
Title:  1 

The relative importance of invertebrate and microbial decomposition in a rainforest 2 

restoration project 3 

Running head:  4 

Functioning of tropical soil communities  5 

Authors and addresses:  6 

1. Julian Donald (corresponding author), Centre for Research in Biosciences, University 7 

of the West of England, Coldharbour Lane, Bristol BS16 1QY. Email: 8 

Julian.donald@uwe.ac.uk  9 

2. Iain Weir, Applied Statistics Group, University of the West of England, Coldharbour 10 

Lane, Bristol BS16 1QY. 11 

3. Sam Bonnett,  Centre for Research in Biosciences, University of the West of England, 12 

Coldharbour Lane, Bristol BS16 1QY 13 

4. Pete Maxfield,  Centre for Research in Biosciences, University of the West of 14 

England, Coldharbour Lane, Bristol BS16 1QY 15 

5. M. D. Farnon Ellwood,  Centre for Research in Biosciences, University of the West of 16 

England, Coldharbour Lane, Bristol BS16 1QY 17 

Author contributions:  18 



JD, MDFE conceived and designed the research; JD performed the experiments; JD, IW 19 

analyzed the data; PM, SB contributed reagents, materials and tools for microbial analysis; 20 

JD, MDFE wrote the manuscript. All authors contributed to manuscript revision. 21 

Abstract 22 

Tropical rainforests are increasingly disturbed by human activities. While restoration projects often 23 

succeed in replacing tree cover, they rarely manage to restore soil function. Consequently, there is 24 

an urgent need to understand the changes that occur during soil restoration. Model ecosystems 25 

such as the Eden Project present an ideal opportunity to investigate these changes. The Eden Project 26 

was built 15 years ago, its plants grown from seedlings, or sown directly into a soil made up of 27 

standardized mixtures of recycled organic material. Today, the Eden Project’s rainforest biome 28 

consists of a diverse community of plants, invertebrates and microorganisms. Different areas within 29 

the biome are managed differently, allowing us to separate the relative contributions of 30 

decomposers under differing physical conditions. Litterbag experiments revealed significant 31 

differences in decomposition rates in bags of different mesh sizes. Phospholipid Fatty Acid (PLFA) 32 

analysis revealed that microbial biomass and community structure varied under different 33 

management regimes. Soil enzyme assays revealed that glucosidase activity increased in soils with 34 

more organic matter, whereas phenol oxidase activity increased in more alkaline soils. Our study 35 

takes a step towards understanding the interactions between invertebrates and microbes, and the 36 

way in which soils function during restoration. 37 

 38 
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Implications for practice:  40 

 Studies of model ecosystems can inform the management of restoration projects. 41 



 Artificial soils can support communities of invertebrates that contribute to decomposition 42 

and soil nutrient cycling. 43 

 The use of PLFA analysis in combination with Hydrolitic and Oxidative enzyme assays can be 44 

used to confirm microbial community composition and functioning during soil restoration. 45 

 Soil organic matter content and pH influence microbial enzyme activity. Regular additions of 46 

organic matter in the form of mulch will therefore help to maintain optimum conditions for 47 

microbial functioning during forest restoration projects. 48 

Introduction 49 

Tropical rainforest cover has declined sharply as a result of timber extraction and conversion to 50 

agriculture (Asner et al. 2009). Forest degradation causes a reduction in soil invertebrate diversity 51 

and a shift in associated microbial communities (Ewers et al. 2015; McGuire et al. 2015). Given the 52 

importance of invertebrates and microbes for soil functioning, this is likely to have consequences for 53 

nutrient cycling and plant viability (Nannipieri et al. 2003; Orgiazzi et al. 2016). Restoration projects 54 

will therefore benefit from an understanding of these neglected elements of ecosystem recovery. 55 

Microbial diversity and activity in particular have recently been proposed as the most sensitive 56 

biological indicators of differences in soil functionality (Muñoz‐Rojas et al. 2016).   57 

One way of understanding the effects of disturbance on these indicators is to perform microcosm 58 

experiments. However, to capture the reality of a dynamic ecosystem such as a rainforest, studies 59 

need to be performed on a larger scale. Using mesocosms (Bonnett et al. 2016) such as botanic 60 

gardens for restoration studies (Aronson 2014), or for simulating rainforest ecology (Donald et al. 61 

2016), can prove useful for exploring trends in soil community dynamics. The Eden Project in 62 

Cornwall, UK, is a botanic garden housed in a restored china clay mine, which uses standardized 63 

artificial soils (termed technosols by Séré et al. (2008)) as the foundation for its plant collection. The 64 

Rainforest Biome, an enclosed hothouse, contains over 1400 species of tropical plants, in addition to 65 

a large range of native and alien invertebrate species that have colonized the site over the 15 years 66 



since its construction. Whilst the crop pest species are well documented (see Treseder et al. 2011), 67 

only anecdotal evidence exists regarding the soil fauna likely to be involved in below-ground food 68 

webs. Determining the relative contributions of microorganisms (<0.1 mm), and soil mesofauna (0.1 69 

to 2 mm) can confirm how different components of the soil biota are contributing to the process of 70 

decomposition during forest restoration. To this end, we ask the following questions: 1) Do 71 

invertebrates of different sizes play different roles in decomposition? 2) How does the composition 72 

of microbial communities change under varying soil types? 3) How does the activity of these 73 

microbial communities change under different management regimes?   74 

Methods 75 

Site details 76 

The Eden Project is a unique botanic garden, opened in 2001, situated on a 105 ha site within a 77 

decommissioned china clay quarry near St Austell, Cornwall, UK (50.3601°N, 4.7447°W). The Eden 78 

Project is made up of an outdoor garden, and two large enclosed biomes (Fig. 1). Eden’s rainforest 79 

biome, one of the largest greenhouses in the world, stands 50 m tall and covers an area of 15,590 80 

m². Over 1400 plant species are housed within an effectively sealed environment, under the 81 

following controlled climatic conditions (mean ± SD): air temperature (21.07 ± 2.8°C) soil (20.04 ± 82 

0.8°C), humidity (97.4 ± 3.6%). 83 

Soil within the biomes was developed in partnership with the University of Reading, using sand 84 

recycled from the local china clay industry, composted bark, green waste from the surrounding area, 85 

and lignitic clay as a by-product of Devon’s ball clay industry. This mixture provides the optimum 86 

amounts of trace nutrients, cation exchange capacity, and was able to bind the soil mixtures 87 

together (Table 1). The soils have since been managed with the addition of a compost mulch mix, 88 

composed of green waste collected onsite. Applications of mulch have varied across the biome, with 89 

a resulting range in soil organic matter content. Soil invertebrate diversity is much lower than that of 90 

a tropical rainforest, nevertheless the site does have an abundant community of mesofauna (0.1-2 91 



mm) and macrofauna (>2 mm), most notably white-footed ants (Technomyrmex albipes), Australian 92 

cockroaches (Periplaneta australasiae) and Suriname cockroaches (Pycnoscelus surinamensis) 93 

(Treseder et al. 2011).  94 

Soil functioning was tested at 12 points across the rainforest biome, selected in order to capture the 95 

largest variation in horticultural management regimes and soil conditions across the site.  96 

Leaf litter decomposition 97 

Leaves were cut from the nitrogen-fixing mimosoid legume Samanea saman, a tree chosen due to its 98 

presence within the biome, a relatively fast rate of decomposition, and its high nutrient value 99 

(Schilling et al. 2016). Individual leaflets were stripped from their petioles and dried for 48 hours in 100 

an oven at 50°C.  101 

Leaf litter bags measuring 20 x 15 cm were prepared using a nylon mesh and a glue gun. Two mesh 102 

sizes of 2 x 2 mm (large) and 0.8 x 0.8 mm (small) were used to include or exclude mesofauna. Each 103 

bag was filled with 3 g of dried leaves, before being stapled shut. 104 

At each of the 12 sites, three bags of each mesh size were placed on the ground and covered with a 105 

mulch layer to simulate the leaf litter layer of a forest soil. Six bags per site across 12 sites gave 72 106 

bags in total. The bags were arranged around a central stake to facilitate orientation; alternating 107 

from large to small avoided microclimate effects.  108 

At three intervals (3, 5, 7 months), one bag of each mesh type per site was retrieved, placed into a 109 

paper bag and dried at 50OC for 48 hours. Once dry, great care was taken to separate invasive roots 110 

and soil from the leaf litter before reweighing it.  111 

Soil collection 112 

At each site, four replicate samples of soil were collected from the corners of a 1 m quadrat. Any 113 

ground litter was removed, and using a trowel, approximately 50 cm3 of soil was taken from 114 



between 0-5 cm depth and transferred into 20 x 28 cm zip lock polythene bags. These were then 115 

placed in a cool box before being transferred to the laboratory, where they were stored at 4°C, and 116 

opened regularly to allow the soils to respire. Prior to analysis, the soil was homogenized by being 117 

passed through a 5mm mesh. A sub sample of approximately 10 cm3 was taken from the same sites, 118 

and stored in glass vials at -20°C. 119 

Soil organic matter and pH 120 

Loss on ignition was used as a proxy for soil moisture and organic matter content (Heiri et al. 2001). 121 

5 g of soil from each sample was placed into a crucible and transferred into an oven at 105 °C for 24 122 

hours, weighed, and then placed into a furnace at 450 °C for a further 12 hours before being 123 

reweighed. 124 

pH was tested on a 50 ml solution of 10 cm3 soil dissolved into deionized water using a benchtop 125 

Jenway 3510 pH meter and electrode. 126 

Hydrolase enzyme activity 127 

100 μM Methylumbelliferyl-ß-D-glucopyranoside (MUF) substrate solutions were prepared for the 128 

enzyme glucosidase, along with a MUF standard (DeForest 2009). 100 µm of each soil solution (1:5 129 

wet soil to deionised water) was pipetted out onto a 96 well plate, with three wells for each soil 130 

sample. One contained a soil blank with deionised water (250µl), one with the MUF substrate (150 131 

µl), and one with the MUF standard (150 µl) in addition to wells containing a blank of deionised 132 

water, and reference wells for the MUF substrate and MUF standard. The reaction was left active for 133 

one hour before 50 µl of 1M sodium hydroxide was added to terminate the reaction. The plate was 134 

then transferred to a BMG Labtech Fluostar Optima Fluorometer plate reader to record levels of 135 

fluorescence. An average of three sub-samples was calculated for each sample. A single extreme 136 

outlier, likely caused by an error in fluorescence detection, was removed. The data were then 137 

converted to give glucosidase activity (µmol MUF g-1 hour-1) as outlined by DeForest (2009). 138 



Oxidative enzyme activity 139 

0.75 ml of soil solution (1:5 wet soil to deionised water) was pipetted into two Eppendorfs for each soil 140 

sample. 0.75 ml of deionised water was added to one, whilst 0.75 ml of a 10 mM solution of L-3,4-141 

dihydroxyphenylalanine (L-DOPA) was added to the other. These were incubated at room temperature 142 

for one hour before being centrifuged at 10000 rpm for five minutes. 300 μl of the resulting 143 

supernatant was pipetted onto a clear microplate and transferred to a BMG Labtech Fluostar Optima 144 

Fluorometer plate reader to measure the absorbance at 460nm. Phenol oxidase activity per sample 145 

was calculated by comparing the L-DOPA solution with that of the water blank. An average of three 146 

sub-samples was calculated for each sample. The data were then converted to give phenol oxidase 147 

activity (µmol dicq g-1 hour-1) as outlined by DeForest (2009). 148 

Phospholipid Fatty Acid analysis 149 

Soils that had been frozen upon collection were then freeze-dried and ground into a fine powder. 150 

500 mg of this powder was added to 2.8 ml of a 2:0.8 ratio of methanol:water solution in a 7 ml 151 

Precellys homogenization tube, and homogenized at 1000 rpm (2 x 10 s). Samples were transferred 152 

to pyrex centrifuge tubes with 1.35 ml of chloroform, vortexed (30 s), and sonicated (15 minutes), 153 

before centrifugation (3000 rpm for 5 minutes).  The supernatant solution was transferred into a 30 154 

ml glass vial, and the soil sample re-extracted with Bligh-Dyer solution (2 x 3 ml). The organic and 155 

aqueous phases were separated by the addition of water (1 ml) and chloroform (1 ml), and 156 

centrifuged at 3000 rpm for 3 minutes. The organic (bottom) layer was removed and the aqueous 157 

layer re-extracted with chloroform (3 x 2 ml). The sample was blown down under nitrogen and the 158 

total lipid extract (TLE) was then stored at -20°C.  159 

The TLE was further separated using column chromatography following the method described by 160 

Dickson et al. (2009). The sample was washed through with 5 ml of a 99:1 chloroform:acetic acid 161 



solution to separate out neutral fractions, 20 ml of acetone to separate out the glycolipids, and the 162 

remaining phospholipids were washed out using 6 ml of methanol. 163 

An acid catalyzed derivatization method was used to prepare the phospholipid fraction for analysis. 164 

Here, a solution of hydrogen chloride in methanol (5% w/v) was created by dripping 2.5 ml of acetyl 165 

chloride slowly into 26 ml of anhydrous methanol, chilled in an ice bath to control the exothermic 166 

reaction. 1.9 ml of this solution was added to each lipid sample, along with 10 µl of a known C18 167 

alkane standard. The sample was heated at 60 °C for two hours in a sealed tube. Once cool, 1 ml of 168 

water was added and the fatty acid methyl esters (FAMEs) were extracted into hexane (3 x 1 ml). 169 

Water was removed using a column of sodium sulphate, and the resulting solvent was evaporated at 170 

40°C under nitrogen. FAMEs were re-dissolved in 30 µl of hexane. 1 µl of the resulting solution was 171 

analyzed using gas chromatography. This was performed using a Hewlett-Packard Series 5890 Series 172 

II gas chromatograph (Agilent Technologies UK Ltd., Edinburgh, UK) equipped with a flame ionization 173 

detector using helium carrier gas (pressure of 10 psi). The lipid concentrations were analyzed using a 174 

Varian VF23ms (Varian BV, Middelburg, The Netherlands) 50% cyanopropyl equivalent fused-silica 175 

column (30 m x 0.25 mm x 0.25 µm). The temperature program for fatty acid derivatives was 40°C (2 176 

min) to 100°C at 15°C min–1, to 240°C at 4°C min–1 (held for 20 min). Detailed chromatograms were 177 

produced for each sample and the total microbial biomass per sample was calculated relative to the 178 

standard. The peaks displayed on the resulting chromatogram were identified as either fungal or 179 

bacterial as specified by Frostegård & Bååth (1996), allowing fungal:bacterial ratios to be calculated 180 

for each soil sample. 181 

Statistical analysis 182 

Two-way ANCOVA was used to control for the effects of soil pH while comparing the treatment 183 

effects of mesh size and time on leaf litter weight loss. We used linear mixed-effects modelling to 184 

assess the fixed effects of soil organic matter content on glucosidase and of pH on phenol oxidase; 185 

both modelled with random intercepts for the sample sites. Visual inspection of residual plots did 186 



not reveal any obvious deviations from homoscedasticity or normality. Models that differed in the 187 

random effects specification were compared by likelihood ratio tests. The significance of terms in the 188 

fixed-effects specification was assessed by standard linear regression conditional F-tests. Averages of 189 

soil moisture, organic matter content, pH, glucosidase and phenol oxidase activity were calculated 190 

for each site. Pearson’s correlations of these with soil microbial biomass and fungal:bacterial ratios 191 

were assessed for significance using t-tests of correlation. All analyses were carried out in the R 192 

programming language and environment (R Development Core Team, 2014) with the nlme 193 

software package (Pinheiro et al. 2016) being used for the linear mixed-effects modelling. 194 

 195 

Results 196 

Leaf litter decomposition 197 

The amount of leaf litter lost from the litter bags was significantly greater in the large mesh 198 

treatment at the 5-month interval (Fig. 2). Soil pH had a significant effect on leaf litter 199 

decomposition (F1,65 = 27.29, p <0.001). Having partitioned this effect ANCOVA revealed that, at the 200 

sample mean pH of 7.34, both exclusion (F1,65=4.71, p= 0.034) and time (F2,65 = 37.06, p <0.001) had 201 

significant main effects on litter weight loss. There was no significant interaction between time and 202 

exclusion treatment (F2,65=0.77, p= 0.466).  203 

Glucosidase activity 204 

As soil organic matter increased, so too did glucosidase activity (F1,33 = 5.18, p = 0.030;  Fig. 3). The 205 

relationship between soil glucosidase activity and soil organic matter (% loss on ignition) showed 206 

significant variation in intercepts across sites; SD = 95.59, 𝜒1
2 = 19.34, p < 0.001. When this sample 207 

site variation was taken into account, fitted linear relationships showed that as soil organic matter 208 

increases so too does glucosidase activity (Fig. 3). 209 

Phenol oxidase activity  210 



As pH increased, so too did phenol oxidase activity (F1,35 = 11.01, p = 0.002; Fig. 4). The relationship 211 

between soil phenol oxidase activity and pH showed significant variation in intercepts across sites; 212 

SD = 0.00082, 𝜒1
2 = 28.43, p < 0.001. When this sample site variation was taken into account, fitted 213 

linear relationships demonstrated that phenol oxidase activity increases under more alkaline 214 

conditions (Fig. 4). 215 

Phospholipid Fatty Acid analysis 216 

Sites around the biome varied in their soil microbial biomass (mean = 31528.76 ng/g of soil, SD = 217 

9319.17, n =12), and fungal: bacterial ratios (mean = 0.13, SD = 0.04, n = 12). 218 

Microbial biomass was correlated significantly with phenol oxidase activity across the biome 219 

(r9=0.63, p = 0.03), and fungal:bacterial ratios correlated significantly with glucosidase activity 220 

(r9=0.91, p  < 0.001),  (Table 2). 221 

Discussion 222 

Forest restoration projects depend upon the successful restoration of their soils, and this can only be 223 

achieved by reducing the uncertainty surrounding soil functional processes. Our work has confirmed 224 

the effects of management regime on the standardized soils of the Eden Project, highlighting its use 225 

as a model for forest restoration. Specifically, we have shown that the addition of mulch results in a 226 

matrix of varying pH and organic matter content, which in turn governs microbial activity. Moreover, 227 

by using exclusion treatments, we have confirmed the roles played by invertebrates and microbes in 228 

decomposition under different management regimes.  229 

While the species richness of the Eden Project is lower than that of a tropical rainforest, the biome 230 

does support communities of decomposers. These range from insects such as ants and cockroaches 231 

(Treseder et al. 2011) to other arthropods, and microorganisms known to be highly abundant and 232 

key to the decomposition of organic matter in natural soils (Orgiazzi et al. 2016). After five months, 233 

significantly more leaf litter had disappeared from the large-mesh bags, we suspect as a result of the 234 



colonization and movements of the mesofauna. Indeed, the ability of soil animals to fragment 235 

organic matter and redistribute microbes throughout the leaf litter is known to be an important 236 

component of soil food webs (Soong and Nielsen 2016). However, while our results confirm the 237 

importance of the mesofauna to decomposition in the intermediate stages of our experiment, the 238 

lack of any significant differences in decomposition rates after seven months confirms the relative 239 

importance of microbe mediated decomposition. 240 

Our results support the notion that microbial communities drive the bulk of nutrient cycling in below 241 

ground food webs (Swift et al. 1979). The amount of Samania saman leaves lost from our litterbags 242 

was equivalent to that of a study of decomposition using the same species in a dry forest in Costa 243 

Rica (Schilling et al. 2016). In this study, leaf litter decay rates were shown to be positively correlated 244 

with measures of fungal community structure and soil fertility. In our study, fungal:bacterial ratios 245 

and microbial biomass correlated positively with phenol oxidase and glucosidase activity 246 

respectively, demonstrating the links between soil conditions, microbial community structure and 247 

function. Furthermore, the importance of soil conditions was underpinned in our study by the 248 

significant effect of soil pH on leaf litter decomposition. pH and organic matter content also 249 

contributed to the activity of microbial extracellular enzymes, catalyzing the cycling of nutrients 250 

within the soil. These trends mirror the findings of others who have studied global gradients of pH 251 

and soil carbon (Sinsabaugh 2010; Hendriksen et al. 2016), indicating that this managed artificial soil 252 

displays the same patterns of functioning as natural soils.  253 

Mulching intensity has resulted in changes to the microclimatic, chemical and physical properties of 254 

the Eden Project’s soils, and may have had a greater effect on soil functioning than plant inputs such 255 

as leaf litter or root exudates, which are known to influence soil microbial communities (Nemergut 256 

et al. 2010). This conclusion is supported by studies citing soil organic carbon as a key indicator for 257 

tropical soil fertility (Joergensen 2010). The addition of manure to a tropical technosol in a 258 

microcosm experiment (Neina et al. 2016) has been shown to increase microbial functioning, but 259 



such studies remain limited in their ability to reflect the complexity of soil dynamics in natural 260 

ecosystems. 261 

Although they are intensively managed, and in spite of their artificial nature, we have shown that the 262 

soils of the Eden Project house communities of invertebrates and microbes that contribute to 263 

organic matter decomposition. Our results support the view that a wide range of ecosystem 264 

processes depend upon communities across multiple trophic levels (Soliveres et al. 2017). Whilst a 265 

more comprehensive study of a suite of enzymes is required to gain a direct indication of soil quality 266 

(Trasar-Cepeda et al. 2008), our results nonetheless provide an insight into the forces influencing 267 

microbial structure and functioning in an artificial soil. Model systems such as the Eden Project prove 268 

useful in simulating complex tropical forest dynamics, albeit under controlled conditions, which are 269 

absent from more traditional microcosm studies. To our knowledge, this study is the first to 270 

demonstrate how adaptive management of a technosol can promote increases in soil enzyme 271 

activity, and modify microbial biomass and community composition. Most importantly, our study 272 

highlights the potential of artificial soils to facilitate a functional soil community under tropical 273 

conditions.  274 
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Table 1- Technosol mix in the Rainforest Biome at the Eden Project 

 

 

Table 2: Correlations of Eden Project soil microbial biomass and fungal : bacterial ratio with soil physicochemical 

conditions and extracellular enzyme activity. Significance (d.f. = 10 in each case) is indicated as follows: n.s. = not 

significant (p>0.05), * p< 0.05, ** p< 0.01, *** p< 0.001.  

 

Microbial Biomass Fungal Bacterial 

Soil moisture   0.14 n.s. -0.168 n.s. 

Soil organic 0.37 n.s.  -0.024 n.s. 

pH   0.452 n.s.   -0.19 n.s. 

Phenol Oxidase 0.63 * -0.296 n.s. 

Glucosidase  0.09 n.s. 0.91*** 

Fungal bacterial  -0.181 n.s. 
 

 

 

 Sand Organic Component Lignitic Clay 

Subsoil 65% 25% 10% 

Topsoil 25% 65% 10% 



 

Figure 1: The Eden Project Rainforest Biome from construction to completion. Photo a) courtesy of Eden Project, b, c, d) 
Julian Donald



 

Figure 2: Mean weight loss of leaf litter in litter bags after 3, 5 and 7 months in the Rainforest Biome of the Eden Project 

(n = 12, SE ±1). The two exclusion treatments were 0.8 x 0.8 mm (small) and 2 x 2 mm (large), evaluated at the sample 

mean soil pH value of 7.34.  



 

Figure 3: Glucosidase activity versus soil organic matter content for the 12 sites sampled across the Rainforest Biome.  

The fitted linear relationships are shown from a mixed-effects model with soil organic matter as a fixed effect and a 

random effect for the intercept. It can be seen that as soil organic matter increases, so too does glucosidase activity.   



 

Figure 4: Phenol oxidase activity versus soil pH for the 12 sites sampled across the Rainforest Biome. The fitted linear 

relationships are shown from a mixed-effects model with pH as a fixed effect and a random effect for the intercept. It 

can be seen that as soil pH increases, so too does phenol oxidase activity.  

 

 


