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ABSTRACT 

Hypoxia is defined as the state in which the availability or delivery of oxygen is 

insufficient to meet tissue demand. It occurs particularly in aggressive, fast-growing 

tumours in which the rate of new blood vessel formation (angiogenesis) cannot 

match the growth rate of tumour cells. Cellular stresses such as hypoxia can cause 

cells to undergo apoptosis; however some tumour cells adapt to hypoxic conditions 

and evade apoptosis. Tumour hypoxia has been linked to poor prognosis and to 

greater resistance to existing cancer therapies. This thesis provides evidence that 

alterations in alternative splicing patterns of key genes is one method tumour cells 

adapt to hypoxia. 

A hypoxic-induced change in the alternative splicing of carbonic anhydrase IX (CA 

IX) is confirmed. CA IX is one of the best studied hypoxia markers, involved in 

maintaining an intracellular pH that favours tumour cell growth. Furthermore, 

evidence is provided here that in the PC3 prostate cancer cell line, the regulation of 

CA IX splicing involves the scaffold attachment factor B 1 (SAFB1) and pre-mRNA-

processing-splicing factor-8 (PRPF8) splice factors. However, SAFB1 expression is 

shown to decrease in hypoxia.  

Alternative splicing patterns of previously documented cancer-associated genes are 

altered in hypoxia in the PC3, VCaP and PNT2 prostate cell lines.  There is evidence 

of significant changes in the alternative splicing of several cancer-associated genes 

in hypoxia, which have varied roles in the hallmarks of cancer: Apoptosis (APAF1, 

caspase-9, Bcl-x and survivin); Immune tolerance (BTN2A2); Cellular motility and 
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invasion (CDC42BPA, FGFR1OP and  UTRN);  Alternative splicing (PUF60); 

Proliferation (RAP1GDS1) (proliferation); and those with an unknown function but 

linked to cancers (MBP, PTPN13 and TTC23). Most notably, there was a higher 

proportion of the pro-oncogenic isoforms of APAF1, Bcl-x, survivin, BTN2A2 and 

RAP1GDS1 in hypoxia than in normoxia. The mRNA expression of splice factors 

(SRSF1, SRSF2, SRSF3, SAM68, HuR and hnRNP A1) and SRSF1 protein production 

were shown to significantly increase in hypoxia. Phosphorylation of SRSF4 and 

SRSF5 was demonstrated to increase in hypoxia indication that hypoxia may alter 

alternative splicing patterns.  

The mRNA expression of the CLK1 and SRPK1 splice factor kinases also increased in 

hypoxia; however only CLK1 protein production was shown to also increase in 

hypoxia.  There were no significant changes to alternative splicing when SRPK1 was 

knocked down or inhibited (using SPHINX) suggesting that SRPK1 was not involved 

in the alteration of alternative splicing of the cancer-associated genes studied. . 

However, siRNA knockdown and chemical inhibition of CLK1 (using TG003)  

suggested a shift in FGFR1OP splicing that mirrored the effect of hypoxia on 

FGFR1OP splicing. This suggests that CLK1 activity is inhibited in hypoxia. This 

conflicts the finding that CLK1 production increases in hypoxia and suggests that 

there are more mechanisms concerned in the regulation of CLK1 during hypoxia.  

This work has  provided an insight into mechanisms that are involved in alternative 

splicing changes in hypoxia in mammalian cell lines. These novel research findings 

may aid in the understanding of how cells adapt to hypoxia especially in regards to 

alternative splicing and may offer future therapeutic targets in hypoxic tumours.  
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1.0 INTRODUCTION 

1.1 Prostate Cancer 

1.1.1 Incidence 

Over the past ten years there has been an increase in prostate cancer incidence but 

at the same time a decrease in prostate cancer mortality in England and Wales; 

with an average annual percentage change of 3.8% and -1.4% respectively (Center 

et al., 2012). This suggests that prostate cancer treatment and detection in the UK 

is much more successful than ten years ago. Despite this, in 2012 prostate cancer 

was reported to be the fifth leading cause of cancer death and the second most 

common cause of cancer among men worldwide (Ferlay et al., 2012). Therefore, 

additional research into causes, prevention and treatment of the disease is still  

vital.   

 

1.1.2 Risk factors for prostate cancer 

Previous research has uncovered certain factors associated with a higher risk of 

developing prostate cancer. The most well-established risk factors for prostate 

cancer include: older age, black-African heritage, a family history of the malignancy, 

and certain genetic polymorphisms such as those seen in the homeobox gene, 

HOXB13 (Zhou et al., 2016; Platz and Giovannucci, 2006; Ewing et al., 2012). 

Interestingly, most of the well-established risk factors suggest a genetic 
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predisposition to the disease, although there is now emerging evidence that there 

could also be environmental risk factors that cause prostate cancer.   

As there is generally an increased risk of prostate cancer incidence in the Western 

world, environmental risk factors that are associated with a western lifestyle have 

been proposed. A report by the World Cancer Research Fund (WCRF; 2014) has 

provided strong evidence that obesity, a tall frame and the consumption of beta-

carotene increases the risk for developing prostate cancer. The report also suggests 

that increased consumption of dairy products and a high intake of calcium could be 

classed as prostate cancer risk factors (WCRF, 2014), although due to the limited 

evidence obtained further research has to be conducted to confirm these findings.  

 

1.1.3 Current prostate cancer therapies 

Men are advised about the best treatment option through an assessment that 

encompasses a range of different factors, such as; patient age, clinical tumour stage 

and serum PSA to name a few. Many localised low-grade prostate cancers that 

usually occur in older males tend to be less aggressive and are harmless. Therefore, 

active surveillance may be considered as a more beneficial option for the patient 

than other therapies, which in particular may put older patients in distress and 

discomfort (Parker, 2004). In active surveillance,  patients diagnosed with prostate 

cancer are monitored regularly for any changes in the tumour.   It has been shown 

that the 10 year prostate cancer-specific survival rate is at 97% (Klotz et al., 2010), 

which suggests that for some patients, particularly those with less-aggressive 
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prostate cancer, active surveillance may be a more viable treatment than invasive 

treatments.   

For patients with aggressive prostate cancers, there are a number of different 

treatment options available. This is particularly useful for younger men whodevelop 

early onset prostate cancer (<55 years) which tend to have a more aggressive 

phenotype with a poorer prognosis (Salinas et al., 2014). Radical prostatectomy 

surgery has been shown to be effective for localised tumours, with a survival 

percentage at 12 years of 67% compared to 60% for active surveillance (Bill-Axelson 

et al., 2011). However, surgery is associated with greater incontinence and erectile 

dysfunction (Wilt et al., 2012) and therefore suggested to be beneficial only to 

those with a higher-risk disease. 

Focal therapy uses a tissue sparing approach   whereby only the cancerous area of 

the prostate is targeted for treatment. In terms of how aggressive the treatment is, 

it is regarded as midway between active surveillance and more radical treatments, 

such as radical prostatectomy and radiotherapy (Onik et al., 2008). Methods of 

focal therapy include; cryotherapy, high-intensity focused ultrasound and laser 

ablation to name a few (Perera et al., 2016). A study by Lambert et al. (2007) 

showed that 84% of patients that underwent focal cryotherapy had no evidence of 

biochemical recurrence of the disease after 2.5 years. In addition, 74% of patients 

retained erectile function and no patient experienced any worsening of urinary 

symptoms, which makes focal cryotherapy a more attractive option for treating 

localised prostate cancer (Lambert et al., 2007). Proton beam therapy is a newly 

established type of focal therapy whereby proton particles are targeted to a 



18 

 

tumour. Unlike electron or photon beam therapies, protons do not transverse the 

target which spares healthy surrounding tissue (Yamoah and Johnstone, 2016). 

However, the therapy is expensive and no more advantageous than the 

conventional intensity-modulated radiation therapy, which delivers precise 

radiation does to specific areas within a tumour (Yamoah and Johnstone, 2016).  

 More advanced cancers that have either metastasised or recurred are treated with 

androgen deprivation therapy (Saraon, Jarvi and Diamandis, 2011). Androgens 

activate the androgen receptor transcription factor, which in turn can activate and 

regulate the expression of many genes involved in growth and proliferation 

(Chodak et al., 1992; Ruizeveld de Winter et al., 1991; Sadi, Walsh and Barrack, 

1991). This includes the kallikrein-related peptidase 3 (KLK3) gene that encodes 

prostate specific antigen (PSA), which is widely used as a biomarker for prostate 

cancer (de Winter et al., 1991). Furthermore, in the presence of low androgen 

levels, the androgen receptor has also been found in the cytoplasm to function in 

non-genomic signalling. This is achieved through interaction with Src and p85α, 

which activate the MAPK and Akt pathways, respectively, which enhance cellular 

proliferation and survival (Leung and Sadar, 2017).  

 Androgen deprivation therapy reduces the amount of androgens available for 

activation of androgen receptor transcription of genes that are involved in cellular  

growth; and in the control of signalling pathways, such as ERK/MAPK and B cell 

receptor signalling (Toropainen et al., 2016). However, after some time, cancer cell 

growth is not limited by the absence of androgens and most patients will eventually 

become tolerant to androgen deprivation therapy; this is known as androgen-
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independent prostate cancer (Chodak et al., 1992). In a study that investigated 

differences between androgen independent and androgen sensitive prostate 

cancer cell lines, it was found that the AMP-activated-protein kinase, interleukin-3 

and androgen receptor signalling pathways were the top deregulated signalling 

pathways in androgen-independent cell lines (Tonry, Armstrong and Pennington, 

2017). The AMP-activated-protein kinase signalling pathway suppresses androgen 

receptor mRNA expression and promotes androgen receptor protein degradation, 

which ultimately decreases androgen receptor protein levels (Ge et al., 2015; Shen 

et al., 2014). The interleukin-3 signalling pathway has been linked to tumour cell 

proliferation and migration. Furthermore, blockage of interleukin-3 has been shown 

to prevent tumour growth and angiogenesis (Dentelli et al., 2011). This suggests 

that androgen-independent prostate cancer cells may have drive to proliferate and 

migrate through the interleukin signalling pathway.    

Surprisingly, the androgen receptor is over-expressed at the RNA and protein level 

in many androgen-independent prostate cancer cases (Brown et al., 2002; Edwards 

et al., 2003; Koivisto et al., 1997). However, it has also been shown that in 

untreated prostate cancer samples,  androgen receptor expression is not increased 

which suggests that hormonal therapy causes an increase in androgen receptor 

expression (Saraon, Jarvi and Diamandis, 2011). In addition, it has been found that  

androgen receptor mutations can also account for androgen independent prostate 

cancer--mediated cancer progression (Taplin et al., 1995). Many androgen receptor 

mutations result in decreased ligand specificity of the androgen receptor, which 

allows other hormones such as progesterone, oestrogen and anti-androgens to 
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activate the receptor. Therefore, during androgen ablation, cancer cells harbouring 

these mutations are able to continue proliferating (Saraon, Jarvi and Diamandis, 

2011).   

The androgen receptor gene contains a NH2-terminal domain  followed by a DNA 

binding domain, a hinge region and a COOH-terminal domain . A ligand binding 

domain  forms part of the COOH-terminal domain between exons 5-8 (Dehm and 

Tindall, 2011). There are over 20 reported splice variants of the androgen receptor 

gene that have been reported in human prostate cancer cell models and clinical 

samples (Cao et al., 2016) (Figure 1.1). AR45 contains a truncated N-terminal 

domain, which results in a loss of trans-activating ability. AR45 acts as an inhibitor 

of full-length androgen receptor function (Ahrens-Fath et al., 2005). Most of the 

variants contain an intact DNA-binding domain, which is required for transcription 

to occur. AR8 does not harbour a DNA-binding domain and so cannot perform as a 

transcription factor (Yang et al., 2011). AR-V3 and AR-V23 both contain the exons 2 

and 3, which make up the DNA-binding domain (exons 2 and 3) but have sections of 

sequence in between the coding exons. Despite this, AR-V3 is still able to bind to 

DNA and activate promoters that respond to the androgen receptor (Dehm et al., 

2008); however, AR-V23 has been shown to have cytoplasmic functions instead 

(Jagla et al., 2007). Some variants are continually active, such as AR-V7 and AR-V12 

(Hu et al., 2011), which can drive androgen receptor transcription of genes and 

therefore can contribute to the progression of prostate cancer. Furthermore, 

elevated expression of alternatively spliced androgen receptor isoforms are 

associated with disease recurrence after radical prostatectomy (Guo et al., 2009; 
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Welsbie et al., 2009). Therefore, alternative splicing of the androgen receptor is 

thought to be another method in which prostate cancer can progress after 

castration (Sun et al., 2010). 

 

Figure 1.1: Schematic representation of the structure of the androgen receptor gene and 
respective splice variants (A) Canonical exons and cryptic exons (CE) of the androgen 
receptor gene. (B) Full-length androgen receptor mRNA showing exons belonging to the N-
terminal domain, DNA-binding domain, hinge region and ligand-binding domain. (C) mRNA 
structures of currently reported splice variants derived from the androgen receptor gene. 
Illustration is adapted from Cao et al. (2016) and used with permission from the author. 

 

External-beam radiotherapy is an effective treatment that is found to significantly 

improve 10 year mortality when used in conjunction with hormonal treatment 
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compared to hormonal treatment alone (Widmark et al., 2009). A similar study by 

The National Cancer Institute of Canada (Warde et al., 2011) also found that 

radiotherapy used in combination with androgen deprivation reduced 7-year 

mortality when compared to androgen deprivation alone. These two studies have 

led to radiotherapy in addition to androgen deprivation therapy as treatment for 

high-risk and locally advanced prostate cancer patients.  

Metastatic androgen-independent prostate cancers can be targeted by 

chemotherapeutic drugs to prolong survival. Docetaxel is a first line 

chemotherapeutic drug that prolongs life by 2.9 months on average (Tannock et al., 

2004; Berthold et al., 2008). Other chemotherapeutic drugs, such as Sipuleucil-T 

(Kantoff et al., 2010) and Enzalutamide (Scher et al., 2012) have a greater average 

gain in survival (4.1 months and 4.8 months respectively), but are much more 

expensive as they are covered by a patent and so not as widely available to patients 

(Attard et al., 2015).   

Particularly aggressive cancers can contain regions that have an inadequate oxygen 

supply, which are referred to as hypoxic. These areas can reduce the effectiveness 

of radiotherapy and chemotherapy. Therefore, there has been extensive research 

by several groups to try and combat this problem; and these are outlined below. 
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1.2 Hypoxia 

Hypoxia is defined as the state in which the availability or delivery of oxygen is 

insufficient to meet tissue demand (Loboda and Dulak, 2012). This occurs 

particularly in aggressive cancers (Hӧckel et al., 1999; Evans et al., 2004), as 

vascular formation cannot keep up with the rate of cancer growth. Cells at the 

centre of a tumour are particularly susceptible to hypoxia as there is a lack of 

necessary local vasculature, which causes cellular stress. In severe hypoxic 

conditions and in the absence of nutrients, apoptosis can be triggered (Semenza, 

2000; Carmeliet et al., 1998); however, some cells are able to cheat cell death and 

survive and thrive.  

 

1.2.1 Hypoxia and cancer therapy 

Since the 1950s, it has been well established that hypoxia has a significant effect on 

the effectiveness of radiotherapy on tumours (Gray et al., 1953; Evans and Koch, 

2003; Vaupel and Mayer, 2007; Wilson and Hay, 2011). Radiotherapy works by 

directing high-energy photons to the tumour site. Photons can interact with 

molecules within the body and form radicals, which can then damage DNA. 

Interaction with a water molecule produces a hydroxyl radical (HO˙) through the 

loss of a proton which can cause DNA-base damage. However, this is a common 

type of DNA damage and is usually repairable allowing the cancer cell to survive 

and thrive. If however, there is an interaction with an oxygen molecule, a peroxy 

radical (HO2˙) is produced which damages DNA beyond repair, known as ‘fixing’ and 
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therefore cancer cells undergo apoptosis causing the tumour to shrink (Grimes and 

Partridge, 2015). Therefore, in hypoxia where there is a low level of oxygen 

molecules, radiotherapy is not a very effective form of treatment.   

Tumour hypoxia can also provide resistance to chemotherapeutic drugs (Zhou et 

al., 2016; Hoang et al., 2016). This is due to several reasons. Firstly, as 

chemotherapeutic drugs travel around the bloodstream, they will be at their 

highest potency around the surrounding blood vessels and at a much lower 

concentration near the embedded hypoxic regions of a tumour. Therefore the drug 

may not be at the desired concentration for cell killing when it has reached the 

hypoxic region; in fact it may not even make it to some areas of the hypoxia region 

if at all (Brown, 1999). Secondly, hypoxic cells generally progress through the cell 

cycle much more slowly than the rapidly proliferating cells that most 

chemotherapeutic drugs target, and may even induce cell cycle arrest (Brown, 

1999). HIF-1α dependent transcription of p21 and p27, which are involved in 

negative regulation of the cell cycle, have been particularly attributed to hypoxic 

initiation of cell cycle arrest (Koshiji et al., 2004; Goda et al., 2003). In effect, the 

hypoxic oncogenic cells are able to ‘hide’ from the anti-oncogenic drugs. Thirdly, 

the expression of proteins that are involved in drug resistance may be up-regulated, 

providing protection to the cancer cell from anticancer drugs, such as: 

metallothionein-IIA (MT-IIA) in cisplatin resistance (Murphy et al., 1994), and 

periostin in arsenic trioxide resistance (Liu et al., 2017).   

As tumour hypoxia limits the effectiveness of therapies, it has been linked to poor 

prognosis (Bos et al., 2003; Evans and Koch, 2003) and therefore there has been 
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research into new methods to treat hypoxic tumours. Interestingly, a recent 

publication by Koyama et al. (2017) has shown that induction of the hypoxia 

inductible factor pathway (Figure 1.2) through chemical inhibition of the prolyl 

hydroxylase (PHD) family improved blood vessel abnormalities in hypoxic tumours, 

and ultimately, improved sensitivity to chemotherapeutic drugs. This is thought to 

be due to activation of the HIF pathway results in the transcription of genes 

required to withstand the harsh hypoxic tumour microenvironment, including 

genes involved in angiogenesis. Ongoing research into the tumour 

microenvironment (fluctuating hypoxia, low pH and nutrient deprivation) could also 

uncover potential therapeutic targets.  

 

1.2.2 Hypoxic tumour microenvironment 

Tumour cells have been observed to acquire energy mainly from glucose through 

glycolysis even in aerobic conditions (Warburg, 1956). This property, termed the 

‘Warburg Effect’ (Warburg, 1956) is well established and forms part of the 

reprogrammed energy metabolism hallmark of cancer (Hsu and Sabatini, 2008; 

Hanahan and Weinburg, 2011). Solid tumours also activate other non-glucose 

dependent pathways, such as glutaminolysis (Deberardinis and Cheng, 2010). Both 

of these metabolic pathways produce lactic acid, which contributes to metabolic 

acidosis commonly found in solid cancers (Feron, 2009). The Warburg effect is a lot 

less energy efficient than the conventional oxidative phosphorylation pathway 

executed by healthy cells (Hsu and Sabatini, 2008) and therefore many researchers 
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have speculated advantageous reasons for cancer cells to appoint this type of 

energy production.   

One theory focuses on the increased proliferative property of cancer cells (Vander 

Heiden, Cantley and Thompson, 2009). Incomplete glucose utilisation exhibited by 

cancer cells results in less carbon being converted into carbon dioxide. Carbon helps 

to form biological macromolecules and therefore is able to form building blocks 

required for rapid proliferation, such as fatty acids and ribose for nucleotides 

(Vander Heiden, Cantley and Thompson, 2009). Another proposal for the Warburg 

effect is that acidification of the micro-environment by lactic acid selects cells with 

an acid-resistant phenotype (Gatenby and Gillies, 2004). These cells have a growth 

advantage that encourages cellular proliferation and invasion. In addition, lactic 

acid is found to increase the production of interleukin-8, which promotes 

angiogenesis and therefore drives the growth of new blood vessels to the 

proliferating cells (Polet and Feron, 2013). Moreover, it is now also suggested that 

the function of immune cells can be impeded by an acidic environment (Lardner, 

2001). Calcinotto et al. (2012) showed that acidifying the microenvironment to a pH 

that is generally found in tumours (pH6.0 – 6.5), can lead to the loss of T-cell 

function, but this effect can be reversed at physiological levels. Therefore, it is 

suggested that perhaps lactate is produced to inhibit the immune response against 

oncogenic cells in order to promote their survival (Choi et al., 2013).  
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1.2.3 The hypoxia inducible factor (HIF) pathway 

The hypoxia inducible factor (HIF) pathway is activated during hypoxia. It activates 

the transcription of genes that enable the cell to withstand the hypoxic tumour 

microenvironment. These include genes that regulate the intracellular pH (pHi) such 

as the carbonic anhydrases (Pastorekova, Parkkila and Zavada, 2006), bicarbonate 

transporters (Karumanchi et al., 2001), and monocarboxylate transporters which 

can carry lactate across biological membranes (Halestrap and Meredith, 2004). In 

addition, genes involved in increasing oxygen delivery to hypoxic areas are also 

targeted by the HIF pathway, such as vascular endothelial growth factor (VEGF) that 

drives angiogenesis (Maxwell et al., 1997) and erythropoietin (EPO) that stimulates 

red blood cell production (erythropoiesis) (Watowich, 2011).  

The HIF complex is comprised of two subunits: an alpha (α) subunit that is sensitive 

to oxygen levels and a beta (β) subunit, which is ubiquitously expressed. Under 

normoxic conditions, HIF-α is synthesised but is rapidly degraded by the 

proteasome. The degradation of HIF-α begins with the hydroxylation of proline 

residues (Pro402 and Pro564) by the prolyl hydroxylase domain protein 2 (PHD2), 

which allows the von Hippel-Lindau (VHL) tumour suppressor protein to bind to the 

subunit (Semenza, 2007). This allows an interaction with the Elongin C protein 

which recruits an E3 ubiquitin-protein ligase complex that ubiquinates the subunit, 

thereby targeting it for degradation by the proteasome (Figure 1.2).  

During hypoxia, the degradation of HIF-α is inhibited through reduced activity of 

PHD2. As oxygen is one of the substrates of PHD2, during hypoxic conditions PHD2 
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activity is limited (Epstein et al., 2001). In addition, it has been shown that the 

catalytic centre of PHD2 is inhibited by reactive oxygen species (ROS) that are 

generated by complex III of the mitochondrial respiratory chain (Semenza, 2007).  

This allows the HIF-α subunit to accumulate and dimerise with the HIF-β subunit. 

The complex is then able to translocate to the nucleus and bind to cis-acting 

hypoxia response elements (HREs) in target genes, which leads to increased 

transcription and subsequent elevated expression of genes required in the HIF 

response (Jewer, Findlay and Postovit, 2012) (Figure 1.2). It is through this 

mechanism that HIF-1α regulates the expression of a spectrum of genes with a 

variety of functions.  

HIF transcriptional activity is further regulated by factor inhibiting HIF-1 (FIH-1). 

During normoxia FIH-1 hydroxylates an asparagine residue in the c-terminal 

transactivation domain of HIF-α. This prevents the formation of the DNA binding 

complex necessary for transcription, including a reduced interaction with p300/CBP 

transcription co-activators (Mahon et al., 2001; Lando et al., 2002). This mechanism 

is particularly useful when normoxia is restored after a period of hypoxia as it 

inhibits further transcription of hypoxia-associated genes by the activated HIF 

complex.  
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Figure 1.2: The HIF-α pathway during normoxia and hypoxia. During normoxia HIF-α proline 
residues are hydroxylated by prolyl hydroxylase which allows the binding of VHL and 
ubiquitin. This signals the protein for degradation by the proteasome. During hypoxia, low 
oxygen levels prevent maximum prolyl hydroxylase activity, and prolyl hydroxylase is 
inhibited by ROS generated by the mitochondria. HIF-α is therefore stabilised and able to 
form a dimer with HIF-β. The HIF complex translocates to the nucleus for transcription of 
genes required in the HIF response. Figure illustrated using text from Semenza (2007). 

 

1.2.4 Genes expressed as a result of Hypoxia Inducible Factor (HIF) activation 

The first gene that was found to be activated by HIF-1 was Erythropoietin (Semenza 

and Wang, 1992). Erythropoietin is a glycoprotein hormone that is important for 

the proliferation and differentiation of erythroid progenitor cells into mature 

erythrocytes (Krantz, 1991). This aids cellular survival during hypoxic stress, as an 

influx of mature erythrocytes can transport more oxygen to the hypoxic areas 

through newly synthesised blood vessels that are created via angiogenesis. Indeed, 
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HIF-1α also activates genes involved in angiogenesis, such as VEGF (Maxwell et al., 

1997) and therefore HIF-1α is able to up-regulate genes that aid in reoxygenation 

and provide nutrients to deprived cells.  

Carbonic anhydrase IX (CA IX) is also activated by HIF-1α during hypoxia (Wykoff et 

al., 2000), and is involved in the cellular response to the acidic microenvironment 

that is generated by the lactic acid produced during aerobic glycolysis (Chiche et al., 

2009). Cells require a neutral to fairly alkaline internal pH for efficient biological 

reactions and survival. Therefore, hypoxia up-regulates the export of lactate and 

protons out of the cell via transmembrane ion transporters, such as 

monocarboxylate transporter (MCT4) and Na+/H+ exchanger 1 (NHE1) (Yilmaz and 

Christofori, 2010; Parks, Chiche and Pouyssegur, 2011). In addition, bicarbonate is 

imported into the cell via bicarbonate transporters, which help to buffer the 

internal pH to the required level for survival. Eventually however, the bicarbonate 

ions become depleted in the increasing acidic microenvironment (Svastova and 

Pastorekova, 2013). CA IX plays a vital role in solving this problem.  

Carbonic anhydrase IX forms metabolons with bicarbonate transporters; AE1, AE2 

and AE3. In the metabolons, CA IX catalyses the hydration of CO2 found in the 

microenvironment (Morgan et al., 2007). This reaction produces a high level of 

bicarbonate ions, which are then transported into the cell by the bicarbonate 

transporters (Pastorekova, Ratcliffe and Pastorek, 2008). This neutralises the 

intracellular environment, which is required for survival. Protons are produced as 

by-products of the CO2 hydration reaction, which further acidifies the 

microenvironment and supports tumour cell invasiveness (Ditte et al., 2011).  
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In fact, CA IX  is  found to be expressed in only a few healthy tissues (such as the 

stomach mucosa and intestinal crypts) whereas it is expressed in solid tumours all 

over the body, particularly those with an aggressive phenotype (Svastova and 

Pastorekova, 2013). A number of studies have linked CA IX expression with cellular 

migration and invasion. CA IX over-expression promoted cell migration and invasion 

whereas suppression of CA IX activity reduced these processes (Svastova et al., 

2012; Radvak et al., 2013; Sansone et al., 2009). It is thought that the role of CA IX 

in the acid-base reaction could aid tumour cells for invasion, migration and 

ultimately metastasis.  

CA IX is argued to be a more appropriate marker for hypoxia than HIF-1α, as the 

latter is lost rapidly upon re-oxygenation after hypoxia. In contrast, CA IX expression 

remains stable upon re-oxygenation and is only lost upon cell death or division 

(Sobhanifar et al., 2005). Therefore, CA IX was used as the hypoxia marker of choice 

in this project.  

In addition to increased expression of some genes, there are also a few genes found 

to be down-regulated by hypoxia, and it was shown using HIF-1α -/- cells that 17% 

of these genes are HIF-1α dependant (Greijer et al., 2005). These include genes 

involved in DNA repair (REV3), mRNA processing (hnRNP H1) and cytoskeleton 

maintenance (Rho kinase) (Greijer et al., 2005).  
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1.2.5 HIF-α subunits 

Three types of HIF alpha subunits have been discovered; HIF-1α, HIF-2α and HIF-3α. 

HIF-1α and HIF-2α share 48% amino acid sequence homology and  both are able to 

dimerise to HIF-1β. Both types of HIF complex are able to bind to the same HIF 

response element  sequence and initiate transcription of target genes (Tian, 

McKnight and Russell, 1997). Genetic inactivation studies have indicated 

differences in the genes that are targeted by the two subunits, and previous studies 

have identified ubiquitously expressed HIF-1α to be the dominant subunit for 

hypoxic-induced transcription (Hu et al., 2003; Park et al., 2003; Sowter et al., 

2003). Furthermore, only HIF-1α has been found to target genes that are involved 

in the glycolytic pathway (Hu et al., 2003; Raval et al., 2005).  

HIF-2α expression was previously thought to be more restricted to cell type, with 

abundant HIF-2α expression found in blood vessels. This led to the theory that HIF-

2α regulated endothelial cell function, which was supported by a correlation 

between HIF-2α and VEGF expression (Tian, McKnight and Russell, 1997). However, 

there is now evidence for hypoxic-induced HIF-2α expression in a number of organs 

in the rat, including the brain, heart, lung, kidney, liver, pancreas and intestine 

(Wiesener et al., 2003). In addition, other groups have also identified HIF-2α as an 

initiator of gene transcription during the hypoxic response (Hu et al., 2003).  

HIF-1α and HIF-2α have been shown to have opposing effects on the same hypoxic-

inducible genes. For example, it was shown in renal clear cell carcinoma (RCC) cells 

that HIF-1α over-expression restricted tumour growth, whilst an elevation of HIF-2α 
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expression drove tumour progression (Raval et al., 2005). Furthermore, HIF-1α has 

been shown to inhibit the function of the cell cycle progression transcription factor 

MYC during hypoxia and there is also evidence that HIF-1α promotes the 

degradation of MYC under chronic hypoxia (Keith, Johnson and Simon, 2012). In 

contrast, HIF-2α has been shown to enhance MYC activity and promotes cell cycle 

progression in hypoxic cells (Gordan et al., 2007). Therefore, the activity of HIF-

dependent cellular responses during tumour hypoxia may be governed by the levels 

of HIF-1α and HIF-2α complexes. There is evidence to suggest that HIF-1α may 

control the acute hypoxic response, whilst HIF-2α may dominate chronic hypoxia 

activity (Henze and Acker, 2010). It is thought that hypoxia-associated factor (HAF) 

is responsible for the switch in alpha subunit between acute and chronic hypoxia 

(Koh et al., 2011). 

Less is known about the HIF-3α subunit, although human HIF-3α has been shown to 

be alternatively spliced to form at least seven different splice variants (Heikkila et 

al., 2011). There is evidence to show that HIF-1α and hypoxia respectively, up-

regulate the expression of all HIF-3α isoforms (Pasanen et al., 2010). Some HIF-3α 

isoforms are reported to be able to promote HIF-1α and HIF-2α activity, whereas 

other isoforms inhibit activity of the subunits (Keith, Johnson and Simon, 2012). It is 

therefore suggested that HIF-3α regulates HIF-1 and HIF-2 activity; and may also be 

regulated by hypoxia, although more research is needed to confirm this possibility.  
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1.3 Change in post transcriptional regulation in hypoxia 

Gene transcription is not the only process that has been found to be regulated by 

hypoxia. There are a number of post-transcriptional processes that have also been 

shown to be modified during hypoxia, such as translation and alternative splicing.   

1.3.1 Translation: Internal ribosome entry sites (IRES) 

Conventional translation initiation begins with the recruitment of the eIF4F 

complex to the cap on the 5’ end of the mRNA. This in turn attracts the 43S pre-

initiation complex, formed of the small ribosomal subunit, tRNA, GTP and the 

elongation initiation factor- 2 (eIF2), to the start codon of mRNA (Galban and 

Gorospe, 2009). However, during cellular stress such as hypoxia, cap-dependent 

translation is inhibited in order to conserve energy for cellular survival. In fact, cells 

exposed to acute hypoxia were found to decrease overall translation by 60-70% 

(Kraggerud, Sandvik and Pettersen, 1995).  

Cap-dependent translation inhibition is regulated during hypoxia via two main 

mechanisms. The first involves the inactivation of mTOR, which results in the hypo-

phosphorylation of eIF4E binding proteins (4E-BP) and subsequently increases their 

affinity for the eIF-4E cap-binding protein. This results in a reduced rate of cap-

dependent translation (Richter and Sonenberg, 2005). A second mechanism 

requires the activation of the protein-kinase-RNA-like-endoplasmic-reticulum-

kinase (PERK) by hypoxia, which inhibits cap-dependent translation through 

phosphorylation of the translation initiation factor eIF2-α (Koumenis and Wouters, 

2006).  
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To overcome this, some mRNAs, particularly those that function during periods of 

cellular stress, contain internal ribosome entry site (IRES) sequences that allow the 

initiation for translation at a location that is a substantial distance from the cap 

structure (Morfoisse et al., 2015). Indeed, HIF-1α contains an IRES sequence, which 

allows cap-independent translation of the alpha subunit during hypoxia (Lang et al., 

2002). Other mRNAs associated with cancer progression and the hypoxic response 

have also been identified to have IRES sequences. Vascular endothelial growth 

factor-A (VEGF-A) (Huez et al., 1998) and basic fibroblast growth factor (Vagner et 

al., 1995) both contain IRES sequences in their mRNA and are of particular interest 

as they are involved in angiogenesis and therefore are heavily implicated in both 

the hypoxic response and tumour progression.  

It has also recently been reported that vascular endothelial growth factor-C (VEGF-

C) mRNA contains an IRES sequence, which is increased during hypoxia (Morfoisse 

et al., 2015). VEGF-C is involved in lymphangiogenesis, which enhances tumour 

migration, and ultimately metastases. Therefore it can be proposed that the cap-

independent translation of VEGF-C may be a mechanism through which hypoxia can 

drive tumour migration.   

 

1.3.2 Pre-mRNA splicing 

After gene transcription, splicing of eukaryotic pre-mRNAs involves the excision of 

introns and joining together of exons, which produces mature mRNA for translation 

(Zhou and Fu, 2013). Pre-mRNA splicing must be precise in order to avoid errors 
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that could disrupt the open reading frame (ORF), which could produce truncated 

proteins (Biamonti et al., 2012). This is achieved by the spliceosome, a structure 

comprised of protein and RNA that undergoes several structural changes 

throughout the reaction to ensure that only proper splice sites are selected 

(Biamonti et al., 2012). The spliceosome is made up of five small nuclear 

ribonucleoparticles (snRNPs); U1, U2, U4, U5 and U6 (Figure 1.3), and 100-200 non-

snRNPS, which can be sub-categorised into RNA-binding proteins; U2 auxiliary 

factor (U2AF), splice factor 1 (SF1) and serine-arginine rich proteins (SR proteins), 

and enzymes; RNA helicases, protein kinases and phosphatases (Biamonti et al., 

2012). 

To begin, the 5’ and 3’ splice sites of an intron have to be recognised. This is 

achieved by the E complex, which is formed of the U1 snRNP at the 5’ splice site; 

and SF1, U2AF65 and U2AF35 at the branch-point, polypyrimidine tract and 3’ splice 

site respectively. The consensus sequence at the 5’ end of the intron (‘CAG 

GURAGU’ in humans) is bound by the U1 snRNP through base-pairing interactions 

(Wu and Manley, 1989; Elliott and Ladomery, 2011). At around the same time, SF1 

binds to the branch point sequence (‘YNYURAC’ in humans) and the downstream 

polypyrimidine sequence of the branch point is bound by the 65kDa U2 auxiliary 

factor (U2AF65) (Graveley, 2000). In addition, the U2AF35 subunit of the U2AF 

hetero-dimer binds to an AG dinucleotide in the 3’ splice site. Following this, the U2 

snRNP displaces the SF1/BBP protein at the branch point sequence, which forms 

the A complex (Graveley, 2000). This interaction is stabilised by an arginine-serine-

rich domain in the U2AF65 protein (Valcarcel et al., 1996), and through protein 
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complexes within the U2 snRNP itself, particularly with the SF3a and SF3b subunits 

(Gozani et al., 1996). Next, the U5.U4/U6 tri-snRNP is recruited to the U1 snRNP, 

which forms the B complex. The B complex undergoes conformational and 

compositional rearrangements, which activate its catalytic function for the first 

transesterification reaction (Jurica and Moore, 2003). The activated B complex is 

known as the B* complex and requires the release of U1 and U4 snRNPs. The 

activated spliceosome undergoes the first transesterification step at the 5’ splice 

site which generates an intron lariat-3’ exon and a ‘free’ 5’ exon (C complex). An 

additional transesterification reaction at the 3’ splice site releases the 3’ exon and 

this leads to exon ligation and excision of the looped shaped intermediate, known 

as the lariat, which contains the intron and U4, U5 and U6 snRNPs. The snRNPs 

released during the splicing reaction are recycled for additional splicing reactions 

(Wahl, Will and Lührmann, 2009; Jurica and Moore, 2003) and the spliced mature 

mRNA transcript is translated into protein (Figure 1.3).  
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Figure 1.3: The Spliceosome Cycle for Splicing of Pre-mRNAs . 1. Complex E formation: U1 snRNP binds to the ‘CAG GURAGU’ sequence at the 5’ splice site on the 
intron. SF1, U2A65 and U2A35 bind to the branch-point, polypyrimadine tract and 3’ splice site AG dinucleotide respectively. 2. Complex A formation: The U2 snRNP 
displaces SF1 at the branchpoint sequence. 3. B complex formation: The U5. U4/U6 tri-snRNP is recruited to the U1 snRNP. The B complex undergoes conformational 
and compositional rearrangements that activate its catalytic function. 4. B* complex formation: U1 and U4 snRNPs are released and the activated B* complex 
undergoes the first transesterification reaction at the 5’ splice site. 5. C complex formation: This generates an intron lariat-3’ exon and a free 5’ exon. 6. A second 
transesterification reaction at the 3’ splice site releases the 3’ exon and this leads to excision of the lariat intron which is degraded. The exons are ligated together and 
the mature mRNA is ready for translation. The snRNPs are recycled for additional splicing reactions. 
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1.3.3 Alternative splicing 

Alternative splicing allows the formation of multiple mRNA products to be 

generated from a single pre-mRNA. More than 94% of pre-mRNAs are alternatively 

spliced in humans, which gives rise to at least 100,000 distinct proteins (Biamonti et 

al., 2012), despite there only being an estimated 20,000-25,000 genes 

(International Human Genome Sequencing Consortium, 2004). Alternatively spliced 

isoforms that arise from the same gene can have distinct properties and can even 

have opposing functions (Biamonti et al., 2012). For example, there are a number of 

apoptotic genes that can produce anti- or pro-apoptotic isoforms through 

alternative splicing of the pre-mRNA (Schwerk and Schulze-Osthoff, 2005). Other 

spliced transcripts may house premature stop codons, which signal mRNAs for 

nonsense-mediated decay (NMD) (Schwerk and Schulze-Osthoff, 2005). The NMD 

pathway prevents truncated proteins from being translated; however, both of 

these serve to negatively regulate the expression of the main protein (Chang, Imam 

and Wilkinson, 2007).  

There are five major alternative splicing patterns (Figure 1.4), which materialise 

through the recognition of short cis-acting sequences (frequently referred to as 

silencers and enhancers) by trans-acting factors, also known as RNA binding 

proteins (RBPs), at the intron-exon boundaries (Biamonti et al., 2012).  
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Figure 1.4: The five major alternative splicing patterns, which can arise through various 
combinations of donor and acceptor sites of exons. (1) Exon skipping: Exons are skipped and 
therefore not present in the exon sequence that is spliced together. (2) Intron retention: An 
intron is retained in the exonic sequence (shown in red). If this occurs in the coding region, 
this could lead to a change in the protein produced, which could result in a non-functional 
protein. (3) Mutually exclusive exons: Only one of two exons is selected for splicing, but not 
both, which can lead to different proteins being produced from the same pre-mRNA 
sequence. (4) Alternative 5’ splice site: An alternative 5’ splice site is selected, resulting in the 
change of the 3’ splice site, and therefore splicing out some of the exonic sequence from the 
exon involved. (5) Alternative 3’ splice site: An alternative 3’ splice site is used, which changes 
the location of the 5’ splice site and splices out some of the sequence including the original 5’ 
splice site. Figure adapted from Biamonti et al. (2012) and used with permission from the 
author. 
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1.3.4 Regulation of alternative splicing 

RNA binding proteins (RBPs) influence where splicing occurs in the pre-mRNA and 

ultimately which sections of pre-mRNA are included in the mature spliced transcript 

(Chen and Manley, 2009; Nilsen and Graveley, 2010). Alternative splicing can 

therefore be regulated by changes in the levels and activity of RBPs (David and 

Manley, 2010). There are many different RBPs, but the two main studied groups are 

serine/arginine rich (SR) proteins and heterogenous nuclear ribonucleoproteins 

(hnRNPs). 

RBPs regulate constitutive and alternative splicing by promoting splice site selection 

via cis-acting splicing regulatory elements (SREs), which are grouped depending on 

where in the pre-mRNA the RBP is binding (exon or intron) and the net effect this 

has on splicing (enhance or inhibit). This results in four categories of SREs; exonic 

splicing enhancers (ESEs), exonic splicing silencers (ESSs), intronic splicing 

enhancers (ISEs) and intronic splicing silencers (ISSs) (Matlin, Clark and Smith, 

2005).  

The SR proteins serine/arginine-rich splice factor – 1 and -2 (SRSF1 and SRSF2) are 

essential regulators of constitutive and alternative splicing as they promote the 

binding of U1 and U2 snRNPs to the 5’ and 3’ splice site, respectively (Corkery et al., 

2015). As SR proteins are key players in the initiation of splicing, the binding of SR 

proteins to pre-mRNA is heavily regulated through phosphorylation events from SR 

protein kinases such as those found in the CDC-like-kinase (CLK) and SRSF-protein-

kinase (SRPK) protein kinase families (Ghosh and Adams, 2011). It has been shown 
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that the arginine/serine (RS) domains of SRSF1 have to be hyper-phosphorylated in 

order to facilitate the binding of the U1 snRNP to the 5’ splice site (Cho et al., 2011), 

and de-phosphorylation of SRSF1 is necessary for the catalysis of the first 

transesterification reaction (Cao, Jamison and Garcia-Blanco, 1997). Therefore, 

there has been great interest in the regulation of SR proteins through 

phosphorylation by SR protein kinases.  

 

The CLK and SRPK protein kinase families  

Two of the most established splice factor kinase families are the CLKs and SRPKs. It 

has been suggested that CLKs play an important role during development, as 

mutations in the Drosophila CLK homologue, Darkener of Apricot (DOA) are 

embryonic lethal and lead to segmentation abnormalities, eye formation and 

neuronal development (Yun et al., 1994). The CLK family consists of four members 

(CLKs 1-4) which all share the C-terminal kinase domain that contains the 

‘EHLAMMERILG’ signature motif and are therefore referred to as LAMMER kinases 

(Yun et al., 1994). The N-terminus of CLKs contain a nuclear localisation signal and 

RS dipeptides where SR proteins bind (reviewed in Bates et al., 2016). CLKs are 

documented to be dual-specificity kinases, which are able to phosphorylate their 

substrates on serine and threonine residues, but are also able to auto-

phosphorylate themselves on serine, threonine and tyrosine residues (reviewed in 

Bates et al., 2016). Alternatively spliced isoforms that encode truncated proteins 
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which lack the kinase domain have been discovered for all four CLK family members 

and are suggested to regulate CLK activity (Duncan et al., 1995; Hanes et al., 1994).   

The SRPK family (SRPK 1-3) is characterised by a well conserved bipartite catalytic 

domain which is separated by a non-conserved spacer sequence (Ghosh and 

Adams, 2011). It has been shown that SRPKs prefer to phosphorylate on serine 

residues (Wang et al., 1998), and on average SRPK1 phosphorylates five to eight of 

the available 12 serines in the RS1 domain of SRSF1 (Ghosh and Adams, 2011). SRPK 

family members are constitutively active (Ngo et al., 2007; Ghosh and Adams, 

2011), and so they do not require post-translational modifications for stimulation.  

Although SRPK1 has been shown to be active in both the cytoplasm and nucleus, 

the localisation of the protein may be one way that its activity is regulated. Ding et 

al. (2006) provided evidence that the spacer sequence encodes for a cytoplasmic 

localisation signal. They showed that deletion of the spacer sequence altered the 

cellular distribution of SRPK1 from nuclear-cytoplasmic to completely nuclear. In 

the cytoplasm phosphorylation of SR proteins facilitates nuclear import (outlined 

below).  

 

Regulation of SR proteins by SR protein kinases 

SR proteins have N-terminal domains consisting of RNA recognition motifs (RRMs) 

that bind RNA and C-terminal arginine-serine rich (RS) domains, which are the sites 

of phosphorylation (Long and Caceres, 2009). SRSF1 contains two RS domains 

consisting of arginine/serine repeats. When the RS domain of SRSF1 is in a hypo-
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phosphorylated state, it stimulates interaction with its own RRM (Cho et al., 2011). 

Phosphorylation releases the RS domain and promotes spliceosome assembly 

through the binding of the available RRM with the U1 snRNP (Cho et al., 2011). It 

has been suggested that the first RS domain of SRSF1 is targeted by SRPK1 

phosphorylation in the cytoplasm, which facilitates binding of SRSF1 to a 

transportin protein, (Tr-SR) (Yeakley et al., 1999; Lai et al., 2000). This allows for the 

export of SRSF1 into the nucleus where it is stored as nuclear speckles. Subsequent 

phosphorylation of the RS2 domain of SRSF1 by CLK1 results in the release of the SR 

protein from nuclear speckle storage in order to regulate splicing (reviewed in Naro 

and Sette, 2013). In accordance with this mechanism, it has been shown that SRPK1 

is predominantly found in the cytoplasm and nucleus, whereas CLK1 is thought to 

be a nuclear protein (Aubol et al., 2013).  

After splicing is completed, SR proteins are released from mRNA through de-

phosphorylation by nuclear phosphatases, such as protein phosphatases 1 and 2A 

(PP1 and PP2A) (Naro and Sette, 2013). Once released, they are either exported 

into the cytoplasm to assist in other duties such as the regulation of translation or 

are re-phosphorylated and stored once again as nuclear speckles for the next round 

of splicing (reviewed in Naro and Sette, 2013) (Figure 1.5). 

 

The competition between SR and hnRNP families of splice factors for SREs 

It has been found that proteins in the heterogenous nuclear ribonucleoprotein 

(hnRNP) A/B family and SR proteins can antagonise one another when binding to 
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SREs (reviewed in Kedzierska et al., 2017). In general, SR proteins promote exon 

inclusion by binding to exonic splicing enhancers (ESEs), whereas hnRNPs bind to 

exonic and intronic splicing silencers (ESS and ISS) thereby promoting exon 

exclusion (reviewed in Jean-Philippe, Paz and Caputi, 2013). Therefore, changes in 

the molar ratio of hnRNP protein to SR protein in the nucleus can affect splicing.  

In addition to the regulation of splicing, RBPs have also been found to have roles 

outside of the splicing mechanism. For example, SRSF1 is involved in nuclear export 

regulation (Huang et al., 2003), mRNA stability (Lemaire et al., 2002), microRNA 

processing (Wu et al., 2010), translation (Sanford et al., 2004) and nonsense-

mediated mRNA decay (Zhang and Krainer, 2004). 
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Figure 1.5: Change in localisation of SRSF1 through phosphorylation by SRPK1 and CLK1 splice factor kinases. SRPK1 phosphorylates the first SRSF1 RS domain, 
which enables the TR-SR transportin protein to bind and translocate SRSF1 into nuclear speckle storage in the nucleus. CLK1 phosphorylation releases SRSF1 from 
nuclear speckle storage and SRSF1 is able to take part in the splicing of pre-mRNA. PP1 and PP2A phosphatases dephosphorylate SRSF1 and it then either moves 
back to the cytoplasm or it is re-phosphorylated and stored as nuclear speckles.   
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1.3.5 Alternative splicing during cellular stress 

Stress causes alterations in gene expression in order to allow cells to adapt to their 

changed envirionment. In accordance with this, alternative pre-mRNA splicing 

patterns can be modified to aid cellular survival during cellular stress. Conversely, in 

the late 1980s to early 1990s, it was documented that severe heat shock inhibits 

splicing in eukaryotic cells (Yost and Lindquist, 1986; Bond, 1988; Shukla et al., 

1990). Furthermore, a study by Shalgi et al. (2014) also revealed that severe heat 

shock inhibits the splicing of more than 1700 genes in mouse fibroblast cells.  

However, some heat shock proteins (Hsp), such as Hsp90a (Jolly et al., 1999), Hsp47 

(Takechi, 1994) and Hsp105 (Yasuda et al., 1999) are alternatively spliced during 

heat shock. Furthermore, recently Yamamoto et al. (2016) also provided evidence 

of 4,260 genes that are alternatively spliced during mild heat stress at 42°C. Using 

gene ontology analysis, the team showed that alternative splicing of genes involved 

in the cell cycle, ubiquitination, mRNA metabolism and the stress response were 

affected duing heat stress. Alternative splicing of the retained intron variant of CLK1 

was also shown to be induced during mild heat stress, which echoes the previous 

finding by Ninomiya et al. (2011), which also provided evidence that osmotic stress 

also induced expression of the intron retained variant of CLK1. The study by 

Yamamoto et al. (2016) also revealed that SRSF10, SRSF2 and hnRNP K are all 

involved in alternative splicing regulation during heat stress, which suggests that 

RNA binding proteins influence alternative splicing during heat shock stress.  
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In light of the above, it is proposed that severe heat shock inhibits splicing, whereas 

mild heat shock allows alternative splicing of certain genes to take place in order to 

allow cells to survive. Perhaps there is a gradual diminish in splicing with increased 

heat shock temperature. In agreement with this, it was shown that the U4. U5. U6 

snRNP complex was disrupted at both 43 and 46°C; whereas the U1 and U2 snRNPs 

were unaffected at 43°C but were affected at 46°C (Bond, 1988).   

Furthermore, other types of cellular stress have also been documented to alter 

alternative splicing. Osmotic shock induced by sorbitol treatment has been shown 

to increase SRPK1 nuclear localisation (Zhong et al., 2009). It could be postulated 

that a higher level of SRPK1 in the nucleus would encourage splicing; however it has 

been shown to hampen splicing. This is because excessive amounts of SRPK1 can 

cause hyperphosphorylation of SR proteins, which inhibits their splicing activity. In 

contrast, osmotic stress and UV radiation respectively, lead to phosphorylation and 

relocalisation of HnRNP A1 from the nucleus to stress granules in the cytoplasm 

(Guil, Long and Caceres, 2006). This suggests that hnRNP A1 mediated splicing is 

reduced during osmotic stress.  

Genotoxic stress has also been shown to affect splicing. Chalfant et al., (2002) 

provided evidence that the chemotherapeutic agent, gemicitabine induced 

apoptosis in A549 lung adenocarcinoma cells through the formation of Bcl-xs and 

caspase-9a pro-apoptotic splice variants. Furthermore, the group also observed 

that gemicitabine caused a down-regulation of the Bcl-xL and caspase-9b splice 

variants, which inhibit apoptosis. This provides evidence that chemotherapeutic 

drugs alter splicing to favour cell death.  
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Moreover, UV irradiation has also been documented to alter splicing. Both UVB and 

UVC induced DNA damage and promoted alternative splicing of human-double-

minute-oncogene-2 (hdm2). Full-length hdm2 encodes a protein, which functions as 

a negative regulator of the tumour suppressor, p53 (Tong and Wu, 2015). P53 

transcribes genes required for DNA damage repair, cell cycle arrest, apoptosis and 

senescence (Levine and Oren, 2009; Vousden and Prives, 2009). On the other hand, 

the alternatively spliced variant of hdm2 lacks most of the p53 binding domain and 

so cannot interact with p53, which suggests that UV irradiation promotes apoptosis 

through a change in splicing of hdm2.  

Interestingly, p53 is itself alternatively spliced, and 13 human p53 splice isoforms 

have been identified (Marcel et al., 2011). The human protein ∆133p53 forms 

through transcription of an alternative p53 promoter in intron 4 in response to UV 

irradiation, and can antagonise p53-mediated apoptosis (Chen et al., 2009; Marcel 

et al., 2010; Aoubala et al., 2011). Furthermore, ∆133p53 represses cell replication, 

senescence and promotes tumour progression and angiogenesis (Fujita et al., 2009; 

Bernard et al., 2013). Gong et al. (2015) suggests that both p53 and ∆133p53 have 

roles in the DNA damage response. The paper suggests that as ∆133p53 promotes 

DNA double strand break repair, it targets cells with repairable DNA damage, 

whereas full-length p53 induces apoptosis in cells with severe DNA damage. As 

alternative splicing has been shown to be altered under the influence of different 

types of cellular stress, it is no surprise that hypoxic stress has also been shown to 

change splicing patterns. As hypoxia is a common feature observed in aggressive 
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cancers, a number of studies that have investigated changes in alternative splicing 

that influenced by hypoxic stress in cancers.  

   

The effect of hypoxia on alternative splicing in cancer 

There have been a number of recent papers that have investigated the genome-

wide effect of hypoxia on differential splicing in normal endothelial cells (Hang et 

al., 2009; Weigand et al., 2012), cartilage endplate-derived stem cells (Yao et al., 

2016), Hep3B lung cancer cells (Sena et al., 2014), and most recently, MCF7 breast 

cancer cells (Han et al., 2017). Using exon microarrays, Weigand et al. (2012) 

provided evidence for altered expression of 294 genes in hypoxia in endothelial 

HUVEC cells. The group reported an up-regulation of genes associated with glucose 

metabolism and angiogenesis and a down-regulation of genes that are linked to the 

cell cycle and DNA repair. This suggests that hypoxia favours cancer progression.   

Cancer is profoundly affected by alternative splicing. Changes in splicing of cancer-

associated genes linked to various hallmarks of cancer can favour splice isoforms 

which promote the oncogenic phenotype (Hanahan and Weinberg, 2000, 2011; 

Biamonti et al., 2012; Ghigna, Valacca and Biamonti, 2008; David and Manley, 

2010). Therefore, the manipulation of these alternative splicing events may present 

future targets for cancer therapies and biomarkers for prognosis (Dales et al., 

2010). 

Vascular Endothelial Growth Factor (VEGF) (Salton, Voss and Misteli, 2014)) and 

carbonic anhydrase IX (CA IX) (Barathova et al., 2008) are two cancer-associated 
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genes that have been found to be affected by alternative splicing in hypoxia. These 

examples provide evidence that hypoxia can influence shifts in alternative splicing 

to favour isoforms that promote tumour progression, as follows. 

 

Hypoxia and VEGF splicing 

Hypoxia has been linked to a higher expression of VEGF (Liao and Johnson, 2007) 

which is a key player in angiogenesis. VEGF is alternatively spliced due to an 

alternative, proximal and distal 3’ splice site in terminal exon eight (Figure 1.6). The 

result is a change in a mere six amino-acids at the C terminus of the growth factor. 

There are also cassette exons in the VEGF pre-mRNA, which produce isoforms of 

differing lengths, for example one of the most abundant in humans is VEGF165 

where 165 refers to the number of amino-acids in the isoform. The novel splice 

isoforms due to the distal 3’ splice site in exon eight are labelled ‘b’, hence 

VEGF165b; the b isoforms are anti-angiogenic respectively (Ladomery, Harper and 

Bates, 2007). The b isoforms are more abundantly expressed in normal adult 

tissues, such as the renal cortex (Bevan et al., 2008), and found to be down-

regulated in oncogenic tissues, such as renal cancers (Bates and Harper, 2002) and 

prostate cancers (Woolard et al., 2004). It is therefore no surprise that expression 

of VEGF in oncogenic tissues is derived from the VEGF165 form rather than in the 

anti-angiogenic form. This suggests there is a switch in the splicing of VEGF during 

cancer progression to favour the pro-angiogenic isoform over the anti-angiogenic 
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isoform in order to produce vasculature that will deliver nutrients to the oncogenic 

tissue (Bates and Harper, 2002; Woolard et al., 2004).  

 

Figure 1.6: VEGF pre-mRNA splicing of exon eight. VEGFxxx and VEGFxxxb are formed through 
alternative proximal and distal 3’ splice site in terminal exon 8, respectively. VEGFxxx isoforms 
are angiogenic, whereas VEGFxxxb isoforms are considered anti-angiogenic. Exons are shown 
in green boxes and introns are shown as blue lines. Figure adapted from Ladomery, Harper 
and Bates (2007) and used with permission from the author. 

 

CA IX: alternative splicing  

To date, two alternatively spliced variants of carbonic anhydrous IX (CA IX) have 

been reported; full length CA IX (CA IX FL) and a shorter alternatively spliced CA IX 

isoform (CA IX AS) (Malentacci et al., 2009) (Figure 1.7). CA IX FL is localised to the 

plasma membrane and contains the whole of the coding sequence, whereas CA IX 

AS does not contain exons eight and nine. The truncated CA IX AS splice isoform 

lacks the c-terminal part of the catalytic domain; the transmembrane (TM) region 

and the intracellular tail (IC). The altered localisation of the AS variant to the 

intracellular space is suggested to be due to the absence of the TM and IC regions. 

The AS variant is also reported to have diminished catalytic activity and therefore 
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has reduced extracellular acidification capacity compared to CA IX FL. Furthermore, 

it is thought that when CA IX FL levels are low, such as during moderate hypoxia, CA 

IX AS may interact with CA IX FL (Barathova et al. 2008). In addition, CA IX AS is 

more prevalent in normal tissues and its expression is independent of hypoxia, 

which can therefore produce false positives (Malentacci et al., 2009). As CA IX will 

be used as a marker for hypoxia in this study, the expression of both splice variants 

will therefore be assessed in order to deduce whether the treatment has been 

successful. 

Weigand et al. (2012) provided further evidence of alternative splicing changes in 

various genes in hypoxia through an exon array in endothelial HUVEC cells.  Six of 

the genes are involved in angiogenesis-mediated cytoskeleton remodelling (cask, 

itsn1, larp6, sptan1, tpm1 and robo1); one is involved in membrane anchor 

synthesis (pign); and two are involved in gene expression regulation (cugbp1 and 

max).  

Furthermore, in Hep3B lung cancer and MCF7 breast cancer cells, hypoxia was 

found to alter differential splicing of cancer-associated genes that are involved in a 

number of processes, including; cytoskeleton oraganisation, apoptosis, 

angiogenesis and cell growth (Sena et al., 2014; Han et al., 2017). This provides 

further evidence that hypoxia drives cancer progression. 

As 95% of human genes are alternatively spliced (Pan et al., 2008) and in light of the 

evidence provided by Weigand et al. (2012), Sena et al. (2014) and Han et al. 

(2017), it is hypothesised that hypoxia may promote the expression of splice 
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isoforms of other cancer-associated genes to favour cancer progression. This is the 

first study that aims to investigate changes in differential exonic splicing in a 

prostate cancer cell lines.     

 

Figure 1.7: CA IX pre-mRNA splicing of exons 8 and 9. The excision of introns produces the full-
length isoform containing all 11 exons. The shorter alternatively spliced variant is formed from 
additional exon skipping of exons 8 and 9 (notated by *). 

 

1.4 Hypotheses, Aims and Objectives 

A working model of the main aims of this project can be found in Figure 1.8. 

1.4.1 Hypothesis 1 

Cells respond to hypoxia by altering the expression of genes. Therefore, it was 

proposed that hypoxia might also alter alternative splicing of cancer-associated 

genes.  

Aim 

Changes in alternative splicing patterns of cancer-associated genes during hypoxia 

in prostate cancer cell lines was confirmed. 

Objectives:-  
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 RT-PCR was used to examine the effect of hypoxia on the alternative splicing 

of apoptosis-associated genes. 

 A high-throughput PCR approach was used to investigate more widely the 

expression of alternatively spliced isoforms of cancer-associated genes.  

1.4.2 Hypothesis 2  

Hypoxia changes the expression and activity of splice factors and splice-factor 

kinases. 

Aim 

Changes in expression and localisation of splice factors and splice factor kinases in 

hypoxia was examined. 

Objectives:- 

 qPCR and western blotting were used to investigate changes in  mRNA 

expression and protein production of splice factors and splice factor 

kinases. The effect of hypoxia on the phosphorylation rates of splice factors 

were also examined using western blotting.  

 Immunoflurorescence was used to investigate the localisation of splice 

factors and splice factor kinases in hypoxia. 

1.4.3 Hypothesis 3 
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The splice factors and splice factor kinases whose expression and localisation  

altered during hypoxia contribute to the changes in alternative splicing of cancer-

associated genes in hypoxia.  

Aim 

The role of splice factors and splice factor kinases on the expression of hypoxia-

associated splice isoforms of cancer-associated genes was investigated.  

Objectives:-  

 Chemical inhibition of splice factor kinases was used to assess the effect on 

the alternative splicing of splice isoforms associated with hypoxia.  

 Knockdown of affected splice factors was used to examine the effect on the 

alternative splicing of splice isoforms associated with hypoxia. 

 

Figure 1.8: Working model for this study. Hypoxia activates splice factors (SFs) and splice 
factor kinases (SFKs), which cause systematic changes in splicing that allow the cell to adapt 
to hypoxia. Hypoxia has already been shown to switch splicing of CA IX and VEGF, and this 
project aims to identify other genes whose splicing is altered by hypoxia. The effect of 
hypoxia on mRNA expression of select SFs and SFKs will also be examined. 
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2.0 METHODS AND MATERIALS 

2.1 Cell lines 

Prostate cancer cell lines; prostate cancer-3 (PC3) (grade IV androgen-independent 

prostate cancer cell line derived from metastatic bone cancer in a 62 year old 

Caucasian male) (Sigma-aldrich, 2017a); and Vertebral-Cancer of the Prostate 

(VCaP) (androgen-dependent prostate cancer cell line harvested from vertebral 

metastasis of a patient) (Sigma-aldrich, 2017b), along with the immortalised normal 

prostate epithelium cell line PNT2 (harvested from normal prostatic epithelial cells 

of a 33 year old male) (Sigma-aldrich, 2017c) were cultured in high glucose 

Dulbecco’s modified Eagle’s medium (DMEM) (4,500 mg/L-glucose, 110 mg sodium 

pyruvate/ L-pyridoxine. HCl and NaHCO3 without L-glutamine), supplemented with 

10% FBS and 1% L-glutamine-penicillin-streptomycin. The VCaP cell line required a 

20% (v/v) FBS final concentration. All cell media reagents were sourced from Sigma-

Aldrich. All cell lines were provided from previous cryopreserved laboratory stocks 

(Sigma-Aldrich).  

 

2.2 Trypsinisation of adherent cells 

Once cells became 80% confluent, they were split to ensure that the cell mass did 

not outgrow the T75 area. This is particularly important in hypoxia studies, as cells 

that are over-confluent become hypoxic (Sheta et al., 2001). Media was removed 

and replaced with 5 ml phosphate buffered saline (PBS wash). 1 ml of 1x trypsin-
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EDTA (Sigma) was added to each flask to dissociate the cells. The flasks were gently 

rocked to allow the trypsin to sufficiently cover the surface and then stored in the 

incubator at 37ᴼC for 10 mins. The flasks were checked to see if the cells had 

detached. 2 ml of modified DMEM medium was added to each flask, containing 

FBS, which inactivates trypsin. The mixtures was then transferred to a 15 ml or 50 

ml falcon tube and spun down in the Universal 320 Hettich Zentrifugen centrifuge 

for 5 mins at 1000 rpm (106 g). The supernatant was aspirated off and the pellet 

was resuspended in modified DMEM medium. If splitting the cells, the pellets were 

resuspended in complete media at a ratio of 1:4 and 1 ml cell mixture was added to 

10 ml complete media into a new T75 flask.  

For cell counts, 2 ml of media was added for every T75 flask used to resuspend the 

cell pellet. 30 µl of cells were added to an Eppendorf tube, where 0.4% trypan blue 

solution (Sigma) was also added at a ratio of 1:1. Using a haemotcytometer, the live 

cells were counted. The dark blue dead cells stained with trypan blue were 

disregarded in the cell count. 6- well plates were seeded with approximately 

300,000 cells per well for experiments. 

 

2.3 Cryopreserving cells 

Cells were cryopreserved to provide a stock of early passages. Cells were 

trypsinised and 4 ml of modified DMEM media was added to them. The cell mixture 

was then placed in a 15 ml falcon tube and centrifuged (Universal 320 Hettich 

Zentrifugen)) at 1000 rpm (106 g) for 5 min. The supernatant was then aspirated 
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off, leaving the cell pellet. Cells were resuspended in freezing media (10% (v/v) 

dimethyl sulfoxide [DMSO], 20% (v/v) FBS, 70% (v/v) Dulbecco’s Modified Eagle 

Medium [DMEM]) and counted. Freezing media was added to the pellet to provide 

a concentration of 1 million cells per ml. Aliquots of 1 ml of cell resuspension was 

then placed into cryovials and transferred to a cryopreserving chamber (Mr Frosty), 

which contained isopropanol. The chamber was stored in the -80ᴼC freezer, where 

it decreased the temperature at 1ᴼC per min and left overnight, after which the 

cryovials were transferred into the liquid nitrogen cell storage chamber.   

 

2.4 Thawing cryo-preserved cells  

A cryovial of stored cells were taken out of liquid nitrogen and thawed in a 37ᴼC 

water bath. The defrosted cells were then transferred into a T75 culture flask in 10 

ml complete media and stored in the incubator at 37ᴼC. After a few hours, once the 

cells had attached to the surface, the media was aspirated off and replaced with 10 

ml fresh media. The purpose of the latter was to decrease the amount of DMSO 

exposure to the cells. Cells were split at 80% confluency. 

 

2.5 Hypoxia treatment  

Prior to treatment, PC3 and PNT2 cells were seeded approximately at 3 x 105 per 

well and VCaP cells at 1x106 per well in 6-well plates and allowed to adhere 
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overnight. Media was aspirated and replenished with 2 ml media prior to 

treatment. 

A MIC-101 hypoxia chamber was used throughout this study to induce hypoxic 

stress. The chamber containing cells is initially flooded with hypoxic gas and then is 

sealed and stored in the 37°C incubator for the desired treatment time. The main 

issue with this type of hypoxia treatment is that for the duration of the experiment, 

oxygen in the chamber will be metabolised by the cells and therefore the oxygen 

concentration will diminish throughout the experiment. In addition, carbon dioxide 

will be produced which will accumulate during the treatment. Hypoxia workstations 

release a steady flow of the desired oxygen concentration, whilst also keeping 

carbon dioxide at a required level in an incubated environment to combat this 

problem.  

However, hypoxia workstations are much more expensive when compared to the 

MIC-101 hypoxia chamber, which make the MIC-101 chamber an attractive option 

to researchers that are new to the field of hypoxia or are not intending to conduct 

many hypoxic experiments. Furthermore, it can be argued that the MIC-101 

chamber may create a more physiologically viable hypoxic system. Hypoxic areas of 

a tumour will contain a reduced blood supply which will lead to an accumulation of 

carbon dioxide and a steady rate of reduced oxygen concentration. Therefore, the 

diminishing oxygen concentration and accumulation of waste products throughout 

a hypoxic treatment in a MIC-101 chamber may provide a more suited model than a 

hypoxia workstation to mimic hypoxic conditions in the tissues. Scientific 

publications have utilised the MIC-101 chamber for hypoxia experiments (Buras et 
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al., 2000; Ezashi, Das and Roberts, 2005; Li et al., 2007) which shows that the 

system is accepted in the scientific community for the initiation of hypoxia. 

Cell culture plates were placed in a MIC-101 chamber (Billups-Rothenberg) and 

flooded with a hypoxic gas mixture. In tumours, the mean oxygen concentration is 

around 1.5% (Jiang et al., 1996) compared to 3 - 7.4% in normal tissues (McKeown, 

2014) so therefore a mixture containing; 1% O2 / 5% CO2 / 94% N2 (BOC, Bristol, UK) 

was used. The sealed chamber along with a normoxic control was stored in an 

incubator for the desired treatment time at 37ᴼC in 5% CO2. 

 

2.6 Chemical inhibition of splice factor kinases 

1-(3-ethyl-5-methoxy-2(3H)-benzothiazolylidene)-2-propanone (TG003) is a 

competitive inhibitor of CLK1 (Muraki et al., 2004), and SPHINX ((5-methyl-N-[2-

(morpholin-4-yl)-5-(tri-fluoromethyl)phenyl]furan-2-carboxamide)) is a competitive 

inhibitor of SRPK1 (Gammons et al., 2013); both inhibit at concentrations up to 10 

µM. TG003 was kindly provided by Prof. Masatoshi Hagiwara (Kyoto University, 

Japan) and SPHINX by Dr. Sebastian Oltean (Bristol University, UK). 0.1 M TG003 

and 50 mM SPHINX stock solutions were prepared in DMSO, wrapped in parafilm 

and stored at -20°C. Cells were treated for 48 hours with 10 µM TG003 or SPHINX. A 

DMSO control was also prepared. At the end of the 48h treatment, three wells for 

each treatment were pooled together to extract RNA or protein. 
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2.7 Knockdowns by RNA interference (RNAi) 

A cherry-pick siGENOME siRNA library customised plate containing 0.5 nmol siRNAs 

against SRPK1, CLK1, PRPF8 and SAFB1 was obtained from GE Healthcare (Cardiff, 

UK) (including four independent siRNAs against each gene) (Table 2.1). There were 

also a set of siRNAs that targeted the housekeeping gene glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) which were used as a positive control of siRNA 

treatment.  A pool of non-targeting siRNAs were also used to measure baseline 

cellular response to siRNA application as a negative control. The plate was spun 

down and the foil cover was wiped with 70% ethanol as instructed in the protocol. 

The plate was opened and each siRNA was resuspended in 50 µl nuclease free 

water and transferred to eppendorfs to give 10 µM stocks. The stocks were 

wrapped in parafilm and stored at -20°C.  

In the knock-down experiments, 10 µl of each siRNA for a given gene was mixed 

together to give a 10 µM pooled stock. 6-well plates were seeded with 300,000 PC3 

cells per well and covered with 2 ml fresh growth medium prior to siRNA 

transfections. A transfection mix was made up for each siRNA using the pooled 10 

µM stock and adding 1.6 ml jetPRIME buffer (Polyplus, France). This was mixed by 

pipetting up and down. 32 µl of jetPRIME reagent (Polyplus, France) was added and 

the mixture was vortexed for 10 sec and then incubated at room temperature for 

10 min. 200 µl transfection mix was added to each well drop-wise and the plates 

were rocked gently back and forth. The final concentration of siRNAs was 25 nM. 

Controls included media only and transfection reagent only. Liu et al., (2003) 
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showed that 48h siRNA treatment successfully knocked-down CLK1, and as hypoxia 

treatment was also given for 48h, protein and RNA samples were  extracted for 

each treatment 48h after siRNA transfection. 

 

2.8 RNA extraction 

After washing cells in 1 ml ice cold PBS per well, RNA was extracted using Tri 

Reagent (Sigma-Aldrich). The cell lysate was passed through a pipette tip several 

times, before vortexing thoroughly for 15 sec and incubated at room temperature 

for 5 min. The cell lysate was then centrifuged (Beckman Allegra x-22R, Rotor: 

F2402H) at 9,650 g for 10 min 4°C. After centrifugation, the pellet was discarded 

and 10 % chloroform (Fisher Scientific) was added to the supernatant. Samples 

were vortexed for 15 seconds before incubating at room temperature for 3 min and 

then a subsequent centrifugation at 9,650 g for 30 min at 4°C. The chloroform 

separated out the samples into three phases. The upper aqueous phase was kept 

and 0.25 ml isopropanol (Fisher Scientific) was added to each sample before 

incubating at room temperature for 10 min, followed by a centrifugation at 9,650 g 

for 10 min at 4°C. The interphase and lower phase were discarded. Supernatants 

were discarded and the pellets were washed twice in 0.5 ml 70% ethanol with a 

centrifugation both times at 3,400 g for 5 min at 4°C. After the second wash 

centrifugation, all ethanol was removed to allow RNA pellets to air dry for 10 min. 

Pellets were then dissolved in 30 µl nuclease free water and stored at -80°C in 

parafilm-wrapped eppendorf tubes.  
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Genomic DNA was removed from the RNA using the Precision DNase kit as per 

manufacturer’s instructions (Primerdesign, UK). Total RNA concentration was 

determined using Nanodrop spectrophotometer (Thermo Fisher Scientific, 

Deleware, USA).  

 

2.9 cDNA synthesis 

The GoScript Reverse Transcription System (Promega, Southampton, UK) was used 

for synthesising cDNA as per manufacturer’s instructions. Total RNA was reverse 

transcribed using 1 µl of a mix of random primers and oligodT at a 1:1 ratio. 

Nuclease free water used in the assay was obtained from Promega (Southampton, 

UK). 

 

2.10 Standard PCR 

The GoTaq Hot Start Polymerase kit from Promega (Southampton, UK) was used to 

perform standard PCR reactions using concentrations as per the manufacturer’s 

guidelines (final concentrations were 0.95x of 5x Green GoTaq Flexibuffer, 3mM 

MgCl2, 0.25mM of each dNTP, 0.5µM upstream primer, 0.5µM downstream primer, 

1.05U GoTaq Hotstart Polymerase, 0.01µg/50µl Template DNA). Hot start 

polymerases reduce non-specific amplification during the initial stages of PCR. 

cDNA samples of concentration 100 ng/µl were diluted 1:19 with nuclease free 

water prior to the addition of the master mix. Standard PCR conditions were as 
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follows; initial denaturation at 94ᴼC for 2 min, denaturation at 94ᴼC for 30 sec, 

annealing at 58ᴼC for 30 sec, extension at 72ᴼC for 30 sec, final extension at 72ᴼC 

for 5 min. The denaturation, annealing and extension steps were cycled 30-39 times 

depending on the genes being amplified. Primer sequences are shown in Table 2.2. 

PCR samples along with hyperladder II or V were run on 2% agarose gels for 1 hour 

at 95V and imaged using FluorChem Q software on the Alpha Innotech MultiImage 

III apparatus.  

 

2.10.1 Calculating percentage exon inclusion for alternatively spliced genes 

Optical density peak percentage values were generated from gel images for 

individual amplicons using Image J software. Excel software was used to calculate 

the percentage (%) of exon inclusion after normoxia and hypoxia treatment  using 

the optical density peak percentage values. The  formula [L/(S+L) x100] was used to 

generate PSI values, where L represents the full length (FL) isoform and S 

represents the shorter isoform with exon skipping. 

 

2.11 Quantitative (real-time) PCR (qPCR) 

qPCR was used to analyse gene expression using the protocol suggested by 

PrimerDesign (Southampton, UK). cDNA was diluted with nuclease-free water to a 

concentration of 5 ng/ul.  One reaction well used 1µl resuspended primer mix 

(PrimerDesign, Southampton, UK), 10µl SensiFAST Sybr Hi-Rox (Bioline, London, 
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UK), 4µl nuclease-free water and 5µl of diluted cDNA). Three technical repeats were 

used for each experimental sample. A negative control of 20µl nuclease-free water 

was also used for each primer and repeated twice.  

The qPCRs were run on an ABI (Applied Biosciences) 7300 qPCR thermal cycler. PCR 

conditions were as follows; 95ᴼC for 10 min, followed by 95ᴼC for 15 sec and 60ᴼC 

for 1 min for 40 cycles. Melting curve conditions were 95ᴼC for 15 sec, followed by 

60ᴼC for 1 min and 95ᴼC for 15 sec. The primers used are shown in Table 2.3. CT 

values were reverted back to standard numbers using the formula 2^CT before 

normalisation to the Ubiquitin C (UBC) housekeeping gene; which was shown to be 

stable in prostate cancer cell lines during hypoxia in a study conducted by Vajda et 

al., 2013). All results were calculated using Excel software (Microsoft). 

 

2.12 High-throughput PCR  

2.12.1 High-throughput PCR of cassette exon inclusion in cancer-associated genes in 

hypoxic PC3 cells 

RNA extracted from normoxia–treated and hypoxia-treated PC3 cells was sent to 

Sherbrooke University, Canada for high-throughput PCR analysis. RNA quality was 

re-assessed by the Sherbrooke team using an Agilent 2100 Bioanalyzer (Agilent 

Technologies). 1.5 µg RNA was reverse transcribed using transcriptor reverse 

transcriptase, random hexamers, dNTPs (Roche Diagnostics) and 10 units of 

RNAseOUT (Invitrogen) and performed to the manufacturer’s instructions in a final 
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volume of 20 µl. Individual 20-100 µM stock solutions for forward and reverse 

primers were made up in Tris-EDTA buffer and diluted as a primer pair using RNase 

DNase-free water to 1.2 µM.  

10 ng cDNA was used for PCR reactions in a final volume of 10 µl containing 0.1 

mmol/L of each dNTP, 1.5 mmol/L MgCl2, 0.6 µmol/L of each primer and 0.2 units of 

Platinum Taq DNA polymerase (Invitrogen). PCR reactions were carried out on the 

GeneAmp PCR System 9700 (ABI) thermocycler and PCR cycles were as follows:- 

initial incubation at 95°C for 2 min, then 35 cycles of denaturation at 94ᴼC for 30 

sec, annealing at 55ᴼC for 30 sec, extension at 72ᴼC for 1 min. The final extension 

was at 72ᴼC for 2 min. Completed PCR products were analysed on Caliper LC-90 

instruments (Caliper LifeSciences) using automated chip-based microcapillary 

electrophoresis. Quantification and amplicon sizing were performed by the 

manufacturer’s software. The primer pairs for cancer-associated genes used were 

originally selected by Dr. Julian Venables at Sherbrooke University. The primer pairs 

with the best hits can be found in Table 2.2. 

 

2.12.2 High-throughput PCR analysis of the effect of splice factor knockdowns on CA 

IX alternative splicing 

The effect of splice factor knockdowns on the expression of CA IX splice isoforms; 

CA IX-FL and CA IX AS was investigated by the Sherbrooke team using a set of cDNAs 

obtained from systematic splice factor knockdowns in MCF7 breast cancer cells. The 

MCF7 cell line is an adherent cell line derived from a breast adenocarcinoma of a 69 
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year old female. The set of splice factors knocked down in this set were selected 

from previous papers published by the Sherbrooke University group (Venables et 

al., 2008; 2013). The Sherbrooke team designed the CA IX primer sequences. 

Changes in CA IX splicing shown on electropherograms extracted from the 

Sherbrooke online Palace program were selected. Isoform expression ratio values 

were then picked out for the SAFB1 and PRPF8 isoforms, along with their 

corresponding lipofectamine control ratio values and graphs were created depicting 

the values using Excel software.  

 

2.13 Protein extraction and quantification 

PC3 cells were washed in ice cold PBS, before the addition of 200 µl lysis buffer per 

well of a 6-well plate. Lysis buffer was made up of RIPA buffer (Sigma) and 

phosphatase inhibitor tablets (cOmplete, Mini, EDTA-free PI tablets; Roche 

Diagnostics, UK) (1 tablet per 10 ml RIPA buffer). Cells were scraped off whilst in the 

buffer, transferred to 1.5 ml Eppendorf tubes and left to incubate on ice for 20 min. 

Protein samples were diluted with distilled water at a 1:1 ratio in order to bring the 

protein concentration into the range of the quantification assay. If the 

concentration was still too high for quantification, more distilled water was added 

to bring the protein concentration into the desired range of detection. Protein 

quantification was performed using the Pierce BCA assay (Thermo Fisher Scientific, 

Delaware, USA). Five standards were prepared using albumin at the following 

concentrations; 2 mg/ml, 1 mg/ml, 0.5 mg/ml, 0.25 mg/ml and 0.125 mg/ml. The 
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working reagent was made up using the recommendations in the Pierce BCA 

protocol of 50:1 (BCA reagent A: BCA reagent B). 200 µl of the working reagent was 

added to each well of a 96 well plate and then the plate was incubated in the dark 

at 37ᴼC for 30 min and cooled to room temperature (RT). Two repeated readings 

were made for each standard, sample and negative control. The plate was read on 

the Anthos htll plate reader at 562nm absorbance. A standard curve was generated 

using Excel (Microsoft) and the protein sample concentrations were determined by 

using the graph equation generated. Protein samples were mixed with 2x Laemmli 

buffer (Sigma) (1:1) and then incubated at 100ᴼC for 5 min before being chilled on 

ice. 

 

2.14 Western blot analysis       

2.14.1 Acrylamide gels 

Using short glass plates from Bio-Rad and a 1 mm Bio-Rad mini-protean gel system, 

a 10% acrylamide separating gel was made using 30% (v/v) acrylamide mix (29:1 

acrylamide: bis-acrylamide) (Sigma-Aldrich), buffer A, distilled water, 10% (w/v) 

ammonium persulfate (Sigma-Aldrich) and TEMED (tetramethylethylenediamine) 

solution (Sigma-Aldrich). Isopropanol was added to the separating gel to level out 

any unevenness and prevent it drying out. Once the separating gel was set, the 

isopropanol was drained off and the excess soaked up with blotting paper. A 5% 

acrylamide stacking gel was added to the separating gel and a 10 or 15 well comb 

was inserted into the top of the gel and allowed to set. 
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2.14.2 SDS PAGE 

The Criterion Electrophoresis Cell apparatus (Bio-Rad, UK), was assembled with the 

gel plates and sealed. The middle chamber and wells were filled with running buffer 

(25 mM Tris, 190 mM Glycine, 0.1% (w/v) SDS, pH 8.3) to check for any leaks. Once 

it was confirmed that the apparatus was sealed, the comb was removed and 5 µl of 

pre-stained protein marker (Cell Signalling Technology, Massachusetts, USA) and 35 

µl protein samples were loaded carefully into the wells. More running buffer was 

then poured to top up the middle chamber and about 3 cm of running buffer was 

added to the outer chamber. The gel was run at 70V through the stacking gel for 30 

min and then at 90V for 1 hour.  

 

2.14.3 Transfer of proteins onto a membrane 

Polyvinyldene fluoride (PVDF) membrane (Hybond-P, GE Healthcare, 

Buckinghamshire, UK) and six pieces of blotting paper were cut to size (9 x 6 cm). 

The PVDF membrane activated in methanol for 5 min and then along with the 

blotting paper and cassette sponges was washed in ice cold transfer buffer (25 mM 

Tris, 190 mM glycine, 0.2% methanol and made up to 1 L with distilled water). The 

stacking gel was removed from the acrylamide gel and placed in the wet cassette 

along with the sponges, blotting paper and PVDF membrane into the transfer tank. 

The transfer tank was assembled with an ice pack, filled with transfer buffer and 

placed on a stirrer. The transfer tank was run at 50V for at least 2 hours.   
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2.14.4 Detection of antigens  

After transfer, the membrane was blocked for 1 hour at room temperature with 5% 

(w/v) blocking solution, made up of 5% milk powder or BSA in 1 x TBS-T (50 mM 

Tris, 150 mM NaCl, 0.5% (v/v) Tween-20, pH 7.6. Afterwards, the blocking reagent 

was replaced with the primary antibody solution made up in blocking solution and 

incubated at 4ᴼC overnight on a rocker. A list of antibodies used in this project can 

be found in Table 2.4. Dilutions of the primary antibody varied depending on the 

primary antibody in the range of 1:200 to 1:5000. The membrane was removed 

from the solution and washed three times for 5 min in 1 x TBS-T solution. The 

secondary antibody was diluted 1:5000 in blocking solution (Table 2.4), added to 

the membrane and incubated for 1 hour at RT. The membrane was then washed 

three times for 5 min with 1 x TBS-T solution. β-actin was used as a loading control.  

 

2.14.5 Image acquisition 

The PVDF membrane was taken out of the TBS-T wash solution and covered in 2 ml 

Laminata Forte Western HRP substrate (Millipore, UK) for 2 min. Membranes were 

then transferred to cassettes and CL-XPosure Film (5 x 7in) (Thermoscientific) was 

placed on top of the membrane in the dark for  5 minutes to begin with. The film 

was then placed into developer solution (Ilford PQ Universal) and when the image 

began to appear, the film was quickly washed in water before being placed into 

fixer solution (Tetenal Superfix Plus). The film was then washed again in water and 

left to air dry. If the image was overexposed, another piece of film was exposed to 
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the membrane for a shorter amount of time. If the image was underexposed, the 

time of exposure was increased. The film was scanned using the canon c2020i 

photocopier scanner and imported into this thesis.  

 

2.14.6 Scaffold attachment factor B1 (SAFB1) normalisation to β-actin 

Image J was used to generate optical density peak percentage values from the film 

images of the scaffold attachment factor B1 (SAFB1) and β-actin western blots. All 

β-actin values were normalised to the largest β-actin expression value in order to 

get the values into percentages in correspondence to one another. Then the SAFB1 

values were normalised to each corresponding normalised β-actin value. Values 

were then displayed on a graph. 

 

2.15 Cellular localisation of CLK1 protein  

2.15.1 Nuclear and nuclear-free cellular fractions 

The fractionation assay was performed using the protocol published by Yu, Huang 

and Lung (2013) with some minor alterations, as follows. Cells grown in 6-well 

plates were washed twice with ice-cold PBS. 1 cOmplete Mini, EDTA-free PI tablet 

was dissolved in 10 ml double-distilled water to form the stock PI cocktail. 250 µl of 

the PI cocktail was added into 10 ml subcellular fractionation (SF) buffer (250 mM 

Sucrose, 20 mM HEPES (pH 7.4), 10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM 

EGTA, 1 mM DTT). To extract the protein lysate, 50 µl of complete SF buffer was 
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added per well and a cell scraper was used to detach cells from the plate surface. 

The lysates were transferred into 1.5 ml Eppendorf tubes and kept on ice.  

The lysates were then agitated on a tube roller at 4⁰C for 30 min. After this, the 

tubes were centrifuged at 720 g for 5 min at 4⁰C. The supernatant (crude 

cytoplasmic fraction) was then transferred into another 1.5 ml Eppendorf tube and 

the crude nuclear pellet was washed and dispersed in 500 µl of complete SF buffer.  

Following this, the dispersed pellet was subjected to another round of 

centrifugation at 720 g for 10 min at 4⁰C. The nuclear pellets were re-suspended in 

100 µl nuclear lysis (NL) buffer [250 µl stock PI cocktail; 50 mM Tris HCl (pH 8); 150 

mM NaCl; 1% (v/v) NP-40; 0.5% sodium deoxycholate (v/v); 0.1% SDS (w/v); 10% 

glycerol (v/v)], agitated and incubated at 4⁰C for 15 min.  

The crude cytosolic supernatants were centrifuged at 10,000 g for 10 min at 4⁰C. 

After centrifugation, the supernatant was transferred to a fresh 1.5 ml Eppendorf 

tube. The cytosolic and membrane fractions were not separated using the 

ultracentrifuge as this proved problematic and so the assay provided nuclear 

fractions and crude cytosolic fractions, the latter including membrane proteins. The 

proteins were then quantified, separated using SDS-PAGE and western blotted. 

HSP90 protein was blotted as a cytoplasmic control. Blots of RNA-polymerase-II-

subunit-B2 were attempted as a nuclear controls; however, despite many attempts 

the nuclear control was not successfully seen on the western blots.       
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2.15.2 Immunofluorescence analysis of CLK1 splice factor kinase subcellular 

localisation to the cytoplasm 

CLK1 splice factor kinase localisation was determined using immunofluorescence 

coupled with microscopy (Nikon Eclipse 80i microscope) which allowed 

observeations by eye; and  immunoflurescence using a confocal microscope (Perkin 

Elmer Ultraview ERS FRET-H microscope) which allowed Manders’ Overlap 

Coefficients to be calculated.. Media was aspirated from each well of a 6-well plate 

containing PC3 cells. Each well was washed in 1 ml ice-cold PBS twice. 2 ml of 50:50 

methanol: acetone (Fisher Scientific) fixative was added carefully to the edge of 

each well and left to incubate for 10 min. For confocal images, 1 ml per well of 4% 

(w/v) paraformaldehyde (Sigma-Aldrich) was used as a fixative instead. 

Paraformaldyhyde is a more hazardous fixing agent and so was only used when 

necessary.  A lipid stain was used as a crude cytoplasmic stain for the confocal 

slides. Alcohol based fixatives, such as 50:50 methanol: acetone would disrupt the 

lipids in the cytoplasm of the cells, and so use of 4% paraformaldehyde as a fixative 

instead of the alcohol based fixative prevented lipid disruption during fixing. The 

fixative was aspirated and each well was once again washed twice in ice-cold PBS. 

To permeabilise the cell membranes, 1 ml of 0.5% Triton X (Sigma) made up in PBS 

was added to each well and incubated for 5 min. For confocal images, 1 ml 0.3% 

(v/v) Tween 20 (Sigma) made up in PBS for 3 x 5 min was used instead. This was 

because Tween 20 is a much milder membrane solubiliser and so would have less of 

an effect on cytoplasmic lipids. The wells were washed in ice-cold PBS before 1 ml 
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of blocking reagent (3% (w/v) BSA made up in PBS) was added to each well and left 

to incubate for 30 min on a rocker at room temperature.  

Using a razor and a pair of forceps, each cover slip was carefully prised out of each 

well and placed on top of 80 µl of 1:25 dilution of CLK1 antibody (table 2.4) made 

up in 3% (w/v) BSA buffer. PC3 cells were incubated for 1 hour at room 

temperature in a humidified chamber formed of a roll of damp tissue inside a box. 

Each of the coverslips were placed back into another 6-well plate and washed three 

times for 5 min with 1 ml ice-cold PBS per well on the rocker. The coverslips were 

then once again carefully prised out of each well and placed on top of 80 µl of 1:500 

dilution of goat anti-rabbit IgG Heavy and Light (Alexa Fluor 594) (Abcam, UK) 

immunofluorescent secondary antibody made up in 3% (w/v) BSA buffer. The cells 

were incubated for 1 hour at room temperature in a humidified chamber. A 

secondary antibody control slide was also generated. After 1 hour, the coverslips 

were placed into a fresh 6-well plate and once again washed three times for 5 min 

in ice-cold PBS on a rocker. Ice cold PBS was used to preserve the sample. 

For the immunofluorescence images, the coverslips were carefully prised from each 

well and placed on top of a drop of 1 µL/mL DAPI solution made up in PBS (Sigma), 

which was placed on a labelled slide. Images were then taken from the slides using 

the NiS-Elements BR3.1 computer programme and x40 lens on the Nikon Eclipse 80i 

microscope. For the confocal images, after the PBS washes, the coverslips were 

placed on top of 80 µl Vybrant DiO (Emission ~501 nm), a green lipid stain made up 

in PBS for 30 min in a humidified chamber. Lipid dye control coverslips were also 

generated. A subsequent PBS wash was made afterwards and the coverslips were 
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mounted onto slides with a drop of Vectashield containing DAPI (Vector 

Laboratories). Slides were incubated in the fridge overnight at 4°C, and wrapped in 

foil to minimise exposure to light. Images from the slides were generated with the 

help from the head technician at the University of the West of England, David 

Corry, using the Perkin Elmer Ultraview ERS FRET-H microscope and ImageSuite 

computer program at x63 magnification.  Manders’ overlap coefficients (MOC), M1 

and M2 were calculated using the Volocity Colocalisation software, which 

effectively calculated the percentage of colocalisation between CLK1 and either 

DAPI or DiO lipid stain. The values were plotted on a graph using Excel software.  

 

2.16 Statistical Analysis 

All results were calculated using Microsoft Excel, and were first subjected to a 

Shapiro-Wilks test in order to deduce whether or not the data was normally 

distributed. After this, a Bartlett’s test was conducted in order to deduce if the data 

was of equal variance. If the data was found to be both normally distributed and of 

equal variance, a parametric test was conducted. For the inhibitor treatment results 

(section 2.6), the parametric test conducted was a one-way ANOVA, which allowed 

multiple comparisons to be made between the different treatments. This was 

followed by a Tukey-Kramer test, which deduced any respective significant changes. 

For the effect of hypoxia on alternative splicing of cancer-assocaited genes using 

standard PCR (section 2.10) and the effect of hypoxia on the expression of splice 
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factors and splice factor kinases using qPCR (section 2.11), a student’s T – test was 

conducted to assess the statistical significance of the data. 

However, if the Shapiro-Wilks and Bartlett’s test revealed that the data was not 

normally distributed and/or heteroschedastic, a non-parametric test was applied. 

For the TG003 inhibitor treatment assay (section 2.6), this was in the form of a 

Dunn’s test. However, the TG003 data was based on n=3, and the Dunn’s test 

requires a lot more repeats to be conducted, so a statistical test could not be 

performed on this set of data. For the SPHINX treatment data, results were based 

on n=2 and so a statistical test could not be applied. For the effect of hypoxia on the 

alternative splicing of cancer-associated genes using standard PCR and the effect of 

hypoxia on the expression of splice factors and splice factor kinases using qPCR, a 

Mann Whitney U non-parametric test was performed to assess the significance of 

the data. For the qPCR data, it must be noted that the CT values were close 

together, which indicated precise pipetting technique, and any variation found was 

between experimental replicates. The means of the data were calculated from the 

results, plotted on bar charts and error bars were added using the 95% confidence 

interval.    
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 siRNA Target Sequences Target Sequence 

PRPF8 

Accession Number: 
NM_006445  

Species: Human 

UGAAGCAUCUCAUCUAUUA 1937-1955 (Exon 13) 

GCAGAUGGAUUGCAGUAUA 1837-1855 (Exon 13) 

GGAAGAAGCUAACUAAUGC 4658-4676 (Exon 29) 

GAUAAGGGCAGGCGUGUCA 4411-4429 (Exon 27) 

SAFB1 

Accession Number: 
NM_002967 

Species: Human 

GGACCAAGAUGAUCAGAAA 1782-1800 (Exon 12) 

GGAAGAGGGUGAUUUAGAU 969-987 (Exon 7) 

GGACUGUAGUAAUGGAUAA 1856-1874 (Exon 13) 

UCAAAGAGGUCUAGCAAAG 427-445 (Exon 2) 

CLK1 

Accession Number: 
NM_004071 

Species: Human 

GAACGCACCUUAAUAAAUC 1118-1136 (Exon 9) 

UGAAUACUAUCUUGGGUUU 1291-1309 (Exon 10) 

GGAGUAUGAUCCAGCCAAA 1555-1573 (Exon 13) 

UAGAGCACCUGAAGUUAUU 1216-1234 (Exon 9) 

SRPK1 

Accession Number: 
NM_003137 

Species: Human 

GAAGUCAGUUCGCAAUUCA 508-526 (Exons 5-6) 

GAACACAUAUCUGCAUGGU 597-615 (Exons 6-7) 

UCACGAAGCUGAAACCUUG 1923-1941 (Exon 16) 

GUUACAGGGUCUUGAUUAU 712 -730 (Exon 8) 

GAPDH control 
Species: Human 

UGGUUUACAUGUUCCAAUA  

Non-targeting 
controls 

Species: Human 

UAGCGACUAAACACAUCAA  

UAAGGCUAUGAAGAGAUAC  

AUGUAUUGGCCUGUAUUAG  

AUGAACGUGAAUUGCUCAA  

 

Table 2.1: siRNA sequences and their target sequences. siRNA sequences were determined 

and produced by GE Healthcare (Cardiff, UK). 
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Gene Name Primer Sequences Target Site Reference 

CA IX 
NM_001216 

F: CTCTGACTACACCGCCCTGTG  

R: GCGGTAGCTCACACCCCCTTT 

1031-1051 (Exon 7) 

1392-1372 (Exon 10) 
Barathova et al. 

(2008) 

Caspase-9 
NM_001229 

F: GCTCTTCCTTTGTTCATCTCC  

R: CATCTGGCTCGGGGTTACTGC 

450-470 (Exon 2) 

1191-1171 (Exon 7) 
Hagen et al. (2013) 

β-actin 
NM_001101 

F: CCTGGCACCCAGCACAAT  

R: GCCGATCCACACGGAGTACT 

1041-1058 (Exon 5) 

1110-1091 (Exon 6) 
Designed by M. 

Ladomery 

 BIRC5 (Survivin) 
NM_001168 

F: GCATGGGTGCCCCGACGTTG  

R: GCTCCGGCCAGAGGCCTCAA 

120-139 (Exon 1) 

566-547 (Exon 4) 

Bcl-x 
NM_138578 

F: CATGGCAGCAGTGAAGCAAG  

R: GCATTGTTCCCGTAGAGATCC 

857-876 (Exon 2) 

1207-1191 (Exon 3) 

Mcl-1 
NM_012960 

F: GTGCAGCGCAACCACGAGAC  

R: GCAGCACATTTCTGATGCCG 

866-885 (Exon 1) 

1205-1187 (Exon 3) 

BTN2A2 
NM_006995 

F: CCTGCTCCTCCTCCTTCTCAGC  

R: CAGCCAGATGCTCCCATCCTC 

165-186 (Exon 2) 

612-592 (Exon 4) 

 

Venables et al. 

(2008); Venables et 

al. (2012) 

 

INSR 
NM_000208 

F: TGAGGATTACCTGCACAACG  

R: GCTGGTCGAGGAAGTGTTG 

2607-2626 (Exon 10) 

2772-2754 (Exon 12) 

UTRN 
NM_007124 

F: CAAACACCCTCGACTTGGTT  

R: TGGCAATACTGCTGGATGAG 

9524-9543 (Exon 65) 

9793-9774 (Exon 69) 

FGFR1OP 
NM_007045 

F: CTGTGGGTGGACCCTTATTATTAG  

R: GACACTTGTATCACTCTGATTGGC 

461-484 (Exon 5) 

714-691 (Exon 8) 

CDC42BPA 
NM_003607 

F: GCTAATGCTGTGAGGCAAGAAC  

R: GCTCACTCTGTTCACGTAGCTT 

2489-2510 (Exon 12) 

2903-2882 (Exon 14) 

SYNE2 
NM_182914 

F: CTCACGAAGAGGACGAGGAG  

R: TTGCTTGTAGTGATGCTCGG 

19519-19538 (Exon 106) 

19706-19687 (Exon 108) 

APAF1F1 
NM_181861 

F: CTTTGGGATGCGACATCAGCAA  

R: CCACCTTTGAACGTGAGTCTGT 

2882-2903 (Exon 17) 

3074-3053 (Exon 18) 

APAF1F8 
NM_181861 

F: GTGAAGTGTTGTTCGTGGTCTG  

R: CATCACACCATGAACCCAAC 

2978-2999 (Exon 17) 

3244-3225 (Exon 18) 

PUF60 
NM_078480 

F: GCCAAGAAGTACGCCATGG  

R: GTAGACGCGGCACATGATG 

291-309 (Exon 4) 

479-461 (Exon 6) 

MBP 
NM_001025081 

F: CTCGCACACCACCCCCGTC  

R: TCGACTCCCTTGAATCCCTTGT 

459-477 (Exon 4) 

606-585 (Exon 6) 

LHX6 
NM_014368 

F: TCCGACGACATCCACTACAC  

R: TGGTGGGTTCTGGTTCTCAG 

1051-1070 (Exon 8) 

1441-1422 (Exon 10) 

PTPN13 
NM_080685 

F: GACTCCTCATCCATTGAAGACC  

R: CCAAGCCATACTTTGCATCTTT 

3604-3625 (Exon 19) 

3793-3772 (Exon 21) 

RAP1GDS1 
NM_001100426 

F: TCCATGTGTGGATGCTGGATTG  

R: TGCATTTTGGCAGTGGATGC 

442-463 (Exon 4) 

781-762 (Exon 6) 

TTC23 
NM_001288615 

F: AAGGAGTGATTGAGTGTCAAAGGA  

R: CGTGGGTTCAGCTTTCTAGGTC 

304-327 (Exon 1) 

654-633 (Exon 3) 

CLK1 (Exon 4) 
NM_004071 

F: CAAGGATGTGAACCTGGACATCGC  

R: CTCCTTCACCTAAAGTATCAAC 

425-448 (Exon 3) 

692-671 (Exon 5) 

CLK1 (Intron 4) 
NM_004071 

F: GGAGGGTCACCTGATCTGTCAG  

R: CTGCTACATGTCTACCTCCCGC 

616-637 (Exon 4) 

749-728 (Exon 6) 
Designed by M. 

Ladomery 

 

Table 2.2: Forward (F) and reverse (r) primer sequences for all human genes amplified using 

standard PCR. The target sites of the primers, including the exonic locations are indicated.  
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Gene 

Name 

Primer Sequences Target Site References 

β-actin 

NM_001101 

F: CCTGGCACCCAGCACAAT  

R: GCCGATCCACACGGAGTACT 

1041-1058 (Exon 5) 

1110-1091 (Exon 6) 

Designed by M. 

Ladomery 

SRSF1 

NM_006924 

F: GATGGAATTGTGTTTTGCGTTTT 

R: CATCTACTCGTGCTGAATCCTT 

2611-2633 (Exon 4) 

2711-2690 (Exon 4) 

Sequences 

determined by 

PrimerDesign UK 

SRSF2 

NM_003016 

F: GTGCTTGGCTGTTTCCTGTTT 

R: CACTGTATGCTCCGTTATTTATATGC 

2579-2599 (Exon 2) 

2728-3703 (Exon 2) 

SRSF3 

NM_003017 

F: GTGAGAGAGTTGGTTGGTGTTG 

R: AAATGCGGCGGCTCAAATC 

75-96 (Exon 1) 

152-134 (Exon 1) 

SAM68 

NM_006559 

F: GCCACAGCCTCGGTCAAG 

R:  AGTCTCCTTTCTGAATCTTCTCAATT 

573-590 (Exon 1) 

711-686 (Exon 2) 

HuR 

NM_001419 

F: TCGTCAACTACCTCCCTCAGA 

R: GCTGTGTCCTGCTACTTTATCC 

235-255 (Exon 2) 

347-326 (Exon 3) 

HnRNP A1 

NM_002136 

F: CTTCATCCAGCCAAAGAGGTC 

R: AAGTTGTCATTCCCACCGAAAC 

684-704 (Exon 5) 

765-744 (Exon 6) 

CLK1 

NM_004071 

F: TGAATACTATCTTGGGTTTACCGTAT 

R: CGTTTCCTGGTTTTCTGTATCATAT 

1291-1316 (Exon 10) 

1407-1383 (Exon 12) 

SRPK1 

NM_003137 

F: TGGCCACAGGTGACTATTTG 

R: CCCAAGGTTTCAGCTTCGT 

1755-1774 (Exon 14) 

1943-1925 (Exon 16) 

Designed by M. 

Ladomery 

 

Table 2.3: Forward and reverse primer sequences for all human genes amplified using qPCR.  
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Antibody, Source and 
Species 

Original 

Concentration 

Dilution 

used 

Secondary 

Antibody 

used for 

Western 

Blotting 

Secondary Antibody 

used for 

Immunofluorescence 

Anti-β-actin Abcam 
(ab8226). Mouse 

1mg/ml 1:10000 Horse anti-

mouse IgG 

HRP-linked 

antibody. 

Cell 

Signalling  

(7076S) 

 

Anti-CA IX (M75 
monoclonal antibody) 
kindly gifted from Dr. 
Pastorekova (Slovak 
Academy of Sciences, 
Slovakia). Mouse 

 1:3  

Anti-SAFB1 GeneTex 
(GTX49227). Mouse 

1mg/ml 1:10000  

Anti-HSP90 Abcam 
(ab13492). Mouse 

1mg/ml   

Anti-SR (1H4) 
SantaCruz 
Biotechnology (sc-
13509). Mouse 

200µg/ml 1:500  

Anti-SRPK1 SantaCruz 
Biotechnology (sc-
100443). Mouse 

200µg/ml 1:1000 Donkey Anti-mouse 

IgG H&L (Alexa Fluor 

488) 

Abcam (ab150105) Anti-SRSF1 SantaCruz 
Biotechnology (sc-
33652). Mouse 

200µg/ml 1:500 

Anti-CLK1 Abiocode 
(R1471-1s). Rabbit 

1mg/ml 1:5000 Goat anti-

rabbit IgG 

HRP-linked 

antibody. 

Cell 

Signalling 

(7074) 

 

 

Goat Anti-rabbit IgG 
H&L (Alexa Fluor 594) 
Abcam (ab150080) 

Anti-VE Cadherin 
Sigma (V1514-200UL). 
Rabbit 

0.08 - 1.2 

mg/ml 

1:500  

Anti-PRPF8 kindly 
gifted by Sergey 
Bessonov (GWDG, 
Germany). Rabbit 

Unknown 1:1000  

 

Table 2.4: Antibodies used for western blotting and immunofluorescence. The source of the 

antibodies and the dilutions used are also stated.  
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CHAPTER 3: 

Examining Alternative Splicing 

Changes in Hypoxia in a Prostate 

Cancer Cell Line Model 
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3.1 Background 

Hypoxia is a common attribute of solid cancers, particularly those  deemed 

aggressive. Hypoxia stabilises hypoxia-inducible-factor-1α (HIF-1α), which facilitates 

the transcription of genes that promote survival. Recently, there has been a few 

papers that have studied the genome-wide effect of hypoxia on alternative splicing 

in non-cancerous epithelial and cartilage endplate-derived stem cells (Hang et al., 

2009; Weigand et al., 2012; Yao et al., 2016); and lung and breast cancer cell lines 

(Sena et al., 2014; Han et al., 2017). These papers have provided evidence to show 

that hypoxia changes the alternative splicing of genes implicated in cancer, such as 

genes involved in angiogenesis, the cell cycle and DNA repair. However, this is the 

first study to investigate the effect of hypoxia on alternative splicing in prostate 

cancer cells.  

This chapter aims to identify cancer-associated genes that switch their splicing 

during hypoxia in PC3 and VCaP prostate cancer cell lines, and the PNT2 normal 

prostate epithelium cell line. Androgens are required by prostate cells for growth 

and survival. Prostate cancer cells therefore utilise androgens for cancer 

progression (Livermore, 2016; Mills, 2014). Androgens bind to the androgen 

receptor in the cytoplasm, which causes translocation of the androgen receptor 

into the nucleus where it begins gene transcription (reviewed in Munkley et al., 

2017). In prostate cancer cells, the androgen receptor is thought to transcriptionally 

control in the order of 700 genes (Munkley et al., 2016).  
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The androgen receptor itself is alternatively spliced forming around twenty splice 

variants that lack androgen control, and therefore cannot be targeted by androgen 

deprivation therapies (Lu and Luo, 2013). The most common androgen receptor 

splice isoform, ARv7, includes a cryptic exon within intron three. This results in the 

formation of a truncated androgen receptor protein that lacks the ligand-binding 

domain, which is required for binding to androgens for activation, and instead 

produces a variant that is constitutively active that drives cancer progression 

(reviewed in Munkley et al., 2017). In addition to affecting gene expression, 

androgen hormones have also been shown to affect splicing patterns. Rajan et al. 

(2008) observed an increase in exon skipping from transcripts derived from a CD44 

minigene, which housed a steroid-responsive promoter in the presence of both the 

androgen receptor and androgens.  

Exon microarrays that have probed the entire transcriptome for androgen-

dependent splice isoforms have identified an activated cassette exon in the ZNF121 

gene, which encodes a zinc finger protein. The study also uncovered a repressed 

cassette exon in the NDUFV3 gene, which encodes a mitochondrial respiratory 

protein (Rajan et al., 2011). However, the clinical importance of both these types of 

splicing is not yet known (Munkley et al., 2017). Rajan et al. (2011) also uncovered 

androgen-dependent expression of an alternative isoform of the tuberous sclerosis-

2 gene, which arises through use of an alternative promoter. Full-length tuberous 

sclerosis protein represses cell growth, whereas the alternatively spliced isoform 

promotes cell growth (Munkley et al., 2014).  Furthermore, a splice variant of the 

STBGALNAC1 gene has been identified in androgen-regulated prostate cancer 
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(Munkley et al., 2015). The STBGALNAC1 gene encodes a protein that is involved in 

the synthesis of the sialyl-Tn antigen, which is associated with cancer. The shorter, 

alternatively spliced isoform is thought to have enhanced translation, resulting in 

increased ST6GALNAC1 expression and ultimately more synthesis of sialyl-Tn 

antigen (Munkley et al., 2016) leading to a more cancerous phenotype. The studies 

above suggest that androgens affect alternative splicing in prostate cancer. 

Therefore, it is proposed that there may be a difference in alternative splicing 

patterns exhibited in androgen-dependent and androgen-independent prostate 

cancers.  

This is the first study that compares the effect of hypoxia on alternative splicing 

patterns of cancerous genes in both androgen-independent (PC3) and androgen-

dependent (VCaP) prostate cancer cells; and in the normal prostate epithelial cell 

line, PNT2. However, changes in alternative splicing may also be cell line specific 

and so it cannot be deduced that any differences are due to whether the cell line 

responds to androgens or not.   

 

3.2 Confirming that hypoxia treatment was successful through use of 

the hypoxia marker carbonic anyhydrase 9 (CA IX)  

Carbonic anhydrase 9 (CA IX) is an established marker of hypoxia that is deemed to 

be more reliable that HIF-1α, as HIF-1α is lost upon re-oxygenation whereas CA IX is 

not (Sobhanifar et al., 2005). Therefore, it was important that the expression of CA 

IX was assessed at RNA and protein levels in order to evaluate whether the hypoxia 
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method used was working. Results showed  that CA IX protein expression was 

markedly elevated in hypoxia, with a greater elevation at 48 hour hypoxic 

treatment (85% increase) when compared to 24 hour treatment (almost 60% 

increase) (Figure 3.1). 72h hypoxia was also conducted; however, the level of cell 

death was very high, and so 72h treatment was deemed unsatisfactory for 

experiments. Therefore, 48 hour hypoxia treatment was chosen for subsequent 

experiments.  

ImageJ software was used to calculate optical density peak values from RT-PCR gel 

data. The percentage splicing index (PSI) was applied to the optical density peak 

values in order deduce whether or not there was a significant alteration in 

alternative splicing. PSI values were calculated by assessing the average percentage 

inclusion level of exons. In other words, the percentage of expression of the full-

length isoform that does not contain any skipped exons. The following calculation 

was used for PSI values: [Expression of the full-length isoform / Total expression of 

the full-length isoform and exons-skipped isoform] *100.  

There was a significant increase in CA IX exon inclusion in the PC3 cell line after 

hypoxia treatment (Figure 3.2B and C). The alternatively spliced isoform was not 

detected in the VCaP and PNT2 cell lines (Figure 3.2 D and F), and so the percentage 

of exon inclusion could not be determined. Therefore, the expression of the larger 

CA IX isoform, CA IX-FL was normalised to the β-actin loading control in order ot see 

if the expression of CA IX-FL was affected by hypoxia (Figure 3.2 E and G). There was 

not a significant change in CA IX-FL mRNA expression observed during hypoxia in 

the VCaP and PNT2 cell lines. However, the error bar in the VCaP graph (Figure 3.2 
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E) is quite long. This is due to the third repeat experiment where the expression of 

CA IX-FL is shown to decrease, which contradicts the first two repeats that show a 

clear increase in CA IX-FL expression in hypoxia. With more repeats, it is hoped that 

this result will be found to be significant.  

In the PNT2 cell line, the Shapiro-Wilks test showed that the data was not normally 

distributed, and so a Mann Whitney U test was applied to the data in order to 

assess whether or not it was statistically signiciant (Figure 3.2 G). However, there 

were not enough data points to complete the Mann Whitney U test and so the 

statistical significance of the data is unknown. A student’s T-test did reveal a 

statistical significance of p<0.001, which suggests that the results may be 

significant. However, without the correct statistical test this cannot be confirmed. 

The gel image does however give a good indication that the expression of CA IX-FL 

increases during hypoxia in the PNT2 cell line (Figure 3.2F). Therefore, hypoxia 

treatment for 48h duration at 1% oxygen was deemed appropriate in all three cell 

lines.  
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Figure 3.1: CA IX expression after 24h and 48h hypoxia treatment. (A) Western blot image of 
CA IX protein expression along with the β-actin loading control. (B) CA IX protein expression 
normalised to the β-actin loading control. PC3 cells were cultured in 24h and 48h hypoxic 
conditions using 1% oxygen gas. Mouse monoclonal M75 antibody was used to detect CA IX 
expression at a 1:3 dilution with blocking reagent. Anti-mouse IgG was used as a secondary 
antibody. n=1.  

A 

B 
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Figure 3.2: Expression of CA IX isoforms in hypoxia in prostate cancer cell lines. (A) 

Illustration of CA IX pre-mRNA showing exons (green boxes), introns (blue lines) and location 

of the primers (F = forward; R = reverse). The alternative splicing event whereby exons 8 and 

9 are included or skipped is shown. Cells seeded from prostate cancer cell lines were cultured 

in normoxic or hypoxic conditions. RTPCR was performed using the following conditions: 94ᴼC 

for 2 min, 94ᴼC for 30 sec, 58ᴼC for 30 sec, 72ᴼC for 30 sec, 72ᴼC for 5 min with 40 cycles. (B) 

CA IX isoform expression with (C) respective average percentage inclusion level of exons 8 

and 9, also known as the percentage splicing index (PSI %) after normoxic or hypoxic 

A 

B C 

D E 

F G 
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treatment in the PC3 cell line (n=5). Expression of the CA IX-FL isoform with respective 

normalisation to the β-actin loading control in the (D and E) VCaP cell line (n=3) and (F and G) 

PNT2 cell line (n=3). ImageJ software was used to generate optical density peaks from the gel 

isoform expression. Excel was used to normalise to the β-actin loading control, and then 

calculate the average proportion of exons 8 and 9 inclusion (%). * = p<0.05. Statistical tests 

were as follows, where SW stands for Shapiro-Wilks test, BT stands for Bartlett’s test, MWU 

stands for Mann-Whitney U test and TT stands for student’s T test. In the PC3 and VCaP cell 

lines, SW showed that the data was normally distributed, BT showed that the data was 

homoschedastic, and so a TT was applied to the data to assess whether it was statistically 

significant. In the VCaP cell line, the p value obtained in the TT was just outside what is 

deemed significant. The error bar for the hypoxia data is very long, and so it is suggested that 

with more results, the error bar would decrease resulting in a significant result. In the PNT2 

cell line, SW showed that the data was not normally distributed, BT showed that the data was 

homoschedastic, and so a MWU test was applied to the data to access whether it was 

statistically significant. However, there were not enough data points to perform a MWU. A TT 

was applied to the data which had a statistical significance of p<0.001. This suggests that the 

data may be significant, although without the correct test (MWU) this can not be confirmed.  
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3.3 Examining the effect of hypoxia on alternative splicing in  genes 

involved in apoptosis  

In order to test the hypothesis that hypoxia alters alternative splicing, a selection of  

genes involved in apoptosis were examined for changes in alternative splicing  after 

hypoxia treatment. The genes assessed were: caspase-9, survivin, Mcl-1 and Bcl-x. 

The anti- or pro – apoptotic nature of each splice variant is shown in Table 3.1. The 

expression of their different splice variants were determined in PC3, VCaP and PNT2 

prostate cancer cell lines.  

Hypoxia significantly increased the PSI of caspase-9 in both the PC3 and PNT2 cell 

lines respectively (Figure 3.3 B, C, F and G). This means that hypoxia favoured the 

pro-apoptotic full-length splice isoform of caspase-9 in the PC3 and PNT2 cell lines, 

and therefore suggests that hypoxia may signal apoptosis through regulation of 

caspase-9 splicing.  

Hypoxia significantly favoured an increase in proportion of the wild-type survivin 

(survivin-WT) isoform in the PC3 cell line (Figure 3.4 C). This result is not obvious 

from looking at the RT-PCR gel data, as the gel image appears to show a decrease in 

expression of the survivin-WT isoform with hypoxia treatment (Figure 3.4 B; 

however, the expression of the other two survivin isoforms also decrease in 

expression with hypoxia treatment. Therefore, although the expression of all three 

survivin isoforms decrease with hypoxia treatment, the overall proportion of the 

survivin-WT isoform increases significantly. Survivin is an anti-apoptotic gene (Table 
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3.1), and so the fact that all three isoforms appear to decrease in expression 

suggests that apoptosis is favoured during hypoxia.  

The PSI value for BCL-x increased significantly in hypoxia in the PNT2 cell line (Figure 

3.5 G), suggesting that hypoxia favours the expression of the full-length isoform, 

which is anti-apoptotic. Similiarly to the RT-PCR gel image observed for survivin, the 

full-length BCL-x splice isoform also appears to contradict the PSI value calculated 

(Figure 3.5 F), as it decreases in expression slightly with hypoxia treatment. 

However, the faint expression of the exon 2b skipped (BCL-xs) splice variant also 

decreases, which increases the overall proportion of the full-length splice variant. 

The expression of the BCL-xs splice variant is very faint and so although this result is 

shown to be significant, further work is required to deduce whether this is actually 

the case.   

Hypoxia was not found to significantly alter the PSI value of MCL-1 in the PC3 cell 

line (Figure 3.6 C). The MCL-s splice isoform was not detected in the VCaP and PNT2 

cell lines (Figure 3.6 D and F), and so the expression of the MCL-1L amplicon was 

normalised to the β-actin loading control and the results are displayed in Figures 

3.6 E and G. There was no significant change in the expression of MCL-1L in the 

VCaP and PNT2 cell lines.  
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Gene Isoform Apoptotic Nature References 

Caspase-9 

 

Caspase 9a: Pro-apoptotic 

 

Caspase-9b: Anti-apoptotic 

 

Soel and Billiar, 

1999 

Srinivasula et al., 

1999 

Survivin 

 

Survivin-WT: Anti-apoptotic 

 

Survivin-∆Ex3: Anti-apoptotic 

 

Survivin-2B: Reduced anti-

apoptotic potential 

 

Mahotka et al., 

1999 

Bcl-X 

 

Bcl-xL: Anti-apoptotic 

 

Bcl-xS: Pro-apoptotic 

 

Boise et al., 1993 

Mcl-1 

 

Mcl-1L: Anti-apoptotic 

 

MCL-1S: Pro-apoptotic 

 

Bae et al., 2000 

 

Table 3.1: The apoptotic nature of caspase-9, survivin, Bcl-x and Mcl-1 isoforms. Illustrations 
of the pre-mRNA and mRNA structures are also shown (exons – green boxes; introns – blue 
lines). The survivin-ΔEx3 isoform has a loss of exon 3 resulting in a frame shift with extension 
of the reading frame into the open reading frame (ORF) of the 3’ untranslated region.   
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Figure 3.3: Proportion of exon inclusion in the caspase-9 gene after hypoxia in 
prostate cancer cell lines. (A) Illustration of caspase-9 pre-mRNA showing exons 
(green boxes), introns (blue lines) and location of the primers (F = forward primer; R 
= reverse primer). Cassette exon splicing of exons 3, 4, 5 and 6 is also shown. Cells 
seeded from prostate cancer cell lines were cultured in normoxic or hypoxic 
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conditions. RTPCR was performed using the following conditions: 94ᴼC for 2 min, 
94ᴼC for 30 sec, 58ᴼC for 30 sec, 72ᴼC for 30 sec, 72ᴼC for 5 min with 35 cycles. 
Caspase-9 isoform expression with respective average percentage inclusion level of 
exons 3, 4, 5, and 6, also known as percentage splicing index (PSI %) after normoxic 
or hypoxic treatment in the (B and C) PC3 cell line (n=5); (D and E) VCaP cell line 
(n=3); (F and G) PNT2 cell line (n=3). ImageJ software was used to generate optical 
density peaks from the gel isoform expression. Excel was used to normalise to the β-
actin loading control, and then calculate the average percentage of exons 3, 4, 5 and 
6 inclusion (%). * = p<0.05. In all three cell lines, Shapiro-Wilks test showed that the 
data was normally distributed, Bartlett’s test showed that the data was 
homoschedastic, and so student’s T-tests were applied to the data in order to assess 
the statistical significance of the data.  
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Figure 3.4: Proportion of survivin isoforms after hypoxia in prostate cancer cell lines. (A) 

Illustration of survivin pre-mRNA showing exons (green boxes), introns (blue lines) and 

location of the primers (F = forward; R = reverse). The three different types of survivin mRNA 

splice isoforms (survivin-2b, survivin-WT and survivin-ΔEx3) are also shown. It can be noted 

that the survivin-ΔEx3 isoform has a loss of exon 3, resulting in a frame shift with extension of 

the reading frame into the open reading frame (ORF) of the 3’ untranslated region. Cells 

seeded from prostate cancer cell lines were cultured in normoxic or hypoxic conditions. 
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RTPCR was performed using the following conditions: 94ᴼC for 2 min, 94ᴼC for 30 sec, 58ᴼC 

for 30 sec, 72ᴼC for 30 sec, 72ᴼC for 5 min with 35 cycles. Survivin isoform expression with 

respective average percentage (%) isoform expression after normoxic or hypoxic treatment in 

the (B and C) PC3 cell line (n=5); (D and E) VCaP cell line (n=3); (F and G) PNT2 cell line (n=3). 

ImageJ software was used to generate optical density peaks from the gel isoform expression. 

Excel was used to normalise to the β-actin loading control, and then calculate the average 

proportion of survivin isoforms (%). Calculations were as follows; (1) WT/total*100; (2) 

2b/total*100; (3) ΔEx3/total*100. * = p<0.05. In all statistical tests, apart from survivin-ΔEx3 

data in the PNT2 cell line, Shapiro-Wilks test showed that the data was normally distributed, 

Bartlett’s test showed that the data was homoschedastic and so student’s T-tests were 

applied to the data to assess the statistical significance. In the survivin-ΔEx3 data, Shaprio-

Wilks test showed that the data was normally distributed, but the Bartlett’s test showed that 

the data was heteroschedastic and so a Mann Whitney U test was applied to the data. 

However, there were not enough data points to complete the Mann Whitney U test 

successfully.  
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Figure 3.5: Proportion of exon inclusion in the Bcl-x gene after hypoxia in prostate cancer 
cell lines. (A) Illustration of Bcl-x pre-mRNA showing exons (green boxes), introns (blue lines) 
and location of the primers (F = forward primer; R = reverse primer). The exon 2b inclusion 
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and skipping alternative splicing event is also shown. Cells seeded from prostate cancer cell 
lines were cultured in normoxic or hypoxic conditions. RTPCR was performed using the 
following conditions: 94ᴼC for 2 min, 94ᴼC for 30 sec, 58ᴼC for 30 sec, 72ᴼC for 30 sec, 72ᴼC 
for 5 min with 35 cycles. Bcl-x isoform expression with respective average percentage 
inclusion level of exon 2b, also known as percentage splicing index (PSI %) in the (B and C) C3 
cell line (n=5); (D and E) VCaP cell line (n=3); (F and G) PNT2 cell line (n=3). ImageJ software 
was used to generate optical density peaks from the gel isoform expression. Excel was used 
to normalise to the β-actin loading control and then calculate the average percentage of exon 
2b inclusion (%). ** = p<0.01. In all cell lines, the Shapiro-Wilks test showed that the data was 
normally distributed, Bartlett’s test showed that the data was homoschedastic, and so 
student’s T test were applied to the data in order to assess whether it was statistically 
significant.  
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Figure 3.6: Proportion of exon inclusion in the Mcl-1 gene after hypoxia in prostate cancer 

cell lines. (A) Illustration of Mcl-1 pre-mRNA showing exons (green boxes), introns (blue lines) 

and location of the primers (F = forward; R = reverse). The exon 2 inclusion or skipping 
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alternative splicing event is also shown. Cells seeded from prostate cancer cell lines were 

cultured in normoxic or hypoxic conditions. RTPCR was performed using the following 

conditions: 94ᴼC for 2 min, 94ᴼC for 30 sec, 58ᴼC for 30 sec, 72ᴼC for 30 sec, 72ᴼC for 5 min 

with 35 cycles. (B and C) Mcl-1 isoform expression with respective average percentage 

inclusion level of exon 2, also known as the percentage splicing index (PSI %) in the PC3 cell 

line (n=5). Mcl-1L mRNA expression with respective normalisation to β-actin loading control 

in the (D and E) VCaP cell line (n=3), and (F and G) PNT2 cell line (n=3). ImageJ software was 

used to generate optical density peaks from the gel isoform expression. Excel was used to 

normalise to the β-actin loading control and calculate the average percentage of  exon 2 

inclusion (%). In the PC3 cell line, Shapiro-Wilks test showed that the data was not normally 

distributed, and Bartlett’s test showed that the data was heteroschedastic and so a Mann 

Whitney U test was applied to the data. In both the VCaP and PNT2 cell lines, the Shapiro-

Wilks test showed that the data was normally distributed, Bartlett’s test showed that the 

data was heteroschedastic, and so student’s T tests were applied to the data.  

                                                              

 

3.4 High-throughput PCR of exon inclusion in cancer-associated genes 

A normoxic and a hypoxic sample generated in the PC3 cell line were sent to 

collaborators (Dr. Roscoe Klinck and his team at the RNomics platform at 

Sherbrooke University, Canada) for high-throughput PCR analysis. 238 alternatively 

spliced cancer-associated genes were analysed in the PCR screen to assess the 

effect of hypoxia on the alternative splicing of cassette exons linked to cancer. The 

top 12 genes that had a change in the percentage of exon inclusion, also known as 

the percentage splicing index (PSI) value were selected for further analysis (Table 

3.2). PSI is calculated using the following equation; [expression of exon inclusion 

isoform/total expression of isoforms] * 100. It must be noted that the APAF1 gene 

features in table 3.2 twice due to the use of two different sets of primers (F1 and 

F8). The location of these primers are shown later in figures 3.7 and 3.8, but both 

sets of primers concern exon 17a splicing.  
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In addition the Insulin receptor (INSR) and LIM/homeobox protein 6 (LHX6) genes 

were also selected. The INSR gene was chosen as it has been previously shown to 

increase its expression during hypoxia in glioma cells (Minchenko et al., 2013), and 

so an investigation into whether this also occurred in PC3 cells was also conducted. 

LHX6 regulates genes involved in proliferation, apoptosis, the cell cycle and cell 

migration (Liu et al., 2013). Therefore, LHX6 is of interest as it is involved in several 

hallmarks of cancer (Hanahan and Weinberg, 2011).  

Table 3.2 suggests that hypoxia may alter the expression of splice isoforms of some 

of the cancer-associated genes more than others. For example, MBP is shown to 

have a PSI value of 36.3%, whereas TTC23 is shown to have a PSI value of 26.4%. 

This suggests that hypoxia may alter the splicing MBP more than TTC23, and it could 

imply that MBP has more of a role to play during hypoxia. However, this table is 

based on n=1, and so more repeats were conducted, which are analysed in the next 

section. 
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Gene PSI (%) Function 

MBP 36.3 

Formation of the myelin sheath. Elevated in breast cancer and lung cancer 
patients with brain metastasis (Shaharabani et al., 2016; Liu et al., 2015; Salh, 
1998). Isoform function: Unknown but believed to have a role in 
development (Mathisen et al., 1993; Kruger et al., 1999). 

APAF1F8 35.5 

Formation of the apoptosome for apoptosis (Bao et al., 2007).  Isoform 
function: Without Exon 17a, the apoptosome cannot form to initiate 
apoptosis (Benedict et al., 2000). 

PUF60 33.9 

Modulates alternative splicing through recognition of 3’ splice sites. 
Regulates c-myc transcription (Hastings et al., 2007; Page-McCaw, 
Amonlirdviman and Sharp, 1999; Liu et al., 2006). Isoform function: Exon 5 
deletion forms the FIR protein, which is a c-myc repressor (Kano et al., 2016; 
Matsushita et al., 2014). 

APAF1F1 33.6 See APAF1F8 above. 

SYNE2 32.3 
Shape and migration of the cell (King et al., 2014). Isoform function: Absence 
of scaffolding for protein-protein interactions (Rajgor and Shanahan, 2012). 

CDC42BPA 32.1 

Reorganisation of the cytoskeleton, formation of filopodia and assignment of 
cellular polarity. Implicated in cancer cell motility and invasion (Gomes et al., 
2005; Tan et al., 2008; Nobes et al., 1995; Kozma et al., 1995; Etienne-
Manneville and Hall, 2002). Isoform function: Unknown. 

FGFR1OP 31.1 
Ciliogenesis, cellular motility, cell growth and cell cycle progression (Lee and 
Stearns, 2013). Isoform function: Unknown. 

BTN2A2 30.8 
Immune tolerance of cancers (Smith et al., 2010). Isoform function: 
Negatively regulates the expression of FL-BTN2A2. 

UTRN 30.4 Maintaining the cytoskeleton (Li et al., 2007). Isoform function: Unknown. 

RAP1GDS1 26.6 

Activates multiple small GTPases in the Rho and Ras families (Quilliam, 
Rebhun and Castro, 2002). Isoform function: Exon 5 skipped variant plays a 
greater role in proliferation and NFκB activity than the full-length splice 
variant (Hause et al., 2013). 

PTPN13 26.5 
Conflicting roles as a tumour suppressor and oncogene (Freiss and Chalbos, 
2012). Isoform function: Unknown. 

TTC23 26.4 
Unknown function, but expression found linked to cervical, bladder and 
prostate cancers. 

INSR 22.6 

Stimulates transcription of insulin-related genes (Leibiger et al., 2001). 
Isoform function: Exon 11 inclusion transcribes glucagon. Exon 11 skipping 
transcribes the insulin gene which is found elevated in some cancers (Seino 
et al., 1989; Leibiger et al., 2001). 

LHX6 20.8 

Differentiation and development of neural and lymphoid cells, interneurone 
migration. Tumour suppressor gene (Liodis et al., 2007; Jung et al., 2010; Liu 
et al., 2013). Isoform function: Unknown function but exon 9 skipping 
produces a truncated protein (Kimura et al., 1999). 

 

Table 3.2: Genes selected for further investigation after high-throughput PCR analysis. The 
top 12 genes with a change in the percentage of exon inclusion ([full length isoform 
expression/total expression]*100), also known as the percentage splicing index (PSI %) after 
48h hypoxia compared to normoxia were selected for further investigation. The INSR and 
LHX6 genes were also selected for further investigation (highlighted in orange), as INSR has 
been previously shown to be affected by hypoxia in glioma cells (Minchenko et al., 2013) and 
LHX6 is involved in many different hallmarks of cancer (Liu et al., 2013). Known gene and 
splice isoform functions are also shown.  
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3.5 Verification of high-throughput PCR results  

As the high-throughput PCR results were based on n=1, the selected gene set was 

further analysed with more repeats in the PC3 cell line. In addition, the effect of 

hypoxia on isoform expression was also examined in the PNT2 and VCaP cell lines.  

APAF1F1 and APAF1F8 both used primers that spanned across exons 17-19 and 

detected exon 17a inclusion or exclusion. The APAF1F1 primer set found a 

significant decrease in exon inclusion in the PC3 cell line after hypoxia but did not 

find a significant difference in the VCaP or PNT2 cell lines (Figures 3.7). The 

APAF1F8 primer set showed a similar pattern of decreased exon inclusion in the 

PC3 cell line; however, the long error bars prevented this result form being 

significant (Figure 3.8).  

In addition, there was also a significant decrease in PSI value of the PTPN13 gene in 

the PC3 cell line, but this was not observed in the VCaP or PNT2 cell lines (Figure 

3.9). There was a significant decrease in PSI value with hypoxia treatment in the 

CDC42BPA and FGFR1OP genes in the PC3 and PNT2 cell lines; and also in the VCaP 

cell line for CDC42BPA (Figures 3.10 and 3.11). A Shapiro-Wilks test revealed that 

the data collected for FGFR1OP isoform expression in the VCaP cell line was not 

normally distributed which ruled out the use of a student’s T test for data analysis 

of significance. However, a Mann Whitney U test could not be conducted 

successfully as there were not enough data points, and so the significance of this 

data is unknown. With further repeats a Mann Whitney U test could be conducted 

to find out if hypoxia significantly alters the splicing of FGFR1OP in the VCaP cell 
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line. However, there is no indication from the gel image that hypoxia has an effect 

on exon inclusion in FGFR1OP in the VCaP cell line. There was a significant decrease 

in exon inclusion in the RAP1GDS1 and UTRN genes after hypoxia in the PC3 and 

VCaP cell lines (Figures 3.12 B and C and 3.13 B and C). However, a change in exon 

inclusion was not observed in the PNT2 cell line for both genes (Figures 3.12 F and 

G and 3.13 F and G).  

Hypoxia significantly decreased the PSI value of PUF60 exon inclusion in the PC3 cell 

line (Figure 3.14B and C). A larger isoform was also detected in the VCaP and PNT2 

cell lines, and so the expression of each isoform was calculated as a percentage of 

the overall proportion. The calculation was as follows: (Expression of isoform of 

interest / total isoform expression) * 100. In both the VCaP and PNT2 cell lines, the 

proportion of exon 5 skipping of PUF60 significantly increased during hypoxia. 

Taking into account the results for PUF60 splicing in all three cell lines, a conclusion 

can be made that hypoxia favours the exon 5 skipped splice variant of PUF60.  

Hypoxia was found to significantly incease exon inclusion in the MBP gene after in 

the PNT2 cell line (Figure 3.15 F and G). There was not a significant change in 

splicing of the MBP mRNA during hypoxia in the PC3 and VCaP cell lines. This result 

was quite surprising as the change in PSI value for MBP splicing was the highest in 

the high-throughput PCR experiment.  

Hypoxia was found to significantly favour exon inclusion in the BTN2A2 and TTC23 

genes in the PC3 and PNT2 cell lines (Figures 3.16 B, C, F and G and 3.17 B, C, F and 

G). There was no significant difference in exon inclusion found in the INSR, LHX6 



106 

 

and SYNE2 genes after hypoxia (Figures 3.18, 3.19 and 3.20). However, there was an 

indication from gel PCR images that hypoxia decreased the amount of exon 

inclusion in the LHX6 and SYNE2 genes in the PNT2 and PC3 cell lines, respectively 

(Figures 3.19 F and 3.20 B). The error bars for both of these results are quite long 

and overlap, which is why a significant result may not have been found. Table 3.3 

concludes the significant effect of hypoxia on exon inclusion of the genes selected 

from the high-throughput PCR gene set in the PC3, VCaP and PNT2 cell lines. 
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Figure 3.7: Proportion of exon inclusion in the APAF1 gene using F1 primers after hypoxia in 

prostate cancer cell lines. (A) Illustration of APAF1 pre-mRNA showing exons (green boxes), 

introns (blue lines), and location of the primers (F= forward primer; R= reverse primer). The 
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exon 17a inclusion or skipping alternative splicing even is also shown. Cells seeded from 

prostate cancer cell lines were cultured in normoxic or hypoxic conditions. RTPCR was 

performed using the following conditions: 94ᴼC for 2 min, 94ᴼC for 30 sec, 58ᴼC for 30 sec, 

72ᴼC for 30 sec, 72ᴼC for 5 min with 35 cycles. APAF1 isoform expression with respective 

average percentage inclusion of exon 17a, also known as the percentage splicing index (PSI %) 

after normoxic or hypoxic treatment in the (B and C) PC3 cell line (n=5); (D and E) VCaP cell 

line (n=3); (F and G) PNT2 cell lines (n=3). ImageJ software was used to generate optical 

density peaks from the gel isoform expression. Excel was used to normalise to the β-actin 

loading control, and then calculate the average percentage of exon 17a inclusion (%). * = 

p<0.05. Statistical tests used were as follows, where SW stands for shapiro wilks test, BT 

stands for Bartlett’s test, MWU stands for Mann-Whitney U and TT stands for student’s T-

test. PC3: SW showed data was not normally distributed, BT showed that the data was 

heteroschedastic and so a MWU test was used to test statistical significance of the data. For 

both VCaP and PNT2 data: SW showed data was normally distributed, BT showed data was 

homoschedastic, and so a TT was used to test statistical significance of the data.     
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Figure 3.8: Proportion of exon inclusion in the APAF1 gene using F8 primers after hypoxia in 

prostate cancer cell lines. (A) Illustration of APAF1 pre-mRNA showing exons (green boxes), 

introns (blue lines), and location of the primers (F= forward primer; R=reverse primer). The 

exon 17a inclusion or skipping alternative splicing event is also shown. Cells seeded from 

prostate cancer cell lines were cultured in normoxic or hypoxic conditions. RTPCR was 

performed using the following conditions: 94ᴼC for 2 min, 94ᴼC for 30 sec, 58ᴼC for 30 sec, 
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72ᴼC for 30 sec, 72ᴼC for 5 min with 35 cycles. APAF1 isoform expression with respective 

average percentage inclusion level of exon 17a, also known as the percentage splicing index 

(PSI %) after normoxic or hypoxic treatment in the (B and C) PC3 cell line (n=5); (D and E) 

VCaP cell line (n=3); (F and G) PNT2 cell lines (n=3). ImageJ software was used to generate 

optical density peaks from the gel isoform expression. Excel was used to normalise to the β-

actin loading control, and then calculate the average percentage of exon 17a inclusion (%). 

Statistical tests used were as follows, where SW stands for shapiro wilks test, BT stands for 

Bartlett’s test, MWU stands for Mann-Whitney U and TT stands for student’s T-test. PC3: SW 

showed data was not normally distributed, BT showed that the data was heteroschedastic 

and so a MWU test was used to test statistical significance of the data. For both VCaP and 

PNT2: SW showed data was normally distributed, BT showed data was homoschedastic, and 

so a TT was used to test statistical significance of the data.     
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Figure 3.9: Proportion of exon inclusion in the PTPN13 gene after hypoxia in prostate cancer 

cell lines. (A) Illustration of PTPN13 pre-mRNA showing exons (green boxes), introns (blue 

lines) and location of the primers (F= forward primer; R= reverse primer). The exon 20 
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inclusion or skipping alternative splicing event is also shown. Cells seeded from prostate 

cancer cell lines were cultured in normoxic or hypoxic conditions. RTPCR was performed using 

the following conditions: 94ᴼC for 2 min, 94ᴼC for 30 sec, 58ᴼC for 30 sec, 72ᴼC for 30 sec, 

72ᴼC for 5 min with 35 cycles. PTPN13 isoform expression with respective average percentage 

inclusion level of exon 20, also known as the percentage splicing index (PSI %) after normoxic 

or hypoxic treatment in the (B and C) PC3 cell line (n=5); (D and E) VCaP cell line (n=3); (F and 

G) PNT2 cell lines (n=3). ImageJ software was used to generate optical density peaks from the 

gel isoform expression. Excel was used to normalise to the β-actin loading control, and then 

calculate the average percentage of exon 20 inclusion (%). * = p<0.05. Statistical tests used 

were as follows, where SW stands for Shapiro-Wilks test, BT stands for Bartlett’s test, MWU 

stands for Mann-Whitney U test and TT stands for student’s T-test. In all three cell lines, SW 

showed data was normally distributed, BT showed that the data was homoschedastic, and so 

TTs were used to test statistical significance of the data. 
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Figure 3.10: Proportion of exon inclusion in the CDC42BPA gene after hypoxia in prostate 

cancer cell lines. (A) Illustration of CDC42BPA pre-mRNA showing exons (green boxes), 

introns (blue lines) and location of the primers (F = forward primer; R = reverse primer). The 
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exon 13 inclusion or exclusion alternative splicing event is also shown. Cells seeded from 

prostate cancer cell lines were cultured in normoxic or hypoxic conditions. RTPCR was 

performed using the following conditions: 94ᴼC for 2 min, 94ᴼC for 30 sec, 58ᴼC for 30 sec, 

72ᴼC for 30 sec, 72ᴼC for 5 min with 35 cycles. CDC42BPA isoform expression with the 

respective average percentage inclusion level of exon 13, also known as the percentage 

splicing index (PSI %) after normoxic or hypoxic treatment in the (B and C) PC3 cell line (n=5); 

(D and E) VCaP cell line (n=3); (F and G) PNT2 cell line (n=3). ImageJ software was used to 

generate optical density peaks from the gel isoform expression. Excel was used to normalise 

to the β-actin loading control, and then calculate the average percentage of CDC42BPA exon 

inclusion (%). *=p<0.05; ** = p<0.01. Statistical tests used were as follows, where SW stands 

for Shapiro-Wilks test, BT stands for Bartlett’s test, MWU stands for Mann-Whitney U test 

and TT stands for student’s T-test. PC3: SW showed data was normally distrubuted, BT 

showed that the data was heteroschedastic and so a MWU test was used to test statistical 

significance of the data. In both the VCaP and PNT2 cell lines, SW showed the data was 

normally distributed, BT showed that the data was homoschedastic and so a TT was used to 

test the statistical significance of the data.  
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Figure 3.11: Proportion of exon inclusion in the FGFR1OP gene after hypoxia in prostate 

cancer cell lines. (A) Illustration of FGFR1OP pre-mRNA showing exons (green boxes), introns 

(blue lines) and location of the primers (F = forward primer; R = reverse primer). The exon 7 

inclusion or skipping alternative splicing event is also shown. Cells seeded from prostate 
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cancer cell lines were cultured in normoxic or hypoxic conditions. RTPCR was performed using 

the following conditions: 94ᴼC for 2 min, 94ᴼC for 30 sec, 58ᴼC for 30 sec, 72ᴼC for 30 sec, 

72ᴼC for 5 min with 35 cycles. FGFR1OP isoform expression with respective average 

percentage inclusion level of exon 7, also known as the percentage splicing index (PSI %) after 

normoxic or hypoxic treatment in the (B and C) PC3 cell line (n=5); (D and E) VCaP cell line 

(n=3); (F and G) PNT2 cell line (n=3). ImageJ software was used to generate optical density 

peaks from the gel isoform expression. Excel was used to normalise to the β-actin loading 

control, and then calculate the average percentage of exon 7 inclusion (%). * = p<0.05. 

Statistical tests used were as follows, where SW stands for Shapiro-Wilks test, BT stands for 

Bartlett’s test, MWU stands for Mann-Whitney U test and TT stands for student’s T-test. In 

both the PC3 and PNT2 cell lines, SW showed that the data was normally distributed, BT 

showed that the data was homoschedastic, and so TT were used to test the statistical 

significance of the data. In the VCaP cell line, SW showed that the data was not normally 

distributed, BT showed that the data was homoschedastic, and so a MWU test was 

attempted to test the statistical significance of the data. However, due to there only being 

three data points, the test was unsuccessful.      
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Figure 3.12: Proportion of exon inclusion in the RAP1GDS1 gene after hypoxia in prostate 

cancer cell lines. Illustration of RAP1GDS1 pre-mRNA showing exons (green boxes), introns 

(blue lines) and location of the primers (F = forward primer; R = reverse primer). The exon 5 

inclusion of skipping alternative splicing event is also shown. Cells seeded from prostate 
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cancer cell lines were cultured in normoxic or hypoxic conditions. RTPCR was performed using 

the following conditions: 94ᴼC for 2 min, 94ᴼC for 30 sec, 58ᴼC for 30 sec, 72ᴼC for 30 sec, 

72ᴼC for 5 min with 35 cycles. RAP1GDS1 isoform expression with respective average 

percentage inclusion level of exon 5, also known as the percentage splicing index (PSI %) after 

normoxic or hypoxic treatment in the (B and C) PC3 cell line (n=5); (D and E) VCaP cell line 

(n=3); (F and G) PNT2 cell lines (n=3). ImageJ software was used to generate optical density 

peaks from the gel isoform expression. Excel was used to normalise to the β-actin loading 

control, and then calculate the average percentage of exon 5 inclusion (%). ** = p<0.01; *** = 

p<0.001. In all three cell lines, the Shapiro-Wilks test showed that the data was normally 

distributed, Bartlett’s Test showed that the data was homoschedastic and so student’s T-tests 

were used to assess the statistical significance of the data.     
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Figure 3.13: Proportion of exon inclusion in the UTRN gene after hypoxia in prostate cancer 

cell lines. (A) Illustration of URTN pre-mRNA showing exons (green boxes), introns (blue 

lines), and location of the primers (F = forward primer; R = reverse primer). The exon 66 

inclusion or skipping alternative splicing event is also shown. Cells seeded from prostate 

cancer cell lines were cultured normoxic or hypoxic conditions. RTPCR was performed using 

the following conditions: 94ᴼC for 2 min, 94ᴼC for 30 sec, 58ᴼC for 30 sec, 72ᴼC for 30 sec, 

72ᴼC for 5 min with 35 cycles. UTRN isoform expression with respective average percentage 

inclusion level of exon 66, also known as the percentage splicing index (PSI %) after normoxic 

or hypoxic treatment in the (B and C) PC3 cell line (n=5); (D and E) VCaP cell line (n=3); (F and 

G) PNT2 cell line (n=3). ImageJ software was used to generate optical density peaks from the 

gel isoform expression. Excel was used to normalise to the β-actin loading control, and then 
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calculate the average percentage of exon 66 inclusion (%). * = p<0.05. Statistical tests used 

were as follows, where SW stands for Shapiro-Wilks test, BT stands for Bartlett’s test, MWU 

stands for Mann-Whitney U test and TT stands for student’s T-test. PC3: SW showed that the 

data was not normally distributed, BT showed that the data was homoschedastic, and so a 

MWU test was used to assess the statistical significance of the data. In both the VCaP and 

PNT2 cell lines, SW showed that the data were normally distributed, BT showed that the data 

were homoschedastic, and so TT were used.  
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Figure 3.14: Proportion of PUF60 isoforms after hypoxia in prostate cancer cell lines. (A) 

Illustration of PUF60 pre-mRNA showing exons (green boxes), introns (blue lines) and the 

location of the primers (F = forward primer; R = reverse primer). The exon 5 inclusion or 

skipping alternative splicing event is also shown. Cells seeded from prostate cancer cell lines 

were cultured in normoxic or hypoxic conditions. RTPCR was performed using the following 

conditions: 94ᴼC for 2 min, 94ᴼC for 30 sec, 58ᴼC for 30 sec, 72ᴼC for 30 sec, 72ᴼC for 5 min 

with 35 cycles. PUF60 isoform expression with respective average percentage inclusion level 

of exon 5, also known as the percentage splicing index (PSI %) after normoxic or hypoxic 

treatment in the (B and C) PC3 cell line (n=5); (D and E) VCaP cell line (n=3); (F and G) PNT2 

cell line (n=3). A larger isoform was also detected in the VCaP and PNT2 cell lines and so the 

percentage of each of the isoforms detected are shown in the graphs for those cell lines. 
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ImageJ software was used to generate optical density peaks from the gel isoform expression. 

Excel was used to normalise to the β-actin loading control, and then calculate the average 

percentage proportion of PUF60 isoforms (%). Calculations were as follows; (1) exon 5 

inclusion/total*100; (2) exon 5 skipping/total*100; (3) larger isoform/total*100. * = p<0.05; 

** = p<0.01. Statistical tests used were as follows, where SW stands for Shapiro-Wilks test, BT 

stands for Bartlett’s test, MWU stands for Mann-Whitney U test and TT stands for student’s 

T-test. In the PC3 cell line, SW showed that the data was normally distributed, BT showed 

that the data was heteroschedastic, and so a MWU test was used to assess the statistical 

significance of the data. In all tests conducted in the VCaP and PNT2 cell lines, SWs showed 

that the data were normally distributed, BTs showed that the data were homoschedastic, and 

so TTs were used to assess the statistical significance of the data.    
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Figure 3.15: Proportion of exon inclusion in the MBP gene after hypoxia in prostate cancer 

cell lines. (A) Illustration of MBP pre-mRNA showing exons (green boxes), introns (blue lines) 

and location of the primers (F = forward primer; R = reverse primer). The exon 5 inclusion or 

skipping alternative splicing event is also shown. Cells seeded from prostate cancer cell lines 

were cultured in normoxic or hypoxic conditions. RTPCR was performed using the following 

conditions: 94ᴼC for 2 min, 94ᴼC for 30 sec, 58ᴼC for 30 sec, 72ᴼC for 30 sec, 72ᴼC for 5 min 
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with 35 cycles. MBP isoform expression with respective average percentage inclusion level of 

exon 5, also known as the percentage splicing index (PSI %) after normoxic or hypoxic 

treatment in the (B and C) PC3 cell line (n=5); (D and E) VCaP cell line (n=3); (F and G) PNT2 

cell lines (n=3). ImageJ software was used to generate optical density peaks from the gel 

isoform expression. Excel was used to normalise to the β-actin loading control, and then 

calculate the average percentage of exon 5 inclusion (%). * = p<0.05. Statistical tests used 

were as follows, where SW stands for Shapiro-Wilks test, BT stands for Bartlett’s test, MWU 

stands for Mann-Whitney U test and TT stands for student’s T-test. PC3: SW showed that the 

data was normally distributed, BT showed that the data was heteroschedastic, and so a MWU 

was used to assess the statistical significance of the data. In both the VCaP and PNT2 cell 

lines, SW tests showed that the data were normally distributed, BTs showed that the data 

were homoschedastic, and so TTs were used to assess the statistical significance of the data.  
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Figure 3.16: Proportion of exon inclusion in the BTN2A2 gene after hypoxia in prostate cancer cell 
lines. (A) Illustration of BTN2A2 pre-mRNA showing exons (green boxes), introns (blue lines) and 
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location of the primers (F = forward primer; R = reverse primer). The exon 3 inclusion or skipping 
alternative splicing event is also shown. Cells seeded from prostate cancer cell lines were cultured in 
normoxic or hypoxic conditions. RTPCR was performed using the following conditions: 94ᴼC for 2 
min, 94ᴼC for 30 sec, 58ᴼC for 30 sec, 72ᴼC for 30 sec, 72ᴼC for 5 min with 35 cycles. BTN2A2 isoform 
expression with respective average percentage inclusion level of exon 3, also known as the 
percentage splicing index (PSI %) after normoxic or hypoxic treatment in the (B and C) PC3 cell line 
(n=5); (D and E) VCaP cell line (n=3); (F and G) PNT2 cell line (n=3). ImageJ software was used to 
generate optical density peaks from the gel isoform expression. Excel was used to normalise to the 
β-actin loading control, and then calculate the average percentage of exon 3 inclusion (%). * = 
p<0.05. In all three cell lines, statistical tests were as follows. Shapiro-Wilks test showed that the 
data was normally distributed, Bartlett’s test showed that the data was homoschedastic, and so 
student’s T tests were used to asses the statistical significance of the data.   
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Figure 3.17: Proportion of exon inclusion in the TTC23 gene after hypoxia in prostate cancer 

cell lines. (A) Illustration of TTC23 pre-mRNA showing exons (green boxes), introns (blue 

lines) and location of the primers (F = forward primer; R = reverse primer). The exon 2 

inclusion or skipping alternative splicing event is also shown. Cells seeded from prostate 

cancer cell lines were cultured in normoxic or hypoxic conditions. RTPCR was performed using 

the following conditions: 94ᴼC for 2 min, 94ᴼC for 30 sec, 58ᴼC for 30 sec, 72ᴼC for 30 sec, 
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72ᴼC for 5 min with 35 cycles. TTC23 isoform expression with respective average percentage 

inclusion level of exon 2, also known as the percentage splicing index (PSI %) after normoxic 

or hypoxic treatment in the (B and C) PC3 cell line (n=5); (D and E) VCaP cell line (n=3); (F and 

G) PNT2 cell line (n=3). ImageJ software was used to generate optical density peaks from the 

gel isoform expression. Excel was used to normalise to the β-actin loading control, and then 

calculate the average percentage of exon 2 inclusion (Ψ). * = p<0.05; ** = p<0.01. Statistical 

tests used were as follows for all three cell lines. Shapiro-Wilks test showed that the data was 

normally distributed, Bartlett’s test showed that the data was homoschedastic, and so 

student’s T tests were used to assess the statistical significance of the data.   
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Figure 3.18: Proportion of exon inclusion in the INSR gene after hypoxia in prostate cancer 

cell lines. (A) Illustration of INSR pre-mRNA showing exons (green boxes), introns (blue lines), 

and the location of the primers (F = forward primer; R = reverse primer). The exon 11 

inclusion or skipping alternative splicing event is also shown. Cells seeded from prostate 

cancer cell lines were cultured in normoxic or hypoxic conditions. RTPCR was performed using 
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the following conditions: 94ᴼC for 2 min, 94ᴼC for 30 sec, 58ᴼC for 30 sec, 72ᴼC for 30 sec, 

72ᴼC for 5 min with 35 cycles. INSR isoform expression with respective average percentage 

inclusion level of exon 11, also known as the percentage splicing index (PSI %) after normoxic 

or hypoxic treatment in the (B and C) PC3 cell line (n=5); (D and E) VCaP cell line (n=3); (F and 

G) PNT2 cell line (n=3).  ImageJ software was used to generate optical density peaks from the 

gel isoform expression. Excel was used to normalise to the β-actin loading control, and then 

calculate the average percentage of exon 11 inclusion (%). Statistical tests used were as 

follows, where SW stands for Shapiro-Wilks test, BT stands for Bartlett’s test, MWU stands for 

Mann-Whitney U test and TT stands for student’s T-test. PC3: SW showed that the data was 

not normally distributed, BT showed that the data was heteroschedastic, and so a MWU test 

was used to assess the statistical significance of the data, In both the VCaP and PNT2 cell 

lines: SW showed that the data was normally distributed, BT showed that the data was 

homoschedastic, and so TT were used to assess the statistical significance of the data.                            
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Figure 3.19: Proportion of exon inclusion in the LHX6 gene after hypoxia in prostate cancer 
cell lines. (A) Illustration of LHX6 pre-mRNA showing exons (green boxes), introns (blue lines) 
and location of the primers (F = forward primer; R = reverse primer). The exon 9 inclusion and 
skipping alternative splicing event is also shown. Cells seeded from prostate cancer cell lines 
were cultured in normoxic or hypoxic conditions. RTPCR was performed using the following 
conditions: 94ᴼC for 2 min, 94ᴼC for 30 seconds, 58ᴼC for 30 seconds, 72ᴼC for 30 seconds, 
72ᴼC for 5 minutes with 35 cycles. LHX6 isoform expression with respective average 
percentage inclusion level of exon 9, also known as the percentage splicing index (PSI %) after 
normoxia or hypoxia treatment in the (B and C) PC3 cell line (n=5); (D and E) VCaP cell line 
(n=3); (F and G) PNT2 cell line (n=3). ImageJ software was used to generate optical density 
peaks from the gel isoform expression. Excel was used to normalise to the β-actin loading 
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control, and then calculate the average percentage of exon 9 inclusion (%). Statistical tests 
used were as follows, where SW stands for Shapiro-Wilks test, BT stands for Bartlett’s test, 
MWU stands for Mann-Whitney U test and TT stands for student’s T-test. In both the PC3 and 
PNT2 cell lines, SW showed that the data was normally distributed, BT showed that the data 
was homoschedastic, and so TTs were used to assess the statistical significance of the data. In 
the VCaP cell line, SW showed that the data was not normally distributed, BT showed that the 
data was homoschedastic, and so a MWU test was attempted to assess the statistical 
significance of the data. However, due to there only being 3 data points, a MWU test could 
not be completed successfully.     
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Figure 3.20: Proportion of exon inclusion in the SYNE2 gene after hypoxia in prostate cancer 

cell lines. (A) Illustration of SYNE2 pre-mRNA showing exons (green boxes), introns (blue 

lines) and location of the primers (F = forward primer; R = reverse primer). The exon 107 

inclusion or exclusion alternative splicing event is also shown. Cells seeded from prostate 

cancer cell lines were cultured in normoxic or hypoxic conditions. RTPCR was performed using 

the following conditions: 94ᴼC for 2 min, 94ᴼC for 30 sec, 58ᴼC for 30 sec, 72ᴼC for 30 sec, 

72ᴼC for 5 min with 35 cycles. SYNE2 isoform expression with respective average percentage 

inclusion level of exon 107, also known as the percentage splicing index (PSI %) after 

normoxic or hypoxic treatment in the (B and C) PC3 cell line (n=5); (D and E) VCaP cell line 
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(n=3); (F and G) PNT2 cell lines (n=3). ImageJ software was used to generate optical density 

peaks from the gel isoform expression. Excel was used to normalise to the β-actin loading 

control, and then calculate the average percentage of exon 107 inclusion (%). Statistical tests 

used were as follows, where SW stands for Shapiro-Wilks test, BT stands for Bartlett’s test, 

MWU stands for Mann-Whitney U test and TT stands for student’s T-test. In the PC3 cell line, 

SW showed that the data was not normally distributed, BT showed that the data was 

heteroschedastic, and so a MWU test was used to assess the statistical significance of the 

data. In both the VCaP and PNT2 cell lines, SW tests showed that the data were normally 

distributed, BTs showed that the data was homoschedastic, and so TTs were used to assess 

the statistical significance of the data.                                                                                                                                                                                                                                                                                  

 

 

 

 

Table 3.3: Summary of significant changes in splicing of cancer-associated genes (in 

alphabetical order) in hypoxia in prostate cancer cell lines. Blue downwards arrow denotes 

decreased exon inclusion (increased exon skipping); orange upwards arrow denotes increased 

exon inclusion.  
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3.6 Discussion 

3.6.1 CA IX 

It was important to evaluate that hypoxia was achieved with the treatment of 1% 

oxygen. CA IX is argued to be a more stable marker of hypoxia than HIF-1α because 

CA IX is not lost upon re-oxygenation (Sobhanifar et al., 2005). Instead, CA IX mRNA 

expression remains stable and is only lost upon cell division or cell death 

(Sobhanifar et al. 2005). CA IX is alternatively spliced to form a truncated protein 

lacking exons 8 and 9 which interferes with full length (FL) CA IX (Barathova et al., 

2008); and so the expression of both isoforms was assessed. A treatment time of 48 

hours at a concentration of 1% oxygen had a more profound effect on CA IX protein 

expression than 24 hours of treatment in the PC3 cell line (Figure 3.1). Therefore, 

1% oxygen treatment for 48 hours was deemed appropriate for achieving hypoxia 

in this cell line. In addition, it was found that hypoxia significantly favoured the 

expression of the FL CA IX isoform in the PC3 cell line (Figure 3.2 B and C). The 

alternatively spliced variant was not detected in the VCaP and PNT2 cell lines. 

Therefore, the percentage of exon inclusion could not be calculated; however, the 

FL CA IX splice variant was normalised to the β-actin loading control in these cell 

lines (Figure 3.2 E and G). A significant change in CA IX FL expression during hypoxia 

was not found in the VCaP cell line. However, this is thought to be due to a long 

overlapping error bar. The data obtained for the PNT2 cell line was found not to be 

normally distributed; however, a Mann Whitney U statistical test could not be 

applied to the data collected from the PNT2 cell line as there were not enough data 

points. A student’s T test was applied to the data, which showed a significant 
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change in CA IX FL expression during hypoxia (p<0.001). Although this is not the 

correct statistical test, it suggests that there may be a significant change in CA IX FL 

expression during hypoxia in the PNT2 cell line. It is proposed that with more 

repeats, hypoxia will be found to significantly alter the expression of CA IX-FL in the 

VCaP and PNT2 cell lines. The PCR gel images showed an indication that hypoxia 

was increasing the expression of the CA IX FL, in both cell lines (Figures 3.2 D and F). 

Furthermore, the graphs for the VCaP and PNT2 cell lines show a marked increase 

in percentage expression of CA IX FL of approximately 20% and 40% respectively 

(Figures 3.2 E and G). Therefore, the hypoxia treatment was deemed successful in 

the PC3 cell line. In the VCaP and PNT2 cell lines, there is an indication that the 

hypoxia treatment was successful; however, further repeats are required to 

determine this.  

  

3.6.2 Alternative splicing of apoptotic genes 

Caspase-9 is recruited to the apoptosome upon a cell death stimulus. This in turn 

triggers the cleavage of down-stream effector pro-caspases, which ultimately leads 

to apoptosis. As seen in figure 3.3A, caspase-9a and caspase-9b mRNAs are formed 

from the inclusion or exclusion of a 4-exon cassette, which comprises of exons 3, 4, 

5 and 6. The full length isoform, caspase-9a conducts full protease activity, whereas 

caspase-9b lacks a huge section of the catalytic domain, and so cannot cleave 

downstream pro-caspase-3 and pro-caspase-7 into active forms for apoptosis 

execution (reviewed in Li et al., 2017). Caspase-9b mRNA does however possess 



137 

 

interaction domains, and so can inhibit caspase-9a attachment to the apoptosome, 

which suppresses the caspase apoptosis cascade (Vu et al., 2013).  

During hypoxia, it was found that the PSI value increased significantly in the PC3 

and PTN2 cell lines, which indicates that the ratio of full-length isoform was 

increased. Therefore, it can be proposed that hypoxia promotes apoptosis through 

increasing the proportion of expression of the full-length caspase-9a isoform in the 

PC3 and PNT2 cell lines. This result supports the idea that hypoxic stress can cause 

cells to apoptose (Semenza, 2000).   

Survivin is encoded by the BIRC5 gene, which can be described as an oncogene as it 

drives forward mitosis at the G2/M check-point. To date, there have been five 

confirmed additional splice variants to the wild-type isoform i.e.; ΔEx3, 2B, 3B, 2α 

and 3α (Figure 3.21) (Mahotka et al., 2002; Caldas et al., 2007; Sampath et al., 

2007). This study forcused on the effect of hypoxia on expression of wild-type, 

ΔEx3, 2B mRNAs. The ΔEx3 isoform has been associated with poor clinical outcome 

and prognosis in cancer (Necochea-campion et al., 2013). Studies of the 2B isoform 

have unearthed conflicting data on the cancerous function of the isoform. The 2B 

isoform has been associated with poor survival and aggravated disease, but other 

studies have shown an association of 2B with less severe disease (Suga et al., 2005; 

Antonacopoulou et al., 2010). However, there is a general agreement that the ΔEx3 

variant is anti-apoptotic and the 2B isoform has an attenuated anti-apoptotic 

function (reviewed in Sah et al., 2015).  
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Although the gel image for the PC3 cell line shows that the expression of the full-

length survivin isoform decreases with hypoxia, the proportion of the full-length 

survivin isoform is increased significantly (Figures 3.4 B and C). This is because of a 

general decrease in expression in all survivin isoforms was found after hypoxia, but 

the expression of the full-length isoform did not decrease as much as the other 

isoforms. The percentage proportion of exon inclusion is not found to be altered in 

the VCaP and PNT2 cell lines (Figures 3.4 E and G), which suggest that this result 

could be cell line specific. Therefore, it is suggested that hypoxia may evade 

apoptosis through this mechanism in the PC3 cell line.  

Survivin has been shown to up-regulate VEGF expression, and knockdown of 

Survivin in glioma has been shown to inhibit angiogenesis (Wang et al., 2012; 

Fernandez et al., 2014). Therefore, it is suggested that perhaps Survivin-WT may 

also aid in angiogenesis during hypoxia in PC3 cells. Furthermore, survivin has also 

been found to inhibit caspase-9 activity (O’Connor et al. 2004; Dohi et al., 2004). 

This may offer another mechanism in which cells evade apoptosis during hypoxia 

despite the increase in the pro-apoptotic caspase-9a variant during hypoxia.  

Bcl-x is alternatively spliced to produce an anti-apoptotic long isoform, Bcl-xL, and a 

shorter, pro-apoptotic isoform, Bcl-xs (Boise et al., 1993; Lindenboim, Yuan and 

Stein, 2000). Bcl-xL evades apoptosis by preventing mitochondria from releasing 

cytochrome c, which is needed to form the apoptosome, and this in turn is required 

to facilitate apoptosis (Kim, 2005).  
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A study by Xiao et al. (2012) showed that Bcl-x splicing was altered after hypoxia-

ischemia in neonatal rat brains, with increased expression of the Bcl-xs variant 

relative to the Bcl-xL variant. This suggests that hypoxia may favour the smaller Bcl-

xs isoform in order to facilitate apoptosis. The group also found that Bcl-xs 

knockdowns prior to hypoxia-ischemia treatment resulted in reduction of brain 

injury, which is probably due to less brain cell death.  

Hypoxia was found to significantly favour the longer anti-apoptotic Bcl-xL isoform in 

the PNT2 cell line (figure 3.5G), which suggests that hypoxic cells may evade 

apoptosis through this mechanism. The gel PCR image for the PC3 cell line (figure 

3.5B) showed a suggestion that the shorter isoform was favoured in the PC3 cell 

line; however, this was not found to be significant due to the spread of the values 

(figure 3.5C). With greater repeats however this may be found to be significant 

which would conflict the results found for the PNT2 cell line.   

Mcl-1 has been identified as an anti-apoptotic member of the Bcl-2 family that 

heterodimerises with other Bcl-2 proteins to protect against cell death (Mott et al., 

2007). Bae et al. (2000) found that there are two splice variants of Mcl-1; Mcl-1L 

and Mcl-1S (Figure 3.6A). The shorter variant (Mcl-1S) arises due to the skipping of 

exon 2 and lacks Bcl-2 homology domains 1 and 2. This prevents interaction 

between Mcl-1S with the Bcl2 protein family and induces apoptosis. In addition, 

Mcl-1S dimerises with Mcl-1L, which results in higher levels of apoptosis (Bae et al., 

2000). Recently, splice switching oligonucleotides (SSOs) have been developed to 

shift the isoform ratio of Mcl-1 towards the pro-apoptotic Mcl-1S splice variant. The 

results from these studies support previous findings that Mcl-1S triggers apoptosis 
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and inhibits tumour development (Shieh et al., 2009; Kim et al., 2011; Morciano et 

al., 2015).  In this study, hypoxia was not shown to alter the splicing of Mcl-1 (Figure 

3.6). The full length anti-apoptotic isoform, MCL-1L was the dominant isoform in all 

samples studied. 

 

Figure 3.21: Confirmed splice variants of Survivin encoded by the BIRC5 gene. Schematic 
representation of alternatively spliced mRNA transcripts derived from the BIRC5 gene. WT 
mRNA contains is coded by exons 1-4. ΔEx3 is formed from a deletion of exon 3, which results 
in a frame shift with extension of the reading frame into the open reading frame (ORF) of the 
3’ untranslated region. An additional exon of 69bp between exons 2 and 3 forms the 2B 
variant. 3B is formed from an additional seven amino acids (aa) (denoted as exon 3b) at the c-
terminal. Variants 2α and 3α contain exons 1 and 2 followed by a 3’ UTR, and are 74 and 78 
aa in length respectively. Figure adapted from Garg et al. (2016) and used with permission 
from the author. 

 

3.6.3 Alternative splicing of cancer-associated genes 

Normoxic and hypoxic samples generated in the PC3 cell line were sent to 

collaborators (Dr. Roscoe Klinck and his team at the RNomics platform at 

Sherbrooke University, Canada) for high-throughput PCR analysis using 238 

alternatively spliced cancer-associated genes. The top 12 genes with a change in 

splicing after hypoxia were then studied with further repeats in the PC3 cell line, 

and also in the VCaP and PNT2 prostate cancer cell lines. A summary of the known 

splice isoform functions of the selected gene set is shown in Table 3.4; and a 

summary of the overall effect of hypoxia on the gene set can be found in Table 3.5. 
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It must be noted that the linear range of the PCRs were not tested in this study; 

however, the RNOmics platform (Sherbrooke University, Canada) used 35 PCR 

cycles for the high-throughput PCR work, and so it was assumed that 35 cycles was 

within the linear range of the PCR.  

Hypoxia favoured the alternative splicing of pro-oncogenic isoforms in three genes 

selected by high-throughput PCR; APAF1, RAP1GDS1 and BTN2A2. APAF1 is 

involved in the formation of the apoptosome, which functions in the apoptotic 

pathway. The smaller isoform does not contain a WDR insert, which is crucial for 

the binding of cytochrome-c to APAF1, and without which formation of the 

apoptosome cannot occur (Bao et al., 2007).  

There were two separate sets of primers that showed a change in APAF1 splicing in 

the high-throughput experiments, and so both sets of primers were once again 

tested using n=5. With use of the APAF1-F1 primer set, it was found that the 

hypoxia decreased the splicing PSI value significantly in the PC3 cell line (Figure 3.7 

B and C), which shows that the proportion of the larger APAF1 isoform significantly 

decreased with hypoxia. This therefore suggests that the smaller APAF1 isoform has 

a larger proportion of overall isoform expression during hypoxia, which may aid 

cells in avoiding apoptosis during hypoxia. Wang et al. (2016) provided evidence 

that hypoxia increased APAF-1 expression. Although expression of the splice 

isoforms were not investigated, the paper provided evidence that hypoxia 

increased apoptosis in H9c2 rat ventrivular cardiomyocytes, which suggests that 

expression of the full-length APAF1 isoform was increased in their model. The 

results shown in this study however contradict these findings, and so it is thought 
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that these changes could be cell line specific. In support of this, hypoxia did not 

significantly change in APAF1 splicing in the VCaP or PNT2 cell lines (Figure 3.7 E 

and G).  

There was no signficant change in splicing during hypoxia when using the APAF1F8 

primers in any of the cell lines examined (Figure 3.8. However, in the PC3 cell line a 

pattern can be observed in the gel PCR image (Figure 3.8 B), and although not 

significant, there is an overall decrease in the proportion of APAF1-FL during 

hypoxia (Figure 3.8C). The error bar is quite long in the figure 3.8C, and so more 

repeats may show this result to be significant.     

The RAP1GDS1 gene produces the SmgGDS protein, which activates multiple small 

GTPases in the Rho and Ras families (Quilliam, Rebhun and Castro, 2002) and is 

therefore involved in multiple signalling pathways. Furthermore, SmgGDS 

expression is also elevated in prostate cancer tissues and non-small cell lung 

carcinoma (Zhi et al., 2009; Tew et al., 2008). RAP1GDS1 is spliced to give the long 

SmgGDS-607 and the short SmgGDS-558 isoforms (Berg et al. 2010). Hypoxia 

significantly decreased the proportion of exon inclusion of RAP1GDS1 in the PC3 

and VCaP cell lines (Figures 3.12 B, C, D and E), and so encouraged splicing of the 

SmgGDS-558 splice variant. Studies have shown that SmgGDS-558 plays a greater 

role than SmgGDS-607 in promoting proliferation and nuclear-factor-kappa-light-

chain-enhancer-of-activated-B-cells (NFκB) activity (Hauser et al., 2013), as well as 

promoting non-small-cell-lung carcinoma (NSCLC) colony formation (Berg et al., 

2010) and regulation of the cell cycle (Schuld et al., 2014). Hypoxia was not found 

to alter splicing of RAP1GDS1 in the PNT2 cell line, which suggests that changes in 



143 

 

splicing of RAP1GDS1 during hypoxia may only occur in cancer cell lines. As SmgGDS 

has been found to be involved in cell proliferation and migration in both androgen-

dependent (DU145, LNCaP) and androgen-independent (PC3) cell lines (Zhi et al., 

2009), it is suggested that the alterationa in splicing in both types of cell line is also 

similar in order to carry out these functions, as observed in this study.   

BTN2A2 binds to activated T-cells and suppresses T-cell metabolism (Smith et al., 

2010). It is reported to inhibit the proliferation of CD4 T-helper cells, and CD8 killer 

T-cells, and blocks cytokine production (Smith et al., 2010). Therefore, it is thought 

to promote the immune tolerance of tumours. Recently, BTN2A2 mRNA expression 

was shown to be increased in ulcerative colitis, and linked to inflammation 

(Lebrero-Fernandez et al., 2016). Rhodes et al. (2001) identified a splice variant of 

BTN2A2 that encodes a truncated protein, which negatively regulates the 

expression of full-length BTN2A2. Hypoxia increased the percentage of exon 

inclusion in the PC3 and PNT2 cell lines, which favoured the expression of the full-

length isoform (Figure 3.16 B, C, F and G). This suggests that through increasing the 

proportion of the full-length isoform, hypoxia drives immune tolerance, which 

therefore protects cancer cells from immune-mediated cell death. There was not a 

significant change in exon inclusion during hypoxia in the VCaP cell line (Figure 3.16 

E). However, the gel PCR shows a suggestion that expression of the larger isoform 

was increased in hypoxia in the first two repeats; but this was not shown in the the 

third repeat (Figure 3.16 D). Therefore, further repeats may find that the 

percentage of exon inclusion in the VCaP cell line is also significant. 
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Hypoxia was found to change the alternative splicing of some cancer-associated 

genes whose splice isoforms have not yet been assigned a function. Interestingly, 

two of these genes (UTRN and CDC42BPA) are found to have a role in the shape and 

maintenance of the cytoskeleton and its reorganisation, respectively (Gomes et al., 

2005; Wilkinson et al., 2005; Li et al., 2007; Tan et al., 2008). A meta-analysis of two 

studies conducted in prostate cancer identified UTRN as one of eight key genes 

differentially expressed with progression of prostate cancer (Wang et al., 2013). In 

this study, hypoxia was found to significantly decrease the percentage exon 

inclusion in UTRN mRNA in the PC3 and VCaP prostate cancer cell lines (Figure 3.13 

B, C, D and E), suggesting an increase in the proportion of the smaller isoform. 

Hypoxia did not alter alternative splicing in the PNT2 cell line (Figure 3.13), which is 

harvested from normal prostatic epithelial cells. As hypoxia altered splicing of UTRN 

in both cancer cell lines, but did not alter splicing in the non-cancerous PNT2 cell 

line, it is suggested that the study mentioned above by Wang et al. (2013) may have 

detected the smaller isoform of UTRN. Therefore, it is proposed that the smaller 

isoform is involved in the progression of prostate cancer. However, further studies 

will be required to investigate this hypothesis.  

Further to its role in reorganisation of the cytoskeleton, CDC42BPA is also shown to; 

induce the formation of filopodia, be involved in the assignment of cell polarity, and 

initiates cancer cell motility and invasion (Nobes and Hall. 1995; Kozma et al., 1995; 

Etienne-Manneville and Hall. 2002; Olson and Sahai. 2009; Unbekandt et al., 2014). 

Hypoxia increased the percentage of exon skipping of CDC42BPA; however, the 

relevance of this is not yet known. A microarray that investigated the profile of 
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alternatively splice mRNA isoforms in prostate cancer identified a CDC42BPA splice 

variant as a top prostate cancer marker (Zhang et al., 2006). The variant decreased 

in expression in prostate cancer tissue compared to normal prostate tissue. The 

paper states that details of the splice variant can be accessed via the online 

Manually Annotated Alternatively Spliced Events (MAASE) database; however, 

access to this information was problematic. Nevertheless, this does provide 

evidence that CDC42BPA splicing is altered in prostate cancer. Hypoxia siginificantly 

decreased the percentage of CDC42BPA exon inclusion in all three cell lines, which 

suggests that this event is not exclusive to cancerous prostate cells. 

Hypoxia also favours exon skipping in FGFR1OP. FGFR1OP protein is involved in 

ciliogenesis (Lee and Stearns, 2013) and mediates centrosome functions (Maxim et 

al., 2015). In addition, Mano et al. (2007) found that FGFR1OP was overexpressed in 

lung cancer and showed evidence of its role in cellular motility, cell growth and 

progression. Furthermore, FGFR1OP has been reported to be involved in G1/S 

transition, which therefore implicates the protein in cell-cycle progression and 

survival (Acquaviva et al., 2009). Popovici et al. (1999) discovered FGFR1OP when 

confirming it as a fusion partner gene to FGFR1, the resulting fusion protein of 

which is implicated in stem cell myeloproliferative disorder, a disease that generally 

progresses to acute myeloid leukaemia. The group identified alternatively spliced 

transcripts arising from exon 7 or 11 skipping; however the function of the splice 

isoforms was not investigated. In fact, no papers have come to light on the 

significance or function of any FGFR1OP splice variants. The primers used in this 

study focus on the alternative splicing of exon 7. Furthermore, FGFR1OP has also 
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been implicated in other cancers; it forms a fusion protein with RET that is involved 

in chronic myelomonocytic leukaemia (Mulligan, 2014), and single nucleotide 

polymorphisms in FGFR1OP have shown a significant connection between the gene 

and lung cancer risk (Kang et al., 2016). In this study, hypoxia significantly 

decreased the percentage of exon 7 inclusion in FGFR1OP in the PC3 and PNT2 cell 

lines (Figures 3.11 C and G). Hypoxia did not affect splicing of FGFR1OP in the VCaP 

cell line (Figure 3.11 E), which suggests that this event may be cell line specific. As 

the PNT2 cell line is derived from normal prostatic epithelial cells, it is possible that 

this event occurs in normal tissues.  

MBP was expressed at low levels in all three prostate cell lines. Therefore, as the 

bands were fainter and more difficult to analyse the results may not be an accurate 

representation of a change in splicing. MBP is a main component of the myelin 

sheath that coats neural axons (Shaharabani et al., 2016), and therefore the 

prostate may not require much of this protein. It would be interesting to examine 

whether there is a change in MBP splicing with hypoxia in Schwann cells, where 

MBP is more highly expressed. Exon 5 skipped isoforms are expressed during 

embryonic development, but are no longer expressed during the post natal stage of 

development (Mathisen et al., 1993; Kruger et al., 1999), which suggests that the 

splice variant has a developmental function. Furthermore, Nakajima et al. (1993) 

revealed a role for the exons skipped variant of MBP in differentiation of maturing 

oligodendrocytes. Results showed a significant increase in exon 5 inclusion in the 

PNT2 cell line (Figure 3.15 G); however, a significant change in splicing of MBP was 
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not observed in the PC3 or VCaP cell lines. This suggests that hypoxic regulation of 

MBP splicing may be cell line specific, or that it does not occur in cancerous cells. 

PTPN13 has been shown to have conflicting roles as a tumour suppressor and an 

oncogene (Freiss and Chalbos, 2012). PTPL1, which is the protein encoded by the 

PTPN13 gene, induces apoptosis in breast cancer cell lines (Revillion et al., 2009). 

However in contrast, the protein has been implicated in cell motility and cellular 

adhesion processes, which are associated with invasion and metastasis (Bompard et 

al., 2003; Kimber et al., 2003). The conflicting oncogenic and tumour suppressive 

roles stated for PTPN13 could be due to different isoforms of the gene, which may 

give rise to isoforms with opposing functions. This highlights the importance of 

studying the alternative splicing of genes in diseases rather than just the entire 

gene expression. To date, four splice variants of PTPN13 have been identified 

(Albaan and Toretsky, 2008); however, despite an in-depth literature search on the 

significance of cassette exon 20 exclusion, no information has been found, and so it 

is concluded that a function has not yet been assigned to this isoform. Hypoxia was 

found to significantly decrease exon inclusion of PTPN13 mRNA in the PC3 cell line 

(Figure 3.9 C).  

Not much is documented about TTC23 and so a limited amount of information can 

be found on PubMed and google scholar about this protein. A thesis by Akawi 

(2012) provided evidence for a possible role for TTC23 in human cognition and 

there is some evidence to suggest that TTC23 is linked to cancer. TTC23 has been 

described as the cervical cancer proto-oncogene 8 protein that is associated with 

cervical cancer and cervicitis in the genecards database (Akawi, 2012). In addition, 
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Warnatz et al. (2011) showed that TTC23 expression is transcriptionally repressed 

by BTB-and-CNC-homology-1 (BACH1), which is interesting as BACH1 has been 

shown to be down-regulated in some cancers. Furthermore, a thesis by Han (2015) 

has also linked loss of methylation of TTC23 to bladder cancer and Shukeir et al. 

(2015) found an association between hypermethylated TTC23 and prostate and 

cervical cancers. In bladder cancer, TTC23 has also been shown to form a fusion 

protein with IGF1R, usig exons 1 and 2 from IGF1R joined to exons 8-13 of TTC23 

(Kekeeva et al., 2016).  Hypoxia was found to favour exon 2 inclusion in TTC23 splice 

in the PC3 and PNT2 cell lines (Figure 3.17 C and G).  

PUF60 encodes a splicing factor that is involved in the modulation of alternative 

splicing of pre-mRNAs through the recognition of 3’ splice sites (Hastings et al., 

2007; Page-McCaw, Amonlirdviman and Sharp, 1999). PUF60 is also reported to 

regulate c-Myc transcription, which plays a critical role in cell proliferation, 

tumorigenesis, apoptosis and cell-cycle regulation (Liu et al., 2006). FIR is a splice 

variant of PUF60 that lacks exon 5 and is a c-Myc transcription repressor. This 

results in interference with the DNA damage response pathway, cellular 

proliferation and the cell cycle (Kano et al., 2016; Matsushita et al., 2015; 

Rahmutulla  et al., 2014; Matsushita et al., 2013; Matsushita et al., 2012). Tanaka et 

al., (2015) evaluated the anti-tumour effects of FIR using a fusion gene-deleted 

Sendai virus as a vector against head and neck squamous cell carcinoma (HNSCC). 

They found that the vector suppressed c –myc, induced apoptosis and exerted anti-

tumour effects. Hypoxia significantly decreased the proportion of the full-length 

and larger isoform, and significantly increased the proportion of the FIR isoform in 
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the PC3 cell line (Figure 3.14 C). Another splice variant that is slightly larger than the 

full-length PUF60 isoform was also detected in the VCaP and PNT2 cell lines (Figure 

3.14 D and F). The proportion of the full-length isoform was therefore calculated as 

a percentage of all three isoforms. Hypoxia was shown to significantly increase exon 

5 skipping in the VCaP and PNT2 cell lines (Figure 3.14 E and G). This therefore 

suggests that hypoxia favours the FIR isoform.  

Although in PC3 cells the high-throughput PCR analysis identified a change in the 

proportion of exon inclusion of 22.6%, 20.8%  and 32.3% in the INSR, LHX6 and 

SYNE2 genes respectively in response to hypoxia, this was not found to be 

significant in further repeats in the PC3, PNT2 or VCaP cell lines (Figures 3.18, 3.19 

and 3.20). However, this is not necessarily ruling out these genes as having a 

change in splicing during hypoxia as only a limited number of repeats could be 

conducted due to time constraints. In fact, the results showed that the proportion 

of exon inclusion of SYNE2 decreased in every repeat with hypoxia treatment in the 

PC3 cell line (Figure 3.20 B), but because of the large standard error this was not 

found to be significant. With a greater number of repeats, the standard error may 

decrease and produce a more significant result for SYNE2. Therefore this method 

can only confirm genes that are shown to significantly alter splicing in response to 

hypoxia and cannot rule any out which are shown not to be significant. This also 

applies to all other alternative splicing event studied in this section that may not 

have shown a change after hypoxia. In addition, standard PCR is a semi-quantitative 

method and therefore through use of qPCR, a greater level of accuracy could be 

achieved and more significant results may be found.   
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Upon revisiting the high-throughput PCR data, it was found that there were two 

genes missed off the list that had a change in the proportion of exon inclusion in 

line with the genes studied in this chapter.  Adenomatous-polyposis-coli (APC) is a 

tumour suppression gene that inhibits the WNT pathway and has been found to 

have many roles. These include cellular migration, adhesion and apoptosis (Hanson 

and Miller, 2005).  Low-density-lipoprotein-receptor-related-protein-8 (LRP8) codes 

for a receptor that has been shown to have a role in melanoma cancer endothelial 

cell migration and angiogenesis (Pencheva et al., 2012), and also to function in a 

growth signal pathway for triple negative breast cancer (Shiang et al., 2011). 

Therefore, it would be interesting to see how hypoxia may affect the splicing of the 

APC and LRP8 genes in the future.  

Recent studies examining the genome-wide effect of hypoxia on alternative splicing 

in both non-cancerous and cancerous cell lines have identified various changes to 

splicing patterns in genes associated with cancer (Hang et al., 2009; Weigand et al., 

2012; Yao et al., 2016; Sena et al., 2014; Han et al., 2017). These include genes 

implicated in angiogenesis, apoptosis, the cell cycle and DNA repair, as well as 

others. Furthermore, investigations conducted in the Hep3B liver cancer cell line 

confirmed altered splicing patterns in CA IX, RAP1GDS1 and MBP genes, which 

supports findings in this chapter. This is the first study to confirm systematic 

changes in alternative splicing in response to hypoxia in prostate cancer cell lines. 

However, the literature so far suggests that hypoxic alteration of splicing is not 

isolated to one cell line or tissue, but it must be noted that splicing profiles may 

vary depending on the cell line or tissue type.  
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Genome-wide exon microarrays have identified an activated cassette exon in the 

ZNF121 gene, which encodes a zinc finger protein, and a repressed cassette exon in 

the NDUFV3 gene, which encodes a mitochondrial respiratory protein respectively 

(Rajan et al., 2011). The study also uncovered an alternative isoform of the 

tuberous sclerosis-2 gene, which arises through use of an alternative promoter. 

Furthermore, a splice variant of the STBGALNAC1 gene has been identified in 

androgen-regulated prostate cancer (Munkley et al., 2015). The protein encoded by 

the STBGALNAC1 gene is involved in the synthesis of the sialyl-Tn antigen, which is 

associated with cancer. The shorter, alternatively spliced isoform is thought to have 

enhanced translation, resulting in increased synthesis of sialyl-Tn antigen (Munkley 

et al., 2016) leading to a more cancerous phenotype. These studies indicate that 

androgens can alter alternative splicing in prostate cancer. However, none of these 

studies have also incorporated the effect of hypoxia on the androgen-independent 

or androgen-dependent cell lines. The supplementary tables from the Munkley et 

al. (2016) paper, showed that PUF60 expression was up-regulated in response to 

treatment with R1881, a synthetic androgen. Furthermore, the expression of 

BTN2A2, SYNE2 and RAP1GDS1 was found to decrease in response to R1881 

treatment. Furthermore, SYNE2 was also shown to be regulated by androgens in 

the Rajan et al. (2011) paper. This suggests that these genes are regulated by 

androgens, and therefore it was thought that perhaps the alternative splicing of 

these genes may also alter differentially in response to hypoxia depending on the 

type of cell line used. However, this was not found to be the case. Splicing patterns 

that altered in the PNT2 cell line generally also altered in the PC3 cell line (apart 
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from MBP, which only altered in the PNT2 cell line). As the PC3 cell line is androgen 

independent, it suggests that changes to alternative splicing patterns derived from 

these genes during hypoxia are not regulated by androgens. Furthermore, all 

changes to splicing pattens shown in the VCaP cell line, were also shown in the PC3 

cell line, which also provides evidence that androgens do not play a role in the 

regulation of alternative splicing during hypoxia in these genes. It must be noted, 

that hypoxia decreased exon inclusion in RAP1GDS1 mRNA in both cancerous cell 

lines, which suggests that this change in splicing could be cancer specific. Therefore, 

RAP1GDS1 splicing may be a candidate for future cancer therapy.  

In conclusion, it is evident that hypoxia alters the splicing of cancer-associated 

genes. The majority of the alternatively spliced changes occur in the PC3 cell line, 

which is likely to be due to the fact that the high-throughput PCR analysis was 

conducted on samples generated in the PC3 cell line. There is the possibility that 

there are other cell line specific genes that are affected by hypoxia in the VCaP or 

PNT2 cell lines but are not affected in the PC3 cell line. However, as the majority of 

the splicing changes found in this chapter have been in the PC3 cell line, subsequent 

experiments will be conducted in the PC3 cell line.  
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Gene Change in isoform expression after hypoxia 

APAF1 Exon 17a skipping is favoured by hypoxia, which produces a pro-
oncogenic splice isoform. 

BTN2A2 Increased expression of the larger amplicon, 
which promotes immune tolerance 

CDC42BPA Decrease in exon inclusion in hypoxia. No function has been 
assigned to the isoform where exon 13 is skipped. 

FGFR1OP Exon skipping favoured by hypoxia. A function has not yet been 
assigned to the exon 7 skipping isoform. 

INSR No significant change in the proportion of exon inclusion after 
hypoxia treatment. 

LHX6 No significant change in the proportion of exon inclusion after 
hypoxia treatment. 

MBP Decrease in exon inclusion found in the PC3 cell line; Increase in 
exon inclusion found in the PNT2 cell line. 

PTPN13 Decrease in exon inclusion with hypoxia treatment. No assigned 
function to isoforms. 

PUF60 Anti-oncogenic FIR isoform favoured by hypoxia, which arises due 
to the skipping of exon 5.  

RAP1GDS1 Hypoxia favours the smgGDS-558 isoform which is pro-oncogenic 

SYNE2 No significant change in the proportion of exon inclusion after 
hypoxia treatment. 

TTC23 Exon inclusion favoured by hypoxia. 

UTRN Hypoxia favours the smaller isoform. No function has been 
assigned to the smaller isoform. 

   
Table 3.4: Summary of changes to alternative splicing of genes in hypoxia. Genes that were 
identified by the high-throughput PCR assay as changing alternative splicing patterns in 
response to hypoxia treatment were tested with further repeats. A summary of findings is 
displayed in the table above. 
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CHAPTER 4: 

Changes in expression and 

localisation of splice factors and 

splice factor kinases in response 
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4.1 Background 

Chapter three found that hypoxia switched the splicing of several cancer-associated 

genes. Some of the isoforms favoured by hypoxia promoted apoptosis, but others 

supported cell survival. Those involved in cell survival are of particular interest as 

those genes may enable cancers to survive and thrive during hypoxic conditions. 

Splice factors are heavily involved in the regulation of alternative splicing  and splice 

factor kinases regulate the activity and localisation of splice factors via 

phosphorylation.  

 

4.1.1 Role of splice factors and splice factor kinases in cancer 

As aberrant alternative splicing has been identified as a hallmark of cancer 

(Ladomery, 2013), it is not surprising that splice factors and splice factor kinases 

have been linked to different cancers. SRSF1 and SRSF3 have been identified as 

proto-oncogenes (Jia et al., 2010; Anczukow et al., 2012; Das and Krainer, 2014) 

that are linked to a number of oncogenic phenotypes; with evidence of an anti-

apoptotic nature and promoting cell growth and tumour formation in nude mice 

(Ajiro et al., 2015). Both splice factors have been shown to increase their expression 

in a variety of cancers, including: colon; lung; breast; stomach; skin; bladder; liver; 

cervix; and lymphoma cells (Ajiro et al. 2015).  

Iborra et al. (2013) also provided evidence of an increased expression of both 

serine/arginine-rich (SR) proteins in primary ovarian tumours. Specifically, 
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overexpression of SR splice factor-2 (SRSF2) has also been reported in ovarian 

cancer (Fischer et al., 2004). In addition, phosphorylated SRSF2 was shown to 

correlate with larger tumour size and higher tumour stage in lung adenocarcinoma 

(ADC) (Gout et al., 2012).  However, it must be noted that decreased expression of 

a splice factor can also result in a cancerous phenotype. For example, recently a 

decreased expression of SRSF2 was found in renal cancer (Kedzierska et al., 2016). 

The group found evidence in this study that decreased expression of SRSF2 

inhibited apoptosis, driving cancer progression. Furthermore, the group found that 

a decrease in SRSF2 expression affected differential splicing of apoptotic genes, 

including some of the apoptotic genes studied in chapter 3 of this thesis; caspase-9, 

survivin, and MCL-1 (Kedzierska et al., 2016). Therefore, it must be kept in mind 

that an alteration in the level of any splice factor, whether it is increased or 

decreased can have an effect on alternative splicing patterns.    

SRPK1 has been suggested as a potential oncogene by Zhou et al. (2013) as it has 

been shown to affect proliferation, malignancy and tumour growth in 

hepatocellular carcinoma. SRPK1 expression has been found to be elevated in 

breast, colon, pancreatic, lung, melanoma and prostate cancers. Similarly CLK1 has 

been found to be overexpressed in erythroleukaemia (Hayes, Carrigan and Miller, 

2007; Gout et al., 2012; Gammons et al., 2014; Mavrou et al., 2014; Garcia-

Sacristan et al., 2005).  

Members of the heterogenous nuclear ribonucleoprotein (hnRNP) A/B family and 

SR protein family can antagonise one another when binding to SREs (reviewed in 

Kedzierska et al., 2017). In general, SR proteins bind to exonic splicing enhancers 
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(ESEs), which promote exon inclusion, whereas hnRNPs bind to exonic and intronic 

splicing silencers (ESS and ISS) to promote exon exclusion (reviewed in Jean-

Philippe, Paz and Caputi, 2013). Therefore, changes in the molar ratio of hnRNP 

protein to SR protein in the nucleus can affect splicing. HnRNP A1 has been linked 

to cancer progression. A recent paper has implicated hnRNP A1 in migration (Wang 

et al., 2017), and Zerbe et al. (2004) showed an elevated level of nuclear hnRNP A1 

protein in tumours compared to surrounding non-neoplastic cells using an in vivo 

model of mouse lung tumorigenesis. Furthermore, increased hnRNP A1 expression 

has been found in a number of cancers; including glioma and colorectal cancers 

(David et al., 2010; Park et al., 2016). Therefore, it is thought that hnRNP A1 is 

involved in the promotion of cancer.  

Src-associated substrate in mitosis of 68kDa (SAM68) is a splice factor that is 

implicated in various cancer-driving phenotypes, including; cell cycle progression, 

apoptosis and tumourigenesis (Frisone et al., 2015). SAM68 expression was found 

to be elevated in breast cancer where it is found to have a role in cell proliferation 

and invasiveness (Song et al., 2010), and in colon cancer, SAM68 is found to have a 

role in epithelial-to-mesenchymal transition through a mechanism that involves 

SRSF1 (Valacca et al., 2010). Recently, SAM68 has been identified as a regulator of 

survivin-ΔEx3 splicing (Gaytan-Cervantes et al., 2017), which as discussed in chapter 

3 is an anti-apoptotic isoform. Furthermore, SAM68 along with hnRNP A1 has been 

linked to regulation of BCL-x splicing in prostate and breast cancers (Bielli et al., 

2014), and therefore may regulate splicing of other cancer-associated genes in this 

study.  
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Human antigen R (HuR) is a RNA binding protein that is found to be up-regulated in 

various cancers, such as non-small cell lung cancer (Wang et al., 2009); Glioma 

(Filippova et al., 2011); ovarian cancer (Huang et al., 2016); meningioma (Gauchotte 

et al., 2017). HuR regulates many cancer-driving processes, such as; proliferation, 

angiogenesis, migration, invasion, metastasis (Dormoy-Raclet et al., 2007; Wang et 

al., 2009; Kakuguchi et al., 2010; Muralidharan et al., 2014; Muralidharan et al., 

2015; Huang et al., 2016; Muralidharan et al., 2017). Furthermore, HuR is thought 

to play a role in chemotherapeutic resistance (Romeo et al., 2016; Blanco et al., 

2016); and inhibition of HuR has been shown to radiosensitise human breast cancer 

cells (Mehta et al., 2016), which suggests that targeting of HuR could aid in 

improving existing cancer therapies.  

 

4.1.2 Role of RNA binding proteins during cellular stress 

It has been shown previously that environmental stresses can affect splicing. 

Ischemia treatment using an inadequate blood supply for one hour and osmotic 

shock have both been shown to alter splice site selection and lead to changes in the 

cytoplasmic localisation of hnRNP A1 and SAM68 (Daoud, 2002). More recently, 

HuR and hnRNP A1 have been shown to leave the nucleus and co-localise into 

cytoplasmic stress granules in response to heat stress (Papadopoulou et al., 2013). 

In contrast, cellular stress has also been shown to increase nuclear localisation of 

SRPK1, which can induce nuclear speckle enlargement (Zhong et al., 2009). In 

addition, there is evidence that heat shock and osmotic stress inhibits pre-mRNA 



159 

 

splicing and causes de-phosphorylation of SR proteins, which affects their protein-

protein and protein-RNA interactions, intracellular localisation and trafficking, and 

ultimately the splicing of pre-mRNA (Shin et al., 2004; Shi and Manley, 2007; Naro 

and Sette, 2013).  

This chapter will focus on the effect of hypoxic stress on the expression of a 

selection of key splice factors and kinases that have been associated with cancer. 

SRPK1 and CLK1 are able to regulate the localisation of SR proteins, such as SRSF1 

and so the localisation of SRSF1, SRPK1 and CLK1 will also be assessed.  

 

 

 

4.2 Examination of the promoters of splice factors and splice factor 

kinases for Hypoxia Inducible Factor (HIF) response elements 

Several publications have identified a core HIF response element 5’-RCGTG-3’ that 

is conserved from mammals (Wenger, Stiehl and Camenisch, 2005; Schӧdel et al., 

2011) to zebrafish (Greenald et al., 2015). Therefore, the promoters of a number of 

selected splice factors and splice factor kinases  were examined for HIF response 

elements. The Eukaryotic Promoter database was used with parameters set to -

1000 to +100 of the transcription start site as HIF-1 was found to mostly bind close 

to the transcription start site (Schӧdel et al., 2011). The position of the HIF response 

elements in comparison of the transcription start site is illustrated in Figure 4.1. It 

was found that all of the genes analysed apart from SRPK1 had at least one HIF 

response element element within -1000 and +100 of the transcription start site. 



160 

 

SRSF1 and SAM68 were of particular interest as these genes had five and four HIF 

response elements in their promoter regions respectively. 

  

 

Figure 4.1: Illustration of core hypoxia Inducible factor (HIF) response elements 5’-RCGTG-3’ 
in the promoters of a selection of key splice factor and splice factor kinase genes. HIF 
response element sequences are depicted by the blue boxes. Red boxes signify the beginning 
and end of the promoter sequence studied positioned -1000 and +100 around the 
transcription start site.  
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4.3 The effect of hypoxia on the expression of splice factors and 

kinases 

4.3.1 Examining the changes in expression of splice factors and splice factor kinases 

at the RNA level in hypoxia 

Normoxia and hypoxia samples were generated in the PC3 cell line and analysed to 

examine the effect of hypoxia on the expression of the splice factors and splice 

factor kinases (see Section 4.1) (SRSF1, SRSF2, SRSF3, SAM68, HuR, HnRNP A1, CLK1 

and SRPK1). Their expression was normalised to the Ubiquitin C (UBC) housekeeping 

gene and changes in gene expression were calculated.. It was found that the 

expression of all the genes analysed significantly increased during hypoxia, with 

most genes increasing by approximately 2-fold, with the exceptions of CLK1 (1.5-

fold), HnRNP A1 (4-fold) and SRSF3 (4-fold)   (Figure 4.2). This included SRPK1 

despite the absence of consensus HRE elements in the promoter region analysed 

(Figure 4.1).   

 

4.3.2 Examining protein production of CLK1, SRPK1 and SRSF1 in hypoxia  

The protein production of CLK1, SRPK1 and SRSF1 was examined in the PC3 cell line. 

CLK1 and SRSF1 protein production was found to increase in hypoxia in both 

experimental replicates (Figure 4.3A, B and C). SRPK1 protein production did not 

change at 24 and 48 hour hypoxia (Figure 4.3D), which suggests that hypoxia does 

not affect SRPK1 protein expression. However, it must be noted that as results are 



162 

 

not based on n=3, statistical analysis or robust conclusions can be made on this 

data; it can only give an indication.  

 

Figure 4.2: The effect of hypoxia on gene expression of SR proteins and SR protein kinases 
determined using qPCR.  The expression of splice factors (SRSF1, SRSF2, SRSF3, SAM68, HuR and 
HnRNP A1) and splice factor kinases (SRPK1 and CLK1) was normalised to the UBC housekeeping 
gene. All genes apart from the UBC housekeeping gene were found to not be either normally 
distributed or showed no homogeneity of variance using the Shapiro-Wilks and Bartlett’s tests, 
respectively. The Mann-Whitney U test was therefore applied to data obtained. A student’s T-test 
was applied to the data obtained for the UBC housekeeping gene. There were three technical 
replicates for each gene at each treatment in the qPCR plate and five experimental repeats. The 
error bars show 95% confidence intervals for the data. Treatment was for 48h and 1% oxygen was 
used for hypoxia treatment. ** = p<0.01; *** = p<0.001. 

 

*** *** *** *** *** *** ** *** 
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Figure 4.3: CLK1, SRSF1, CA IX and SRPK1 protein production after hypoxia treatment in PC3 
cells. (A) CLK1 and SRSF1 protein production after 48h hypoxia treatment. (n=2). (B) CLK1 and 
(C) SRSF1 normalisation to the β-actin loading control. (D) SRPK1 protein expression after 24h 
and 48h hypoxia treatment respectively (n=1). β-actin was used as a loading control and 1% 
oxygen was used to achieve hypoxia. 

A 

C 
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4.3.3 The effect of hypoxia on CLK1 alternative splicing  

CLK1 has been found to be alternatively spliced to produce two isoforms in addition 

to the full-length transcript (Figure 4.4A). An isoform which skips exon 4 produces a 

truncated non-functional CLK1 and is targeted by the nonsense-mediated decay  

pathway (Duncan et al., 1997). A more recently discovered isoform that retains 

introns 3 and 4 has been shown to be induced by heat shock and osmotic stress; 

intron retention also results in non-functional CLK1 (Ninomiya, Kataoka and 

Hagiwara, 2011). A reduction in intron retention is thought to be involved in the 

reinstatement of splicing after environmental stress and rapid phosphorylation 

recovery of SR proteins (Ninomiya, Kataoka and Hagiwara, 2011). Therefore, the 

effect of hypoxia on the splicing of CLK1 was investigated.  

The same normoxia and hypoxia samples that were used in Chapter three were 

amplified with CLK1 primers specific for the investigation of exon 4 skipping or 

intron 4 retention. There was no indication that hypoxia affected intron 4 inclusion 

or skipping (Figure 4.4).  
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Figure 4.4: The effect of hypoxia on the alternative splicing of CLK1. (A) Schematic 
illustration of the full-length, exon 4 skipping and intron 3 & 4 retention pre-mRNAs of CLK1 
along with exons (green boxes), introns (blue lines) and location of the primers (F = forward 
primer; R = reverse primer), (B) Exon 4 cassette splicing PCR gel and (C) respective average 
percentage exon inclusion (%ψ) after normoxic or hypoxic treatment (n=5). (D) Intron 4 
inclusion and exclusion splice isoform expression PCR gel and (E) respective average 
percentage intron 4 inclusion (%ψ) after normoxic or hypoxic treatment (n=5). Standard PCR 
was performed using the following conditions; 94ᴼC for 2 min, 94ᴼC for 30 sec, 58ᴼC for 30 
sec, 72ᴼC for 30 sec, 72ᴼC for 5 minutes with 35 cycles. Primer sequences can be found in the 
methods section. Treatment was for 48h and hypoxia was performed at 1% oxygen. The 95% 
confidence interval is displayed as error bars. The Shapiro-Wilks test showed that the exon 4 
data was not normally distributed, the Bartlett’s test showed that it was homoschedastic, and 
so a Mann Whitney U test was conducted to test the statistical significance of the data. The 
data was not found to be significant at the 5% level but the test revealed that the data was 
significant at the 10% level, suggesting that with further repeats exon 4 splicing may be found 
to be significant. Shapiro-Wilks test showed that the intron 4 data was normally distributed, 
the Bartlett’s test showed that the data was heteroschedastic, and so a Mann Whitney U test 
was applied to the data. Hypoxic induction of intron 4 was found not to be significant.    
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4.3.4 The effect of hypoxia on Serine/arginine-rich (SR) protein phosphorylation 

The binding of serine/arginine-rich (SR) proteins to pre-mRNA is heavily regulated 

by phosphorylation of the serine/arginine domain (RS domain) (Xiao and Manley, 

1998).  Therefore, the effect of hypoxia on the phosphorylation state of SR proteins 

was investigated using the SR (1H4) monoclonal antibody (Santa Cruz 

Biotechnology, U.S.A), which is specific for detection of phosphorylated SR proteins. 

Bands were detected which were of the right size for SRSF4, SRSF5 and SRSF6; 

however as this was based on n=1, the results have to be taken with caution.  

Therefore, these results show a suggestion that the phosphorylation status of 

SRSF4 and SRSF5 is increased in hypoxia, and the phosphorylation of SRSF6 is not 

affected (Figure 4.5), but further repeats need to be conducted in order to deduce 

whether this is the case.    

 

Figure 4.5: The effect of hypoxia on the phosphorylation status of SR proteins in PC3 cells. 
Bands of the right size for SRSF4, SRSF5 and SRSF6 were detected with the SR (1H4) 
monoclonal antibody (Santa Cruz Biotechnology, U.S.A). Hypoxia treatment time was 48h at 
1% oxygen. β-actin was used as a loading control (n=1). 
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4.4 The effect of hypoxia on the localisation of CLK1, SRPK1 and SRSF1 

SRSF1 is thought to be translocated from the cytoplasm to the nucleus through 

phosphorylation by SRPK1; and in the nucleus CLK1 promotes its hyper-

phosphorylation and release from nuclear speckles (see Section 1.3.3). Therefore, 

the localisation of CLK1, SRPK1 and SRSF1 in hypoxia was investigated.  

 

4.4.1 Protein fractionation to examine intracellular localisation 

Protein fractionation was used to examine the presence of each protein in nuclear 

or crude cytoplasmic extracts, which also contained the cell membrane. It was 

found that hypoxia did not change the nuclear localisation of SRSF1 (Figure 4.6A). 

SRPK1 expression was found mainly in the cytoplasm during normoxia but there 

was an increase in nuclear SRPK1 expression in hypoxia suggesting that the protein 

may be found more evenly distributed throughout the nucleus and cytoplasm 

during hypoxia (Figure 4.6B). Although the majority of the literature has reported 

CLK1 to be localised mainly in the nucleus, the results here show that CLK1 is 

localised to the cytoplasm during both treatments (Figure 4.6C). HSP90 was used as 

a cytoplasmic control; however although several attempts were made to show 

RNA-polymerase-II-subunit-B2 expression as a nuclear control, it was not detected 

and therefore could not be included in the results.  
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Figure 4.6: Protein expression of (A) SRSF1, (B) SRPK1 and (C) CLK1 in nucleic and crude 
cytoplasmic fractions in normoxia and hypoxia. HSP90 was used as a cytoplasmic control. Hypoxia 
treatment time was 48h at 1% oxygen (n=1). 
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4.4.2 Analysis of intracellular localisation of CLK1 via immunofluorescence 

As the protein fractionation assay unexpectedly showed that CLK1 is localised to 

the cytoplasm, further analysis of CLK1 localisation was conducted using 

immunocytochemistry using the same CLK1 antibody. Figure 4.7 shows that CLK1 is 

found mostly outside the nucleus, although in the hypoxia sample there appeared 

to be some bright red spots in the middle of the some of the nuclei (Figure 4.7).  

Confocal microscopy was used to provide further evidence for the localisation of 

CLK1 in response to hypoxia. Common to the first immunocytochemistry assay, 

DAPI was used to stain the cell nuclei, but in the confocal slides the lipid dye 

Vybrant DiO was also used as a crude control for the cytoplasm, as described in 

Section 2.16. Manders’ overlap coefficients (MOC), M1 and M2 were calculated 

using the Volocity Colocalisation software to assess the percentage of colocalisation 

between CLK1 and either DAPI stain or the lipid stain. 

DAPI was shown to co-localise to DiO, with most values above 50% co-localisation. 

This suggests a degree of overlap between the DAPI and DiO stain. The DiO stain 

was used to stain lipids in the plasma membrane as a crude stain for the cytoplasm. 

However, the stain targets lipids, which can be also found in intracellular 

membranes, such as those that encapsulate the Golgi body, mitochondria and the 

nucleus. Therefore, co-localisation between the DAPI and lipid stains could be due 

to localisation of DAPI to the nucleus and lipid stain localisation to the Golgi body or 

nuclear membrane, which may be in close proximity to one another. When it is also 

taken into consideration that some of the lipid signals were oversaturated, a high 
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level of colocalisation between DAPI and the lipid dyes can be explained. Due to the 

crude nature of the control DiO lipid stain for the cytoplasm, CLK1 localisation can 

only be stated as inside or outside of the nucleus.  

An illustration depicting CLK1 localisation using the confocal can be found in figure 

4.8A. During normoxia, it was found that an average of 65% of CLK1 was co-

localised with the DiO stain compared to only 10% that co-localised with DAPI 

(Figure 4.8B). The rest of the CLK1 signal was either localised elsewhere or due to 

background. This suggests that CLK1 is mainly found outside the nucleus during 

normoxia. During hypoxia, an average of 54% of CLK1 was found localised to DiO, 

whereas 12% was found localised to DAPI (Figure 4.8B). This indicates that CLK1 is 

also predominantly found outside the nucleus during hypoxia.   

SRSF1 and SRPK1 cellular distribution was also examined using the same antibodies 

as in the protein fractionation assay, and a DiI lipid stain. However, the background 

was too high and so these results are not included in this study.  
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Figure 4.7: Localisation of CLK1 during hypoxia using immunofluorescence coupled with 
microscopy. Hypoxia treatment was for 48h at 1% oxygen. DAPI stain was used to illustrate 
the cell nuclei in the immunofluorescence assay. Antibodies used were; CLK1 (Abiocode: 
R1471-1) and anti-rabbit IgG HRP-linked antibody (Cell Signalling: ab150080). 
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Figure 4.8: Colocalisation of CLK1 with the nucleus (DAPI) or DiO lipid stain. (A) Illustration 
depicting confocal localisation of CLK1. DAPI stain was used to show the cell nucleus and DiO 
lipid stain was used to show the cell lipid membranes and act as a crude cytoplasmic control. 
Hypoxia samples were incubated for 48h in 1% oxygen. Scale bars show 50µm. (B) Percentage 
colocalisation values obtained from Volocity software using Manders’ Overlap Coefficients 
(MOC). Antibodies used were CLK1 (Abiocode: R1471-1) and anti-rabbit IgG HRP-linked 
antibody (Cell Signalling: ab150080). Average calculations were based on 3 seperate images 
taken from a CLK1 normoxia slide and 4 seperate images taken from CLK1 hypoxia slide. 
Images were taken from one entire experiment and so significance cannot be deduced. 

 

 

B 

A 
DAPI DiO CLK1 Composite 
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4.5 Discussion 

4.5.1 HIF Response Elements (HREs) 

The promoters of a selection of key SR proteins and SR protein kinases were 

examined using the Eukaryotic Promoter Database for the core HIF response 

element (HRE) 5’-RCGTG-3’. This HRE has been reported to be highly conserved by 

various groups (Wenger, Stiehl and Camenisch, 2005; Schӧdel et al., 2011; Greenald 

et al., 2015). It was found that all of the genes investigated bar SRPK1 had at least 

one HRE in their promoters, when the parameters were set to -1000 to +100 of the 

transcription start site (TSS) (Figure 4.1).  

It must be noted that although the HIF response element motif is present in the 

promoter of these genes, it is not concrete evidence that HIF will bind to these 

promoters and initiate transcription from them, but just gives an indication that this 

is a possibility. This is because HIF elements have been reported to act from further 

away than the TSS, and have even been reported to skip the consecutive gene and 

activate another more distant promoter (Schӧdel et al., 2011). This may be 

explained by the fact that in reality, DNA in three-dimensional form allows some 

genes to be closer than perceived in two-dimensional form and therefore HREs may 

act on genes that are adjacent to one another.  

In addition, some of the genes contained more than one HRE in their promoter, as 

seen with SRSF1 that contained five possible HREs. This suggests that there is a 

higher probability that SRSF1 has at least one coding HRE for HIF binding, but again 

this remains to be determined. Schodel et al. (2011) highlighted that identifying 
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potential HIF-binding sites through distance from the TSS and mammalian 

conservation of the motif is limited as this approach does not allow any mechanistic 

insight into the factors, which may prevent HIF from binding to the motif. Also 

there may be other conditions that dictate HIF-dependent transcription in addition 

to the HRE motif during hypoxia which may not have yet been revealed. This can be 

resolved using a chromatin immunoprecipitation (chIP) assay, which determines 

protein-DNA interactions at particular locations within the genome (Nelson et al., 

2006), and therefore whether HIF binds to particular HRE locations at projected 

locations in the genome. 

Jakubauskiene et al. (2015) reported five potential HIF binding sites in the CLK1 

promoter region, but the group used the motif 5’-NCGTG-3’. ‘N’ stands for any 

preceding nucleotide to the ‘CGTG’ motif, whereas this analysis used ‘R’, which 

stands for a preceding purine (A or G) nucleotide as also used in papers by Wenger, 

Stiehl and Camenisch (2005), Schӧdel et al. (2011) and Greenald et al. (2015). This 

narrowed down the five potential HIF binding sites to two potential HREs. The same 

group performed chIP analysis to deduce whether enhanced CLK1 expression in 

hypoxia was HIF-dependent and found that HIF-1α was recruited to the CLK1 

promoter during hypoxia (Jakubauskiene et al., 2015). A similar investigation into 

whether HIF-1α is recruited to the promoters of the other genes studied during 

hypoxia would be of interest. 

An interesting finding in the literature is that HIF does not play a direct role in gene 

down-regulation. This is evidenced by a lack of HIF binding sites in hypoxia-down-

regulated genes (Ortiz-Barahona et al., 2010) and also the result from a chIP-chip 
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study which showed non-association between HIF-binding and transcriptional 

downregulation (Mole et al., 2009).  It is suggested by Ortiz-Barahona et al. (2010) 

that observed transcriptional downregulation triggered by hypoxia is either HIF-

independent or as a result of activation by a downstream effector of HIF. 

 

4.5.2 Using an appropriate housekeeping gene for normalisation in qPCR studies 

Quantitative real-time PCR is a very sensitive method for deducing a change in the 

expression of a given gene. Therefore, it is important to use a reliable housekeeping 

gene for normalisation, whose expression remains stable during treatment. Several 

studies have highlighted the issue that a given housekeeping gene may be stable in 

some treatments but vary in others, and some have even shown that housekeeping 

gene stability can vary between cell lines (Caradec et al., 2010; Vajda et al., 2013; 

Powell et al., 2014; van den Bergen et al., 2009; Cinar et al., 2013). There are 

numerous housekeeping gene assays available to be able to pinpoint the best 

housekeeping gene for each individual experiment. In addition, RNA molecules 

generated synthetically or cloned from another species can be incorporated into 

the qPCR mix, which is known as a spike (Huggett et al., 2005). Plant RNA is one of 

the most widely used methods of spiking samples for normalisation. The rationale 

behind normalisation to a spike is that foreign RNA will not alter when exposed to 

treatment that may affect housekeeping genes (Huggett et al., 2005). Although 

spiking is considered the most accurate method for normalisation, a lot of time is 

required to generate the spike, and so housekeeping genes are still widely used by 

research groups but with caution. Melt curves can provide information on the 
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specificity of the primers used. All melt curves showed just one peak, which showed 

that the primers used were specific. 

Vajda et al. (2013) investigated the effect of hypoxia on a range of housekeeping 

genes in a variety of prostate cancer cell lines and found that UBC remained the 

most stable housekeeping gene, followed by β-actin. Therefore, samples were 

normalised to UBC and it was found that the gene expression of all the splice 

factors and splice factor kinases studied were significantly increased during hypoxia 

(Figure 4.2). This is consistent with the previous finding that all genes except SRPK1 

contained HREs in the promoter region, which suggests that these genes are 

directly targeted by HIF during hypoxia. SRPK1 does not contain a HRE in the 

promoter region, which suggests that this gene could be activated downstream of 

the HIF pathway or another pathway that is activated during the hypoxic response. 

Another reason could be that the HRE element that is not in the promoter region of 

SRPK1. As stated before it is reported that the HRE could even be situated in the 

promoter of the preceeding gene (Schӧdel et al., 2011). 

 

4.5.3 Hypoxia increased the expression of selected splice factors in PC3 cells 

Recent studies have also uncovered alterations in splice factor expression during 

hypoxia. HuR protein expression was increased during hypoxia in meningioma, and 

HuR knockdown was shown to decrease cell growth (Gauchotte et al., 2017). This 

correlates with previous research, which shows that HuR mediates cell proliferation 

in cancer cell lines (Kullmann et al., 2002), and builds on the finding that hypoxia 
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correlates with HuR expression in a meningioma cell line (Sakuma et al., 2008). 

Furthermore, the group also reported a positive correlation between HuR 

expression and tumour grade, and concluded that cytoplasmic HuR could be a 

marker of poor prognosis in meningioma (Gauchotte et al., 2017). In this thesis 

chapter, HuR mRNA expression is increased in hypoxia in PC3 prostate cancer cells, 

which provides more evidence that HuR expression is increased during hypoxia. 

However, whether or not the increased HuR expression is due to nuclear or 

cytoplasmic HuR remains to be elucidated. The finding of an increased cytoplasmic 

HuR during hypoxia in meningioma (Gauchotte et al., 2017) suggests that it is likely 

that an increase in cytoplasmic HuR is occurring in the PC3 cell line. Furthermore, 

there has been evidence to show that during heat stress, HuR exits the nucleus to 

co-localise into cytoplasmic stress granules (Papadopoulou et al., 2013), and so it is 

suggested that this also occurs during hypoxic stress. 

Moreover, increased expression of SAM68 and hnRNP A1 during hypoxia has also 

been measured in HeLa cells (Bebee et al., 2012). Like HuR, both of these proteins 

have been shown to relocate to stress granules during oxidative stress, which is 

suggested to be due to additional functions of the proteins in RNA metabolism 

(Guil, Long and Caceres, 2006; Henao-Mejia and He, 2009; Papdopoulou et al.,  

2013).   

In contrast to the evidence displayed in this chapter, there has been evidence in 

HeLa cells that hypoxia does not alter SR protein expression at the mRNA or protein 

level; in fact if anything hypoxia appeared to decrease the expression of some SR 

proteins (Jakubauskiene et al., 2015). This could be due to differences in hypoxic 
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treatment time and/or cell line; Jakubauskiene et al. (2015) used 24h hypoxia 

treatment in HeLa cells, whereas this study used 48h hypoxia treatment in PC3 

cells. The paper did however state evidence that SR protein phosphorylation is 

increased in hypoxia, which suggests that SR protein activity is increased during 

hypoxia. The discussion on the effect of hypoxia on phosphorylation status of SR 

proteins appears later in this chaper. Recently, in pluripotent stem cell-derived 

cardiomyocytes, Stoehr et al. (2016) provided evidence for increased stabilisation 

of SRSF2 during treatment with the prolyl hydroxylation inhibitor, 

dimethyloxalylglycine (DMOG). During hypoxia, prolyl hydroxylation is inhibited, 

which stabilises HIF-mediated transcription. Therefore, this suggests that the 

expression of SR proteins during hypoxia may be specific to a given cell type.   

 

4.5.4 The effect of hypoxia on CLK1, SRPK1 and SRSF1 protein expression 

It was found that CLK1 and SRSF1 protein expression increased in hypoxia, whereas 

SRPK1 protein expression was unaffected by hypoxia (Figure 4.3 A, B and C). 

Eisenreich et al. (2013) provides supportive evidence in A459 lung cells that the 

expression of CLK1 increases at both the mRNA and protein level after two hours of 

hypoxia treatment using 3% oxygen. Furthermore, Jakubauskiene et al. (2015) 

increased expression of CLK1, SRPK1 and SRPK2 at both the mRNA and protein 

levels in HeLa cells, which backs up the finding that CLK1 expression is elevated 

during hypoxia. However, in this study in PC3 cells, SRPK1 expression was shown to 

be significantly up-regulated at the mRNA level, but not at the protein level, which 
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suggests that hypoxic regulation of SRPK1 protein may be cell type specific. The 

Jakubauskiene group used a treatment time of 24h hypoxia, whereas this study 

used 48h hypoxia conditioning, which may also explain the difference in results. 

Furthermore, in glioma cells hypoxia resulted in lower mRNA expression of SRPK1 

and SRSF1 (Wu et al., 2013), which suggests differential expression of SRPK1 

depending on cell type. The fact that hypoxia caused the gene expression of SRPK1 

to significantly increase but the protein level was unchanged could be explained by 

post-translational modifications to SRPK1, such as an increase in nonsense-

mediated decay of the mRNA transcripts or RNA interference of the mRNA.  

 

4.5.5 The effect of hypoxia on splicing of CLK1 

CLK1 is alternatively spliced to produce two further transcripts in addition to the 

full-length isoform (Figure 4.4A). The skipping of exon four produces a truncated 

isoform, which is thought to regulate the amount of active CLK1 protein (Duncan et 

al., 1997). It was found that over-expression of full-length CLK1 promoted exon 4 

skipping, but an elevated level of the truncated protein promoted the inclusion of 

exon 4 and therefore increased the amount of full-length CLK1 (Duncan et al., 

1997). Ninomiya, Kataoka and Hagiwara (2011) showed that the retention of 

introns 3 and 4 produces a protein that is thought to be involved in rapid recovery 

of the splicing reaction and fast phosphorylation of SR proteins after heat shock or 

osmotic environmental stresses. The group showed that this is achieved through 

step-wise splicing of the introns to produce the mature active form of the protein.  
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The qPCR primers for CLK1 spanned across exons 9 and 10 and therefore only 

picked up the total expression of all CLK1 isoforms. This is good practice for qPCR in 

order for accurate measurement of expression. Therefore, it was thought that 

perhaps the increase in CLK1 protein expression could be due to a change in the 

alternative splicing of CLK1. However, there was no indication that hypoxia had an 

effect on exon skipping or intron retention (Figure 4.4).  

 

4.5.6 The effect of hypoxia on the phosphorylation of SR proteins 

The phosphorylation of SR proteins enables them to form the spliceosome and bind 

to transcription sites in the pre-mRNA for the initiation of splicing. In addition, the 

phosphorylation status of SR proteins can affect the cellular localisation of the 

proteins (reviewed in Naro and Sette, 2013). Heat shock and osmotic stress have 

been shown to cause de-phosphorylation of SR proteins SRSF4 and SRSF10 (Shin et 

al., 2004; Shi et al., 2006; Ninomiya, Kataoka and Hagiwara, 2011). In addition, 

there is evidence to show that CLK1 and CLK4 are involved in the re-

phosphorylation of SRSF4, SRSF5, SRSF6 and SRSF10 after cellular stress (Ninomiya, 

Karaoka and Hagiwara, 2011). Therefore, the effect of hypoxia on SR protein 

phosphorylation was investigated.   

The SR (1H4) antibody (Santa Cruz Biotechnology), which is reactive to 

phosphorylated RS domains was used to examine levels of phosphorylated SR 

proteins. The antibody detected bands, which are the correct size for SRSF4, SRSF5 

and SRSF6. There was a suggestion that the phosphorylation of SRSF4 and SRSF5 
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was increased during hypoxia (Figure 4.5); however as this observation is based on 

n=1, futher investigations need to be executed to conclude if this is the case. 

Eisenreich et al. (2013) also found that hypoxia induced phosphorylation of SRSF4. 

Therefore, it can be suggested that SRSF4 and SRSF5 phosphorylation may be 

involved in the hypoxia response. Furthermore, Jakubauskiene et al. (2015) 

provided evidence that SR proteins were hyper-phosphorylated and interacted 

more strongly with RNA during hypoxia, which suggests an increased in SR protein-

mediated regulation of splicing during hypoxia.  

 

4.5.7 The effect of hypoxia on the localisation of CLK1, SRPK1 and SRSF1 

Results obtained for this section are based on n=1 and so only crude assumptions 

can be made about these results and further experimental repeats need to be 

conducted in order to determine whether the conclusions made are true. 

Therefore, these conclusions need to be treated with caution. The protein 

fractionation assay suggested a nuclear localisation for SRSF1 during both normoxia 

and hypoxia (Figure 4.6A). It is suggested that SRSF1 may be localised to the nucleus 

during hypoxia, as SRSF1 is found to be a HIF-regulated gene and therefore nuclear 

localisation would allow the protein to regulate splicing to favour isoforms that are 

required during oxygen deprivation.  

Protein fractionation suggested that SRPK1 was localised to the cytoplasm during 

normoxia, but during hypoxia SRPK1 localisation was split between the nucleus and 

the cytoplasm (Figure 4.6B). The literature provides evidence that SRPK1 resides in 
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the cytoplasm until the cell is stimulated by a signal (Ding et al., 2006). Zhong et al. 

(2009) showed that SRPKs are anchored to the cytoplasm by molecular chaperones, 

but osmotic stress is able to translocate SRPKs to the nucleus to regulate SR protein 

phosphorylation and ultimately alternative splicing. The results displayed here for 

suggest that SRPK1 translocates into the nucleus during hypoxia. When considering 

the results of the study by Zhong et al. (2009) along with the results displayed in 

this chapter, it can be suggested that cellular stress causes SRPK1 to translocate to 

the nucleus. Furthermore, it has been shown that AKT is able to bind to SRPK1 and 

stimulate auto-phosphorylation of the SRPK1 protein, which ultimately leads to its 

nuclear translocation where it can perform its regulatory function of SR proteins 

(Zhou et al., 2012). SRPK1 protein levels were not found to change during hypoxia 

(Figure 4.3D); however, this mechanism would increase SRPK1 expression in the 

nucleus, without the need to increase overall expression.   

It was suggested in the confocal assay that there may be an overlap between the 

DAPI and lipid stains, as DAPI was found to colocalise with both lipid stains in the 

majority of experiments. However, this could also be explained by the fact that 

some of the lipid signals were found to be saturated. This would cause a glow like 

effect around the signal which could be mistaken for colocalisation with DAPI.  

The confocal assay provides localisation information for all the proteins throughout 

the cell, whereas the immunofluorescence assay alone assesses the localisation of 

the proteins at a particular cross-section of the cell. Therefore, if a protein resides 

in the nucleus but the cross-section examined also contains cytoplasm that is just 

above that nucleus, it could appear that the protein is in the cytoplasm or vice-
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versa. Therefore, confocal imaging is thought to be more accurate in determining 

the localisation of a protein. However, due to time constraints, the confocal assay 

was only run once and a few images were created from each slide generated. Some 

images were not viable for analysis and so for some of the protein treatments only 

one set of values was calculated. Therefore, results have to be interpreted with 

some caution.   

A surprising observation was shown with the localisation of the CLK1 protein using 

protein fractionation coupled with western blotting and immunofluorescence 

coupled with microscopy. CLK1 has previously been described throughout the 

literature as a nuclear protein that phosphorylates the RS2 domain of SRSF1 

releasing it from nuclear speckle storage to regulate gene splicing (Aubol et al., 

2013; Corkery et al., 2015). However, results displayed in this chapter have shown 

CLK1 to reside in the cytoplasm during normoxia and hypoxia (Figures 4.6C, 4.7 and 

4.8). Previous studies that localise CLK1 to nuclear speckles have been conducted 

on over-expressed CLK1 protein and therefore could misrepresent the localisation 

of the protein (Menegay et al., 2000). However, CLK1 is also found to possess 

motifs for nuclear localisation in its N-terminus (Menegay et al., 2000). As 

mentioned previously, CLK1 is alternatively spliced, and it was found through 

subcellular fractionation of NIH-3T3 cells that mature CLK1 resided in the 

cytoplasm, whereas intron-retained CLK1 was localised to the nucleus (Ninomiya, 

Kataoka and Hagiwara, 2011). Therefore, previous studies may have detected the 

intron-retained version of CLK1, rather than the active form of the protein. The 

same CLK1 antibody was used for the immunoblot and immunocytochemistry 
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experiments, and so it is no surprise that a similar subcellular localisation of CLK1 

was observed in both assays. Other previous studies that declare CLK1 as a nuclear 

protein may have used different antibodies and so further investigations are 

required with use of other CLK1 antibodies in different cell lines.  

Menegay et al. (2000) provides some insight into these conflicting results, after the 

group also found CLK1 to reside in the cytoplasm of PC12 cells when using 

immunohistochemical staining. The group investigated various fixation agents for 

immunostaining, and found that whilst methanol and light (0.4%) 

paraformaldehyde fixing agents resulted in nuclear staining of CLK1, fixing in 

Bouin’s fixative or 4% paraformaldehyde resulted in cytoplasmic staining of the 

proteins. This is due to the fact that fixation in methanol precipitates proteins but 

does not cross-link them, whereas Bouin’s fixative and 4% paraformaldehyde both 

precipitates and cross-links proteins and therefore prevents any movement of the 

protein during the fixation process (Menegay et al., 2000). Although the results in 

this chapter agree with the Menegay et al. (2000) paper that CLK1 is a cytoplasmic 

protein, the fixative used in the immunofluorescence assay is a methanol/acetone 

mix, which disagrees with the conclusion that methanol based fixatives show CLK1 

to be localised to the nucleus. As all localisation assays show that CLK1 has 

cytoplasmic localisation in normoxia and hypoxia, it can be deduced that CLK1 is 

most likely a cytoplasmic protein, at least in the cell lines used here. More generally 

these results suggest that it might be worth investigating in more detail the 

possibility that CLK1 may contribute to substrate phosphorylation in the cytoplasm 

as well as in the nucleus.    
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 CHAPTER 5:  

The involvement of SAFB1, 

PRPF8 and CLK1 in the 

regulation of alternative splicing 

in hypoxia. 
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5.1 Background 

Carbonic anhydrase 9 (CA IX) is a stable marker for hypoxia (Sobhanifar et al., 2005) 

that has been utilised throughout this project as a hypoxia control. As discussed in 

Section 1.2.4, CA IX is implicated in cellular invasion, migration and ultimately 

metastasis (Svastova and Pastorekova, 2013). A number of groups have conducted 

research into the development of CA IX inhibitors in the hope of producing a novel 

therapeutic for hypoxic tumours (Ahlskog et al., 2009; Nocentini et al., 2015; 

Pastorek and Pastorekova, 2015). CA IX is alternatively spliced to produce an 

isoform that skips exons eight and nine in addition to the full-length isoform 

(Malentacci et al, 2009). Unlike the full-length isoform, the shorter isoform 

produces a truncated protein that is expressed independently of hypoxia 

(Malentacci et al., 2009). Therefore, it is possible that shifting the splicing of CA IX 

to favour the hypoxia-independent isoform could provide an additional cancer 

therapy for hypoxic tumours. For this reason, an investigation into the splice factors 

that control the alternative splicing of CA IX was conducted.      

In Chapter four of this thesis, the splice factor kinase CLK1 and splice factor SRSF1 

were both found to have increased mRNA and protein expression after hypoxia 

treatment. CLK1 phosphorylates the RS domains of SR proteins, which are then able 

to facilitate pre-mRNA splicing. Therefore, it is proposed that an increase in 

expression of CLK1 may increase the phosphorylation of some SR proteins, such as 

SRSF1 and therefore influence alternative splicing to produce splice isoforms that 

enable the cell to cope with the low oxygen levels during hypoxia.  
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5.2 Identifying potential splice factor regulators of CA IX  

A library of 57 splice factor knockdowns, created in the Michigan-Cancer-

Foundation-7 breast cancer cell line by our collaborators (Dr. Roscoe Klinck and his 

team at the RNomics platform at Sherbrooke University, Canada) were utilised to 

assess the effect on CA IX splicing. This enabled the determination of possible splice 

factors involved in the regulation of CA IX alternative splicing. High-throughput 

analysis suggested that scaffold-attachment-factor-B1 (SAFB1) and pre-mRNA-

processing-splicing-factor-8 (PRPF8) splice factor knockdowns switched the splicing 

of CA IX (Figure 5.1). Knockdown of SAFB1  altered the ratio of the full-length CA IX 

isoform to the shorter CA IX  isoform. CA IX-FL was found to be the dominant 

isoform in the lipofectamine control, but knockdown of SAFB1 caused a shift in 

splicing of CA IX, which favoured the shorter CA IX splice variant (lipofectamine 

control: 80% CA IX-FL, 20% CA IX-AS; SAFB1 siRNA: 30% CA IX-FL, 70% CA IX-AS).  

Similarly, PRPF8 knockdown also altered splicing of CA IX. Although the full-length 

variant of CA IX was shown to be the dominant splice variant in both the control 

and PRPF8 knockdown samples, expression of the shorter splice variant of CA IX 

was introduced when PRPF8 was knocked down. This suggests that PRPF8 favours 

splicing of the CA IX-FL isoform. The results abovesuggest that both SAFB1 and 

PRPF8 are required for the expression of the longer CA IX splice variant (Figure 5.1). 

However, as these findings are based on a single experiment, further investigation 

is required to deduce whether or not this is the case. Therefore, siRNAs for PRPF8 
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and SAFB1 were applied to PC3 cells in order to examine whether or not these two 

splice factors affected the splicing of CA IX in a prostate cancer cell line. 

 

Figure 5.1: Effect of SAFB1 and PRPF8 siRNA on the alternative splicing of CA IX. 
Collaborators at Sherbrooke University, Canada subjected a sample library of 57 siRNA splice 
factor knockdowns in the MCF-7 breast cancer cell line for high-throughput PCR across the CA 
IX cassetted exons 8 & 9. Lipofectamine was used as a vector control n=1. SAFB1 and PRPF8 
were identified as splice factors that may change splicing of CA IX. AS = Alternatively Spliced 
variant lacking exons 8 & 9, FL = Full-length variant. 

 

In order to verify whether or not the siRNA knockdowns of PRPF8 and SAFB1 were 

successful, western blots were performed to check the expression level of the 

proteins. The PRPF8 siRNA western blot assay proved to be problematic and 

although many attempts were made to produce a western blot showing control and 

knockdown bands of the large 220kDa PRPF8 protein, a result was not obtained. In 

order to check whether the protein had transferred, the blot was re-probed with a 

slightly smaller protein, VE cadherin. As can be seen in figure 5.2, VE cadherin did 

provide a band of the required size providing evidence of a successful transfer of 

protein to the western blot membrane. As it was not possible to verify the PRPF8 

knockdown, it was not possible to confirm its involvement in CA IX alternative 

splicing, and therefore this  be investigated in future work.    
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Figure 5.2: Confirmation of successful protein transfer using VE Cadherin. PRPF8 antibody 
was not able to detect PRPF8 protein (220KDa) and so VE Cadherin (120KDa) was used to re-
probe the membrane to determine whether there was a successful transfer of protein to the 
blot in order to rule out any experimental error.  

 

Knockdown of SAFB1 using siRNAs  was found to be unsuccessful when normalised 

to the β-actin control , as the expression of SAFB1 protein did not deviate much 

from the control samples that did not contain SAFB1 siRNA. A few other attempts 

were made to try and knockdown SAFB1 but they were also without success. A 

representative western blot is shown in figure 5.3.  

In order to shed some more light on the behaviour of SAFB1 during hypoxia, the 

expression and localisation of SAFB1 during normoxia and hypoxia was examined. It 

was found that SAFB1 protein expression decreased during hypoxia treatment in 

two experimental repeats (Figure 5.4A), which suggests that SAFB1 may not be 

required for the hypoxic response. Conversly, protein fractionation coupled with 

western blotting found that there was a higher expression of SAFB1 protein in the 

nucleus after both normoxia and hypoxia treatment (Figure 5.4B), which suggests 

Expected at 120 kDa  
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that SAFB1 may be translocated into the nucleus to regulate splicing during 

hypoxia. It is proposed that SAFB1 may regulate splicing of some genes during the 

hypoxic response, which is why it is translocated into the nucleus during hypoxia; 

however, perhaps there is a down-regulation of SAFB1 in order for the cell to 

conserve some energy during hypoxic stress. Further experimentation will be 

required to deduce the effect of hypoxia on SAFB1 activity, but this study provides 

an indication that SAFB1 expression and localisation are affected by hypoxia.  
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Figure 5.3: SAFB1 knockdown with siRNA.  A western blot was conducted to show whether 
the SAFB1 siRNA knockdown was successful. (A) SAFB1 and β-actin protein expression. (B) 
SAFB1 protein expression was normalised to the β-actin control using EXCEL software n=1. 
Hypoxic treatment was for 48h at 1% oxygen in a MIC-101 hypoxia chamber at 37°. 

A 

B 
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Figure 5.4: Effect of hypoxia on SAFB1 protein expression and localisation. (A) SAFB1 
protein expression after 48h normoxia and hypoxia treatment at 1% oxygen concentration 
using a MIC-101 hypoxia chamber incubated at 37°C. β-actin (42KDa) was used as a loading 
control. (B) SAFB1 protein localisation after 48h normoxia and hypoxia treatment under the 
same conditions. Protein fractionation produced a nuclear and crude cytoplasmic sample 
which were probed for SAFB1 expression n=2. HSP90 (90KDa) was used as a cytoplasmic 
control.  

 

5.3 Examining the effect of chemical inhibitors of CLK1 and SRPK1 on 

CA IX expression 

In order to investigate whether the splice factor kinases CLK1 and SRPK1 had an 

effect on CA IX expression, 1-(3-ethyl-5-methoxy-2(3H)-benzothiazolylidene)-2-

propanone, (known as TG003, a CLK1 inhibitor) and SPHINX (a SRPK1 inhibitor) 

were used to inhibit the activity of the protein kinases, respectively. Muraki et al. 

A 

B 
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(2004) confirmed that 10 µM TG003 was sufficient to inhibit CLK1 activity and 

Gammons et al. (2013) showed that 10 µM SPHINX inhibited SRPK1 activity so these 

concentrations were used for experiments. TG003 and SPHINX were dissolved in 

DMSO and therefore a DMSO control was also included. In figure 5.5A, DMSO 

appeared to increase the expression of the full-length isoform of CA IX (CAIX-FL). 

However, there was no indication that the same amount of DMSO had an effect on 

CA IX-FL mRNA expression in figure 5.5C. More experiments are required in order to 

deduce whether DMSO affects CA IX-FL mRNA expression. The PCR gel and western 

blot provided no clear evidence that TG003 had an effect on CA IX splicing or 

protein expression (Figure 5.5A and B). In addition, there was no indication that 

SPHINX inhibition of SRPK1 had an effect on CA IX splicing (Figure 5.5C). However, 

as results are based on a single experiment, further repeats are required to deduce 

whether or not this is the case.  

Ideally, a positive control would be used to confirm that the inhibitors were 

working. In later experiments, TG003 (CLK1 inhibitor) was shown to change 

FGFR1OP splicing (section 5.5); however, SPHINX (SRPK1 inhibitor) was not shown 

to alter splicing of any of the genes studied. Expression of the vascular endothelial 

growth factor A (VEGFA) variant VEGF165 has been shown to decrease with SPHINX 

treatment (Gammons et al., 2013), and therefore could act as a positive control for 

future experiments.      
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Figure 5.5: Effect of CLK1 and SRPK1 inhibition on CA IX expression. (A) CA IX isoform 
expression, and (B) average percentage exon inclusion of exons 8 & 9 after treatment with 
the CLK1 inhibitor, TG003 (n=3). Shapiro wilks test and Bartlett’s test were applied to the 
data, and found to not to normally distributed, but homoschedastic. Therefore, a Dunn’s test 
would ideally be applied to the data; however, there were not enough experimental repeats 
to conduct a Dunn’s test and so the statistical significance is unknown. (C) protein expression 
of CA IX after treatment with the CLK1 inhibitor TG003. (D) mRNA expression of CA IX after 
treatment with the SRPK1 inhibitor SPHINX. Treatment was for 48h at 37°C with 10 µM of 
TG003 or SPHINX, respectively. Hypoxia was achieved using 1% oxygen during the 48h 
inhibition in a MIC-101 hypoxia chamber. β-actin was used as a loading control n=1. 
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5.4 The effect of CLK1 and SRPK1 siRNA knockdowns on the 

alternative splicing of cancer-associated genes 

Chapter four presented evidence that CLK1 mRNA and protein expression increased 

with hypoxia treatment, and therefore the effect of CLK1 siRNAs on the alternative 

splicing of the cancer-associated genes identified in Chapter three was investigated. 

In addition, the effect of an SRPK1 siRNA knockdown on the alternative splicing of 

the same cancer-associated genes was also investigated. Evidence was provided for 

successful SRPK1 knockdown (Figure 5.6A), but the western blot of the knockdown 

of CLK1 was unable to show conclusively that CLK1 knockdown had been achieved. 

Therefore, the PCR results displayed for the CLK1 knockdown have to be considered 

with caution. 

RNA extractions taken at the same time as the protein extractions for the siRNA 

experiments were used to generate RT-PCRs. This allowed assessment of the effect 

of SRPK1 and unconfirmed CLK1 knockdown on the alternative splicing of cancer-

associated genes (Figure 5.6B). Due to a lack of experimental repeats (n=1), 

statistical analysis could not be conducted for changes in splicing with SRPK1 and 

CLK1 siRNA treatment. However, there was an indication that the unconfirmed 

CLK1 siRNA reduced the percentage of exon inclusion and therefore altered splicing 

in the FGFR1OP and UTRN genes (Figure 5.6C and D). Again, this observation has to 

be taken with caution, as the CLK1 siRNA was not confirmed and there is a lack of 

repeats. Further experimental repeats with confirmed successful CLK1 knockdown 

are required to support these observations.  
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Figure 5.6: Effect of CLK1 and SRPK1 siRNA on the alternative splicing of cancer-associated 
genes. Cancer-associated genes identified with a change in splicing in response to hypoxia 
were subjected to CLK1 and SRPK1 knock-downs (KD) using siRNAs. Hypoxia treatment was 
for 48h at 1% oxygen in a MIC-101 hypoxia chamber at 37°C. TR = Treatment Control (either 
normoxia or hypoxia only), TRF = Transfection Reagent Control, GAPDH siRNA = control for 
siRNA treatment, NTC = Non-targeted Control. β-actin was used as a loading control n=1. (A) 
Confirmation of SRPK1 knockdown. Evidence of (B) Gel PCR of cancer-associated genes 
showing alternatively spliced isoforms.  Evidence of (C) FGFR1OP and (D) UTRN alternative 
splicing changes with CLK1 siRNA treatment using ψ analysis.   
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5.5 Examining the effect of chemical inhibitors of CLK1 and SRPK1 on 

the alternative splicing of cancer-associated genes 

As the knockdown for CLK1 was unconfirmed, TG003 was used to chemically inhibit 

CLK1 to see if impaired function of CLK1 had any effect on the alternative splicing of 

cancer-associated genes. RNAs were extracted for CLK1 treated and untreated 

samples respectively, during 48 hours of normoxia or hypoxia treatment. In 

addition, SPHINX, a chemical inhibitor of SRPK1 was used to assess any changes in 

the splicing of the same cancer-associated genes. Statistical analysis was based 

upon three experimental repeats for TG003 examination, and was in the form of a 

one-way ANOVA for all genes studied apart from FGFR1OP, which was found not to 

be normally distributed. In this instance a Dunn’s test would usually be conducted 

to test for significance; however this requires more repeats and so the statistical 

significance of FGFR1OP splicing under TG003 treatment is not known. However. 

There was an indication from the gel PCR that TG003 treatment did have an effect 

on FGFR1OP splicing (Figure 5.7 and 5.8); favouring the smaller FGFR1OP splice 

isoform. TG003 did not significantly alter the splicing of any of the other genes 

studied (Figure 5.8). Statistical analysis could not be applied to the SPHINX 

experiments as there were two experimental repeats for SPHINX; however there 

was no indication from the gel PCR images that SPHINX altered splicing of any of 

the cancer-associated genes studied (Figure 5.9 and 5.10).   

A positive control is required to show that the CLK1 chemical inhibitor is working. 

Ongoing work in the laboratory by Simon Uzor has shown to significantly increase 
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apoptosis and reduce proliferation using 1-10µM TG003 treatment in PC3 cells, 

which shows that the compound has an effect at the same concentration used in 

this study. Furthermore, the fact the TG003 appeared to dramatically alter the 

splicing of FGFR1OP, but did not affect differential splicing of any other genes 

suggests that the inhibitor was working due to the selective nature of the effects. 

FGFR1OP could therefore also act as a positive control for future experiments. 

As already mentioned in section 5.3, a positive control for SPHINX inhibition would 

allow confirmation that the SRPK1 inhibitor is working. Expression of the VEGF165 

splice variant has been shown to decrease with SPHINX treatment (Gammons et al., 

2013), and so future experiments should utilise a decrease in VEGF165 mRNA 

expression as a positive control for SPHINX treatment. In light of the results 

obtained from the SRPK1 knockdown experiment, it can be suggested that SRPK1 

does not affect alternative splicing of the cancer-associated genes studied in 

hypoxia. However, these results are based on n=1 and so must be treated with 

caution.        
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Figure 5.7: Effect of chemical inhibition of CLK1 using TG003 on the alternative splicing of 
cancer-associated genes. Representative PCR gels showing the effect of normoxia, hypoxia 
and 10µM TG003 on the expression of splice isoforms of cancer-associated genes. TG003 was 
dissolved into DMSO and so DMSO was also used as a control. For BTN2A2, FGFR1OP, 
PTPN13, RAP1GDS1, SYNE2, TTC23, UTRN, INSR, CDC42BPA, MBP and LHX6, n=3. For 
APAF1F1, APAF1F8 and PUF60, n=2. Hypoxic conditions were for 48h at 1% oxygen in a sealed 
MIC-101 hypoxia chamber at 37°C.  
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Figure 5.8: Effect of TG003 on percentage exon inclusion (%) in cancer-associated genes. 
DMSO was used as a vehicle control. Calculations for BTN2A2, FGFR1OP, PTPN13, RAP1GDS1, 
SYNE2, TTC23, UTRN, INSR, CDC42BPA, MBP and LHX6 were based on n=3. For APAF1F1, 
APAF1F8 and PUF60, n=2. Where n=3, Shapiro-Wilks and Bartlett’s tests were applied to the 
data. If the data was normally distributed and homoschedastic, a one-way ANOVA was 
applied to the data to determine statistical significance. Ideally, a Dunn’s test would be 
applied to the data if it was found to be not normally distributed and / or heteroschedastic. 
FGFR1OP was the only gene with n=3 where this applied. However, there were not enough 
experimental repeats to conduct a Dunn’s test and so the statistical significance of the 
FGFR1OP results are unknown. Hypoxic conditions were for 48h at 1% oxygen in a sealed 
MIC-101 hypoxia chamber at 37°C.  
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Figure 5.9: Effect of chemical inhibition of SRPK1 using SPHINX on the alternative splicing of 
cancer-associated genes. Representative PCR gels showing normoxia, hypoxia and 10 µM 
SPHINX on the expression of splice isoforms of cancer-associated genes. SPHINX was 
dissolved in DMSO and so DMSO was also used as a control. β-actin was used as a loading 
control. Hypoxic conditions were for 48h at 1% oxygen in a sealed MIC-101 hypoxia chamber 
at 37°C, n=2.  

 



202 

 

 

 

 

 

Figure 5.10: Effect of SPHINX on the average % change in exon inclusion of cancer-
associated genes. DMSO was used as a vehicle control. β-actin was used as a loading control. 
Hypoxic conditions were for 48h at 1% oxygen in a sealed MIC-101 hypoxia chamber at 37°C. 
As averages were based on n=2, statistical tests could not be applied to the data.  
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5.6 Discussion 

5.6.1 PRPF8 and SAFB1 splice factors regulate CA IX splicing 

A library of 57 splice factor knockdowns identified pre-mRNA-processing-splicing 

factor 8 (PRPF8) and Scaffold-attachment-factor B1 (SAFB1) as splice factors that 

potentially help regulate the alternative splicing of carbonic anhydrase 9 (CA IX) 

(Figure 5.1). CA IX is a newly established hypoxia marker that is involved in cellular 

invasion, migration and metastasis (Svastova and Pastorekova, 2013). The PRPF8 

knockdown was found to induce some expression of the truncated shorter version 

of CA IX; however the CA IX-FL isoform was still the more predominantly expressed 

splice isoform. In contrast, the lipofectamine control for PRPF8 (which expresses 

PRPF8) favoured the expression of CA IX-FL. These results suggest that PRPF8 

favours the expression of the CA IX-FL isoform, which is the isoform that is induced 

during hypoxia.  

PRPF8 forms part of the catalytic core of the spliceosome and is therefore heavily 

implicated in a number of events during the splicing mechanism. PRPF8 is found to 

form part of the U5 snRNP and U5.U4/U6 snRNP complexes, and is present during 

the two transesterification steps of splicing and also in the excised lariat complex 

(Grainger and Beggs, 2005). Furthermore, PRPF8 is shown to cross-link to the 5’ and 

3’ splice sites respectively, and also to the branch point sequence, which indicates 

PRPF8 as a major player throughout the splicing mechanism. PRPF8 is the largest 

and most highly evolutionary conserved protein in the human genome, sharing 61% 
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homology with its yeast counterpart (Grainger and Beggs, 2005). This highlights the 

importance of this protein to life.  

Kurtovic-Kozaric et al (2015) showed that PRPF8 mutations have a widespread 

effect on alternative splicing. In fact, the group reported that the alternative 

splicing of hundreds of genes are affected, and exon inclusion and exclusion events 

are both affected. The group observed that alternative splice sites were activated 

when PRPF8 was mutated or haploinsufficient, which heavily implicates PRPF8 in 

the regulation of alternative splicing. In addition, the study also provided evidence 

that PRPF8 lesions in myeloid malignancy resulted in increased cellular proliferation 

and abnormal spliceosomal activity, which produces a more aggressive phenotype. 

Furthermore, PRPF8 knockdowns by RNAi was shown to alter alternative splicing 

across 10-30% of 96 alternative splicing events, which further implicate the protein 

in alternative splicing regulation (Tanackovic et al., 2011). Wichramasinghe et al. 

(2015) provided evidence that restricted PRPF8 expression correlates with the 

selection of weak 5’ splice sites, which identifies a mechanism through which PRPF8 

may alter alternative splicing. This suggests that weaker 5’ splice sites in CA IX may 

be utilised when PRPF8 is knocked down, forming the alternatively spliced variant.    

Unfortunately, follow-up experiments on PRPF8 proved to be problematic. As 

PRPF8 is a very large protein, it was possible that the protein had not transferred, 

and so the membrane was re-probed for a similar sized protein, VE-cadherin.  A 

band of the required size for VE-cadherin was present on the blot, which suggests 

that the blot had transferred successfully. A possibility for the undetection of a 

protein is that the protein may be expressed at low levels or not at all; however, 



205 

 

this is highly unlikely, as PRPF8 is heavily involved in the spliceosome machinery. 

Therefore, it is suggested that the PRPF8 antibody did not work and there was 

insufficient time to test alternatives. However, the indication that PRPF8 might be 

involved is an intriguing new finding that warrants further investigation.  

Scaffold attachment factor B1 (SAFB1) is a large ubiquitously expressed, 

multifunctional protein that is involved in a number of cellular process, such as 

chromatin organisation, transcriptional regulation, RNA splicing and the stress 

response (Garee and Oesterreich, 2010). This chapter provides evidence for SAFB1 

in the regulation of CA IX splicing, which encompasses three of the above known 

functions of SAFB1.  

The high-throughput SAFB1 siRNA knockdown was shown to favour the 

alternatively spliced truncated variant of CA IX, whereas the lipofectamine control 

promoted the expression of full-length CA IX. This suggests that during hypoxia, the 

increase in the full-length CA IX isoform could be due to a switch in splicing 

mediated at least in part by SAFB1.  Most previous studies have identified SAFB1 as 

a repressor of promoter activity. Oesterreich et al. (1997) showed that SAFB1 

repressed heat shock protein 27 (HSP27) promoter activity, Lin et al.(2008) showed 

a negative regulation of xanthine oxidoreductase (XOR) by SAFB1, and Hammerich-

Hill et al. (2010) provided evidence that SAFB1 repressed the expression of target 

genes involved in the immune system and apoptosis. However, Omura et al. (2009) 

showed that SAFB1 positively regulated the promoter of sterol-regulatory-element-

binding-protein (SREBP1c), which plays a role in the regulation of lipogenesis in the 
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liver. This therefore demonstrates that SAFB1 can also activate promoter activity. 

There is also a possibility that SAFB1 may influence CA IX splicing indirectly.    

SAFB1 has been identified as a hnRNP protein and has therefore been shown to 

bind to RNA and interact with RNA processing proteins (Weighardt, 1999; Garee 

and Osterreich, 2009). As previously stated in Chapter 1 of this thesis, hnRNP 

proteins bind to exonic and intronic splicing silencers, which promotes exon 

exclusion (reviewed in David and Manley, 2010) and so SAFB1 may either be an 

exception to this rule, or SAFB1 may negatively regulate another splice factor that is 

involved in the repression of the CA IX-FL promoter. In fact, a number of groups 

have shown that SAFB1 interacts with and represses transcription factors such as 

estrogen receptor alpha (ERα) and p53 via its C-terminal repression domain 

(Oesterreich et al., 2000a, Oesterreich et al., 2000b; Townson et al., 2004; Peidis et 

al., 2011).  

Furthermore, a recent paper by Rivers et al. (2015) provided evidence that SAFB1 is 

directly implicated in the regulation of alternative splicing of a number of genes 

that have a role in neuronal function (NCAM1, ANK3, ANKS1B, SAP97, ADD2, KIF16B 

and ELK3). Therefore, it is speculated that SAFB1 may be directly involved in the 

regulation of alternative splicing of cancer-associated genes, in addition to CA IX. 

Using gene ontology (GO) analysis, the group also showed that SAFB1 is likely to 

regulate genes that have roles in controlling cellular responses to stress, which 

implies that SAFB1 may be involved in the hypoxic stress response; however further 

research is required to provide evidence for this hypothesis.  
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Rivers et al. (2015) also showed that SAFB1 knockdown increased the expression of 

the microRNA cluster miR-17-92, which when repressed has been found to function 

in hypoxia-induced apoptosis (Yan et al., 2009). Moreover, over-expression of miR-

17-92 was reported to inhibit hypoxia-induced apoptosis (Yan et al., 2009). This 

suggests that SAFB1 may be involved in hypoxia-induced apoptosis through the 

regulation of miR-17-92. It is therefore suggested that the decrease in SAFB1 

expression in hypoxia (Figure 5.4A) may serve to up-regulate miR-17-92 in order to 

inhibit hypoxia-induced apoptosis and ultimately promote the survival of hypoxic 

PC3 cells.  

SAFB1 has been implicated to play a role in the stress response. Chiodi et al. (2000) 

provided evidence for the relocation of SAFB1 to stress-induced sub-nuclear bodies 

(SNBs) upon genotoxic treatment with cadmium sulphate or heat shock treatment.  

It has been suggested that SNBs may control post-transcriptional modification of 

RNA and regulate protein activity (Denegri et al., 2001). After 48h hypoxia 

treatment, SAFB1 expression was found to decrease compared to the normoxic 

control (Figure 5.4A). The previous studies mentioned above have not provided 

evidence on whether SAFB1 protein expression increases or decreases with stress 

treatment and so it may be that this is a common feature for SAFB1 in all types of 

implicated cellular stress. Whether or not SAFB1 resides into SNBs during hypoxic 

stress remains to be elucidated.  

A number of studies have identified SAFB1 as a tumour suppressor. SAFB1 over-

expression in breast cancer cells resulted in a reduced cell number, whereas a 

SAFB1 knockdown resulted in an increase in cell growth (Townson et al., 2000; 
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Garee and Osterreich, 2009). In addition, studies in mouse embryonic fibroblasts 

taken from SAFB1 germline knockout mice (SAFB1 -/-) resulted in an increase in 

immortalsation and a lack of senescence (Dobrzycka et al., 2006). The results 

provided in this chapter show that SAFB1 expression decreases during hypoxia 

(Figure 5.4A), which supports the proposal that hypoxia produces a more oncogenic 

phenotype. The finding that SAFB1 favours the splicing of the full-length CA IX 

isoform (Figure 5.1) is surprising as CA IX is implicated in tumour cell invasion, 

migration and metastasis (Svastova et al., 2012; Radvak et al., 2013; Sansone et al., 

2009). However, this mechanism may be due to a variety of reasons already 

explained and in addition, there has not been any research into the effect of SAFB1 

on cellular invasion, migration and metastasis.     

 

5.6.2 The effect of CLK1 and SRPK1 chemical inhibition on CA IX mRNA isoform and 

protein expression 

TG003 and SPHINX were used to chemically inhibit splice factor kinases; CLK1 and 

SRPK1, respectively in order to see if there was an effect on CA IX expression. 

Jakubauskienne et al. (2015) have recently provided evidence that TG003 treatment 

decreased CA IX-FL mRNA expression. In addition, the group reported that CLK1 

knockdowns caused a decrease in CA IX-FL expression at the mRNA and protein 

level. However, the results provided here suggest that TG003 inhibition of CLK1 

does not have an effect on CA IX splicing at the mRNA or protein level, at least in 

the cell line models examined (Section 5.5). Jakubauskienne et al. (2015) used a 
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concentration of 10µM TG003 to treat cells in 1% oxygen, which is the same as the 

concentrations used in this chapter; however the group used a treatment time of 

24h, which suggests that the potency of TG003 may diminish during a longer 

treatment time and therefore restore CLK1 phosphorylation to the natural level. 

The half-life of TG003 is not documented and so this would need to be investigated 

further. Jakubauskienne et al. (2015) utilised HeLa cells as a model, whereas our 

study was conducted in PC3 cells and so there is also the possibility that the effect 

of TG003 on CA IX isoform and protein expression is cell-line or tissue specific.  

The group that developed TG003 recently published findings that TG003 itself is a 

general exon skipping enhancer (Sakuma, Lida and Hagiwara, 2015). This highlights 

that the results of chemical inhibition may not only be due to the inhibited function 

of the targeted protein, but other mechanisms may also be affected. SPHINX did 

not alter the mRNA expression of CA IX (Section 5.5) and there is no previous 

published evidence to show that SPHINX has any effect on CA IX expression. 

Therefore, it is suggested that SRPK1 is not involved in the regulation of CA IX 

splicing.  

  

5.6.3 The effect of SAFB1, SRPK1 and CLK1 siRNA knockdowns on the alternative 

splicing of cancer-associated genes 

siRNAs were used to knockdown SAFB1, SRPK1 and CLK1 proteins in order to assess 

the effect on the alternative splicing of the cancer-associated gene set from 

Chapter four. To confirm whether the knockdowns were successful, western 
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blotting was used to detect the expression of the proteins of interest in control and 

knockdown samples respectively. The SRPK1 knockdown was shown to be 

successful (Figure 5.6A). However, SAFB1 and CLK1 knockdowns were not 

confirmed. There are a number of reasons that could explain the inability to 

knockdown these two proteins.  

SRPK1 and CLK1 knockdowns were the first knockdowns attempted in this study 

and were conducted at the same time. Optimisation of the CLK1 antibody proved to 

be problematic, as milk was used in the blocking reagent for CLK1 blots, which 

denatured the CLK1 protein producing blots with a number of bands that were not 

at the required size. However, it was found that using BSA in the blocking reagent 

produced a band of the required size for CLK1. This is because CLK1 is a 

phosphorylated protein, and milk contains a number of proteins which include the 

phosphorylated protein casein. This can lead to a higher background and non-

specific binding to phosphorylated proteins present in the milk. Before this 

realisation, a number of attempts were made to detect the CLK1 knockdown, and 

therefore the CLK1 siRNA sample was depleted before correct CLK1 detection was 

seen.  

An experimental error occurred when attempting a siRNA knockdown for SAFB1 

and a subsequent CLK1 knockdown, which resulted in the depletion of an entire 

SAFB1 siRNA stock and CLK1 siRNA stock, respectively. After realising the mistake, a 

subsequent knockdown for the two proteins was attempted with the remaining 

three siRNAs. It is likely that these knockdowns were not successful as they were 

conducted without a full set of siRNAs. Another reason for the unsuccessful CLK1 
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and SAFB1 knockdowns could be due to a poor transfection (Elbashir et al., 2002), 

or having a transfection time that is too long. Chen et al. (2007) reported a higher 

rate of siRNA knockdown success using rapid transfection in OCT-3/4 cells. The 

group reported a 90% success rate when transfecting the cells 4h after seeding 

compared to a 40% success rate with overnight seeding. However, as the SRPK1 

siRNA knockdown was shown to be successful, and in light of the mistake outlined 

above, it is most likely that the unsuccessful CLK1 and SAFB1 siRNA knockdowns are 

due to the utilisation of an incomplete set of siRNAs. 

Samples generated from the first siRNA experiment that aimed to knockdown 

SRPK1 and CLK1 were used to assess the effect of SRPK1 and CLK1 on the 

alternative splicing of the cancer-associated gene set. The SRPK1 knockdown was 

confirmed by western blot (Figure 5.6A), but there was no indication that the SRPK1 

had an effect on alternative splicing. Although the CLK1 knockdown was conducted 

at the same time as the SRPK1 knockdown, it was not confirmed and therefore 

these results have to be taken with caution. There was strong evidence that CLK1 

siRNA favoured the exon-skipped splice variants of the cytoskeletal proteins, 

FGFR1OP and UTRN. This therefore suggests that CLK1 may favour the full-length 

FGFR1OP and UTRN splice isoforms. FGFR1OP is implicated in ciliogenesis and has 

been found to be overexpressed in lung cancer, with evidence of a role in cellular 

motility, growth and progression (Lee and Stearns, 2013; Mano et al., 2007). The 

function of the shorter exon-skipped variant has not yet been identified, but it is 

postulated that the shorter variant may regulate the function of the full-length 

variant (Popovici et al., 1999). Full-length UTRN protein has been deemed a tumour 
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suppressor and is involved in maintenance of the cytoskeleton. The smaller isoform 

encodes a truncated protein that has been detected in neuroblastoma (Li et al., 

2007). FGFR1OP and UTRN both switch splicing to favour the smaller isoform during 

hypoxia. As Chapter 4 showed that CLK1 increases in mRNA and protein expression 

during hypoxia, it is suggested that perhaps CLK1 activity is inhibited during 

hypoxia.   

 

5.6.4 The effect of SRPK1 and CLK1 chemical inhibition on the alternative splicing of 

cancer-associated genes 

To investigate the effect of SRPK1 and CLK1 on alternative splicing further, SPHINX 

and TG003 were used to help confirm whether the two splice factors are involved in 

the alternative splicing of the cancer-associated gene set. It was found that SPHINX 

did not alter the alternative splicing of any of the genes examined. During hypoxia, 

the HIF complex has been shown to transcribe the Vascular Endothelial Growth 

Factor (VEGF) protein, which increases angiogenesis allowing the transport of 

nutrients and oxygen to the hypoxic area. SRPK1 has been found to favour the 

VEGF165 isoform, which is pro-angiogenic and reduction in SRPK1 activity through 

knockdown and inhibition, have been shown to promote expression of the anti-

angiogenic VEGF165b isoform in melanoma and colon carcinomas (Gammons et al., 

2014; Amin et al., 2011; Oltean et al., 2012). Furthermore, Mavrou et al. (2014) 

provided evidence for the regulation of angiogenesis and tumour growth by SRPK1-

mediated control of VEGF splice isoform expression in prostate cancer. Therefore, it 
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was surprising that a reduction in SRPK1 activity through the siRNA knockdown and 

SPHINX inhibition of SRPK1 phosphorylation activity did not alter the splicing of any 

of the cancer-associated genes studied. In accordance with this, results in Chapter 

four showed that SRPK1 was found to increase in mRNA expression but not at the 

protein level after 48h hypoxia treatment. Therefore, these results do not provide 

any evidence that SRPK1 expression is elevated during hypoxia, and it is proposed 

that SRPK1 is not required in the hypoxic response. It may be that VEGF alternative 

splicing is regulated through a HIF induced mechanism which does not contain 

SRPK1 or that SRPK1 is required at a much earlier stage of hypoxia stress. There is 

also a possibility that SRPK1 could alter the splicing of other cancer-associated 

genes in other tissues during hypoxia, or that SRPK1 is post-translationally modified 

in hypoxia, such as through Akt-mediated phosphorylation (see Section 4.5.5); 

however further investigation is required to determine this.  

TG003 was used to provide evidence on whether CLK1 had an effect on the splicing 

of cancer-associated genes during hypoxia. CLK1 is a known splice factor kinase that 

regulates the activity and localisation of splice factors, such as SRSF1 through 

hyperphosphorylation (Colwill et al., 1996; Duncan et al., 1997). Therefore, changes 

in CLK1 activity can indirectly alter alternative splicing.  

PCR gel images showed that TG003 treatment switched the splicing of FGFR1OP to 

favour the smaller isoform. This echos the effect of the CLK1 siRNA treatment on 

the alternative splicing of FGFR1OP, and suggests that CLK1 may be inhibited during 

hypoxia. Statistical analysis of the results revealed that there was no significant 

difference between data sets; however, this was based on three experimental 
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repeats using a semi-quantitative method and therefore it is hoped that with a 

greater number of repeats, the results would be deemed significant.  

In addition to CLK1, TG003 is also shown to inhibit CLK4, which is closely related to 

CLK1 (Ninomiya, Kataoka and Hagiwara, 2011). At this current time, there are no 

alternative inhibitors of CLK1 that offer a higher specificity. A further CLK1 

knockdown experiment and an additional CLK4 knockdown experiment would 

confirm whether the change of FGFR1OP splicing during hypoxia is dependent on 

CLK1 and/or CLK4 activity. Despite these caveats and the need for further 

experiments, it seems clear that CLK1 has a prominent role in determining 

alternative splicing changes in hypoxia.    
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6.0 DISCUSSION AND FUTURE WORK 

6.1 Technical issues associated with hypoxia treatments 

It is important that both the normoxic and hypoxic conditions for experimental 

treatment are relevant to physiological conditions. In this section, the relevance of 

the normoxic and hypoxic conditions used in this study will be discussed. In 

addition, another form of hypoxia known as intermittent hypoxia will be explained.  

 

6.1.1 Normoxia treatment 

In the human body, oxygen concentrations vary in healthy tissues but range 

between 1 to 12%, which is much lower than the 21% oxygen concentration in the 

atmosphere (Bates, 2012). Therefore it is suggested that control samples regarded 

as ‘normoxic’ which are incubated in atmospheric oxygen for the duration of 

treatment, are actually in a state of hyperoxia. This is likely to have an effect on 

cellular physiology and behaviour. For example, Parrinello and Samper (2003) 

showed that culturing mouse embryonic fibroblasts (MEFs) in 3% oxygen averted 

cellular senescence that usually occurs after 28 days in 20% oxygen. Furthermore, a 

number of research groups have provided evidence that culturing cells in a lower 

oxygen concentration to that of atmospheric oxygen provide cells with more suited 

conditions including; increased cell growth and life span; reduced senescence and 

DNA damage; and most relevant to this thesis, reduced cellular stress (Richter et al., 
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1972; Packer et al., 1977; Parrinello and Samper, 2003; Atkuri et al., 2007; Bates, 

2012).  

Most published hypoxia research has been conducted using a normoxic control that 

has been incubated at atmospheric oxygen, which allows for comparisons between 

studies but also may provide some incorrect findings. Therefore it is proposed that 

not only is it vital for future hypoxia studies to incubate normoxic control samples 

at the desired oxygen concentration required by the cell type, but also that any 

research involving cell culture should also adhere to the oxygen needs of the cell 

type used.   

 

6.1.2 Issue of hypoxia treatment using the modular incubator chamber (MIC-101) 

As discussed in section 2.5 there were concerns with using a MIC-101 hypoxia 

chamber induce hypoxic stress.  The main issues being with the diminishing oxygen 

concentration and accumulation of carbon dioxide during the experiment due to 

metabolising cells. However, it can be argued that the MIC-101 chamber may create 

a more physiologically viable hypoxic system as hypoxic areas of a tumour will 

contain a reduced blood supply which will lead to an accumulation of carbon 

dioxide and a steady rate of reduced oxygen concentration. Furthermore, as there 

have been scientific publications which have utilised the MIC-101 chamber for 

hypoxia experiments (Buras et al., 2000; Ezashi, Das and Roberts, 2005; Li et al., 

2007) it can be deduced that  the MIC-101 hypoxia chamber is accepted in the 

scientific community for the initiation of hypoxia. 
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6.1.3 Intermittent hypoxia 

The experiments used throughout this thesis have used 48h continuous hypoxia 

treatment to mimic a chronic hypoxic environment. Chronic hypoxia is defined as a 

limitation in the diffusion of oxygen (Brown 1990). Oxygen is able to diffuse 100-

150 µm into normal and malignant tissues from the blood vessels, and above this 

distance cells become hypoxic (Brown, 1990). Intermittent hypoxia is another form 

of hypoxia that is caused by a fluctuation in blood flow which can produce short 

cycling periods of hypoxia and re-oxygenation (Brown, 1990; Chaplin, Durand and 

Olive, 1986; Chaplin, Olive and Durand, 1987). Blood vessels found in tumours are 

usually tortuous with excessive branching and many dead ends, which can cause 

irregular blood flow (Bergers and Benjamin, 2003). In addition, pressure from the 

ever-growing tumour mass can compress the tumour vessels and also impede 

blood flow (Morikawa et al., 2002; Padera et al., 2004; Baudele et al., 2006). Studies 

in different tumour types have shown that the duration of the blood flow 

fluctuations can vary between several minutes to more than 1 hour (Chaplin and 

Hill, 1995; Bennewith and Durand, 2004; Braun, Lanzen and Dewhirst, 1999; Hill et 

al., 1996; Pigott et al., 1996; Carins, Kalliomaki and Hill, 2001; Cardenas-Navia et al., 

2004). Like chronic hypoxia, intermittent hypoxia can also induce HIF-1α 

stabilisation and transcriptional activity (Toffoli and Michiels, 2008).  

There is evidence to show that the pathways that regulate HIF-1 activity during 

chronic and intermittent hypoxia are different, with the requirement of 

phosphoinositide-3-kinase (PI3K) and extracellular signal-related kinase 1/2 

(ERK1/2) for HIF-1 function during chronic hypoxia; and protein kinase A (PKA) for 
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HIF-1 activity during intermittent hypoxia (Toffoli and Michiels, 2008). Although 

both intermittent and chronic hypoxia share some similarities, the fact that both 

types of hypoxia activate HIF-1α through different pathways suggests that other 

genes may also be transcribed. It would be therefore worthwhile to examine the 

effect of intermittent hypoxia on the alternative splicing of cancer-associated 

genes, such as the ones investigated in this thesis (see Sections 3.5 and 3.6).  

 

6.1.4 HIF-1α regulation by reactive oxygen species (ROS) 

A number of groups have shown that mitochondrial reactive oxygen species (mROS) 

generated from complex III in the electron transport chain play a role in the 

stabilisation of the HIF-α subunit (Chandel et al., 2000; Guzy et al., 2005; Brunelle et 

al., 2005; Bell et al., 2007). The finding of the involvement of mROS in the 

stabilisation of HIF-α is currently fuelling research for further investigation, and 

although the exact mechanism is not yet determined, there is evidence that mROS 

inhibit PHD2 which therefore prevents the degradation of the HIF-α subunit (Bell et 

al., 2007). Furthermore, reactive oxygen species (ROS) have been shown to be 

generated during the re-oxygenation periods of intermittent hypoxia (Toffoli and 

Michiels, 2009), which can also stabilise HIF-α, and can regulate transcription 

factors, such as activator protein-1 (AP-1) and nuclear factor kappa-B (NFκB) which 

are discussed below.  

Yuan et al. (2004) provided evidence that AP-1 activation is correlated with ROS 

production during intermittent hypoxia in PC12 cells. The group showed that 
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intermittent hypoxia activates c-fos, which is a constituent of the AP-1 transcription 

factor complex and this in turn increased expression of a downstream AP-1 

regulated gene, tyrosine hydroxylase (TH). In addition, the group showed 

intermittent hypoxia decreased aconitase activity and increased H2O2 production, 

which provided evidence that ROS levels were increased. Finally the group showed 

that AP-1 activation was regulated by ROS in intermittent hypoxia using an O2.- 

scavenger, Manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride 

(MnTMPyP), which prevented activation of the AP-1 complex.  AP-1 is involved in 

the regulation of the cell cycle; down-regulation of tumour suppressor genes; and 

tumour promotion, transformation, progression and invasion (Matthews, Colburn 

and Young, 2007), which are all pathways associated with the pathogenesis of 

cancer.  

NFκB induces the transcription of genes involved in apoptosis inhibition, 

proliferation, angiogenesis and the degradation of the extracellular matrix (Bond et 

al., 1998; Guttridge et al., 1999; Huang et al., 2000; Karin et al., 2002). In resting 

cells, the N-terminus of NFκB is bound to I-kappa-B (IKB), which masks the nuclear 

localisation signal keeping NFκB in the cytoplasm (Hayden and Ghosh, 2004). 

However, upon stimulation by ROS for example (Mohan and Meltz, 1994), 

upstream kinases such as the I-kappa-B-kinase (IΚK) become activated and 

phosphorylate IKB, which cause ubiquitination and subsequent proteosomal 

degradation of the protein (Wu et al., 2013). This reveals the nuclear localisation 

signal in the NFκB protein, which leads to the translocation of the protein into the 
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nucleus where it binds to specific sequences in the promoter regions of NFκB 

targeted genes (Hayden and Ghosh, 2004). 

The HIF pathway has been implicated in the control of mechanisms that produce 

ROS (Gӧrlach, 2003), which suggests that the HIF pathway is also involved in other 

systems in addition to the hypoxic response.  Indeed, Rabbani et al. (2010) provided 

evidence in irradiated Fischer 344 rat lungs that expression of hypoxia markers (HIF-

1α, CA IX and pimonidazole) correlated with the expression of markers for oxidative 

stress (8-OHdG); angiogenesis (VEGF and CD 105); and inflammation (ED-1, NFκB 

and TGFβ1). In addition, using the MnTMPyP O2
- scavenger the group showed a 

decrease in HIF-1α expression and oxidative stress and concluded that the increase 

in HIF-1α expression and ROS during radiation-induced lung injury may be linked.  

As irradiation has been shown to affect HIF-1α expression, it would be worthwhile 

investigating whether the alternative splicing of the same cancer-associated genes 

examined in this thesis are also affected by irradiation, or whether the alternative 

splicing of other genes is affected.   

 

6.2 Discussion of key findings 

Hypoxia is defined as when the availability of oxygen is insufficient to meet tissue 

demand (Loboda and Dulak, 2012).  Approximately 50-60% of human tumours 

contain hypoxic regions, which are difficult to treat with radio- and chemo-

therapies; the presence of hypoxic regions is indicative of a poor prognosis (Bayer 

and Vaupel, 2012). Therefore, there has been much research into the physiology of 
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hypoxic tumours and attempts have been made to develop new methods to treat 

them.  

Hypoxia has been shown to affect the alternative splicing of genes involved in the 

various hallmarks of cancer (Weigand et al., 2012; Sena et al., 2014; Han et al., 

2017). For example, vascular endothelial growth factor (VEGF) and carbonic 

anhydrase 9 (CA IX) are involved in angiogenesis and cellular migration and 

invasion, respectively (Hanahan and Weinberg, 2000, 2011; Ladomery, Harper and 

Bates, 2007; Barathova et al., 2008). Therefore, this thesis was aimed first and 

foremost to determine whether or not the alternative splicing of other cancer-

associated genes was affected during hypoxia.  

 

6.2.1 Effect of hypoxia on the alternative splicing of cancer-associated genes 

The results from this thesis show that alternative splicing of the apoptotic-

associated genes; caspase-9, Bcl-X and survivin was altered during hypoxia (Section 

3.4). The protein encoded by the full length isoform of caspase-9, caspase-9a is 

involved in the apoptotic response and activated upon DNA damage. The smaller 

isoform, caspase-9b does not have any catalytic activity but is able to inhibit 

caspase-9 activity and is therefore classified as an anti-apoptotic isoform (Seol and 

Billiar, 1999; Srinivasula et al., 1999). Caspase-9 expression was shown to increase 

during hypoxia in cerebral cortical tissue of newborn piglets that were exposed to 

5-7% oxygen for 1 hour; however, the isoforms involved were not investigated 

(Khurana et al., 2002). This thesis provides evidence that hypoxia favours the pro-
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apoptotic full-length caspase-9a splice isoform during hypoxia in the PC3 cell line, 

indicating that apoptosis is induced through the manipulation of caspase-9 

alternative splicing.  

Bcl-xL prevents mitochondria from releasing cytochrome c, which is needed to form 

the apoptosome for the initiation of apoptosis and is therefore classed as an anti-

apoptotic isoform (Kim, 2005). The shorter alternatively spliced isoform, Bcl-xS lacks 

two of four Bcl-2 homology domains (BHDs) (Boise et al., 1993). Members of the 

Bcl-2 protein family share one or more BHDs, which are required for protein 

function. The Bcl-xS splice variant is suggested to encode a pro-apoptotic protein 

that inhibits Bcl-2 and Bcl-xL function (Boise et al., 1993; Minn et al., 1996). Hypoxia 

was shown to significantly favour the longer Bcl-xL isoform in the PNT2 cell line, 

although this was a marginal increase (Figure 3.5). Shimizu et al. (1996) showed 

that hypoxia favours the anti-apoptotic Bcl-xL isoform in PC-12 cells potentially 

preventing the cell from undergoing apoptosis. Therefore, it is suggested that 

hypoxia favours the anti-apoptotic Bcl-xL splice variant; however, the nature of Bcl-

x alternative splicing may be cell line specific.  

Survivin drives mitosis at the G2/M check-point which promotes cellular 

proliferation (Ito et al., 2000). The survivin isoforms studied in this thesis (Full-

length survivin, survivin-ΔEX3 and survivin-2B) all possess anti-apoptotic properties; 

however survivin-2B, which contains a cryptic exon with intron 2, has been reported 

to have markedly reduced anti-apoptotic ability when compared to the other two 

splice isoforms (Mahotka et al., 1999). Hypoxia decreased the expression of all 

three survivin splice isoforms in the PC3 cell line; however, the ratio of the full-
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length wild-type isoform was found to increase when compared to the other two 

splice isoforms (Figure 3.4). Therefore, it is suggested that hypoxia tumour cells that 

evade apoptosis may do so through altering the alternative splicing of survivin to 

favour the full-length splice isoform. Furthermore, Peng et al. (2006) showed that 

HIF-1α increases survivin expression and reduces apoptosis, which suggests that 

survivin is involved in the HIF-1 hypoxic response. Moreover, Zhu et al. (2001) 

provided evidence that survivin expression is linked to the formation of blood 

vessels after hypoxic preconditioning. This group showed that a period of hypoxia 

followed by re-oxygenation, known as hypoxic preconditioning, increased survivin 

expression in a NFκB and PI3 kinase dependent mechanism. This was shown using 

antagonists of the nuclear transcription factor, NFκB (SN50) and the PI3 kinase 

(LY294002). Furthermore, the same inhibitors decreased blood vessel formation 

suggesting that there is a link between the PI3-kinase/Akt/ NFκB /survivin pathway 

and blood vessel construction during hypoxia. Additionally survivin has been shown 

to inhibit caspase-9 activity (Chandele et al. 2004; Dohi et al., 2004), which may 

offer a further mechanism in which cells may evade apoptosis during hypoxia 

despite the increase observed in the pro-apoptotic caspase-9a  splice variant in this 

thesis. Therefore, in light of the above it is suggested that cancer cells that are able 

to survive in hypoxic conditions may have an elevated level of survivin, and there is 

evidence provided from this thesis that the full-length anti-apoptotic splice variant 

of survivin may be elevated in particular. It is suggested that during normal hypoxia, 

cells undergo splicing changes that favour apoptosis, such as those seen in caspase-
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9; however, some tumour cells may subvert the pro-apoptotic splicing changes and 

instead favour anti-apoptotic splice isoforms.   

  

High-throughput PCR of cassette exon inclusion in cancer-associated genes in 

hypoxic PC3 cells revealed a number of cancer-associated genes that changed 

splicing during hypoxia. The expression of oncogenic isoforms of APAF1, BTN2A2, 

and RAP1GDS1, which are involved in apoptosis, immune tolerance and 

proliferation respectively, were favoured by hypoxia treatment (Figures 3.7, 3.17 

and 3.9). In contrast, hypoxia was found to promote the expression of the anti-

cancer smaller isoform of PUF60 that encodes the FIR protein (Figure 3.16). FIR is a 

transcriptional repressor of the oncogene, c-Myc.  

In addition, hypoxia was found to change the alternative splicing of some cancer-

associated genes to favour the expression of isoforms that have not yet been 

assigned a function; SYNE2, UTRN, FGFR1OP, CDC42BPA, MBP, TTC23 and PTPN13 

(Table 3.3). The first four of these genes are involved in the shape and maintenance 

of the cytoskeleton. Furthermore, carbonic anhydrase 9 (CA IX) is an established 

alternatively spliced hypoxia marker that has been implicated in cellular migration 

and invasion by a number of groups (Svastova et al., 2012; Radvak et al., 2013; 

Sansone et al., 2009) and was confirmed in this study to increase in hypoxia 

(Section 3.2). It is therefore proposed that through changes in alternative splicing, 

hypoxia may regulate cellular motility and invasion and encourage cells to migrate 

to areas where there is a greater availability of nutrients, and where the 

environment is less acidic.  
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6.2.2 Splice factors and splice factor kinases implicated in the hypoxic response 

Splice factors are instrumental in the regulation of alternative splicing and splice 

factor kinases are able to affect the activity of splice factors. Therefore, the mRNA 

expression of a number of splice factors and splice factor kinases was examined 

(see Section 4.3).  There was evidence that the following splice factors and splice 

factor kinases increase in mRNA expression during hypoxia; SRSF1, SRSF2, SRSF3, 

SAM68, HuR, HnRNP A1, CLK1 and SRPK1. In addition, it was shown by western blot 

that CLK1 and SRSF1 protein expression increased during hypoxic stress (Figure 

4.3A, B and C). This implies that a number of splice factors and kinases may be 

involved in the cellular response to hypoxia. The effect of splice factor kinases on 

alternative splicing was therefore investigated further using siRNA knockdowns and 

chemical inhibitors: SPHINX for SRPK1 inhibition; TG003 for CLK1 inhibition.  

There was no indication of a change in splicing of any of the cancer-associated 

genes with SRPK1 knockdown or inhibition (Figures 5.6 and 5.8). It must be noted 

that SPHINX inhibition results were based on n=2, and so further experimental 

repeats need to be conducted in order to assess the statistical significance of SRPK1 

inhibition with SPHINX treatment on alternative splicing of the genes studied. 

However, SRPK1 protein expression was also unaffected by hypoxia (Figure 4.3D), 

which suggests that SRPK1 does not play a role in the hypoxic response in the PC3 

cell line.  

Although not found to be significant, the effect of CLK1 siRNA knockdown and 

inhibition provided an indication at the PCR gel level that CLK1 was involved in the 
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regulation of splicing of FGFR1OP (Sections 5.4 and 5.5). However, there was a 

suggestion that CLK1 knockdown and inhibition favoured the smaller splice variant 

of FRFG1OP, which implies that CLK1 favours the full-length isoform. This is a 

surprising result, as hypoxia was found to promote the shorter FGFR1OP splice 

variant and suggests that CLK1 activity is diminished during hypoxia. However, as 

already mentioned, CLK1 expression is increased during hypoxia (Figure 4.3). TG003 

is also reported to inhibit CLK4 (Ninomiya, Kataoka and Hagiwara, 2011), and 

therefore it is possible that the change in FGFR1OP alternative splicing shown with 

TG003 treatment may be due to an inhibition of CLK4 activity. 

CLK1 was found to be localised outside of the nucleus (Section 4.4), despite 

previous research showing that CLK1 is a nuclear protein (Aubol et al., 2013). It is 

possible that CLK1 may have a cytoplasmic role during hypoxia which is not yet 

documented. Another explanation for this unexpected result is that CLK1 may be 

removed from the nucleus in order to reduce its effects there, whilst also being in 

ready supply once required again. The fact that the alternative splicing pattern of 

FGFR1OP with TG003 treatment (Section 5.3) mirrors the effect of hypoxia on 

FGFR1OP splicing (Section 3.6) suggests that CLK1 activity is inhibited during 

hypoxia. The relocation of CLK1 away from the nucleus may be one method in 

which the cell achieves this.   
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6.2.3 Regulation of CA IX splicing 

CA IX is an established hypoxia marker that is linked to tumour cellular migration 

and invasion through its acid-base regulatory function (Svastova et al., 2012; 

Radvak et al., 2013; Sansone et al., 2009). CA IX is itself alternatively spliced, which 

produces a variant that skips exons 8 and 9 and encodes for a truncated protein. 

The full-length isoform encodes a fully functional CA IX protein and is increased 

during hypoxia (Malentacci et al., 2009).  

Jakubauskienne et al. (2015) provided evidence in HeLa cells that TG003 treatment 

decreased CA IX-FL expression, which suggests that CLK1 or CLK4 may regulate CA 

IX splicing. However, an investigation into the effect of TG003 treatment on CA IX 

splicing in PC3 cells has not shown any changes in CA IX isoform expression (see 

Section 5.3). Jakubauskienne et al. (2015) used a treatment time of 24h compared 

to a 48h treatment time in the PC3 cells and so it is suggested that perhaps the 

effect of TG003 on the splicing of CA IX becomes diminished during longer 

treatment times. In addition, two different cell lines were used; HeLa (cervical 

cancer cell line) and PC3 (prostate cancer cell line), and therefore it may be that this 

effect is tissue or cell line specific.   

Therefore, an investigation into the splice factors that may control splicing of CA IX 

in PC3 cells was investigated and there was evidence to show that SAFB1 and PRPF8 

splice factors promote expression of the full-length CA IX isoform (see Section 5.2). 

Further investigation provided evidence that SAFB1 protein expression decreased 

after 48h hypoxia (Section 5.2). Rivers et al. (2015) showed that knockdown of 
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SAFB1 expression increased the expression of the microRNA cluster miR-17-92, the 

over-expression of which has been shown to inhibit hypoxia-induced apoptosis (Yan 

et al., 2009). Therefore, a decrease in SAFB1 expression would favour miR-17-92 

mediated inhibition of hypoxia-induced apoptosis. This shows that although a 

decrease in SAFB1 expression during hypoxia would favour the expression of the 

alternative spliced variant of CA IX, down-regulation of SAFB1 expression may be 

required for other mechanisms that are regulated by SAFB1. Furthermore, it is 

suggested that promotion of the FL splice variant of CA IX during hypoxia may be 

achieved through another mechanism, such as through regulation by PRPF8. 

However, this remains to be elucidated.    

Furthermore, SAFB1 has been shown to interact with several splice factors, 

including SRSF1 (Denegri et al., 2001), SAM68 (Sergeant et al., 2007) and hnRNP A1 

(Denegri et al., 2002) which were all shown to increase in mRNA expression 

significantly during hypoxia (Section 4.3). Additionally, the protein expression of 

SRSF1 was also shown to increase in hypoxia (Section 4.3.2). SNBs may function to 

isolate splicing factors in order to down-regulate their expression and decrease 

normal cellular splicing in order to conserve energy for the processing of transcripts 

required by the stress response (Weighardt et al., 1999; Biamonti, 2010). Perhaps 

SAFB1 expression is decreased during hypoxia in order to release the splice factors 

that are shown to interact with SAFB1 from SNBs as they may be needed by the 

hypoxic response. Further research is required to investigate whether the 

formation of SNBs is favoured or not by hypoxic stress. 
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6.3 Potential implications for therapy 

Hypoxic solid tumours tend to be more aggressive and difficult to treat than those 

that have a sufficient supply of oxygen, which therefore results in a poor prognosis. 

There are a number of approaches that have been investigated to combat hypoxic 

tumours, which include; gene therapy (such as the use of short antisense 

oligonucleotides), hypoxia-activated prodrugs, and the targeting of the HIF 

pathway, as follows.  

 

6.3.1 Splice switching antisense oligonucleotides (SSOs) that target hypoxia-induced 

isoforms 

Short antisense oligonucleotides (ASOs) are synthetic molecules that are able to 

complementarily bind to specific pre-mRNA sequences through base-pairing. Splice 

switching antisense oligonucleotides (SSOs) are a type of ASO that bind to the pre-

mRNA and block the binding of splice factors, which can disrupt the intended 

splicing of the pre-mRNA. SSOs can therefore be used therapeutically to switch 

splicing in order to favour splice isoforms that do not promote disease progression 

(Havens and Hastings, 2016). In addition, the nucleotides of SSOs are chemically 

modified to prevent the degradation of the pre-mRNA/SSO complex by the RNA-

cleaving enzyme, RNase H (Summerton, 1999; Rigo, Seth and Bennett, 2014). This 

allows SSOs to alter the splicing of the pre-mRNA without provoking the 

degradation of the selected pre-mRNA (Havens and Hastings, 2016). However, SSOs 

are a novel discovery that are still under investigation as potential therapeutics. 
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SSOs targeted to treat Duchenne Muscular Dystrophy (DMD) and Spinal Muscular 

Atrophy (SMD) are currently in Phase 3 clinical trials (Mendell et al., 2016; Hache et 

al., 2016; Havens and Hastings, 2016) and highlight an important aspect of SSOs. As 

some genes are spliced to produce isoforms that result in a dampened response, 

some SSOs may only be able to provide a less harmful form of the disease. For 

example, the SSO for DMD favours the production of a partially functional protein 

that reduces the severity of DMD; however the SSO for SMD results in the 

promotion of the functional full-length SMN transcript. Therefore although SSOs 

may be beneficial forms of therapy in the future, they will not be able to cure all 

diseases (Havens and Hastings, 2016). Despite a lot of research into SSOs, clinical 

progress and utilisation has been hindered due to the cost of producing the 

molecules and challenges involving the delivery without toxicity to selected sites of 

treatment (Sridharan and Gogtay, 2016; Juliano, 2016).  

Chemical modifications to SSOs, such as changes to the phosphate backbone 

and/or sugar unit have enabled improved binding affinity, stability and 

pharmacodynamic properties. A popular adjustment is the phosphorothiate (PS) 

backbone modification, which has improved stability and reduced binding affinities. 

Furthermore, renal clearance of the drug has been reduced as PS ASOs can bind to 

proteins in plasma, and so this allows broad distribution; however the risk of 

toxicity is also increased. (Eckstein, 2014; Geary, 2009). However, a problem with PS 

ASOs is that they are not resistant to RNAse H, and so without additional 

modifications, they can be degraded. RNAse H resistance can be achieved through 

modifications at the 2’ sugar position; the most common of which are 2’-O-methyl 
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(2’-OME) and 2’-O-methoxyethyl (2’-MOE). Locked nucleic acid (LNA) is another 

version, which bridges the furanose ring and causes increased binding affinity, 

allowing for the use of shorter SSO sequences. This advantage of this is that there 

are less unwanted off-targets as a shorter sequence decreases the probability that 

the sequence will bind partially to the wrong site. Consequently, many ASOs 

containing a PS backbone and modifications at the 2’ sugar position are currently 

being developed as potential therapeutics targeting a range of diseases, including; 

Hutchinson-Gilford progeria (Lee et al., 2016); Usher syndrome (Lentz et al., 2013); 

Alzheimer’s disease (Hinrich et al., 2016); spinal muscular atrophy (Hache et al., 

2016; Chiriboga et al., 2016); Huntington disease (Disterer et al., 2013), as well as 

others. A more detailed list can be found in the review paper by Havens and 

Hastings, (2016). 

One of the most common type of SSO are the phophorodiamidate morpholinos 

(PMO), which are characterised by a neutral phosphorodiamidate backbone and 

the namesake morpholine ring in place of the furanose ring that is found in natural 

nucleic acids (Summerton, 1999). The neutral backbone offers both an advantage 

and disadvantage; they have a low binding of plasma proteins, but rapid clearance 

by the kidneys results in a low accumulation in tissues when compared to a PS 

backbone (Geary, 2009). Therefore, high doses of PMOs may be required for the 

desired response (Yokota et al., 2009; Rigo et al., 2014), and so further 

modifications have been developed to improve the effectiveness of PMOs. One 

such modification enhances cellular uptake through the addition of cell penetrating 

peptides or octaguanidine dendrimers (known as Vivo-morpholinos, VPMO) to the 
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2’ position of the sugar (Moulton and Jiang, 2009; Betts et al., 2012; El Andaloussi et 

al., 2012). PMOs are currently being developed for the following diseases; 

cardiomyopathy (Gramlich et al., 2015); duchenne muscular dystrophy (Mendell et 

al., 2015; Voit et al., 2014); Nijmegen breakage syndrome (Salewsky et al., 2016); 

Ebola (Panchal et al., 2014); Pompe disease (Clayton et al., 2014), to name a few.   

Moreover, SSOs are currently being developed to combat cancers, including; a 

2’MOE/PS SSO aimed at targeting an alternative 5’ splice site in exon 2 of the 

BCL2L1 gene (151); a LNA targeted at skipping exon 26 of the ERBB4 gene (152); A 

PMO aimed at skipping exon 6 of the MDM4 gene (153). Furthermore, Shieh et al., 

(2009) showed successful alterations in splicing of the MCL-1 gene using a 

morpholino SSO targeted at exon 2 skipping in basal cell carcinoma cells and AGS 

cells (derived from human gastric adenocarcinoma epithelial cells). This promoted 

apoptosis, and has potential as a future therapeutic strategy for inducing 

apopotosis in cancer cells. In addition, Bauman et al., (2010) used a 2’-O-MOE-

phosphorothiate SSO to successfully switch splicing of the BCL-x gene to favour the 

BCL-xs pro-apoptotic splice variant in mouse melanoma cells. More recently, Wu, 

Mau and Ming (2016) have used a 2’-O-Me-phosphorothiate SSO to also 

successfully alter splicing of BCL-x to favour the pro-apoptotic BCL-xs splice isoform 

in primary human hematopoietic stem cells and hepatocytes with a view to 

reducing apoptosis in liver fibrosis.   

It is hoped that in the future, SSOs may be generated against genes found to switch 

splicing during hypoxia to favour oncogenic isoforms, such as Survivin, APAF1, 

RAP1GDS1 and BTN2A2, which were identified in this study. However, as the 
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alternative isoforms of Survivin and RAP1GDS1 are less oncogenic, this type of 

therapy may only dampen the anti-oncogenic properties of these genes. Therefore, 

this type of therapy may be more useful during hypoxia for genes such as APAF1 

and BTN2A2 where the isoforms are strictly pro- or anti-oncogenic. A schematic 

representation of how this might occur is shown in figure 6.1. 

 

Figure 6.1: Schematic representation of potential splice switching oligonucleotide (SSO) targeting 
strategy to therapeutically switch splicing of (A) APAF1 and (B) BTN2A2 during hypoxia to favour 
pro-cancerous isoforms. Green boxes are exons and blue lines are introns. SS stands for splicing 
silencer and SE stands for splicing enhancer. The splice factor (SF) is prevented from binding to the 
SS or SE by the SSO. Whether or not the SS and SE is found in the exon or intron remains to be 
elucidated. 

 

6.3.2 Hypoxia activated prodrugs (HAPs)  

Hypoxia activated prodrugs (HAPs) are inactive under normoxic conditions, but 

become activated in hypoxic regions. This leads to a reduction in adverse effects in 
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the normoxic region (Ikeda et al., 2016). Hypoxic tumour tissues overexpress a 

number of endogenous reductive enzymes, (such as NADPH-cytochrome P450 

reductase, DT-disphorase, xanthine oxidase/xanthine dehydrogenase and 

cytochrome b5 reductase), and therefore several HAPs have been designed to 

become active upon reduction (gain of electrons) (Chen and Hu, 2009). Reducing 

enzymes present in normoxic areas are also able to activate prodrugs; however, 

molecular oxygen is able to rapidly oxidise the prodrugs back to an inactive state 

(Chen and Hu 2009). As the concentration of oxygen is much lower in hypoxic areas, 

prodrugs are able to remain in an active state for longer and can therefore exert 

their effects.  

A major issue found with HAPs is the delivery of the drug to the required region. As 

already discussed, the vasculature found in solid tumours is usually disordered and 

can cause many problems with drug administration. A further problem is found 

with targeting hypoxic areas, as the drug is required to be able to penetrate into 

these distant areas (Ikeda et al., 2016). In addition to the obvious problem of 

increased distance to hypoxic regions, Minchinton and Tannock (2006) highlighted 

several other factors that can account for poor penetration of HAPs, which include 

administration of a limited dose due to the associated toxicity of the drug and 

physiochemical properties of the drug (e.g. high molecular weight or aqueous 

solubility).  TH-302 is a HAP that has showed promising results for combating 

pancreatic and soft tissue sarcoma when used in combination with gemcitabine and 

doxorubicin, respectively; and is currently undergoing phase III clinical trials (Borad 

et al., 2015; Chawla et al, 2014; Wigerup, Pahlman and Bexell, 2016). Cancer-
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associated genes that are found to alter splicing patterns during hypoxia may in the 

future fuel the development of HAPs, which target those particular genes. The HAPs 

may be in the form of SSOs (as described above) which would allow the splicing 

pattern of a particular gene to be targeted, whilst also only becoming active in 

hypoxic areas. This would decrease non-specific targeting of the drug; however, this 

kind of therapy is in the distant future as much more research is required before 

this can occur.  

 

6.3.3 Targeting of the HIF Pathway 

The hypoxia inducible factor (HIF) pathway becomes activated during hypoxia and 

results in the transcription of genes required in the HIF response. Therefore as 

shown in the sections below, there has been research conducted by a number of 

groups into manipulating the HIF pathway to prevent the transcription of genes 

that may aid in cell survival in hypoxic tumours.  

 

Inhibition of the PI3/AKT/mTOR pathway 

Lee et al. (2015) have provided evidence that glyceollins can inhibit the 

PI3K/AKT/mTOR pathway under hypoxic conditions, which leads to the blocking of 

HIF-1α translation. Glyceollins are derived from the soy plant and are a biologically 

active type of phytoalexin (Graham and Graham, 1991). Phytoalexins are 

synthesised in plants in response to infection or stress and have been shown to 



236 

 

have anti-oncogenic properties (Darvill and Albersheim, 1984; Lee et al., 2015). The 

PI3K/AKT/mTOR pathway is up-stream of the HIF pathway and therefore targeting 

of these molecules can indirectly inhibit HIF expression. Furthermore, a number of 

groups have provided evidence that mTOR inhibition decreases HIF-1α and HIF-2α 

expression during normoxia and hypoxia (Hudson et al., 2002; Majumder et al., 

2004; Thomas et al., 2006; Mohlin et al., 2015).  

 

Inhibition of HIF dimerisation 

HIF subunits each contain two PER-ARNT-SIM (PAS) domains, designated PAS-A and 

PAS-B domains. During hypoxia, the HIF subunits dimerise to form the HIF complex, 

which then translocates into the nucleus for the initiation of transcription. The HIF 

PAS domains are required for heterodimer formation (Yang et al., 2005).  Inhibitors 

that target the PAS domains of the HIF subunits prevent the HIF complex from 

forming. An example of this is acriflavine, which is a potent inhibitor of the HIF-α 

subunit and prevents the assembly of HIF-1 and HIF-2 respectively (Lee et al., 2009). 

Acriflavine treatment reduced tumour growth and vascularisation in prostate and 

xenograft models (Lee et al., 2009).  

 

HIF-2α Translational Inhibitors 

Unbound iron can generate ROS such as OH·, which can cause oxidative stress to 

cells. Therefore, the amount of free iron must be kept as low as possible and this is 
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achieved through various mechanisms, such as; increased iron uptake and 

utilisation; and increased storage and export of iron (Cairo and Recalcati, 2007). 

Iron-regulatory proteins (IRPs) are involved in the control of these processes 

through interaction with iron-response elements (IREs) found in 5’ and 3’ 

untranslated regions (UTRs) of mRNAs (Ray, Huang and Tsuji, 2012). HIF-2α mRNA 

contains an iron-responsive element (IRE) in its 5’ UTR end (Sanchez et al., 2007). 

Binding of IRP1 to the HIF-2α IRE results in the repression of HIF-2α translation. 

During hypoxia, the binding of IRP1 to the HIF-2α IRE is repressed, which allows the 

translation of HIF-2α (Wigerup et al., 2016). Zimmer et al. (2008) have identified 

compounds that promote IRP1 binding to the IRE of HIF-2α and suggest that these 

compounds may be able to repress HIF-2α translation. 

 

Inhibition of HIF Translational Activity 

The HIF complex has to bind to DNA in order to transcribe HIF target genes. 

Echinomycin is an established DNA intercalator that has been shown to inhibit the 

binding of HIF-1 to the VEGF HIF response element (HRE) resulting in hampered 

VEGF expression (Kong et al., 2005). It has been shown that although during 

hypoxia echinomycin inhibits HIF-1α activity, echinomycin increases HIF-1 activity in 

normoxia, which in turn increases the expression of HIF-1 target genes (Vlaminck et 

al., 2007). Therefore, more research needs to be completed on the drug before it is 

established as a therapy.  
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It is proposed that the above methods of targeting the HIF pathway may also be of 

use when investigating whether an alternative splicing event in a cancer-associated 

gene is HIF-dependent or –independent. Inhibitors of the PI3/AKT/mTOR pathway 

when used in conjunction with inhibitors of HIF dimerization and translational 

activity could provide insight into whether or not alternative splicing changes that 

occur during hypoxia in cancer-associated genes are HIF-dependent. In an instance 

where an alternative splicing change is not HIF-dependent, it can be deduced 

whether the PI3/AKT/mTOR pathway is involved but may exert alternative splicing 

effects through a different mechanism that does not include HIF. Furthermore, HIF-

2α inhibitors may be used to assess whether HIF-2α is involved in the regulation of 

alternative splicing of cancer-associated genes.  

 

6.4 Concluding remarks 

Hypoxic tumours are indicative of a poor prognosis due to the increase in pro-

survival proteins and the difficulty to treat hypoxic regions with current therapies. 

The hypoxic response is very complicated and encompasses many of the hallmarks 

of cancer (Ruan, Song and Ouyang, 2009; Hanahan and Weinberg, 2011). Ladomery 

(2013) proposed aberrant alternative splicing as another hallmark of cancer. 

Therefore, this thesis aimed to explore whether the hypoxic response exerted 

changes to the alternative splicing of cancer-associated genes and looked for 

potential clues into mechanisms that may be involved. 
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Evidence has been provided for changes in alternative splicing of apoptotic genes, 

caspase-9, Bcl-x and survivin; and in other cancer-associated genes, APAF1, 

BTN2A2, CDC42BPA, FGFR1OP, MBP, PTPN13, PUF60, RAP1GDS1, TTC23 and UTRN 

which are implicated in various arms of the hallmarks of cancer (Figure 6.2). In 

addition, an increase in mRNA expression of splice factors (SRSF1, SRSF2, SRSF3, 

SAM68, HuR and hnRNP A1) and splice factor kinases (CLK1 and SRPK1) during 

hypoxia were also shown, which implicates these splice factors and splice factors in 

the hypoxic response and may offer targets for future therapies.  

In addition, the CLK1 splice factor kinase has been implicated in the regulation of 

FGFR1OP alternative splicing. TG003, a chemical inhibitor of CLK1 was used to show 

that the inhibition of CLK1 mimicked the effect of hypoxia on the alternative 

splicing of FGRF1OP and therefore it is thought that a down-regulation in CLK1 

activity may be responsible for this effect. Therefore, it is suggested that CLK1 may 

be inhibited during hypoxia by an endogenous protein. This could explain how 

inhibition of CLK1 results in an alternative splicing pattern of FGFR1OP that mirrors 

the pattern found in hypoxia, despite an increase in CLK1 expression in hypoxia. 

TG003 also inhibits CLK4 activity, and so a CLK4 knockdown is required to deduce 

whether the change in FGFR1OP splicing under the influence of TG003 is due to 

CLK4 inhibition.   

There is an indication that the PRPF8 and SAFB1 splice factors favour the CA IX FL 

isoform, which is an established marker for hypoxia. Further research revealed that 

SAFB1 expression is decreased in hypoxia, and it is thought that this may be due to 

the need of other factors for the hypoxic response that may be negatively regulated 
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by SAFB1. For example, a decrease in SAFB1 expression is proposed to elevate miR-

17-92 expression, which is involved in the inhibition of hypoxia-induced apoptosis; 

however, this remains to be elucidated.  

A number of potential therapies to combat hypoxic tumours have been discussed in 

this thesis. It is hoped that in the future splice switching oligonucleotides (SSOs) will 

be developed that are able revert the splicing of pro-oncogenic isoforms, such as 

APAF-1, BTN2A2, RAP1GDS1 and CA IX, back to the non-oncogenic isoforms during 

hypoxic conditions. In addition, if it is possible for the proposed SSOs to only 

become active in hypoxic conditions, like hypoxia activated prodrugs (HAPs), this 

would provide a specific targeted therapy for hypoxic tumours. At the very least, 

this thesis has provided an insight into other mechanisms and uncovered factors 

that are involved in alternative splicing changes during hypoxia (Figure 6.2). 

 

6.5 Future work 

6.5.1 Investigate the effect of intermittent hypoxia on the alternative splicing of 

cancer-associated genes 

As discussed in Section 6.1.3, Toffoli and Michiels (2008) provided evidence that 

chronic and intermittent hypoxia activate HIF-1α through different pathways. Their 

paper showed that PI3K and ERK1/2 are required for HIF-1α activation during 

chronic hypoxia, whilst PKA is involved in stimulating HIF-1α during intermittent 

hypoxia. It is possible therefore that the two such pathways may be involved in 
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targeting different genes for transcription and each may alter distinct alternative 

splicing patterns. Therefore as this thesis concentrated on the effect of 48h chronic 

hypoxia on the alternative splicing of cancer-associated genes, it would be 

important to also examine the effect of intermittent hypoxia on the alternative 

splicing of cancer-associated genes, such as the ones investigated in this thesis 

(Sections 3.5 and 3.6). Furthermore, the effect of intermittent hypoxia on the 

expression of splice factors and splice factor kinases, such as the ones investigated 

in Section 4.3.1 would also provide an insight into whether intermittent and chronic 

hypoxia activate distinct alternative splicing mechanisms. This is especially 

important when it is considered that intermittent hypoxia is of physiological 

relevance to many tumour types, as discussed in Section 6.1.3. 

 

6.5.2 Examine the effect of irradiation on the alternative splicing of cancer-

associated genes 

Rabbani et al. (2010) showed that irradiation correlated with the expression of 

hypoxia markers: HIF-1α, CA IX and pimonidazole (Section 6.1.4). This provides 

evidence that other factors may regulate the HIF response. Therefore, it would be 

prudent to examine whether or not irradiation is able to activate genes associated 

with the hypoxic response, such as EPO; and whether the same alternative splicing 

alterations shown to be regulated by hypoxia in this thesis are also affected by 

irradiation. This would be especially important when it is considered that irradiation 
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is used as a cancer treatment. Knowledge of the down-stream effects of such 

treatment may be important for its future use.  

 

6.5.3 Development of a more specific CLK1 inhibitor 

TG003 was used in the work reported in this thesis to inhibit CLK1 expression, 

which in turn was able to provide evidence that CLK1 is involved in the alternative 

splicing regulation of FGFR1OP (Section 5.4). However, TG003 is documented to 

also inhibit CLK4, and therefore there is the possibility that CLK4 may regulate the 

alternative splicing of FGFR1OP. Although a CLK1 siRNA knockdown provided an 

additional suggestion that CLK1 is involved in the regulation of FGFR1OP alternative 

splicing, this was not shown to be significant. Therefore, there is a possibility that 

CLK4 may also be involved in the regulation of FGFR1OP alternative splicing. The 

development of a more specific inhibitor of CLK1 would be beneficial as this would 

be able to address any uncertainties in regards to whether CLK1 and/or CLK4 were 

involved in the splicing changes exhibited by FGFR1OP during hypoxia. SiRNAs 

targeted towards CLK1 and CLK4 could also be used to knockdown the expression of 

the proteins in order to examine the effect on FGFR1OP expression; however, these 

would not target the activity of the proteins. The development of a new CLK1 

inhibitor may also open up new avenues for future therapeutic treatments.  
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6.5.4 Examine the effect of successful SAFB1 and PRPF8 knockdowns on the 

alternative splicing of cancer-associated genes 

Section 5.2 of this thesis intended to knock-down SAFB1 and PRPF8 in order to 

further assess their effect on the alternative splicing regulation of CA IX. However, 

this was not successful and although the RNomics platform performed by our 

collaborators in the MCF7 breast cancer cell line provided evidence that CA IX 

splicing is regulated by SAFB1 and PRPF8, it would be beneficial to confirm this 

further using successful SAFB1 and PRPF8 siRNA knockdowns in the PC3 prostate 

cancer cell line. Moreover, the effect of the knockdowns on the alternative splicing 

of the cancer-associated gene set used in this thesis could also be investigated.  

 

6.5.5 The effect of hypoxia on the formation of SNBs 

As discussed in Section 5.6.1, SAFB1 is involved in the formation of SNBs and has 

also been shown to interact with SRSF1, SAM68 and hnRNP A1 (Denegri et al., 2001; 

Sergeant et al., 2007; Rivers et al., 2015), which were all shown to increase in mRNA 

expression during hypoxia. SNBs have been suggested to sequester splice factors 

away from sites of transcription in certain conditions (Weighardt et al., 1999; 

Biamonti et al., 2010). As the expression of SAFB1 was shown to decrease in 

hypoxia, it suggests that a reduced amount of SNBs are formed. This would allow 

splice factors, such as SRSF1, SAM68 and hnRNP A1 to regulate the alternative 

splicing of genes required for the hypoxic response. Therefore, it would be 
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worthwhile to investigate this hypothesis and examine whether or not the 

formation of SNBs is favoured by hypoxic stress.  

 

6.5.6 Development of an SSO with HAP technology for the targeting of hypoxia-

mediated alternative splicing of oncogenes 

SSOs bind to specific pre-mRNA sequences and block the binding of splice factors, 

which disrupts the intended splicing of the pre-mRNA. Therefore, SSOs can be used 

to switch splicing to favour splice isoforms that are not associated with disease 

progression (Havens and Hastings, 2016) (Section 6.3.1). HAPs are drugs that have 

been designed to be inactive in normoxic conditions, but become active in hypoxic 

conditions (as described in Section 6.3.2). Therefore, the development of an SSO 

with HAP technology would allow the specific targeting of hypoxia-mediated 

alternative splicing changes, such as APAF-1, BTN2A2, RAP1GDS1 and CA IX, which 

are shown in this thesis, whilst only targeting hypoxic areas.  

The ultimate aim of any future work would be to enable a better understanding of 

how alternative splicing contributes to the onset and maintenance of tumours with 

the view to using splicing pathways as a focus for the development of new 

therapeutic strategies. The development of HAP technology may be a good first 

step, which may one day help in the battle against cancer.  
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Figure 6.2 – Summary 

of key findings. Cancer-

associated genes 

identified as having a 

change in mRNA 

alternative splicing 

during hypoxia are 

shown (green boxes) 

next to the hallmark of 

cancer that is affiliated 

with them (blue 

circles). mRNAs that 

favour oncogenic 

isoforms under the 

influence of hypoxia are 

shown in bold if known. 

The mechanism for 

hypoxic-mediated 

change in FGFR1OP 

splicing is shown in 

orange. Splice factors 

involved in the change 

in CA IX splicing are 

shown in purple.   
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