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Abstract 

 

Novelty: Climate change has significant impacts on building energy performance. A novel life cycle 

optimisation strategy is developed for determining optimal retrofitting solutions for office buildings with 

climate change effects taken into consideration. The first innovation is that a hybrid genetic algorithm and 

artificial neural network model is developed to estimate future heating and electrical energy demands. The 

second innovation is that performance of integrated retrofitting measures under climate change conditions 

is evaluated. The third innovation is that life cycle cost optimisation is conducted using future weather 

profiles, while the energy usage and carbon footprint of the retrofitted building over its whole life span is 

evaluated.  

 

Methodology: The proposed life cycle optimisation strategy is implemented on two campus buildings in 

Bristol, the United Kingdom. The historical weather profile and energy consumption data during the past 

two years is collected to develop and train the hybrid energy prediction model. The future weather profile, 

including air temperature, relative humidity, precipitation rate, solar radiation, wind speed and cloud 

percentage, is projected using the HadCM3 model. The collective performance of various passive, active 

and renewables retrofitting options is investigated.  

 

Major results and future application: It is found that there exists a distinct discrepancy between optimal 

retrofitting solutions determined using the current and future weather conditions. Moreover, there would be 

at most 4.7% over-estimation or 54.7% under-estimation of lifetime cost, energy and carbon if the selected 

optimal retrofitting solution from current weather conditions is adopted under climate change conditions. 

Therefore, the proposed framework can provide a meaningful guideline in determining appropriate 

retrofitting solutions and supporting energy efficiency policies to achieve net-zero by 2050.  

 

Keywords: Climate change; Building retrofitting; Life cycle optimisation; Artificial neural network; 

Sustainability.  
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1. Introduction 

 

1.1 Research problem 

 

Building retrofitting requires a significant investment and aims at long-standing objectives. Thus, it is 

critical to consider potential climate change while enhancing the sustainability of the retrofitted buildings. 

Climate change could induce temperature rise, climate variability and extreme weather conditions. Not 

preparing for climate change might result in higher lifetime economic costs, primary energy usage and 

greenhouse gas emissions. The objective of this research is to develop a life cycle optimisation strategy to 

determine the optimal retrofitting solution for office buildings with climate change impacts taken into 

consideration. The actual retrofitting performance determined by the proposed strategy would be compared 

with the state-of-the-art life cycle retrofitting strategies where climate change effects are not accounted. 

 

1.2 Literature review 

 

First principle and thermodynamic models were commonly adopted to explore the change of heating, 

cooling and electrical energy consumption of various buildings under climate change conditions. Nik et al. 

[2] assessed the necessity and effectiveness of natural, hybrid and mechanical cooling strategies under 

climate change conditions. The thermal energy demand and indoor environment of the case study building 

were evaluated by the thermodynamic model of the building. Huang et al. [3] evaluated the future cooling 

energy usage of a representative residential apartment building using future weather data and EnergyPlus 

simulation software. The potential energy performance of five different envelope insulation measures was 

evaluated using Morphing-based future weather data. Shibuya et al. [4] investigated the effects of climate 

change on thermal energy requirements of office buildings. A series of energy conservation measures were 

evaluated, including improving building envelope insulation, reducing internal heat gain, reducing 

infiltration rate, and decreasing window-to-wall ratio. Invidiata et al. [5] investigated the effects of climate 

change on thermal energy demand and thermal comfort conditions in dwellings in three different locations 

in Brazil. The performance of passive design schemes such as low absorptance, solar shading and thermal 

insulation was also evaluated. Wddicor et al. [6] adopted a building energy performance simulation model 

to evaluate the impacts of climate change and building ageing on the energy performance of a library 

building in Turin, Italy. Barbosa et al. [7] presented an assessment strategy for the thermal comfort of 

existing dwellings under climate change conditions. Ouedraogo et al. [8] evaluated the current and future 

energy demands for air conditioning in public buildings. The impacts of various shading devices and 

envelope insulations on thermal energy demands were also investigated. 



Furthermore, some previous works focused on the effects of climate change on the individual performance 

of a single retrofitting measure. Mata et al. [9] investigated how the mitigation potential and profitability 

of building was affected by climate change. The individual performance of 13 retrofitting options for 

envelope insulation, ventilation with heat recovery and efficient lighting or appliances under climate change 

situations was evaluated. The energy performance of the residential building was simulated using the 

building-stock model ECCABS. Shen et al. [10] developed a framework to explore the impacts of various 

retrofitting options on residential buildings in the future climate. The energy performance of the reference 

residential building model was evaluated using EnergyPlus. The investigated retrofitting options include 

envelope insulation, lighting efficiency upgrade, natural ventilation, and airtightness improvement. Hassan 

Radhi [11] discussed the potential effects of global warming on the energy usage of air-conditioning in the 

hot climate of the United Arab Emirates. The individual impact of different retrofitting measures was 

assessed, including reducing the heat transfer coefficient of walls and roof, using the higher thermal mass 

of envelope, installing shading devices, and using different glazing systems. Filippin et al. [12] adopted an 

integral analysis for a combination of past, present and future periods. The past was analysed through the 

historical operating energy data over the past 50 years. The present was evaluated through the detailed 

analysis of a case study building, while the future was assessed according to the individual performance of 

a single retrofitting strategy under future weather conditions near the year 2040. Hooff et al. [13] evaluated 

the effects of different passive retrofitting measures on the thermal energy demands of a terraced house 

under climate change conditions. Nik et al. [14] evaluated the usefulness and reliability of efficient lighting 

systems and envelope insulation under climate change scenarios. They also [15] evaluated the heating 

demand after different retrofitting measures (i.e. envelope insulation, ventilation system with heat recovery, 

thermostats, effective lighting and appliances) were adopted for residential building stocks of three major 

cities in Sweden under the climate change condition. The building stock was regarded as a lumped system, 

while each building was represented as one single zone.  

 

On the other hand, various life cycle assessment and optimisation strategies were proposed for selecting 

optimal retrofitting solutions. Mangan et al. [16] conducted a life cycle assessment of retrofitting strategies 

for an existing residential building in Turkey. Life cycle energy consumption and carbon emissions of each 

individual retrofitting measure were assessed. The investigated retrofitting measures included heat 

insulation in the exterior wall components, improvement of glazing systems and installation of photovoltaic 

(PV) system. Zhang et al. [17] explored the trade-offs between life cycle carbon emissions and investment 

costs for retrofitting Canadian single-detached houses. The operational energy demand was estimated using 

a bin-based method with monthly weather data from a typical meteorological year (TMY). The retrofitting 

options mainly included airtightness improvement, envelope insulation, energy-efficient natural gas 



furnaces and electric heat pump. She et al. [18] proposed a multiple-objective optimisation method for zero-

energy buildings. The main assessment criteria included life cycle energy and cost. The design options 

consisted of materials of the roof, types of the window, the surface area of PV panels and structure of wall 

design. Sim et al. [19] proposed a genetic algorithm-based life cycle cost optimisation strategy for 

retrofitting campus buildings. The nominal capacity and efficiency of the PV panel and ground source heat 

pump system were considered as decision variables. The operating energy consumption of the building was 

determined by building energy simulation programs EnergyPlus and DesignBuilder.  Abdou et al. [20] 

assessed the life cycle cost of achieving net-zero operating energy in housing stock by integrating the design 

of architectural energy efficiency practices and renewable energy devices. The building architectural design 

included building form, the orientation of the main façade and fenestration, while the renewable energy 

devices included PV panels and solar domestic water heater. The building energy performance was 

estimated using TRNSYS simulation software. Hong et al. [21] evaluated the life cycle cost of retrofitting 

an office building. The retrofitting measures included energy-conserving behaviours, equipment, lighting 

system, building envelope, and renewable energy sources. The temperature and relative humidity used for 

energy simulation were measured using sensors installed within and outside the buildings. Luo et al. [22, 

23] proposed a data-driven life cycle retrofitting optimisation strategy to maximise the reduction in cost, 

energy consumption and carbon emissions during the whole life span. The retrofitting options included roof 

and wall insulation, solar panel and heater, wind turbine, biomass boiler, as well as combined heat and 

power (CHP) system. However, in these state-of-the-art studies, the operating energy performance was 

estimated using energy simulation software (i.e. EnergyPlus, DesignBuilder, TRNSYS, etc.) while weather 

profiles from TMY [16-20], actual measurement [21] or historical record [22, 23] were adopted. The effects 

of climate change on life cycle performance were not considered. 

  



Table 1. Summary of literature review. 

No 
Climate 

model 
Building model Building type Retrofitting measures Evaluation criteria Location Year 

[2] GCMs RCMs 
A lumped 

thermal zone 

Residential 

building 
- 

Heating/cooling 
demand, indoor 

temperature 

Sweden 2013 

[3] 

MIRCO3.2-

MED, 
morphing 

EnergyPlus 

The top floor of 

an apartment 
building 

Roof, wall and floor insulation, 

window replacement 

Energy loads 

evaluation 
Taiwan 2016 

[4] RCM20 

Thermal 

analysis 
simulation 

A hyper-

theoretical 
office building 

Building envelope, reducing 

internal heat gains, infiltration 
rate, and window area fraction 

Energy loads 

evaluation 

Sapporo, 

Tokyo and 
Naha 

2016 

[5] 

World 

Weather 
Generator 

EnergyPlus 
A single-family 

social house 

Solar shading, low absorptance 

and thermal insulation 

Energy 

consumption 
evaluation 

Brazil 
2016 

 

[6] 

IPCC 

synthesis 

scenarios 

IDA ICE 
simulation 

A library 
building 

Building age 

Energy 

consumption and 

thermal comfort 

Turin 
2016 

 

[7] 

World 

Weather 

Generator 

 

EnergyPlus 

 

A typical 

residential 

building 

Envelope insulation 

Energy 

consumption and 

thermal comfort 

Lisbon, 

Portugal 

 

2015 
 

[8] HadCM3 IES VE 
A hyper-

theoretical 

office building 

Windows, doors, shadings,  

lighting, air-conditioning  

Cooling loads 

evaluation 

Burkina 

Faso 
2012 

[9] 

RCA3 (one 
random year 

in each 20-

year period) 

Building stock 

model 
ECCABS   

Residential 

building 

9 single ESMs and 4 packages 

of ESMs (Insulation, 
Ventilation, Electricity) 

Net cost for 
conserved energy 

and carbon 

abatement 

Gothenburg
Stockholm 

Lund 

Östersund 

2019 

[10] HadCM3 EnergyPlus 
Residential1and 

office building 

Window replacement and 
shading, envelope insulation, 

upgrade system efficiency 

Net present value 
Philadelphi
a and San 

Francisco 

2019 

 

[11] 
Increase of air 
temperature 

Visual DOE 
Two residential 
building design 

Envelope insulation, shading, 
glazing 

Energy 
performance  

UAE 2009 

[12] 

e CMIP5-

Coupled 

model  

SIMEDIF 
10 compact 

single dwellings 
Thermal insulation of walls and 
roofs, solar conversion system 

Energy 
consumption  

La Pampa 
2017 

 

[13] 

NEN 5060, 

which is 

based on EN 

ISO 15927-4 

EnergyPlus 
A terraced 

house 

Increasing thermal resistance, 

changing thermal capacity, 

increasing short-wave 
reflectivity, vegetated roof, 

solar shading 

Energy demand 

evaluation 
Netherlands 2016 

[14] RCA3 
A lumped 

system and 
each building is 

represented as a 

thermal zone 

Residential 

building stock 

Efficient lighting; building 
envelope insulation 

Heating demand South-

central east 

coast of 
Sweden 

2015 

[15] RCM 

Envelope insulation, ventilation 

system, thermostats, effective 

lighting and appliances. 

The relative 

difference of 

heating demand 

2016 

[16] TMY 

DesignBuilder 

simulation 

programme 

Residential 
building 

Envelope insulation, upgrading 

glazing system, and installation 

of PV panel 

Life cycle energy 

consumption and 

CO2 emissions  

Turkey 2016 

[17] TMY 

HOT2000 
energy 

simulation 

software 

Low-rise 

residential 
building 

Space/water heating system, 

airtightness, windows, 
envelope insulation 

Life cycle cost 

and life cycle 
carbon emissions 

British 

Columbia, 
Canada 

2021 

[18] TMY 

DesignBuilder 

simulation 

programme 

Residential 
home 

materials of the roof, type of 

the window, PV area, retaining 

structure wall design 

Life cycle energy 
and cost 

Shanghai, 
China 

2021 

[19] TMY 
DesignBuilder 
& EnergyPlus 

Campus 
building 

PV panel and GSHP Life cycle cost Korea 2021 

[20] TMY TRNSYS 
Residential 

house 

Architectural design, renewable 

energy devices 
Life cycle cost Morocco 2021 

[21] 

Actual 

measured 
weather data 

Empirical 

building 
statistics 

Low-rise office 

building 

Energy conserving behaviors, 
equipment, lighting system, 

building envelope, renewable 
energy sources 

Life cycle cost Shanghai 2021 

[22, 

23] 

Historical 

weather data 
TRNSYS Office building 

roof and wall insulation, solar 

panel and heater, wind turbine, 

biomass boiler, and CHP 
system 

Life cycle cost, 

energy and carbon 

Maidenhea

d, the UK 
2021 



1.3 Research gaps  

 

Table 1 is adopted to summarise the previous studies which have investigated the energy performance, 

thermal comfort and retrofitting measures under climate change scenarios. It also summarises life cycle 

retrofitting optimisation studies. As revealed by the literature review, there are three distinct research gaps 

emerged. 

• Lack of a general train-and-predict model for future energy demand. In most of the previous 

works, building energy demand was estimated using bottom-up engineering models based on first-

principal and thermodynamic models. Most of these thermal models were established using simulation 

software such as EnergyPlus, DesignBuilder, TRNSYS, etc. It is designed by building experts for one 

case study building at a time, while detailed building information is needed as inputs. This hinders the 

wide adoption of such a strategy in practical engineering applications. Moreover, the computational 

load would be increased with the increasing number of future years that need to be considered and with 

the increasing complexity of building design. 

• Lack of performance evaluation of integrated retrofitting measures under climate change 

conditions. Most of the literature focused on the individual operating energy consumption performance 

of a single retrofitting measure under climate change conditions. However, energy reduction can be 

further improved by adopting several retrofitting measures together with their optimal design. There is 

a lack of study investigating the collective energy performance by implementing an integration of 

several retrofitting measures.  

• Lack of life cycle retrofitting optimisation using future weather profile. In the state-of-the-art life 

cycle optimisation studies, the future operating energy performance was generally estimated using 

weather profiles from TMY [16-20], actual measurement [21] or historical weather profile recorded at 

local weather stations [22, 23]. The effects of climate change on future weather characteristics and 

building energy demands were not considered.  

 

1.4 Contribution 

 

Building retrofitting measures mainly consist of three categories: passive, active, and renewables. Passive 

retrofitting, such as increasing envelope insulation, upgrading fenestration systems, and adopting natural 

ventilation, aims at decreasing building thermal demand. Active retrofitting, such as biomass boiler and 

CHP system, can enhance overall energy utilisation efficiency. Renewables, like PV panels, wind turbines 

and solar heaters, can generate electricity and thermal energy using renewable energy. The integration of 

various retrofitting options would result in accumulative potential in cost-saving, energy reduction and 



carbon reduction. Therefore, this study has the following contributions by proposing a novel retrofitting 

optimisation strategy with climate change effects taken into consideration. 

• A train-and-predict model for future energy demand: The hybrid genetic algorithm (GA) and deep 

neural network (ANN) prediction model will be trained using available historical weather and energy 

profile. Once it is well-trained and tested, the hybrid GA-ANN model can predict future energy demand 

using the projected future climate weather profile. 

• Performance evaluation of integrated retrofitting measures under climate change conditions: The 

overall energy-saving potential of collective adoption of different retrofitting measures will be assessed 

under climate change conditions. The investigated measures consist of passive measures (i.e. floor 

insulation, roof insulation, wall insulation), active measures (i.e. biomass boiler and CHP system), and 

renewables (i.e. PV panel, wind turbine, and solar heater). 

• Life-cycle performance evaluation and optimisation using future weather profiles: The projected 

future weather profile over the next 20 years is adopted to estimate building energy performance under 

climate change conditions. The optimal retrofitting solution is selected with the aim of minimising 

lifetime cost, which includes both the investment cost of retrofitting materials and the operating cost of 

the post-retrofitted building. The performance of lifetime energy and carbon is also assessed. 

 

2. Proposed framework for building retrofitting optimisation  

 

The proposed framework for building retrofitting optimisation consists of 4 essential steps: future weather 

projection, future energy demand prediction, future renewable energy production forecast, and retrofitting 

design optimisation, as shown in Fig. 1. 

 

2.1 Future weather profile projection 

 

Dry-bulb temperature decides the extent of heat loss through building envelopes and the building heating 

demand. The cloud cover and radiation intensity affect the extent of solar heat gain and hence the building 

heating demand. The wind speed affects natural ventilation and infiltration, and thus then ventilation and 

infiltration heat loss. Participation affects the indoor humidity and hence the latent heat load. The Hadley 

Centre Coupled Model version 3 (HadCM3) is an integrated climate model and has been widely used for 

prediction, detection and attribution of climate sensitivity researches. HadCM3 is based on the probabilistic 

of emission scenarios RCP2.6, RCP4.5, RCP6.0 and RCP8.5 [24, 25]. Met Office climate prediction model 

[26], which is based on HadCM3, can provide climate profiles for the past years of 1980-2000 as well as 

future years of 2021-2040 and 2061-2080. The climate profiles include cloud cover ratio, wind speed, air 



temperature, relative humidity, precipitation, and solar radiation. The climate profiles at the highest 

resolution are obtained from Met Office. The outdoor air temperature is provided at the interval of 1 hour, 

the wind speed is provided at the interval of 3 hours. Meanwhile, the daily average relative humidity, daily 

average cloud ratio, daily total precipitation, and daily total solar radiation is also provided. To facilitate 

following energy simulation, it is assumed that wind speed is constant within the 3-hour interval. It is 

assumed in the future years follow the same pattern as those in the year 2019, respectively, As the hourly 

weather profile (𝑏ℎ) of wind speed, outdoor air temperature, relative humidity, cloud ratio, precipitation 

and solar radiation of 2019 can be obtained from local weather station. For relative humidity and cloud 

ratio, as daily average (𝐴𝑎𝑣𝑒) value is obtained from Met Office, the hourly value (𝑎ℎ) is calculated as: 

 

𝑎ℎ =
𝐴𝑎𝑣𝑒

(
∑ 𝑏ℎ

ℎ=24
ℎ=1

24
)

𝑏ℎ                 (1) 

 

For precipitation and solar radiation, as daily total (𝐴𝑡𝑜𝑡𝑎𝑙) value is obtained from Met Office, the hourly 

value (𝑎ℎ) is calculated as: 

 

𝑎ℎ =
𝐴𝑎𝑣𝑒

∑ 𝑏ℎ
ℎ=24
ℎ=1

𝑏ℎ                 (2) 

 



 

Fig. 1. The framework of building retrofitting optimisation under climate change conditions. 

 

2.2 Future energy demand prediction 

 

The hybrid GA-ANN prediction model [27] is adopted for future heating and electrical energy demand 

prediction. The structure of the GA-ANN model is shown in Fig. 2.  

 

GA demonstrates good performance at solving discrete optimisation problems. Here, GA is implemented 

to tune various hyper-parameters of the ANN model. The hyper-parameters of the ANN model including 

the number of neurons in the hidden layer, activation function and learning strategy. Under-fitting issues 

may be caused if the number of neurons is too small, while over-fitting problems may result if the number 

of neurons is too large. The connecting performance among neurons in different layers is affected by the 

activation function. The learning strategy can determine the convergence of ANN. The mean absolute error 

(MAE) of the ANN model is set as the optimisation objective of the ANN training process.  

 



Firstly, 20 ANN models with arbitrary hyper-parameters are established. The input datasets to the ANN 

model include historical weather conditions, time indicators and historical energy consumption. The 

historical weather data includes cloud cover ratio, wind speed, air temperature, relative humidity, 

precipitation, and solar radiation, which is collected through the local weather station in Bristol [28]. The 

same input datasets are used to train each ANN model. Based on the fitness value of each ANN model, 

selection, crossover and mutation operators will be conducted. This procedure is repeated 50 times. 

Thereafter, the optimal architecture of the ANN model can be obtained. 

 

 

Fig. 2. Process of hybrid GA-ANN prediction model. 

 

2 ANN models are trained and tested for the heating and electricity demand of the two buildings, 

respectively. After the GA-ANN models are well-trained, they are adopted to predict future heating and 

electrical energy demands of the pre-retrofitted building using the projected future climate profiles. The 

energy performance at the post-retrofitting stage is estimated according to future renewable energy 

production forecast (Section 2.3) and energy performance improvement prediction (Section 2.4).  

 

2.3 Future renewable energy production forecast 

 



Thermodynamic models of PV panel, solar heater and wind turbine are developed to predict future 

renewable energy consumption.  

 

2.3.1 PV panel 

 

Electrical energy can be generated from PV panels using solar energy. The electricity generation rate 

depends on global solar radiation intensity 𝐺, design area of PV panel 𝑋𝑃𝑉, and its electrical efficiency 
𝑃𝑉

. 

 

𝑄𝑃𝑉 = 𝐺 ∙ 𝑋𝑃𝑉 ∙ 
𝑃𝑉

                  (3) 


𝑃𝑉

= 
𝑃𝑉,𝑛[1 + 𝑇(𝑇𝑜𝑎 − 𝑇𝑃𝑉,𝑟𝑒𝑓)][1 + 𝐺(𝐺 − 𝐺𝑃𝑉,𝑟𝑒𝑓)]          (4)

      

2.3.2 Solar heater (SH) 

 

Powered by solar energy, the solar heater can generate heating energy. The thermal power production 

depends on global solar radiation intensity 𝐺 , design area of solar heater 𝑋𝑆𝐻 , as well as its thermal 

efficiency  
𝑆𝐻

. 

 

𝑄𝑆𝐻 = 𝐺 ∙ 𝑋𝑆𝐻 ∙ 
𝑆𝐻

                  (5) 

𝜂𝑆𝐻 =  𝜂𝑆𝐻,𝑛 − 𝛼 × (𝑇𝑜𝑎 − 𝑇𝑆𝐻,𝑟𝑒𝑓)/𝐺              (6) 

 

2.3.3 Building integrated wind turbine (WT) 

 

Electrical energy can be generated from wind turbines using wind energy. The electricity generation rate 

depends on wind speed. The building-integrated wind turbine manufactured by Eoltec is adopted in this 

study [29]. The correlation between electrical power 𝑄𝑊𝑇 and wind speed 𝑉𝑤𝑖𝑛𝑑 can be estimated from the 

performance curve 𝑄𝑊𝑇 = 𝑓(𝑉𝑤𝑖𝑛𝑑) of the wind turbine, as shown in Fig. 3. As there might exist turbulent 

airflow while the wind speed may be reduced around the building, the wind power output is assumed to be 

80% of the data shown in Fig. 3. 

 



 

Fig. 3. The performance curve of a wind turbine. 

 

2.4 Energy performance improvement 

 

The building envelope can reduce heat loss so as to decrease heat demand. A biomass-driven CHP system 

can enhance electrical and thermal efficiency. A biomass boiler also has higher energy efficiency than a 

conventional natural gas boiler. The energy performance of building envelope, biomass-driven CHP system 

and biomass boiler are estimated using their first-principal models. 

 

2.4.1 Building envelopes 

 

Heat loss through building envelopes (i.e. external wall, ground and roof) is generally caused by the low 

temperature of outdoor air and high temperature of indoor air. RI, WI and FI refers to roof insulation, wall 

insulation and floor insulation, respectively. 

 

𝑄𝑟𝑜𝑜𝑓 = (𝑈𝑟𝑜𝑜𝑓 − 𝑈𝑅𝐼)𝑋𝑟𝑜𝑜𝑓∆𝑇               (7) 

𝑄𝑤𝑎𝑙𝑙 = (𝑈𝑤𝑎𝑙𝑙 − 𝑈𝑊𝐼)𝑋𝑤𝑎𝑙𝑙∆𝑇               (8) 

𝑄𝑓𝑙𝑜𝑜𝑟 = (𝑈𝑓𝑙𝑜𝑜𝑟 − 𝑈𝐹𝐼)𝑋𝑓𝑙𝑜𝑜𝑟∆𝑇              (9) 

 

2.4.2 CHP system 

 

The biomass-driven CHP system can generate electrical and thermal energy at the same time. The 

thermodynamic model of the CHP system developed in our previous research [30] is adopted. The operating 

energy consumption of the CHP system 𝐸𝑜𝑝,𝐶𝐻𝑃 depends on its operating electrical efficiency 𝜂𝐶𝐻𝑃,𝑒 and 

actual electrical power 𝑄𝐶𝐻𝑃,𝑒 , while the recoverable thermal energy 𝑄𝐶𝐻𝑃,ℎ  is decided by its thermal 

efficiency 𝜂𝐶𝐻𝑃,ℎ.  



 

𝐸𝑜𝑝,𝐶𝐻𝑃  =
𝑄𝐶𝐻𝑃,𝑒

𝜂𝐶𝐻𝑃,𝑒
                (10) 

𝑄𝐶𝐻𝑃,ℎ = 𝜂𝐶𝐻𝑃,ℎ𝐸𝑜𝑝,𝐶𝐻𝑃               (11) 

 

2.4.3 Biomass boiler 

 

The biomass boiler has higher energy efficiency and lower energy consumption rate compared to 

conventional gas boilers. Its operating energy consumption 𝐸𝑜𝑝,𝐵𝐵 depends on its operating efficiency 
𝐵𝐵

 

and actual thermal power 𝑄𝐵𝐵.  

 

𝐸𝑜𝑝,𝐵𝐵  = 𝑄𝐵𝐵/
𝐵𝐵

                (12)   

 

2.5 Life cycle optimisation strategy for building retrofitting 

 

Life cycle optimisation aims at maximising lifetime cost saving via building retrofitting. The decision 

variables, optimisation objectives, optimisation algorithm and performance indicator will be discussed in 

this section.  

 

2.5.1 Decision variables 

 

The decision variables of life cycle optimisation consist of design areas of wall insulation (XWI,S), type of 

wall insulation (XWI,T), design area of roof insulation (XRI,S), type of roof insulation (XRI,T), design area of 

floor insulation (XRI,S), type of floor insulation (XFI,T), design area of PV panel (XPV), design area of solar 

heater (XSH), as well as rated power of building integrated wind turbine (XWT), design power of biomass 

boiler (XBB), and design power of CHP system (XCHP).  

 

2.5.2 Optimisation objective 

 

The optimisation objective is lifetime cost saving ∆𝐶 under climate change conditions, which indicates the 

difference of total cost at pre-retrofitting and post-retrofitting situations.  

 

∆𝐶 = 𝐶𝑝𝑟𝑒 − 𝐶𝑝𝑜𝑠𝑡                 (13) 

 



𝐶𝑝𝑟𝑒 indicates the total operating cost if no retrofitting measure is taken (i.e. pre-retrofitting situation), 

which equals the total of natural gas and electricity cost during its lifespan.   

 

𝐶𝑝𝑟𝑒 = (𝑐𝑛𝑔𝑄𝑛𝑔
𝑝𝑟𝑒

+ 𝑐𝑒 𝑄𝑒
𝑝𝑟𝑒

) ∙ 𝐿𝑆             (14) 

 

Energy consumption of natural gas in gas boiler 𝑄𝑛𝑔
𝑝𝑟𝑒

 and electricity importation through the power grid 

𝑄𝑝𝑔
𝑝𝑟𝑒

 depends on the heating 𝑄ℎ  and electrical 𝑄𝑒  energy demands, respectively.  

 

𝑄𝑛𝑔
𝑝𝑟𝑒

=
𝑄ℎ

𝜂𝐺𝐵
                 (15) 

𝑄𝑝𝑔
𝑝𝑟𝑒

= 𝑄𝑒                  (16) 

 

𝑐𝑛𝑔  and 𝑐𝑒𝑙𝑒 indicates the unit cost of natural gas and electricity, respectively. 𝐿𝑆  is the life span of 

retrofitting materials. 𝜂𝐺𝐵 is the efficiency of the conventional gas boiler. 

 

𝐶𝑝𝑜𝑠𝑡  indicates the total cost when appropriate retrofitting measures are taken (i.e. post-retrofitting 

situation). Under the post-retrofitting situation, the overall lifetime cost 𝐶𝑝𝑜𝑠𝑡  refers to the total of 

investment cost 𝐶𝑖𝑛𝑣 and operating cost at the post-retrofitting stage 𝐶
𝑝𝑜𝑠𝑡,𝑜𝑝

.  

 

𝐶𝑝𝑜𝑠𝑡 = 𝐶𝑖𝑛𝑣 + 𝐶
𝑝𝑜𝑠𝑡,𝑜𝑝

               (17) 

𝐶
𝑝𝑜𝑠𝑡,𝑜𝑝

= (𝑐𝑛𝑔𝑄𝑛𝑔
𝑝𝑜𝑠𝑡

+ 𝑐𝑒 𝑄𝑒
𝑝𝑜𝑠𝑡

+ 𝑐𝑏𝑖𝑜𝑄𝑏𝑖𝑜
𝑝𝑜𝑠𝑡

) ∙ 𝐿𝑆         (18) 

𝐶𝑖𝑛𝑣 = 𝑐𝑊𝐼𝑋𝑊𝐼 + 𝑐𝐹𝐼𝑋𝐹𝐼 + 𝑐𝑅𝐼𝑋𝑅𝐼 + 𝑐𝑊𝑇𝑋𝑊𝑇 + 𝑐𝑆𝐻𝑋𝑆𝐻 + 𝑐𝐵𝐵𝑋𝐵𝐵 + 𝑐𝐶𝐻𝑃𝑋𝐶𝐻𝑃 + 𝑐𝑃𝑉𝑋𝑃𝑉   

                    (19) 

 

𝑐𝑏𝑖𝑜 indicates the unit cost of the biomass boiler. 𝑐𝑊𝐼 , 𝑐𝐹𝐼 , 𝑐𝑅𝐼 , 𝑐𝐵𝐵, 𝑐𝐶𝐻𝑃 , 𝑐𝑊𝑇 , 𝑐𝑆𝐻 and 𝑐𝑃𝑉 indicates the 

unit cost of wall insulation material, floor insulation material, roof insulation material, biomass boiler, CHP 

system, wind turbine, PV panel, and solar heater, respectively. 

 

After retrofitting, heating demand can be reduced owing to the adoption of envelope insulations and 

decreased heat loss 𝑄𝑖𝑛𝑠 . Biomass boiler is adopted to supplement heating demand 𝑄𝐵𝐵  with high 

efficiency, while CHP system is adopted to provide heating 𝑄𝐶𝐻𝑃,ℎ and electrical 𝑄𝐶𝐻𝑃,𝑒  energy 

simultaneously. Moreover, electrical energy can be generated by wind turbine 𝑄𝑊𝑇  and PV panel 𝑄𝑃𝑉 



through solar and wind energy, while heating energy can be produced by solar heater 𝑄𝑆𝐻 through solar 

energy.  

 

𝑄𝑃𝑉 + 𝑄𝑊𝑇 + 𝑄𝐶𝐻𝑃,𝑒 + 𝑄𝑝𝑔
𝑝𝑜𝑠𝑡

 ≥ 𝑄𝑒             (20) 

𝑄𝑆𝐻 + 𝑄𝐺𝐵 + 𝑄𝐵𝐵 + 𝑄𝐶𝐻𝑃,ℎ ≥ 𝑄ℎ − 𝑄𝐹𝐼 − 𝑄𝑊𝐼−𝑄𝑅𝐼         (21) 

 

𝑄𝑝𝑔
𝑝𝑜𝑠𝑡

 refers to the electricity importation rate from the power grid. The energy consumption through natural 

gas 𝑄𝑛𝑔
𝑝𝑜𝑠𝑡

 and biomass 𝑄𝑏𝑖𝑜
𝑝𝑜𝑠𝑡

 is determined by the operating load of the conventional gas boiler, biomass 

boiler and biomass CHP system, respectively.  

 

𝑄𝑛𝑔
𝑝𝑜𝑠𝑡

=
𝑄𝐺𝐵

𝜂𝐺𝐵
                 (22) 

𝑄𝑏𝑖𝑜
𝑝𝑜𝑠𝑡

=
𝑄𝐵𝐵

𝜂𝐵𝐵
+

𝑄𝐶𝐻𝑃,𝑒 

𝜂𝐶𝐻𝑃,𝑒
               (23) 

 

2.5.3 Retrofitting optimisation algorithm 

 

PSO is good at solving continuous optimisation problems. Thus, it is adopted for retrofitting solution 

optimisation. Every integrated retrofitting solution k ’s position is represented by an a × b matrix 𝐗𝑘, where 

a is the population of the set of decision variables, while b is the number of decision variables. Each 

particle’s velocity is also considered as an a × b matrix 𝑉𝑘 , and 𝑉𝑘(𝑖, 𝑗) ∈ [−𝑉𝑚𝑎𝑥, 𝑉𝑚𝑎𝑥] (∀𝑖, 𝑗), 𝑖 ∈

{1,2, … , 𝑚}, 𝑗 ∈ {1,2, … , 𝑛}. 

 

𝑉𝑘
𝑡+1(𝑖, 𝑗) = 𝛾1𝑉𝑘

𝑡(𝑖, 𝑗) + 𝑐1𝛾2 (𝑝𝑏𝑒𝑠𝑡𝑘
𝑡 (𝑖, 𝑗) − 𝐗𝐤

𝐭 (𝑖, 𝑗)) + 𝑐2𝛾3 (𝑔𝑏𝑒𝑠𝑡𝑘
𝑡 (𝑖, 𝑗) − 𝐗𝐤

𝐭 (𝑖, 𝑗))     (24) 

𝐗𝐤
𝐭+𝟏(𝑖, 𝑗) = 𝐗𝐤

𝐭 (𝑖, 𝑗) + 𝑉𝑘
𝑡+1(𝑖, 𝑗)              (25) 

 

where 𝛾1 is inertial weight, 𝛾2  is cognitive parameter while and 𝛾3  is social parameter. 𝑐1  and  𝑐2  are 

randomly generated for each velocity update, which is in the range of [0, 1]. 

 

2.5.4 Retrofitting performance indicator 

 

Carbon footprint reduction ∆𝐶𝐹 during the whole life span are introduced to further compare the life cycle 

performance of the proposed retrofitting solution. 

 



∆𝐶𝐹 = 𝐶𝐹𝑝𝑟𝑒 − 𝐶𝐹𝑝𝑜𝑠𝑡               (26) 

 

𝐶𝐹𝑝𝑟𝑒  indicates the total carbon footprint if no retrofitting measure is taken place (i.e. pre-retrofitting 

situation), which equals to the total of carbon emission from natural gas and electricity cost during its 

lifespan.   

 

𝐶𝐹𝑝𝑟𝑒 = (𝑐𝑓𝑛𝑔𝑄𝑛𝑔
𝑝𝑟𝑒

+ 𝑐𝑓𝑒 𝑄𝑒
𝑝𝑟𝑒

) ∙ 𝐿𝑆            (27) 

 

𝐶𝐹𝑝𝑜𝑠𝑡  indicates the total carbon emission when retrofitting measures have been taken. It includes the 

embodied carbon of retrofitting materials 𝐶𝐹𝑒𝑚𝑏  and operating carbon emission during the lifespan 

𝐶𝐹
𝑝𝑜𝑠𝑡,𝑜𝑝

.  

 

𝐶𝐹
𝑝𝑜𝑠𝑡

= 𝐶𝐹𝑒𝑚𝑏 + 𝐶𝐹
𝑝𝑜𝑠𝑡,𝑜𝑝

              (28) 

𝐶𝐹
𝑝𝑜𝑠𝑡,𝑜𝑝

= (𝑐𝑓𝑛𝑔𝑄𝑛𝑔
𝑝𝑜𝑠𝑡

+  𝑐𝑓𝑒𝑙𝑒𝑄𝑒𝑙𝑒
𝑝𝑜𝑠𝑡

+ 𝑐𝑓𝑏𝑖𝑜𝑄𝑏𝑖𝑜
𝑝𝑜𝑠𝑡

) ∙ 𝐿𝑆        (29) 

𝐶𝐹𝑒𝑚𝑏 = 𝑐𝑓𝑊𝐼
𝑒𝑚𝑏𝑋𝑊𝐼 + 𝑐𝑓𝐹𝐼

𝑒𝑚𝑏𝑋𝐹𝐼 + 𝑐𝑓𝑅𝐼
𝑖𝑛𝑣𝑋𝑅𝐼 + 𝑐𝑓𝐵𝐵

𝑖𝑛𝑣𝑋𝐵𝐵 + 𝑐𝑓𝐶𝐻𝑃
𝑖𝑛𝑣 𝑋𝐶𝐻𝑃 + 𝑐𝑓𝑊𝑇

𝑖𝑛𝑣𝑋𝑊𝑇 + 𝑐𝑓𝑆𝐻
𝑖𝑛𝑣𝑋𝑆𝐻 +

𝑐𝑓𝑃𝑉
𝑖𝑛𝑣𝑋𝑃𝑉                  (30) 

 

3. Case study of two real-world office building  

 

Two campus buildings at University of the West of England, Bristol are selected to demonstrate the 

performance of the proposed retrofitting strategy. Q block is a 3-floor educational building, while 

Northavon House is a 5-floor z-shape office building. The layout and floor solution of the two buildings 

are shown in Figs. 4.  

 



 
Fig. 4. Layout and floor map of two case-study buildings. 

 

  



Table 2. Technical parameters of retrofitting measures. 

Type Measure Parameter Unit State Value 

Passive   

Roof, wall or 

floor 

insulation 

U-value 
W/m2 

 

Roof  0.943 

Wall 1.265 

Floor 0.487 

Type 1 0.244 

Type 2 0.280 

Type 3 0.398 

Type 4 0.503 

Type 5 0.685 

Active 
CHP system 

Efficiency % 

Electrical 18 

Thermal 72 

Biomass boiler 

Nominal 

92 

Renewable 

 

 

Solar heater 44 

PV panel 

12 

Reference 
C Temperature 25 

kJ/h m2 Solar radiation 3600 

Correction 

coefficient 

- Temperature -0.005 

- Solar radiation 0.000025 

 

 

Table 3. Inventory information. 

Item Unit Cost (£) Embodied carbon (kg) 

Electricity [32] 

kWh 

0.13 0.23 

Biomass [32] 0.0144 0.015 

Natural gas [32] 0.023 0.18 

Insulation material [33, 34] m2 6.8 1.05 

CHP system [35] 
kW 

1750 5920 

Biomass boiler [36] 78 471 

PV panel [37, 38] m2 219 157.8 

Wind turbine [39, 40] kW 1000 8671.2 

Solar heater [41, 42] m2 38 120.05 

 

 

Technical parameters of passive, active and renewable retrofitting measures are summarised in Table 2. 

There are 5 types of envelope insulation, with the thickness of 14 mm, 12 mm, 8 mm, 6 mm and 4 mm, 

respectively. According to the local regulation, the excess electrical and thermal energy are not permitted 

to be fed back to the energy grid.  

 

Investment cost, embodied carbon and energy of different materials are collected according to ISO 14,040 

standard [31] and based on various sites in the UK, as summarised in Table 3. 

  



4. Results and discussion 

 

Firstly, the performance of the developed and well-trained hybrid GA-ANN prediction model is evaluated. 

After that, historical and future weather profile is analysed. Moreover, the individual decarbonisation 

behaviour of different retrofitting options is assessed. Finally, the lifetime cost-saving, energy and carbon 

reduction of the selected optimal retrofitting solution is explored, along with its performance under climate 

change conditions. 

 

4.1 Performance evaluation of the hybrid GA-ANN model  

 

The optimal hyper-parameters of and corresponding prediction performance of each GA-ANN prediction 

model is summarised in Table 4. The predicted heating and electrical energy demand of a typical week are 

illustrated in Fig. 6. It is seen that one hidden layer and 140-200 neurons are sufficient for revealing the 

comprehensive relationship among outdoor weather conditions, time index, heating and electrical energy 

consumption. The different number of neurons, activation function and learning algorithm is selected for 

different prediction models due to the unique characteristics of each dataset.  

 

Table 4. Optimal hyper-parameters and prediction performance of different prediction models. 

Prediction 

performance 

Datasets Northavon House Q block 

Gas Electricity Gas Electricity 

Number of neurons 140 140 200 160 

Activation function ReLU Sigmoid Sigmoid Tanh 

Learning algorithm ADAM NADAM NADAM NADAM 

R2 (%) 
Train 81.3 96.6 87.4 89.3 

Test 75.6 95.9 84.6 84.1 

RMSE (kW) 
Train 16.2 3.66 2.66 3.89 

Test 18.9 4.04 2.98 4.71 

MAE (kW) 
Train 5.12 1.93 1.29 2.57 

Test 6.97 2.37 1.61 3.50 

 

4.2 Historical and future weather profile analysis  

 

The historical yearly and monthly weather profiles in the past years 1981-2000, along with the future years 

2021-2040 and 2061-2080 are summarised in Figs. 5 and 6, respectively. 

 

• The highest wind speed (i.e. 4.4-4.6 m/s) is identified in January, while the lowest value (i.e. 3.2-3.4 

m/s) is found in September. In January, February, March and December, the wind speed during the 

year 2061-2080 is higher than that in the year 2021-2040. In other periods, the wind speed during the 



year 2021-2040 is higher than that in the year 2061-2080. Although there exists a lot of variations of 

the yearly average wind speed, it decreases along with the timeline. Approximately, the year-round 

average wind speed of 2021-2040 and 2061-2080 is 2 m/s lower than that of 1981-2000. The year-

round average wind speed is within the range of 3.96-4.34 m/s, 3.86-4.01 m/s and 3.85-3.98 m/s during 

the periods of 1981-2000, 2021-2040 and 2061-2080, respectively. 

• The outdoor air temperature experiences its highest value in August while it has its lowest value in 

January and February. Compared to the year 2021-2040, there would be around 1.5-2.5 ℃ temperature 

increase during the year 2061-2080. The temperature increase is pronounced in summer periods (i.e. 

July-September). Although there exists a lot of variations of the yearly average, maximum and 

minimum temperature, it slightly increases along with the timeline. Approximately, there exists a 2 ℃ 

temperature difference for year-round minimum and average temperature from 1981-2000 to 2021-

2040, and from 2021-2040 to 2061-2080. For year-round maximum temperature, there exists around 3 

℃ increase from 1981-2000 to 2021-2040, and 4 ℃ increase from 2021-2040 to 2061-2080. The year-

round outdoor air temperature is within the range of 0-25 ℃, 2-28 ℃ and 4-34 ℃ during the periods 

of 1981-2000, 2021-2040 and 2061-2080, respectively. 

• Solar radiation has its highest value (i.e., 160-170 kWh/m2) in June and July, while it experiences its 

lowest value (i.e. 20 kWh/m2) in January and December. There exists a relatively small change of solar 

radiation in January, February, November and December. However, compared to the year 2021-2040, 

there would be about a 10 kWh/m2 decrease of solar radiation during the year 2061-2080 during May 

to December. However, there exists a distinct increase of year-round total solar radiation along the 

timeline. The year-round solar radiation during 2021-2040 is 0.1 × 106 kWh higher than that during 

1981-2000, while the year-round solar radiation during 2061-2080 is 0.04 ×  106kWh higher than that 

during 2021-2040. The year-round total solar radiation is within the range of 0.925 ×  106 −

0.980 ×  106  kWh, 1.025 ×  106 − 1.065 × 106 kWh and 1.070-1.125 kWh during the periods of 

1981-2000, 2021-2040 and 2061-2080, respectively. 

• The highest cloud cover (i.e. 50%) is identified in February, while the lowest value (i.e. 20-35%) is 

found in August. There exists a relatively small change of cloud cover in January to March, November 

and December during different ranges of the year. However, during other months of the year, compared 

to the year 2021-2040, there would be about a 7 % decrease in cloud cover during the year 2061-2080. 

However, there exists a distinct decrease of year-round average cloud cover along the timeline. The 

year-round average cloud cover during 2021-2040 is 0.1 kWh higher than that during 1981-2000, while 

the year-round solar radiation during 2061-2080 is 0.04 kWh higher than that during 2021-2040. The 

year-round average cloud cover ratio is within the range of 42.5-44.5 %, 39.7-42.5 % and 36.9-39.6 % 

during the periods of 1981-2000, 2021-2040 and 2061-2080, respectively. 



• The outdoor relative humidity experiences its highest value (i.e. 83-85 %) during January and 

December, while it has its lowest value (i.e. 55-65 %) during June to August.  The relative humidity is 

relatively constant from January to April, as well as November and December. However, compared to 

the year 2021-2040, there would be about a 1-5 % decrease in relative humidity during 2061-2080. 

There would also be 1.5% decrease of year-round average relative humidity from 1981-2000 period to 

2021-2040 period, and from 2021-2040 period to 2061-2080 period. The cloud cover ratio is within the 

range of 42.5-44.5 %, 39.7-42.5 % and 36.9-39.6 % during the periods of 1981-2000, 2021-2040 and 

2061-2080, respectively. The year-round average relative humidity is within the range of 74.4-76.0 %, 

73.0-74.5 % and 70.8-73.3 %, respectively. 

• The lowest monthly precipitation (i.e. 2.5-4 m) is found in July to September, while the highest value 

(i.e.12-15 m) is identified in January and December. During January, February, March, November and 

December, compared to the year 2021-2040, there would be about 1-3 m increase of precipitation 

during the year 2061-2080. On the other hand, from May to October, compared to the year 2021-2040, 

there would be about a 1-2 m decrease of precipitation during the year 2061-2080. The year-round total 

precipitation varies a lot during different years, while the range is similar within those three periods. 

The year-round total precipitation is within the range of 86-107 m, 91-107 m and 89-106 m, 

respectively. 

 

Ideally, the weather profile used for training the prediction model and for actual energy demands prediction 

should come from the same database. However, weather profile from Met Office is only available for the 

periods of 1981-2000, 2021-2040 and 2061-2080, while energy profile for the two case study buildings is 

only available for the year of 2019. Therefore, weather profile from a local weather station is adopted to 

provide weather information for 2019. To verify the biases between these two databases, the weather profile 

during 1st Jan 2021 to 30th Nov 2021 from both Met Office and local weather station is evaluated. The 

monthly average wind speed, outdoor air temperature, solar radiation, cloud cover ratio, relative humidity 

and precipitation from Met Office prediction and local weather station measurement is illustrated in Fig. 7. 

The mean absolute percentage error of monthly average wind speed, outdoor air temperature, solar radiation, 

cloud cover ratio, relative humidity and precipitation is 30.4 %, 0.59%, 3.12%, 15.5%, 6.21% and 23.9% 

between these two databases.  Thus, the bias error is considered acceptable. The mean absolute percentage 

error of outdoor air temperature is calculated by converting its unit from C to K.  



 

 
Fig. 5. Historical and future monthly weather profile. 

 

 

  



  

  

Fig. 6. Historical and future yearly weather profile. 

 

  

  



  

 

Fig. 7. Observed and predicted weather data in 2021. 

 

4.3 Future building energy demand analysis 

 

The historical and future heating and electrical energy demand of the two buildings at the pre-retrofitting 

stage can be obtained through the developed and well-trained hybrid GA-ANN prediction model using the 

historical weather profile in the years 1981-2000, along with the future weather profile in the years 2021-

2040 and 2061-2080. The yearly and monthly heating and electrical energy demands are summarised in 

Figs. 8 and 9, respectively. 

 
Fig. 8. Predicted monthly historical and future electricity and heating energy demand.  

 

 



 
Northavon House, heating 

 

 
Northavon House, electricity 

 
Q block, heating 

 
Q block, electricity 

 

Fig. 9. Predicted yearly historical and future electricity and heating energy demand.  

 

For Northavon House, the highest heating demand is identified in December. Overall, there exists a 

decreasing trend in monthly gas consumption, especially in January, February, October, November and 

December. It is mainly owing to the distinct increasing trend of outdoor air temperature and precipitation.  

During June, July and August, monthly gas consumption is relatively low as high outdoor air temperature. 

Thus, no space heating is needed. There is a distinct decreasing trend of year-round heating demand along 

the timeline. Approximately, the year-round heating demand of 2021-2040 is 35 MWh lower than that of 

1981-2000, while the year-round heating demand of 2061-2080 is 35 MWh lower than that of 2021-2040. 

The year-round heating demand is within the range of 180-205 MWh, 145-165 MWh and 110-135 MWh, 

respectively.  

 

For Northavon House, the highest electricity demand is identified in July during the years 1981-2000 and 

the years of 2021-2040. However, during the years 2061-2080, the highest electricity demand happens in 

August. It is due to the decreasing precipitation, increasing solar radiation, increasing outdoor air 

temperature, decreasing wind speed, decreasing cloud cover and decreasing relative humidity in August in 



the years 2061-2080. During May to September, there also exists an increasing trend in monthly electricity 

consumption along with the increasing of years. During other periods, the monthly electricity consumption 

is similar among different years. The lowest electricity consumption is found in February. There is a distinct 

increasing trend of electricity demand along the timeline. Approximately, the year-round electricity demand 

of 2021-2040 is 4 MWh higher than that of 1981-2000, while the year-round heating demand of 2061-2080 

is 11 MWh higher than that of 2021-2040. The year-round heating demand is within the range of 252-257 

MWh, 255-261 MWh and 263-274 MWh, respectively.  

 

For Q block building, the highest heating demand is identified in January and February. Overall, there exists 

a decreasing trend in monthly gas consumption, especially in January to March, November and December 

when the heating demand is relatively large. It is mainly owing to the distinct increasing trend of outdoor 

air temperature and precipitation during those periods. During June, July and August, monthly gas 

consumption is relatively low due to high outdoor air temperature; thus, no space heating is needed. There 

is a distinct decreasing trend of year-round heating demand along the timeline. Approximately, the year-

round heating demand of 2021-2040 is 11 MWh lower than that of 1981-2000, while the year-round heating 

demand of 2061-2080 is 7 MWh lower than that of 2021-2040. The year-round heating demand is within 

the range of 43-55 MWh, 36-42 MWh and 29-35 MWh, respectively.  

 

For Q block building, the highest electricity demand is identified in March during different ranges of the 

years. However, the lowest monthly electricity demand is identified in February during the years 1981-

2000 and 2021-2040, while the lowest value is found in August during the years of 2061-2080. It is due to 

the decreasing precipitation, increasing solar radiation, increasing outdoor air temperature, decreasing wind 

speed, decreasing cloud cover and decreasing relative humidity in August in the years 2061-2080. During 

April to September, there also exists a decreasing trend in monthly electricity consumption along with the 

increasing of years. During other months, the electricity consumption is similar among different years. The 

year-round electricity consumption varies a lot during different years, while the range is similar within 

those three periods. The year-round electricity consumption is within the range of 390.0-396.5 MWh, 389.0-

395.5 MWh and 389.5-394.5 MWh, respectively. 

 

4.4 Future renewable energy production and energy reduction analysis 

 

The historical and future electricity power production from 1 kW wind turbine, electricity power production 

from 1 m2 PV panel, thermal power production from 1 m2 solar heater, heat reduction through 1 m2 wall 

insulation can be obtained through corresponding thermodynamic models using the historical weather 



profile in the years of 1981-2000, along with the future weather profile in the years of 2021-2040 and 2061-

2080. The corresponding monthly and yearly results are summarised in Figs. 10 and 11, respectively. 

 

Electrical power production from the wind turbine mainly depends on the actual wind speed. Therefore, its 

trend would be similar to that of wind speed. The highest wind power production (i.e. 80-100 kWh) is 

identified in January and March, while the lowest values (i.e. 20-40 kWh) are found in September. In 

January, February, March and December, the wind power production during the year 2061-2080 is higher 

than that in the year 2021-2040. In other periods, the wind power production during the year 2021-2040 is 

higher than that in the year 2061-2080. The range of wind power production during 1981-2000 is between 

690-930 kWh, with the average value of 800 kWh. On the other hand, the range of wind power production 

during 2021-2040 and 2061-2080 is similar (i.e., 610 kWh-710 kWh), with the similar average value (i.e. 

650 kWh).  

 

Electrical power production from the PV panel mainly depends on the actual solar radiation and outdoor 

air temperature. PV electricity production has its highest value (i.e., 19-21 kWh) in June and July, while it 

experiences its lowest value (i.e., 2-3 kWh) in January and December. There exists a relatively small change 

of solar radiation in January, February, November and December. From May to October, the PV electricity 

production during the years 2061-2080 is higher than that in the years 2021-2040. There is a distinct 

increasing trend of electrical power production along the timeline. Approximately, the year-round electrical 

power production of 2021-2040 is 11 kWh higher than that of 1981-2000, while the year-round electrical 

power production of 2061-2080 is 5 kWh higher than that of 2021-2040. The year-round heating demand 

is within the range of 114-122 kWh, 126-131 kWh and 130-136 kWh, respectively.  

 

Thermal power production from the solar heater mainly depends on the actual solar radiation and outdoor 

air temperature. Solar thermal production has its highest value (i.e. 110-140 kWh) in July, while it 

experiences its lowest value (i.e. around 20 kWh) in January and December. The change of solar thermal 

production is relatively small in January, February, November and December. From May to October, the 

solar thermal production during the years 2061-2080 is about 10 kWh higher than that in the years of 2021-

2040. There is a distinct decreasing trend of thermal power production along the timeline. Approximately, 

the year-round thermal power production of 2021-2040 is 70 kWh higher than that of 1981-2000, while the 

year-round thermal power production of 2061-2080 is 30 kWh higher than that of 2021-2040. The year-

round heating demand is within the range of 723-775 kWh, 805-835 kWh and 840-880 kWh, respectively. 

 

By installing envelope insulation, heating demand reduction can be achieved due to the decreasing U value 

of building envelope and decreasing heat loss through envelopes. The trend of heating demand reduction is 



similar to that of monthly heating demand. The highest heat reduction is found in December, while the 

lowest values are identified during June, July and August. It is mainly due to the increasing outdoor air 

temperature, thus decreasing the temperature difference between indoor and outdoor air.  

 

 
Fig. 10. Predicted monthly historical and future renewable energy production and heat reduction. 

 

  



 

 

Fig. 11. Predicted yearly historical and future renewable energy production and heat reduction. 

 

4.5 Cost benefits of individual retrofitting measure 

 

As the cost and embodied carbon of electricity, natural gas, and biomass production also changes with the 

time-being, as shown in Fig. 12.  
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Fig. 12. Variation of carbon intensity and cost of power grid, natural gas and biomass. 

 

The single adoption of retrofitting measure with different design variables is adopted to investigate its 

individual performance under climate change conditions. For Q block building, the maximum design area 

of PV panel, solar heater and wall insulation is 80 m2, 500 m2, 2500 m2, respectively, while the design 

power of CHP system and wind turbine is 10 kW and 20 kW, respectively. For Northavon House, the 

maximum design area of PV panel, solar heater and wall insulation is 40 m2, 200 m2, 1000 m2, while the 

design power of CHP system and wind turbine is 5 kW and 10 kW, respectively. A sensitivity study is 

conducted to investigate its effects on the lifetime cost and carbon reduction of each retrofitting measure. 

10% variation of carbon intensity and cost is put on electricity from power grid and biomass production, 

respectively. The variation of efficiency of PV panel, biomass boiler, solar heater, wind turbine and CHP 

system is also investigated. The investigate cost is determined by the variation of design area or capacity 

of each retrofitting measure. The retrofitting performance of Northavon House is summarised in Fig.11. 

The line with the similar trend indicates the corresponding factors has tiny effect on lifetime cost or carbon 

reduction. 
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Fig. 12. Sensitivity analysis of individual performance of retrofitting measures. 



 

For the CHP system, there would be a distinct increase of lifetime cost reduction, energy and carbon 

reduction with the rise of investment cost during the different range of years. The lifetime cost, energy 

consumption and carbon footprint would decrease with the adoption of a biomass boiler. It is because the 

thermal efficiency of the CHP system is higher than its electrical efficiency. Thus the large fraction of 

heating demand can be satisfied by the CHP system. The enhanced performance from the biomass boiler is 

not sufficient to supplement its investment cost, embodied energy and carbon. 

 

For the wind turbine, there exists an apparent increase of lifetime cost and energy reduction with the rise of 

investment cost at a different range of years. However, the trend of lifetime carbon is relatively flat with 

the rise of investment costs. With the adoption of the biomass boiler, the lifetime cost and carbon reduction 

would increase while the lifetime energy reduction would decrease at the same capacity as the wind turbine. 

It is due to the fact that the enhanced performance from biomass boiler is able to supplement its investment 

cost and embodied carbon while not sufficient to cover its embodied energy.  

 

When biomass boiler is not adopted, the lifetime cost, energy and carbon reduction of solar heater would 

firstly increase with the rise of investment cost. After reaching its peak, the lifetime cost, energy and carbon 

reduction of solar heater would decrease. It is because heating energy from the solar heater is high in 

summer while the heating demand of the building is low during that period. This leads to extra thermal 

power from the solar heater. Thus the total available energy from the solar heater is not able to pay back its 

investment cost, embodied energy and carbon. When biomass boiler is adopted, the lifetime cost, energy 

and carbon reduction of solar heater decreases with the rise of investment cost. It is due to the fact that the 

biomass boiler would operate at a small capacity most of the time. Therefore, the enhanced energy 

performance from biomass boiler is not able to cover its own investment cost, embodied energy and carbon.   

 

For the PV panel, there exists a clear increase of lifetime cost, energy and carbon reduction with the rise of 

investment cost at a different range of years. With adoption of the biomass boiler, the lifetime cost and 

carbon reduction would increase while the lifetime energy reduction would decrease at the same design 

area of the PV panel. It is due to the fact that the enhanced performance from biomass boiler is able to 

supplement its investment cost and embodied carbon while not sufficient to cover its embodied energy.  

 

For wall insulation, during the years 1981-2000 and 2021-2040, the lifetime cost reduction would increase 

with the increasing investment cost when biomass boiler is not adopted. During the years 2041-2060, the 

lifetime cost reduction decreases with the increase of investment cost. It is due to the decreasing heating 



demand and heat loss during the years 2061-2080. When biomass boiler is adopted, the total lifetime cost 

reduction would be higher. However, there exists a decreasing trend of lifetime cost reduction with the 

increasing investment cost. It is because the combined energy-saving performance through wall insulation 

and biomass boiler cannot make up for their total investment cost. Meanwhile, lifetime energy and carbon 

reduction would rise with the increasing investment cost no matter whether the biomass boiler is adopted. 

The lifetime energy reduction would be lower while the lifetime carbon reduction would be higher when a 

biomass boiler is adopted.  

 

4.6 Cost benefits and life-cycle performance assessment of optimal retrofitting solution 

 

The retrofitting solutions of the two buildings using the profiles from 2019 and 2021-2040 are summarised 

in Table 5.  

 

Table 5. Retrofitting solutions of two buildings using different profiles. 

Building 
Investment 

cost (£) 

PV SH CHP WT WI RI FI BB 

m2 m2 kW kW m2 Type m2 m2 kW 

2019  

Northavon 

house 

40,000 105 0 5 5.3 0 - 0 0 36 

50,000 133 0 5 9.1 0 - 0 0 38 

60,000 212 0 5 1.8 0 - 0 0 36 

70,000 256 0 5 2.3 0 - 0 0 36 

80,000 299 0 5 2.8 0 - 0 0 38 

90,000 352 0 5 1.1 22 5 0 0 36 

100,000 385 0 4.8 4.3 0 - 0 0 37 

110,000 424 0 5 5.5 0 - 0 0 36 

120,000 490 0 5 1.1 0 - 0 0 36 

2021-2040  

Northavon 

house 

40,000 104 0 5 6 0 - 0 0 38 

50,000 129 0 5 10 0 - 0 0 36 

60,000 182 0 5 8 0 - 0 0 38 

70,000 217 0 5 10 78 5 0 0 37 

80,000 266 0 5 10 0 - 0 0 36 

90,000 348 0 5 2 0 - 0 0 38 

100,000 384 0 5 4 0 - 0 0 38 

110,000 414 0 5 8 0 - 0 0 38 

120,000 457 0 5 7 150 5 0 0 36 

2019  

Q block 

30,000 0 0 6.4 0 0 - 0 0 240 

35,000 0 0 9.6 0 0 - 0 0 232 

40,000 0 0 10 4.5 0 - 0 0 231 

45,000 28 0 10 3.3 0 - 0 0 231 

50,000 45 0 10 4.6 0 - 0 0 231 



 

For Northavon house, when investment cost is relatively low (i.e. ≤ £80,000), PV panel, CHP system, wind 

turbine and biomass boiler would be firstly adopted. Solar heater, wall insulation, roof insulation and floor 

insulation are not chosen as the optimal options. It is due to the high electricity to heating demand ratio of 

the Northavon house. However, due to climate change, building energy demands and renewable energy 

production would be different, which leads to a difference among optimal retrofitting solutions at each 

investment cost. For example, when the investment cost is £120,000, a combination of 105 m2 PV panel, 5 

kW CHP system, 15 m2 wall insulation and 38 kW biomass boiler would be recommended using the big-

data profile in 2019. However, the optimal solution is a combination of 105 m2 PV panel, 5 kW CHP system, 

5.3 kW wind turbine and 38 kW biomass boiler when the profile in 2021-2040 is adopted. The wall 

insulation is chosen as Type 5, with the smallest thickness. 

 

For Q block, when investment cost is relatively low (i.e. ≤ £35,000), the CHP system and biomass boiler 

would be firstly adopted. PV panel, solar heater and envelope insulation are not chosen as the optimal 

option. It is due to the relatively lower electricity to heating demand ratio of the Q block compared to that 

of the Northavon House. However, owing to the different energy demands and renewable energy production 

results from climate change, there exists a difference among optimal retrofitting solutions at different 

investment costs. For example, when investment cost is no higher than £70,000, a combination of 70 m2 

PV panel, 10 kW CHP system, 19 kW wind turbine and 231 kW biomass boiler would be recommended 

using the big-data profile in 2019. However, the optimal solution would be a combination of 81 m2 PV 

panel, 10 kW CHP system, 19.2 kW wind turbine and 199 kW biomass boiler when the profile in 2021-

2040 is adopted. 

 

55,000 64 0 10 5.5 0 - 0 0 231 

60,000 43 0 10 15 0 - 0 0 231 

65,000 70 0 10 14 0 - 0 0 231 

70,000 70 0 10 19 0 - 0 0 231 

2021-2040 

Q block 

30,000 0 0 8 0 0 - 0 0 204 

35,000 3.8 0 10 11 0 - 0 0 199 

40,000 4.9 0 10 6 0 - 0 0 199 

45,000 36 0 10 4 0 - 0 0 199 

50,000 45 0 10 7 0 - 0 0 199 

55,000 40 0 10 13 0 - 0 0 199 

60,000 80 0 10 5 0 - 0 0 199 

65,000 59 0 10 19 0 - 0 0 199 

70,000 81 0 10 20 0 - 0 0 199 



The corresponding lifetime cost and carbon reduction at its optimal retrofitting solution is summarised in 

Fig. 13. The cyan line indicates using the optimal solution generated from 2019 under the situation of 2010. 

The blue line represents using the optimal solution generated from 2021-2041 under the situation of 2021-

2040. The magenta line indicates using the optimal solution generated from 2019 under the situation of 

2021-2040. For both buildings, there exists a discrepancy between lifetime cost, energy and carbon 

reduction using the optimal solution generated using the database from the year 2019 and the years of 2021-

2040, respectively. 

 

For Northavon House, the maximum achievable lifetime cost and carbon reduction are £112,000 and 

720,000 kg, respectively, using the profile of 2019 and with the investment cost of £70,000. Meanwhile, 

the maximum achievable lifetime cost and carbon reduction are £110,000 and 770,000 kg, respectively, 

using the profile of 2021-2040 and with the investment cost of £70,000. However, if the optimal retrofitting 

solution resulted from the profile of 2019 is adopted in the actual building during 2021-2040, the maximum 

achievable lifetime cost and carbon reduction are £110,000 and 760,000 kg, respectively, with the 

investment cost of £66,000. Overall, there would be around 2.0% underestimation to 1.7% over-estimation 

of lifetime cost reduction, as well as 1.2%-6.9% under-estimation of lifetime carbon reduction if the profile 

of 2019 is adopted for selecting the future optimal retrofitting solution. 

 

 

For Q block, the maximum achievable lifetime cost and carbon reduction are £92,000 and 520,000 kg, 

respectively, using the profile of 2019 and with the investment cost of £120,000. Meanwhile, the maximum 

achievable lifetime cost and carbon reduction are £88,000 and 510,000 kg, respectively, using the profile 

of 2021-2040 and with the investment cost of £120,000. However, if the optimal retrofitting solution 

resulted from the profile of 2019 is adopted in the actual building during 2021-2040, the maximum 

achievable lifetime cost, energy and carbon reduction are £87,000 and 530,000 kg, respectively, with the 

investment cost of £120,000. Overall, there would be around 1.2%-6.3% over-estimation of lifetime cost 

reduction, as well as 0.95%-5.1% under-estimation of lifetime carbon reduction if the profile of 2019 is 

adopted for selecting the future optimal retrofitting solution. 

 



  

Northavon house 
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Fig. 13. Lift cycle performance of optimal retrofitting solution at different investment costs. 

 

5. Limitation and future study 

 

As a start-up of research of life cycle optimisation for building retrofitting considering the effects of climate 

change, there exist several limitations in this study. First of all, the inventory data for biomass, natural gas 

and electricity are based on the latest UK statistics. The equivalent primary energy consumption and 

greenhouse gas emissions may be different in other countries due to different production strategies of 

natural gas and electricity. Due to the lack of a completed and updated database of inventory information, 

the investment cost, embodied energy and carbon of retrofitting materials are collected from several 

different sites using the processing strategy. Therefore, like most life cycle analysis studies, the obtained 

retrofitting solution may be only applicable to buildings at the case study site. It is anticipated that a local 

inventory database regarding embodied energy and carbon factors of different materials can be developed 

in order to facilitate the life-cycle assessment of retrofitting materials. Moreover, future weather profiles 

projected by the HadCM3 model are adopted to estimate future building energy performance and renewable 

energy production. In future studies, the uncertainty in future weather projections should be considered. 

Furthermore, the optimisation mainly focused on choosing the optimal design parameters (i.e. design area 

or design capacity) of widely adopted retrofitting options, such as wall insulation, roof insulation, floor 

insulation, PV panel, solar heater, building-integrated wind turbine, biomass boiler and CHP system. In 



future studies, the types and materials of each retrofitting option can also be investigated. Other retrofitting 

measures such as ground source heat pump, efficient lighting and air conditioning system can also be 

adopted where appropriate. The adopted particle swarm optimisation can be easily revised and extended to 

other design variables and retrofitting options.  Last but not least, the variation of carbon intensity and cost 

of power grid, natural gas and biomass production in the future climate should also be considered in future 

studies. 

 

6. Conclusion 

 

It is essential to consider climate change effects when selecting the optimal building retrofitting solution. 

In this study, a novel life cycle optimisation strategy is proposed for building retrofitting with climate 

change effects taken into consideration. The most significant novelty is its capability to take the future 

climate change effects into account when selecting the optimal retrofitting solution for the existing 

buildings. It is critical because otherwise, the retrofitting solution might not be optimal, and performance 

down-gradation may occur due to the changing weather conditions. To demonstrate such argument, the 

proposed retrofitting optimisation framework is demonstrated using two campus buildings in Bristol, 

United Kingdom. 

• For Q block building, around 1.2%-6.3% over-estimation of lifetime cost reduction, as well as 0.95%-

5.1% under-estimation of lifetime carbon reduction when using the profile of 2019 to select the 

retrofitting solution and adopt it in the year 2021-2040. 

• For Northavon House, around 2.0% underestimation to 1.7% over-estimation of lifetime cost reduction, 

as well as 1.2%-6.9% under-estimation of lifetime carbon reduction is identified when using the profile 

of 2019 to select the retrofitting solution and adopt it in the year 2021-2040. 

 

To enable the retrofitting optimisation strategy to take climate change effects into consideration, three 

important innovations are made.  

• A hybrid GA-ANN prediction model for future energy demand 

To overcome the problem of increasing computational time due to the increasing number of future years 

and complexity of building design caused by energy simulation using thermodynamic models and first-

principal equations, a hybrid GA-ANN model is designed to predict the gas and electricity consumption 

over the next 20 years using projected future weather data. The hybrid GA-ANN model is trained using the 

historical energy consumption, time index and weather data of the year 2019. GA is adopted to tune 

hyperparameters of the ANN model to make it adaptive to different characteristic datasets. Meanwhile, 



future weather is projected using the HadCM3 model, including air temperature, relative humidity, 

precipitation rate, wind speed, solar radiation, and cloud percentage.  

• Performance assessment of integrated retrofitting measures under climate change conditions 

The state-of-the-art climate change research works focus on the performance evaluation of individual 

retrofitting measures. The interaction among various retrofitting measures was not investigated. For 

example, wall insulation can decrease heating demand. Thus, it results in a smaller design capacity of a 

biomass boiler. This study evaluated the accumulative effects of the integrated optimal retrofitting solution 

under climate change conditions. The collective performance of various retrofitting options are 

investigated, involving passive measures (i.e. floor, wall and roof insulation), active measures (i.e. biomass 

boiler and CHP system), and renewables (i.e. wind turbine, PV panel and solar heater).  

• Life cycle optimisation-based retrofitting design 

Future weather profiles projected by the HadCM3 model is adopted to estimate future heating and electrical 

energy demands, renewable energy production and energy-saving performance from passive retrofitting 

measures. Therefore, the optimal retrofitting solution is selected with the aim of minimising lifetime cost 

under climate change conditions, which includes both the investment cost of retrofitting materials and the 

operating cost of the post-retrofitted building. The performance of lifetime energy and carbon is also 

assessed. 

 

In practical application, historical gas and electricity consumption profiles, historical weather profile, 

information of envelope thermal properties, and inventory information of different retrofitting materials 

should be collected and served as input datasets to the life cycle optimisation strategy. A hybrid GA-ANN 

prediction model will be trained and adopted to predict future gas and electricity consumption using future 

weather data under climate change conditions. The optimal retrofitting solution for maximising lifetime 

cost-saving can be obtained under different investment costs. Meanwhile, lifetime reduction of energy and 

carbon can be evaluated. Through the life cycle optimal retrofitting solution, primary energy usage and 

carbon footprint can be greatly declined throughout its whole life span. This contributes towards a giant 

step in conserving energy resources and achieving net-zero ambition by 2050. 

Overall speaking, global climate change will alter the optimal retrofitting solution, and its influence varies 

from building to building and location to location. Therefore, the proposed building retrofitting framework 

can be a meaningful guideline in designing retrofitting solutions and supporting energy efficiency policies 

to mitigate climate change effects.  

 

Acknowledgement 

 



The authors would like to acknowledge and express their sincere gratitude to The Department for Business, 

Energy & Industrial Strategy (BEIS) through grant project number TEIF-101-7025. Opinions expressed 

and conclusions arrived at are those of the authors and are not to be attributed to BEIS. 

 

Nomenclature 

A  Predicted value 

B  Observed value 

C  Cost 

cf  Unit carbon footprint 

CF  Carbon footprint 

e  Unite energy consumption 

E  Energy consumption 

G  Solar radiation 

gbest Global best value 

LS  Life span 

pbest Particle's best value 

Q  Energy rate 

T  Temperature 

U  U-value 

V  Velocity  

X  Decision variable of PSO 

𝛾  Hyper-parameters of PSO 

𝜂  Efficiency 

  Coefficient of PV panel 

 

Subscripts 

oa  Outdoor air 

bio  Biomass 

BB  Biomass boiler 

e  Electrical 

FI  Floor insulation 

GB  Conventional gas boiler 

h  Heating 

n  Nominal 



ng  Natural gas 

op  Operating 

PV  PV panel 

ref  Reference 

RI  Roof insulation 

SH  Solar heater 

WI  Wall insulation 

WT  Wind turbine 

 

Superscript  

emb  Embodied 

inv  Investment 

pre  Pre-retrofitting 

post  Post-retrofitting 

 

Abbreviations 

ANN Artificial neural network 

CHP  Combined heat and power 

GA  Genetic algorithm 

HadCM3 Hadley Centre Coupled Model version 3 

MAE Mean absolute error 

PSO  Particle swarm optimisation 

PV  Photovoltaic 

TMY Typical meteorological year 
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