x M x M x M x , and the coordinates 

of these 4 locations are the candidate values for the positioning 
coordinates to be measured. Their average values are calculated 
to obtain the final coordinates with  
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4 4
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           (6) 

 

C. Workflow 

One advantage of HAPLA is its ability of dynamical 

adaptation to indoor environments. Localization is mainly 

determined by the received signals of Wi-Fi hotspots. The 

fingerprint-based localization algorithm will be used, if the 

BSSIDs of Wi-Fi hotspots received by positioning terminals 

satisfy the requirement of positioning. If this requirement is not 



satisfied, the hybrid Wi-Fi hotspots is utilized for localization. 

First, HAPLA discriminates which Wi-Fi hotspot can be 

received by the terminals to be located in current positioning 

regions, and then determines the numbers and signal intensity 

values of static and dynamic APs according to the received 

BSSIDs. After that, HAPLA needs to select the appropriate 

method to calculate the localization according to the intensity 

values of signals. The workflow of HAPLA is shown in Fig. 3: 
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Fig. 3. Algorithm Process The workflow of HAPLA 

 Step 1. A mobile terminal to be located searches for the 
specified static APs with its Wi-Fi module, and then, searches 
for their BSSIDs to check whether they satisfy the 
requirements of the fingerprint-based localization algorithm. If 
they do, HAPLA will utilize static APs only to realize 
localization; if not, go to “Step 2”, i.e. the dynamic APs will be 
introduced for indoor localization. 

 Step 2. The mobile terminal continues to receive the RSSIs 
from the dynamic APs in the positioning regions, and then the 
corresponding information of the dynamic APs and the current 
physical location from the server of localization. The terminal 
sorts the intensity values of signals of the dynamic APs in 
descending order.  

 Step 3. Check whether RSSIs of dynamic APs’ signals are 
greater than or equal to the preset threshold. If they are, 
conduct localization according to the coordinates of these 
dynamic APs, and calculate the coordinates of the location to 
be measured according to (5); otherwise, turn to “Step 4”. 

 Step 4. If all the signal intensity values of dynamic APs are 
lower than the preset thresholds, indoor localization will be 
implemented with the static and dynamic APs together based 
on the triangle centroid algorithm. 

 Step 5. Based on the channel model of indoor WLAN 
propagation, 4 APs with highest RSSI intensities are selected. 
According to (3), (4) and (5), the coordinates of the location to 
be measured are measured in accordance with every three of 
their coordinates respectively. 

 Step 6. Finally, the coordinates of the location are 
determined based on the data fusion with hybrid Wi-Fi 
hotspots according to (6), and then the BSSID and the 
positioning results of the location are uploaded. 

 

IV.  EXPERIMENTS AND PERFORMANCE ANALYSIS 

 

A. Performance Index 

 The mean square error (MSE) and the cumulative 
distribution function (CDF) [27] are widely (can be used) used 
to evaluate the performance of localization algorithm. 

 MSE is used to measure the positioning accuracy by 
calculating the straight-line distance between the actual 
location and the positioning result with: 

   
2 2

0 0r re x x y y                            (7) 

where ( , y )r rx  represents the coordinates of the positioning 

result, and 0 0( , y )x  represents the actual location of positioning 

terminals. 

 CDF is able to evaluate the positioning accuracy with the 
probability of the experiment number within a range of certain 
errors:  

  ( )F a P X a                                (8) 

which is used to draw the chart of CDF. 

B. Experimental Scenarios 

We built the experimental environment in our lab with 
tables, chairs and other furniture and people walking around, 
which means there are the NLOS factors and the multipath 
effect here, as shown in Fig. 4. 

We used the TP-LINK TL-WR720N wireless routers as 
static APs, and the mobile terminals are with the Android 
platform and the Wi-Fi function. As shown in Fig. 4, we built 
two experimental environments with 6 and 5 static APs 
deployed respectively. In the experimental environment with 6 
static APs, mobile terminals at a corner cannot receive the 
effective signals from the AP at the opposite corner. In the 
experimental environment with 5 static APs, mobile terminals 
at a corner cannot receive the effective signals from the AP at 
the opposite corner, either; and there are other "blind spots" 
without sufficient signals of static APs. 



 

(a) With 6 static APs 

 

(b) With 5 static APs 

Fig. 4. CDF Chart of Positioning Results 

 

C. Experiments 

We chose the classical K-nearest neighborhood algorithm 
(KNN) and the typical improved variance-based fingerprint 
distance adjustment algorithm (VFDA) as the comparative 
objects to HAPLA proposed here.  

We carried out ten groups of experiments, and the 
experimental results are listed in Table II. 

 

 

TABLE II.  THE DISTRIBUTION OF POSITIONING ERRORS 

(a) With 6 static APs 

            Algorithm 

Probability 
KNN(m) VFDA(m) HAPLA(m) 

10% 1.61 0.81 0.92 

20% 3.04 1.18 1.24 

30% 3.20 1.87 1.39 

40% 7.12 4.27 1.77 

55% 8.10 5.21 2.21 

60% 9.80 6.01 3.01 

70% 12.99 9.87 3.87 

80% 13.68 9.97 4.97 

90% 13.97 10.22 5.22 

100% 15.88 11.31 6.31 

(b) With 5 static APs 

  Algorithm 

Probability  
KNN(m) VFDA(m)  HAPLA(m) 

10% 1.92 0.70 0.82 

20% 2.84 1.38 1.11 

30% 4.90 3.88 1.60 

40% 5.07 4.28 1.98 

55% 6.90 5.21 3.21 

60% 9.01 7.71 3.71 

70% 10.06 8.87 3.87 

80% 12.92 10.05 4.05 

90% 14.57 10.89 4.89 

100% 15.49 12.11 5.11 

 

The chart of CDF is drawn according to Table II, as shown 
in Fig. 5. From Table II and Fig. 5, we can find that VFDA can 
achieve the more accurate localization in some cases than 
KNN. However, both VFDA and KNN have large deviations 
for several times because of the blind spots in the localization 
process leading to a significant positioning errors. HAPLA can 
ensure the most distances of positioning error less than 4m, 
which proves that HAPLA can dynamically adapt to different 
positioning environments to address the problem of blind spot. 

 

(a) With 6 static APs 



 

(b) With 5 static APs 

Fig. 5. CDF Chart of Positioning Results 

 In this paper, we further compare the trajectory of a mobile 
terminal measured by HAPLA and VFDA respectively and its 
actual trajectory, as shown in Fig. 6. 

 

(a) With 6 static APs 

 

(b) With 5 static APs 

Fig. 6. Localization Trace 

As shown in Fig. 6, we can see that HAPLA has better 
positioning performance than VFDA, for VFDA has large 
deviations and fluctuations at some location points. 

V. CONCLUSION 

 Due to large scale of positioning regions, failure of APs and 
interference of hotspots, traditional indoor localization 
technology based on static Wi-Fi APs cannot solve the problem 

that in some positioning regions mobile terminals cannot 
receive adequate static AP signals, causing poor positioning 
performance. HAPLA neatly utilizes mobile terminals with the 
Wi-Fi hotspots to serve as dynamic APs, in order to assist 
localization effectively. HAPLA can flexibly select different 
positioning methods to realize high positioning accuracy. 
However, during the positioning process, HAPLA will bring 
about a certain amount of additional overhead when selecting 
the positioning APs. In the future, we will improve the 
performance of HAPLA, especially lowering the computing 
cost of HAPLA. 
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