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ABSTRACT 

For two independent samples there is much debate in the literature whether parametric or non-
parametric methods should be used for the comparison of Likert question responses. The 
comparison of paired responses has received less attention in the literature. In this paper, 
parametric and non-parametric tests are assessed in the comparison of two samples from a 
paired design on a five point Likert question. The tests considered are the independent samples t-
test, the Mann-Whitney test, the paired samples t-test and the Wilcoxon test. Pratt’s modified 
Wilcoxon test for dealing with zero differences is also included. The Type I error rate and power 
of the test statistics are assessed using Monte-Carlo methods. The parameters varied are; 
sample size, correlation between paired observations, and the distribution of the responses. The 
results show that the independent samples t-test and the Mann-Whitney test are not Type I error 
robust when there is correlation between the two groups compared. Pratt’s test more closely 
maintains the Type I error rate than the standard Wilcoxon test does. The paired samples t-test is 
Type I error robust across the simulation design. As the correlation between the paired samples 
increases, the power of the test statistics making use of the paired information increases. The 
paired samples t-test is more powerful than Pratt’s test when the correlation is weak. The power 
differential between the test statistics is exacerbated when sample sizes are small. Assuming 
equally spaced categories on a five point Likert item, the paired samples t-test is not 
inappropriate. 
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1. INTRODUCTION 

A Likert item is a forced choice ordinal question which captures the intensity of opinion or degree of 

assessment in survey respondents. Historically a Likert item comprises five points worded: Strongly 

approve, Approve, Undecided, Disapprove, Strongly Disapprove (Likert, 1932). Other alternative 

wording, such as “agree” or “neutral” or “neither agree nor disagree” may be used depending on the 

context.  

The literature is sometimes confused between the comparison of samples using summed Likert 

scales and the comparison of samples for individual Likert items (Boone and Boone, 2012). A 

summed Likert scale is formed by the summation of multiple Likert items that measure similar 

information. This summation process necessarily requires the assignment of scores to the Likert 

ordinal category labels. The summation of multiple Likert items to produce Likert scales has not been 

without controversy but it is a well-established practice in scale construction, and is one which may 



 
 

produce psychometrically robust scales with interval-like properties. Such derived scales, could 

potentially yield data amenable to analysis using parametric techniques (Carifo and Perla, 2007). 

Distinct from Likert scales, the comparison of two samples on an individual Likert question is the 

subject of this paper.   

The response categories of a five point Likert item may be coded 1 to 5 and the item responses 

viewed as being ordinal under Stevens (1946) classification scheme. Extant literature acknowledges 

that in certain practical and methodological aspects, the Likert-item responses may approximate 

interval level data (Norman, 2010). The ordinal codes 1, 2, 3, 4, and 5 or alternatively -2, -1, 0, 1, 2 

could be used as numerical scores in robust tests for differences. This change from codes to numeric 

scores is used in the creation of summated Likert scales and is at the heart of the controversy. 

Proponents in favour of such practice advance an argument that the Likert question is accessing 

some information from an underlying scale and the resultant score is a non-linear realisation from this 

scale (Norman, 2010). Thus, although the scored item may not perfectly have the required properties 

to be classed as interval level data under Stevens classification scheme, the scored item might, in 

practice, approximate interval level data and be amenable to analysis using parametric techniques.   

When comparing two independent sets of responses from a Likert question, the independent samples 

t-test is frequently performed. The corresponding non-parametric test for independent samples is the 

Mann-Whitney-Wilcoxon test (Wilcoxon, 1945). This test may also be referred to as the Wilcoxon-

Mann-Whitney test, or as is the case in this paper, simply referred to as the Mann-Whitney test.  

For two independent samples, whether the correct approach for analysis should be a parametric t-test 

or the non-parametric Mann-Whitney test is much debated in the literature (Sullivan and Artino, 2013). 

The choice between parametric and non-parametric tests for the analysis of single Likert items 

depends on the assumptions that researchers are willing to make and the hypotheses that they are 

testing (Jamieson, 2004). Some practitioners are uncomfortable with a comparison of means using a 

parametric test, arguing that response categories cannot be justifiably assumed to be equally spaced 

and consequently the use of equally spaced scores is unwarranted. In contrast, Allen and Seaman 

(2007) suggests that Likert items measure an underlying continuous measure and suggests the use 

of the independent samples t-test as a pilot test, prior to obtaining a continuous measure. If the 

assumption that the underlying distribution is continuous can be deemed reasonable, Likert 

responses approximate interval data. For interval data, the use of parametric tests may not be 

inappropriate. When the assumption of interval data applies, consideration should be given to the 

sample size and distribution of the responses before applying the independent samples t-test 

(Jamieson, 2004). 

If sample sizes are large, both parametric and non-parametric test statistics are likely to have 

adequate power. However, in research there is a trade-off between increasing sample size and 

reducing collection costs. When resource is scarce, the most powerful test statistic for small samples 

is of interest. 



 
 

For two independent samples, De Winter and Dodou (2010) found that both the independent samples 

t-test and the Mann-Whitney test are generally Type I error robust at the 5% significance level for a 

five point Likert item. This is true across a diverse range of distributions and sample sizes. Both tests 

suffer some exceptions to Type I error robustness when the distributions have extreme kurtosis and 

skew. The power is similar between the two tests, for both equal and unequal sample sizes. When the 

distribution is multimodal with responses split mainly between strongly approve and strongly 

disapprove, the independent samples t-test is more powerful than the Mann-Whitney test. Rasch, 

Teuscher and Guiard (2007) show that using the Mann-Whitney test using the Normal approximation 

with correction for ties is Type I error robust for two groups of independent observations on a five 

point Likert item.  

For two independent samples, Nanna and Sawilowski (1998) found that the independent samples t-

test and the Mann-Whitney test are Type I error robust for seven point Likert item responses, with the 

Mann-Whitney test superior in power. This is likely observed because there is more scope to apply 

greater skew on a higher point Likert-style scale.  

The literature is much quieter on the analysis of Likert items in paired samples designs. A non-

parametric test for paired samples is the Wilcoxon rank sum test (Wilcoxon, 1945). This is often 

referred to as the Wilcoxon signed rank test, or as is the case in this paper, simply referred to as the 

Wilcoxon test. When the samples are from an underlying Normal distribution, the null hypothesis is of 

equal distributions, but this is particularly sensitive to changes in location (Hollander, Wolfe and 

Chicken, 2013). Thus if samples are from a bivariate Normal distribution, assessing for a location shift 

is reasonable.  

When comparing two groups of paired samples on a five point Likert item, the paired samples t-test is 

often used in preference to the Wilcoxon test (Clason and Dormody, 1994). This choice of test is not 

inappropriate when interval approximating data is assumed, and when the null hypothesis is one of no 

difference in central location (Sisson and Stocker, 1989).  

The degree of correlation between two samples is likely to impact the choice of test.  The correlation 

between two sets of responses on a Likert scale is typically hard to quantify. With respect to bivariate 

Normal distributions, Fradette et.al. (2003) suggest that if the correlation is small then the 

independent samples t-test could be used. However, under the same conditions, Zimmerman (1997) 

argues that using the independent samples t-test for even a small a degree of correlation violates the 

independence assumption and can distort the Type I error rate. For bivariate normality, Vonesh 

(1983) demonstrates that the paired samples t-test is more powerful than the independent samples 

test when   0.25.  

In general, the Wilcoxon test with a correction for ties, may be used to test for a location shift between 

two discrete groups. The Wilcoxon test discards observations where there is a zero difference 

between the two groups. Given the discrete nature of Likert item data, it would not be unusual to 

observe a large proportion of zero differences in a sample. The discarding of many data pairs with a 



 
 

zero difference may be problematic. Pratt (1959) proposed a modification of the Wilcoxon test to 

overcome potential problems caused by discarding zero differences. In Pratt’s test, the absolute 

paired differences are ordered including the zero differences, ranks are applied to the non-zero 

differences as if the zero differences had received ranks, and these ranks used in the Wilcoxon test. 

Conover (1973) compared the Wilcoxon test dropping zero differences to Pratt’s test incorporating 

zero differences and concluded that the relative performance of the two approaches depends on the 

underlying distribution. The comparison conducted by Conover (1973) did not include Likert items and 

did not extend to the inclusion of the paired samples t-test.  

A further alternative method for handling zero differences suggested by Pratt (1959) is to randomly 

allocate zero differences to either positive or negative ranks. To achieve this for every zero difference 

add a random uniform deviate )1.0,1.0(~ U and then proceed with the ranking. This approach is 

referred to as the random epsilon method in the following.  

For paired five point Likert data we seek to compare the relative behaviour of the Wilcoxon test, 

Pratt’s test, the random epsilon method and the paired samples t-test. The comparison is undertaken 

by discretising realisations from bivariate Normal distributions on to a five point scale over a range of 

correlation coefficients,  , including  = 0. For this latter reason we additionally include the Mann-

Whitney test and the independent samples t-test in the comparison. Mindful that differences in 

location are likely to be accompanied with differences in variances, we additionally include the 

separate variances t-test i.e. Welch’s test in the comparison. It is known that for independent 

samples, Welch’s test is Type I error robust under normality for both equal and unequal variances 

(Derrick, Toher and White, 2016). 

Below we give the simulation study, key results and a discussion of the findings. 

 

2. METHODOLOGY 

Random Normal deviates for two groups of sample size n  are generated using the Box–Muller 

(1958) transformation. These deviates are transformed into n  pairs with Pearson’s correlation 

coefficient   using methodology outlined by Kenney and Keeping (1951).  

For each combination of n  and  , correlated bivariate Normal deviates ijx  are generated, where i = 

{1:n} and j = {Group 1, Group 2}. The mean of the sample is varied by adding j  to each deviate so 

that ijx ~N( j ,1). The values of each of the parameters simulated are given in Table 1.  



 
 

Table 1. Summary of the simulation design. 

Sample size, n  10, 20, 30, 50 

Correlation coefficient,   0.00, 0.25, 0.50, 0.75  
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Test Statistics 

1T  Paired samples t-test 

2T  Independent samples t-test 

3T  Welch’s t-test 

1W  Wilcoxon test (Traditional method, discarding zeroes) 

2W  Pratt’s test (Wilcoxon test, Pratt’s zeroes modification) 

3W  Random  (Wilcoxon test, )1.0,1.0(~ U added to zeroes) 

MW Mann-Whitney test. 

Number of iterations 10,000 

Nominal significance level 5% (two-sided test) 

Programming language R version 3.1.3 

 Complete tables of all results available on request. 
 

Without loss of generality the five points on the Likert scale are numbered from -2 to 2, the “neutral” 

response is 0. The Likert-style responses ijy  are calculated using the cut-points as follows:  

 









































 -0.8416if2

2533.08416.0if1

2533.02533.0if0

8416.02533.0if1

8416.0if2

ij

ij

ij

ij

ij

ij

x

x

x

x

x

y  

The cut-points are calculated so that under N(0,1) the theoretical distribution of the Likert-style 

responses is uniform. The median of Group 1 and the median of Group 2 are represented by 1  and 

2  respectively. Scenarios A) to I) in Table 1 give an example of each of the possible bivariate 



 
 

pairings of 1  and 2  within a five point Likert design. For example, scenario D) 01  , 12  , is 

equivalent to 11  , 02  ; 01  , 12  ; and 11  , 02  .  

For selected parameter combinations within the factorial simulation design, theoretical observed 

proportions of ijy  are illustrated in Figure 1. These showcase the range of distributions in the 

simulation design.  

 

Figure 1. Theoretical distributions of the proportion of observed responses, for selected 

parameter combinations.  

For non-parametric tests, exact p-values are difficult to obtain due to the frequent occurrence of ties 

for Likert data. When there are ties, the Normal approximation corrected for ties can be used to 

calculate p-values (Hollander, Wolfe and Chicken, 2013). The Normal approximations for both the 

Mann-Whitney test and the Wilcoxon test are very accurate even for small sample sizes (Bellera, 

Julien and Hanley, 2010). The continuity correction factor is often used when approximating discrete 

distributions using the Normal distribution. The correction factor has little impact when n  10 

(Emerson and Moses, 1985). The non-parametric tests are performed using the Normal 

approximation with correction for ties. A continuity correction factor is also applied. Two-sided tests 

are performed at the nominal 5% significance level. 



 
 

For each of the parameter combinations within the simulation design the process outlined above is 

repeated 10,000 times. The proportion of the 10,000 iterations where 0H  is rejected is calculated. 

For the three scenarios in the simulation design where 0H  is true, the proportion of iterations where 

0H  is rejected represents the Type I error rate. For the six scenarios in the simulation design where 

1H  is true, the proportion of iterations where 0H  is rejected represents the power of the test. 

 

3. RESULTS 

Type I error rates for each of the test statistics are considered. This is followed by a summary of the 

power of the test statistics. 

When the null hypothesis is true, 0H  rejection rates within the interval [0.025 , 0.075]  are within 

Bradley’s (1978) liberal limits. This Type I error robustness criteria is often used by researchers, 

although there is no consensus on the most appropriate criteria (Serlin, 2000). For the three scenarios 

in the simulation design where 0H  is true, the Type I error rates for each of the test statistics is given 

in Table 2. 

Table 2. Type I error rates for selected combinations. For each parameter combination the test 

statistics within Bradley’s (1978) liberal robustness criteria is highlighted in bold.  

  
1  

2  n 
1T  2T  3T  

1W  2W  3W  MW  

0 0 0 10 0.0528 0.0510 0.0498 0.0375 0.0487 0.0385 0.0441 

0 0 0 20 0.0523 0.0513 0.0511 0.0466 0.0484 0.0464 0.0486 

0 0 0 30 0.0494 0.0508 0.0508 0.0464 0.0501 0.0463 0.0494 

0 1 1 10 0.0484 0.0498 0.0472 0.0344 0.0466 0.0356 0.0426 

0 1 1 20 0.0549 0.0527 0.0524 0.0489 0.0506 0.0488 0.0509 

0 1 1 30 0.0471 0.0486 0.0481 0.0447 0.0473 0.0446 0.0455 

0 2 2 10 0.0352 0.0461 0.0313 0.0168 0.0570 0.0185 0.0441 

0 2 2 20 0.0450 0.0460 0.0450 0.0350 0.0520 0.0400 0.0480 

0 2 2 30 0.0410 0.0500 0.0500 0.0400 0.0440 0.0410 0.0490 

0.75 0 0 10 0.0438 0.0018 0.0018 0.0243 0.0546 0.0268 0.0014 

0.75 0 0 20 0.0498 0.0005 0.0005 0.0392 0.0482 0.0405 0.0007 

0.75 0 0 30 0.0463 0.0006 0.0006 0.0432 0.0459 0.0438 0.0005 

0.75 1 1 10 0.0381 0.0014 0.0012 0.0207 0.0514 0.0219 0.0012 

0.75 1 1 20 0.0514 0.0006 0.0006 0.0398 0.0485 0.0406 0.0004 

0.75 1 1 30 0.0468 0.0009 0.0009 0.0404 0.0439 0.0410 0.0008 

0.75 2 2 10 0.0221 0.0036 0.0025 0.0077 0.0402 0.0103 0.0036 

0.75 2 2 20 0.0460 0.0050 0.0050 0.0270 0.0470 0.0310 0.0080 

0.75 2 2 30 0.0470 0.0040 0.0040 0.0380 0.0520 0.0400 0.0050 

 



 
 

Table 2 shows that all of the test statistics under consideration fulfil Bradley’s Type I error robustness 

criteria when 0 . As the correlation increases, test statistics assuming independent samples ( 2T , 

3T  and MW ) do not maintain Type I error robustness. Test statistics assuming independent samples 

are valid when the structure of the data is unpaired, but appear biased when the structure of the data 

is paired.  

Test statistics making use of paired information are robust across the range of  . Pratt’s test ( 2W ) is 

Type I error robust for every combination of parameters under the simulation design. 1T , 1W  and 3W  

are also generally Type I error robust, with minor deviations when the sample size is small ( 10n ) 

and both samples are heavily skewed ( 21  , 22  ). 

Figure 2 summarises for each test statistic the Type I error rates for all of the sample size and 

correlation coefficient combinations within the design. It can be seen from Figure 2 that the paired 

samples t-test ( 1T ) and Pratt’s test ( 2W ) perform closest to the nominal Type I error rate of 5% across 

the simulation design.  

 

Figure 2. Type I error rates for each test statistic, averaged over each combination of 

parameters. The dotted line represents significance level of 5%. 



 
 

Figure 2 demonstrates that each of the test statistics are generally conservative. A conservative test 

statistic is of less concern than a liberal test statistic (Mehta and Srinivasan, 1970). Alternative Type I 

error robustness criteria states that Type I error rates within the interval [0 , 0.055] are acceptable 

(Sullivan and D’Agostino, 1996). For all of the test statistics, each of the parameter combinations 

within the factorial design are within at least one of the mentioned Type I error robustness criteria. 

Hence, the power of each of the test statistics can be reasonably compared.  

The power for each of the test statistics is given in Table 3, for the six scenarios in the simulation 

design where 1H  is true. 

Table 3. Power for selected conditions. For each parameter combination the most powerful test is 

highlighted in bold. 

  
1  

2  n 
1T  2T  3T  

1W  2W  3W  MW  

0 -1 1 10 0.5261 0.5682 0.5651 0.4587 0.4943 0.4594 0.5366 

0 -1 1 20 0.8496 0.8640 0.8637 0.8283 0.8350 0.8292 0.8593 

0 -1 1 30 0.9594 0.9650 0.9650 0.9534 0.9544 0.9535 0.9629 

0 0 1 10 0.1742 0.1905 0.1873 0.1381 0.1631 0.1386 0.1707 

0 0 1 20 0.3200 0.3300 0.3292 0.2956 0.3057 0.2965 0.3202 

0 0 1 30 0.4522 0.4631 0.4627 0.4354 0.4404 0.4354 0.4573 

0 0 2 10 0.6502 0.7044 0.6970 0.5745 0.6275 0.5791 0.6805 

0 0 2 20 0.9415 0.9497 0.9494 0.9291 0.9338 0.9292 0.9488 

0 0 2 30 0.9913 0.9935 0.9934 0.9897 0.9910 0.9900 0.9929 

0.75 -1 1 10 0.9299 0.5935 0.5878 0.8741 0.9353 0.8808 0.5618 

0.75 -1 1 20 0.9989 0.9508 0.9508 0.9988 0.9989 0.9988 0.9501 

0.75 -1 1 30 1.0000 0.9967 0.9967 1.0000 1.0000 1.0000 0.9970 

0.75 0 1 10 0.3974 0.0842 0.0819 0.3025 0.4186 0.3112 0.0764 

0.75 0 1 20 0.7496 0.2342 0.2328 0.7119 0.7381 0.7164 0.2341 

0.75 0 1 30 0.9079 0.4336 0.4334 0.8976 0.9000 0.8990 0.4292 

0.75 0 2 10 0.9585 0.7548 0.7413 0.8986 0.9706 0.9114 0.7345 

0.75 0 2 20 0.9998 0.9890 0.9888 0.9997 0.9998 0.9997 0.9896 

0.75 0 2 30 1.0000 0.9996 0.9996 1.0000 1.0000 1.0000 0.9997 

 

Table 3 shows that the power difference between the independent samples t-test ( 2T ) and Welch’s 

test ( 3T ) is negligible. Additionally, there is little power differential between the traditional Wilcoxon 

test ( 1W ) and the Random   method ( 3W ). 

To summarise the power across the parameters within the simulation design, Figure 3 depicts how 

the test statistics 1T , 2T , 1W , 2W  and MW  perform with increasing   for a small sample size of 

10n . Figure 4 depicts how the test statistics 1T , 2T , 1W , 2W  and MW  perform with increasing 

  for a larger sample size of 20n . 



 
 

 

Figure 3. Power of the test statistics 1T , 2T , 1W , 2W  and MW  where 10n , averaged 

across each scenario within the simulation design. 

Figure 3 shows that the independent samples t-test consistently out performs the Mann-Whitney test. 

When 0  the independent samples t-test is the recommended test of choice. When  >0 the 

paired samples t-test is more powerful than the independent samples t-test. These findings are 

consistent with the paired samples t-test and the independent samples t-test for continuous data 

(Fradette et. al. 2003; Zimmerman, 1997; Vonesh, 1983).  

It can also be seen from Figure 3 that the standard Wilcoxon test consistently lacks power compared 

to Pratt’s test and the paired samples t-test. When 25.0  the paired samples t-test is the most 

powerful test. As the correlation increases, Pratt’s method becomes the test of choice.  

As 1  the power of both 1T  and 2W  increases. Given that both the paired samples t-test and 

Pratt’s test have high power when the correlation is strong, the decision between the two tests is not 

of any major practical consequence in these circumstances. 

Figure 4 shows that as sample size increases, the choice between the Wilcoxon test, Pratt’s test and 

the paired samples t-test becomes less important. The sample size is large enough to compensate for 

discarded zeroes in the Wilcoxon test for n   20.  



 
 

 

Figure 4. Power of the test statistics 1T , 2T , 1W , 2W  and MW  where 20n , averaged across 

each scenario within the simulation design. 

 

4. CONCLUSION 

Simulations have been performed based on an underlying continuum with a nonlinear transformation 

mapping to a five point equally spaced scoring scheme. The results indicate that parametric statistical 

procedures maintain good statistical properties for these data, i.e. the scores seemingly have interval 

like properties. This tends to suggest that if any real world application has a five point Likert scale 

designed to have perceived equally spaced categories, then the analyst may proceed with parametric 

approaches.   

When comparing two independent samples on a five point Likert question, the independent samples t-

test, Welch’s test and the Mann-Whitney test are Type I error robust. There is little practical difference 

between the power of these three tests. These findings support those in the literature (De Winter and 

Dodou, 2010; Rasch, Teuscher and Guiard, 2007).  

When the structure of the experimental design includes paired observations, the independent 

samples t-test, Welch’s test and the Mann-Whitney test do not fulfil all Type I error robustness 



 
 

definitions. Nevertheless, these tests are conservative in nature and so their use may not be 

completely unjustified. However, these tests lack power in a paired design and are therefore not 

recommended, unless it is considered that the relationship between the two groups being compared 

is extremely small. 

When sample sizes are large, there is little practical difference in the conclusions made from the 

paired samples t-test, the Wilcoxon test, or Pratt’s test. When the sample size is large the choice 

becomes a more theoretical question about the exact form of the hypothesis being tested and the 

assumptions made. 

When sample sizes are small and the correlation between two paired groups is strong, Pratt’s test 

outperforms the paired samples t-test and the Wilcoxon test. When the correlation between the two 

groups is weak, the paired samples t-test outperforms the Wilcoxon test and Pratt’s test.  
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