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ABSTRACT

In  many  speech  processing  applications,  speech  has  to  be  handled  in  the  existence  of

undesirable background noise like white Gaussian noise, coloured noise, car interior noise and

many  other  real  life  noises.  It  is  vital  to  enhance  the  original  speech  signal  using  noise

reduction  techniques  in  order  to  get  rid  of  any  undesirable  background  noise.  Speech

enhancement aims to improve the speech quality for human listener or improve the speech

signal for other speech processing algorithms. Different methods have been implemented for

the suppression of background noise without decreasing the speech quality. These approaches

can  be  classified  into  two  major  categories:  single-microphone  and  multi-microphone

methods. Although multi-microphone methods show good performance in many situations,

there are possible circumstances where we are restricted to the use of a single microphone.  In

this  context,  the  thesis  presents  a  novel  speech  enhancement  method  based  on  discrete

wavelet packet decomposition using a single microphone.

First of all,  a wavelet based speech enhancement algorithm is implemented in software.  A

different  algorithm,  called  wavelet  packet  decomposition,  is  implemented  rather  than  the

most  common  method  wavelet  pyramid  decomposition.  The  next  part  concentrates  on

implementing  wavelet  packet  decomposition method  for  speech  enhancement  on  real

platforms. The algorithm, implemented initially in software (Matlab), is improved by using C

for less memory usage for processors with a small size memory.  The final part outlines the

implementation  of  a  real  time  wavelet  de-noising  algorithm  using  wavelet  packet

decomposition method. The Xad-ML100, an audio acquisition platform, which can acquire 16

analogue audio signals from custom build audio equipment and store and play them in custom

build computer is used as a real time platform*. The results are compared using output SNR

values and Mean Opinion Score (MOS). It shows that the wavelet packet decomposition is not

giving good results for fixed frequency noise mixed with white noise. Therefore, a new method

which  consists  of  combining  a  notch  filter  with  wavelet  packet  decomposition,  is

implemented. The results of the proposed algorithm are very promising.

*  The  platform  has  been  developed  by  Xad  Communications  Ltd.,  the  company  who  funded  this

research.
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1  INTRODUCTION

One of the vital activity of human beings is communication through speech. People acquire

different  ways  to  get  information  from  the  outside  world  or  to  communicate  with  other

people. Speech, image and written text are the three most valuable origins of information.

Speech can be highlighted as the most effective and comfortable one in many ways. Speech

does not only transmit linguistic contents, but also delivers other useful information like the

feelings of the speaker. 

Speech processing offers practical and theoretical understandings of how human speech can

be processed using both signal processing methods and knowledge from hearing sciences,

phonetics, linguistics, and psychology. The rapid progress in digital signal processing makes

the speed of representing, storing, retrieving and processing speech data easier and faster.

Also, the development of speech processing methods started new and different application

areas such as speech enhancement, speech synthesis, speech coding and speech recognition.

The main factors that affect the accuracy of the results in speech processing are based on

noise and distortion. This is why modelling and removing noises and distortions are among

the  most  important  theoretical  and  practical  considerations  in  speech  processing.  The

dominant analytical tool for frequency domain analysis is the Fourier Transform (FT) based

analysis.  Although  the  Fourier  Transform  is  a  useful  tool  for  analysing  stationary  signal

components,  where  there  is  no  change  in  the  properties  of  a  signal,  it  cannot  give  any

information  on  the  spectrum  changes  with  respect  to  time.  To  overcome  the  problem,  a

modified version of the Fourier Transform, called the Short Time Fourier Transform (STFT), is

used. It can represent the signal in both time and frequency using a time windowing function

by  determining  a  constant  time  and  frequency  resolution.  Thus,  capturing  the  transient

behaviour of a signal, for example, is achieved by using a shorter time window which sacrifices

the frequency resolution. As the real speech signal is nonperiodic and transient, conventional
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transforms  cannot  easily  analyse  such  signals.  Recently,  however,  wavelet  transformation

based  methods  have  become  very  popular.  Signals  corrupted  by  noise  can  be  filtered  by

powerful  wavelets[1].  Wavelet  basis  naturally  preserves  both  time  and  frequency(scale)

information of  the  signal,  providing  thus  a  more  elegant  way of  analysing  non stationary

signal.

1.1  Problem Statement

• How to enhance noisy speech data without decreasing the speech quality in real time

speech recording? 

Background noise creates signal distortions and causes total unintelligibility of speech

signals.  This  degradation substantially  decreases  the  performance of  speech coding

and  automatic  speech  recognition  systems.  Therefore,  efficient  noise  reduction

algorithms are required[2]. In order to achieve this mission, we propose to develop a

speech  processing  method  using  both  wavelets  and  thresholding  techniques.  This

choice is driven by the non-stationary nature of speech and the ability of wavelets in

dealing with this type of signals.

• Which denosing method is suitable for developing reliable and robust real time speech

enhancement system?

Over  the  years,  different  approaches  to  the  problem  have  been  developed.  The

approaches can be classified into two major categories: single-microphone and multi-

microphone methods. Although multi-microphone methods show good performance in

many situations, there are still some circumstances where we are restricted to the use

of a  single microphone.  Spectral  subtraction is  the most applied single microphone

algorithm  for  speech  enhancement.  While  it  has  a  great  potential  of  removing

background noise,  it  inserts  additional  artefacts  known as the  musical  noise.  Other

approaches  using both basic  and iterative  Wiener  filtering  and comb filtering  have

been  proposed  in  recent  years  as  another  mean  of  enhancing  corrupted  speech.

Donoho proposed wavelet thresholding as an effective method in speech enhancement

especially for additive white noise.     

• How to implement a real time speech denosing algorithm with a minimum delay? 
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Although the application of  wavelet  thresholding for speech enhancement has been

applied  in  many  works  [3]  [4],  there  are  several  issues  yet  to  be  resolved  for  a

successful application of the method to real time speech signals degraded by various

noise  types.  The  speech  information  often  needs  to  be  processed  while  the  audio

stream becomes available, making the complete task even more challenging[5]. 

• How to implement the denoising algorithm that can be ported to a low memory battery

operated mobile device? 

  

1.2 Research Objectives

The main objective  of  this  research is  to devise  a speech enhancement  method based on

wavelet theory which cleans noisy signal in effective manner, without decreasing the speech

quality in real time using a single microphone in the following ways:

1. Implement  an  offline  speech enhancement  algorithm using  discrete  wavelet  packet

transform instead of the traditional wavelet tree decomposition. To validate this initial

work, different speech and noise types are denoised using different wavelet families,

wavelet types and wavelet decomposition levels. 

2. Evaluate the results  using  Signal  to Noise Ratio (SNR) and the Mean Opinion Score

(MOS), respectively.

3. Port  the  algorithm to  a  suitable  hardware platform for  less  memory usage for  low

memory processors.  Develop an efficient implementation that  uses limited memory

resources for this purpose. This will make the algorithm more suitable for hardware

platforms with limited resources.

4. Devise a custom build audio equipment which real time noise enhancement algorithm

can be ported. 

5. Implement real time speech enhancement algorithm using a custom build equipment

which the latency results is in the tolerable limits for real time processing. 

6. Design a Graphical User Interface(GUI) for user friendly speech enhancement which

gives flexible settings to the end user to obtain the enhanced speech output. Different

types of noises are used in order to assess the effectiveness of the method. 

7. Implement  a new method to overcome the problem of denoising fixed frequency and

white noise combination. 
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1.3  Scope

This  thesis  describes  the  development  of  a  wavelet  based speech enhancement  system to

process speech corrupted with various amounts of white Gaussian noise (signal to noise ratios

vary between 0db to 15db). The system has been tested with real life noises such as: pink

noise, car engine noise and F16 noise.  Six different  utterances from a noisy speech corpus

(NOIZEUS)[6]  library and  three different speeches with 6 different noise types from  SpEAR

Database[7] were used to evaluate the wavelet packet decomposition thresholding algorithm.

Ultimately, the algorithm is ported to a hardware platform for real time applications and the

problem of white noise and fixed frequency noise combination is addressed using a modified

wavelet algorithm.

1.4  Equipment and Materials

The following tools were used  in this research:

• Codeblocks IDE is used for coding and testing purposes[8].

• Glade Interface Designer is used for GUI design[9].

• Matlab is used for simulation purposes[10].

• MathType is used for developing graphs and bar-charts[11].

• NOIZEUS[6]  and  SpEAR[7]  speech  databases  are  used  for  speech  enhancement

algorithm experiments.

1.5  Organisation

In chapter two, speech and speech production are described in details. Also, different auditory

models are explained as well as noise in audio communications. In chapter three, past and

current  research  in  the  area  of  speech  enhancement  is  described.  Single  channel  speech

enhancement methods are analysed and compared using a comparison table. Most common

methods, such as Comb filter, adaptive filters, spectral subtraction and Wiener filtering, are

analysed in this chapter. In chapter four, the wavelet based approach to speech enhancement

is discussed. The basic concepts of the classic wavelet transform and its relationship to the

Fourier transform are also introduced. Moreover, the implementation of the discrete wavelet

transform is  explained. In chapter  five,  the wavelet  thresholding method is  applied to the
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actual noisy speech data using Matlab and C. The results are then analysed using objective

measures  such  as  signal  to  noise  ratio(SNR)  and  subjective  measures  such  as  informal

listening tests. In chapter six, the real time wavelet denoising algorithm using a custom build

audio equipment called Xad-ML100 is implemented. The wavelet algorithm is applied to fixed

frquency noise and white Gaussian noise and the results are improved by combining notch

filtering with the wavelet denoising algorithm. The results are analysed using objective and

subjective  measures.  Finally,  in  chapter  seven,  the  thesis  summary  and  conclusions  are

presented.

1.6  Contributions of the Thesis

The main contributions of this thesis are: 

• Literature  review  of  important  background  knowledge  for  developing  a  noise

reduction algorithm in speech signals is introduced.

• A new discrete wavelet packet algorithm is implemented for the speech enhancement

instead  of  the  traditional  wavelet  decomposition  tree  method.  Although  discrete

wavelet packet algorithm is commonly used for image processing, it is rarely used for

speech  processing.  This  approach,  though  time  consuming,  provides  finer  wavelet

coefficients  at  higher  levels  of  decomposition  and  consequently  provides  a  more

efficient way of calculating the threshold value.

• Different  wavelet  families,  thresholding  methods  and  levels  are  experimented  to

evaluate  the  proposed  wavelet  packet  decomposition  algorithm using  six  different

utterances from a noisy speech corpus. The results have been evaluated using objective

and subjective measures, which are in this case the SNR and the MOS, respectively. The

discrete wavelet packet algorithm performed well and produced good quality speech

signals.

• A new and  efficient  implementation  that  uses  limited  memory resources  has  been

developed.  This  makes  the  algorithm more  suitable  for  mobile  hardware platforms

with limited resources such as memory, speed and energy.

•  A  new  GUI  has  been  designed  to  allow  users  to  implement  speech  enhancement

through  graphical  icons  and  visualise  the  improvement  before  and  after  the

enhancement algorithm.
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• The  results  shows  that  the  proposed  wavelet  thresholding  algorithm  performs  far

better in white Gaussian noise and pink noise when dealing with different types of

noise signals, such as, white Gaussian noise, pink noise, f16 noise, burst noise, factory

noise and Volvo noise. 

• The implementation of the real time wavelet enhancement algorithm using the wavelet

packet decomposition method is outlined using a custom build computer, Xad-ML100.

After the experiments, our real time wavelet enhancement algorithm gives less than 10

milliseconds latency for different combinations of noise types, wavelet type, wavelet

level of decomposition and thresholding method.

• A new combination of noise reduction methods is introduced to overcome the fixed

frequency  noise  mixed  with  white  Gaussian  noise.  Notch  filter  is  applied  prior  to

applying the wavelet enhancement algorithm to remove the fixed frequency noise. The

fixed frequency noise actually misleads the thresholding value calculation and confuses

thus  the  wavelet  enhancement  algorithm.  Experimental  results  show  that  the

combination of Notch filtering with the wavelet enhancement algorithm is successful in

dealing with fixed frequency noise when combined with white Gaussian noise in real

time.
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2  BACKGROUND

2.1 Speech

Speech  is  the  vocalised  form  of  human  communication.  According  to  information  theory,

speech  can  be  represented  in  terms  of  either  its  message  content,  or  information.  An

alternative  way  of  characterising  speech  is  in  terms  of  the  signal  carrying  the  message

information, that is the acoustic waveform. It can be represented phonetically by a finite set of

symbols called the phonemes of the language. The number of phonemes is between 32 and 64

for most languages and they have a unique appearance in the speech form. These differences

result from the distinctively different ways that these sounds are produced. 

Figure 2.1 shows the entire process of producing and perceiving speech from formulating a

message  in  the  brain  of  a  talker,  to  the  creation  of  the  speech  signal,  and  finally  to  the

understanding of the message by a listener. The process starts in the upper left as a message

represented somehow in the brain of the speaker. The second step consists of generating a

language  code  and  converting  text  symbols  to  phonetic  symbols  along  with  continuous

information and stress. In the third step, the neuromuscular system moves the velum, jaw,

teeth, lips and tongue in a manner that is consistent with the sounds of the desired spoken

message, including the desired degree of emphasis. The final step in the process involves the

vocal tract system. This system creates necessary sound sources and appropriate vocal tract

shapes over time to generate an acoustic waveform. 

The result of  moving from speech production to speech perception is  the encoding of the

message  that  can  be  effectively  transmitted  by  acoustic  wave  propagation  and  robustly

decoded by the hearing mechanism of a listener. 
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The speech perception includes many steps such as the transmission of the speech signal to

the  ear  and  the  understanding  of  the  speech  signal  content[12].  Initially,  the  acoustic

waveform  is  converted  to  a  spectral  representation.  Then,  these  spectral  features  are

converted into sound features that the brain can decode and process. Sound features are then

converted into a set of sentences, phonemes and words. Finally, the meaning of the message is

understood and the speech perception process is complete.

2.1.1 Auditory Models
 
In which way the brain handles the extracted patterns is largely unknown. Many studies have

presented how humans perceive tones and bands of sound [13], [14]. Many auditory models

that  simulate  the  functionality  of  the  human  ear  have  been  generated  based  on  that

knowledge [13-16]. Several computational models of the IHC have been proposed. 

2.1.1.1 Meddis IHC Model

One  of  these  models  is  the  Meddis  inner  hair  cell  model.  The  Meddis  model  is  a  widely

acknowledged in-depth computer model of the human inner hair cell [17]. IHC are held in the

organ of Corti which is located on top of the basilar membrane, inside the cochlea and can be

thought of as the body's microphone. The mechanical stimulus in the cochlea is transferred by
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Figure 2.1 : The Speech Production and Perception Process

Formulating
Message

Coding
Language

Neuro-Muscular
Controls

Coding
Language

Converting
Acoustic Waveform 

Transmission Channel

Neural
Transfer

Translating
Language

Understanding
Message

Speech Perception

Speech Production



the  hair  cells  to  fire  the  auditory  nerve  cells.  Transmission  is  completed  between  three

reservoirs in a re-uptake and re-synthesis process loop as seen in Figure 2.2.

The transmitter factory is the first reservoir which discharges neurotransmitters at the hair

cell boundary and transfers them to the free transmitter pool. The changes in the permeability

of the cell membrane handles the quantity of neurotransmitters released from the pool into

the  cleft.  This  oscillates  as  a  part  of  the  intra-cellular  voltage  which  is  linked  to  the

instantaneous mechanical stimulus amplitude. Some neurotransmitters are lost since there is

a diffusion in the cleft and some are taken back up into the cell. The post synaptic afferent

fibre of an auditory nerve cell  is  stimulated by the remaining transmitter in the cleft.  The

transmitters removed from the cell are initially processed again and then stored in a third

reservoir in preparation for delivery to the free transmitter pool. 

2.1.1.2 Lyon's Model

A model of an analogue electronic cochlea is established by Richard F. Lyon. The model is

based on the knowledge of how the cochlea works [18]. His suggestion was to design the fluid-

dynamic  wave medium  of  the  cochlea  by  a  cascade  of  filters  depending  on  the  detected

properties of the medium as shown in Figure 2.3[19]. 
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2.1.1.3 Auditory Image Model

The auditory image model(AIM) is  a  computational  model  that  simulates human auditory

processing[20]. It contains various alternative modules containing the phases of processing by

the peripheral auditory system as shown in Figure 2.4. The first phase is called middle ear

filtering.  The middle ear filtering is a simple linear filter that enhances middle frequencies.

The  second  phase  is  spectral  analysis.  The  spectral  analysis  can  be  accomplished  with  a

functional  (gammatone)  or  a  physiological  auditory  (nonlinear  transmission)  filter.

Gammatone filter bank is a constant bandwidth filter bank. The gammatone auditory filter can

be explained by its impulse response as shown in equation 2.1.  

         for t>0             (2.1)

where the parameters  a  and  b  determines the duration of the impulse response and  n  the

filter’s  order.  The product of  this  stage is  the estimated Basilar Membrane Motion (BMM)

received in the presence of an input signal. The third stage is the neural encoding stage, which

changes the BMM into neural activity pattern (NAP). Two modules are used for producing the

NAP:  a  bank  of  meddis  Inner  Hair  Cells(IHS)  and  a  bank  of  two  dimensional  adaptive

threshold  units,  which  rectify  and  compress  the  BMM.  To  complete  the  stage,  we  apply

adaptation in time and suppression across frequency are applied. The last stage, time-interval

10

n 1 2 bt
tone cy (t) at e cos(2 f t )- p= p + f

Outer Ear

Middle Ear

Pre emphasis

Acoustic 
Signal Filter FilteringFilter Filter

HWR

AGC

HWR

AGC

HWR

AGC

Detection

Compressio
n

Figure 2.3: Lyon's Model Cascade Filter, Copyright © 2016, IEEE 

Outer Ear

Middle Ear

Pre emphasis

Acoustic 
Signal

Filter FilteringFilter Filter

HWR

AGC

HWR

AGC

HWR

AGC

Detection

Compression



stabilisation,  outlines the momentary activity at the output of the NAP stage depending on the

idea that

periodic sounds give rise to static perceptions by human listeners.

        

2.2 Noise In Audio Communication

Recording, playback, analysis, synthesis or transmission of speech signals are performed by

electronic  systems  to  achieve  audio  communication.  Noise  influence  must  be  carefully

considered while designing a system for any of these purposes. There are different types of

noises and distortions which will be explained later in the thesis.
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Number of signal processing concepts exist that can assist in diminishing the effect of noise

and as such enhance the quality or intelligibility of the speech signal. Digital signal processing

offers  a  number  of  powerful  tools  to  specific  types  of  noise  corruptions.  Different  noise

reduction methods will be discussed in the next chapter.

2.2.1 Noise Chain

The quality of a speech signal may be deteriorated by a wide range of influential factors during

transmission, acquisition and generation of speech. External interferences such as background

noise in the recording, echoic effects, non-linear distortions introduced by analogue electro-

acoustic  devices or amplifiers can be included to the noise chain[21].  Potential  sources of

noise and distortion in a speech communication systems can be highlighted and categorised as

shown in Figure 2.5.

   

Speaker A is connected to listener B through a universal speech communication system as

shown in Figures 2.5 and 2.6 respectively. While Figure 2.6 shows a mechanism of speech play

back stage, Figure 2.5 represents a universal speech acquisition system. 
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The distortion of a speech signal is caused by environmental noise, echo feedback, amplifier

noise, quantization noise and coding-compression noise during the acquisition stage[22].

Signal quality degrades quickly if the distortion becomes too dominant [23].  In this thesis, we

mainly concentrate on distortions in the signal acquisition stages. In particular, the distortion

introduced by environmental noise, echo feedback, amplifier noise and quantisation noise.

2.3 Summary

In this chapter, speech production is described using the physical features of human anatomy.

Also, the production of a sampled speech signal is modelled by a discrete-time system model

called the source-filter model of speech production.  Then, the process of sound perception  is

explained from the outer ear to the cochlea, where the mechanical movement is converted into

stimuli perceived by the brain. Some auditory models that simulate the functionality of the

human ear are introduced to explain how humans perceive tones and bands of sound. Finally,

different  type of  noise  signals  in  audio communication are  explained.  These noise  signals

occur during recording, playback, analysis, synthesis or transmission of speech signals. Digital

signal processing offers a number of  powerful  tools to specific  types of  noise corruptions.

Different noise reduction methods will be discussed in chapter 3.
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3  SPEECH ENHANCEMENT 

3.1 Introduction

Speech  signal  degradation  can  originate  from  different  sensors  (microphones)  and  their

placement,  acoustic  non-speech  and  speech  background,  as  well  as  from  channel  and

reverberation effects. It exists different techniques for enhancing speech signal to cater for

distortions caused by both wideband and narrow band background noise, clicks, and other

non-stationary  interferences.  These  are  explained  in  this  chapter.  It  is  assumed  that  the

features  of  noise  change  slowly,  therefore  noise  can  be  identified  in  terms  of  mean  and

variance.

The goal of speech enhancement is to enhance quality and intelligibility. Weaker and lower

energy is important for intelligibility. The obstruents which are the speech sounds formed by

obstructing airflow such as [k], [dʒ], or [f] have low energy and are easily masked in noise,

more than vowels. Unfortunately,  they are the first to be lost and the most difficult to recover

in  noise.  However,  sections of  speech  spectral  transitions  are  very  crucial  for  good

intelligibility. Speech enhancement methods often try to improve speech intelligibility beyond

easy improvement in SNR.

Speech enhancement approaches vary remarkably depending upon the type of degradation.

Speech enhancement techniques can be divided into two basic categories based on speech

acquired either using a single microphone or multiple microphone sources. Our focus is on

single channel speech enhancement methods since single channel signal(one microphone) is

available for measurement or pick up in real environments.
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3.2 Single Channel Speech Enhancement Approaches

Speech enhancement algorithms try to improve the performance of communication systems

when a signal  is  corrupted by noise[24].  The main objective of  speech enhancement is  to

reduce the additive noise while improving the speech quality and intelligibility[25]. Different

types of noises may need different enhancement approaches. Noise may be periodic, impulsive

or continuous and its amplitude may change across frequency; (e.g., hum noise from AC power

lines or machinery). Consequently, to deal with different problems, there are different types of

speech enhancement methods, each with its own advantages and limitations.

Noise  signals that  are  transiently short  can  generally  be  treated  as  impulsive  while  noise

signals that are localised in frequency can generally be treated as harmonic. It is possible to

identify  and  clean  impulsive  and  harmonic  noises,  as  the  majority  of  time-frequency

representations of a speech signal are not damaged. A car engine noise, a motor noise created

by a motorised camera and a hum noise in an electrocardiograph are some examples of such

noise signals. In what follows, different techniques for speech enhancement, including their

advantages and limitations, are reviewed.

3.2.1 Comb Filter

3.2.1.1 Background

A comb filter has notch frequencies that have equally spaced zeros as shown in Figure 3.1. A

comb filter  can remove  noise  by  adjusting  the  notch frequencies  to  that  of  the  harmonic

frequencies of the periodic noise signal.  Moreover,  the desired signal can be preserved by

adjusting the notch gain appropriately, which is basically implemented by changing the gain of

the comb filter for chosen unwanted frequencies[26].

A comb filter adds a delayed version of a signal to itself creating constructive and destructive

interferences. Feedback and feedforward types are the two different types of comb filters and

the names show the direction of the delayed signal before they are added to the input.    
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3.2.1.2 Feedback Comb Filter

The  main  form  of  feedback  comb  filter  is  shown  in  Figure  3.2  and  is  described  by  the

difference equation:

(3.1)

where M is the delay length and g is the scaling factor, which is applied to the delayed signal. 

x[n] and y[n] represent the input and the output signals, respectively.

3.2.1.3 Feedforward Comb Filter

The general form of feedforward comb filter is shown in Figure 3.3 and is described by the

difference equation:
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(3.2)

where M is the delay length and g is the scaling factor which is applied to the delayed signal. 

 

Incrementing  the  number  of  poles  can  achieve  larger  amounts  of  stop-band  rejection.

However, incrementing the  number of poles increases the filter complexity and processing

time. This is why, a comb filter cannot enhance most of real life speech signals[27].

A Comb filter is a FIR recursive system, therefore it has linear phase and guaranteed stability.

Moreover,  it  is  multiplier-free  and  it  only  requires  two  additions  which  leads  to  low

complexity[28].  A comb  filter  is  capable  of  producing  significant  noise  reduction  for  voiced

speech, but only at the cost of reduced intelligibility. This is because voiced speech is not purely

periodic[29]. 

3.2.2 Adaptive Noise Enhancement

3.2.2.1 Background

A  signal  corrupted  by  additive  noise  can  be  enhanced  by  passing  it  through  a  filter  that

suppresses the noise while keeping the signal relatively unchanged. Direct filtering can be

either fixed or adaptive. The fixed filter design needs a priori knowledge of both the speech

signal  and the  noise  signal[30].  On the  other  hand,  little  or  no a priori  knowledge of  the
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detailed properties  of  the  signal  and the  noise  are  required in  the  case  of  adaptive  noise

filtering. However, a highly correlated noise component of the input signal is required as a

reference noise. Since most speech signal applications do not have a reference noise signal,

single channel Adaptive Noise Cancellation (ANC) method is proposed for speech signals[31].

This method is applicable in scenarios where the levels of noise rejection are often attainable,

which would normally be difficult or impossible to achieve by direct filtering. The process of

single channel adaptive noise enhancement is illustrated in Figure 3.4. 

A noise  n0 uncorrelated with the signal is transmitted with a signal s to the adaptive noise

canceller as shown in Figure 3.4. A noise n1, uncorrelated with the signal, but correlated with

the noise n0, is sent to the adaptive filter as a reference noise. The system output is then the

signal alone, after the filter output is subtracted from the primary input. The nature of the

application changes the error signal used in an adaptive process. The main objective in noise

cancelling systems is to produce a system output "z = s +  n0 – y" and this is achieved by

feeding the system output back to the adaptive filter[33]. 

3.2.2.2 Adaptive Filters

An  adaptive  filter  readjusts  itself  to  changes  of  input  signals  according  to  a  given

algorithm[34]. The algorithm modifies the coefficients according to an error signal to enhance
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the  performance  of  the  filter.  Adaptive  filters  are  being  widely  used  for  telephone  echo

cancellation[35]. 

3.2.2.3 Adaptive Algorithms

There are many adaptive algorithms used to modify the coefficients of  the digital  filter  in

order to achieve the intended response as accurately as possible. Some of the main algorithms

are explained in  this chapter.

3.2.2.3.1 Least Mean Square Algorithm

The Least Mean Square (LMS) algorithm is an adaptive algorithm introduced by Widrow and

Hoff in 1959[36]. It uses a gradient-based method of steepest decent in which the filter is only

altered based on the error at the current time. LMS forms an iterative procedure that achieves

successive corrections to the weight vector in the direction of the negative gradient vector.

From the method of steepest descent, the weight vector            equation is given by:   

(3.3)

where n represents the current input sample, µ is the step-size parameter which controls the

convergence  characteristics  of  the  LMS  algorithm,        is  the  gradient  operator,  E  is  the

expected value and e2[n] is the mean square error between the output y[n] and the reference

signal d[n]. The mean square error is defined as:

(3.4)

3.2.2.3.2  Recursive Least Squares Algorithm

The main concept of an adaptive Recursive Least Squares(RLS) filter is that the coefficients are

regularly altered during the filtering process. The RLS filter is an finite impulse response(FIR) 
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filter of length M with coefficients wk,  where k=0, 1, 2, ..., M-1. The input        is filtered to

produce the output          . The filter coefficients are updated at each step using an error          as

shown in equation 3.5.

(3.5)

where           is the desired response as shown in Figure 3.5. 

The total squared error           at the nth iteration is defined as[37]: 

(3.6)

Both RLS  and  LMS  filters  are  FIR  filters,  with  M coefficients.  The  input  stream is  passed

through the filter to generate the output stream. While the input signals are acknowledged

deterministic in RLS derivation, they are considered stochastic in LMS derivation. The RLS

filter converges faster than LMS filter under most conditions. On the other hand, an RLS filter

has more computational complexity than an LMS filter and it is numerically unstable in fixed

point arithmetic. The major advantage of these filters is they do not require prior knowledge

of the signal or noise characteristics as it is used in some other filters. 

20

x[n]

e[n] d[n] y[n]= -

e[n]

d[n]

[n]e

y[n]

( )
n n

22

i 0 i 0

[n] e [i] d[i] y[i]
= =

e = = -å å

Figure 3.5: RLS Filter Structure

e[n]FIR filter

RLS
Algorithm

+

-

Filter coefficients

x[n]

d[n]

y[n]

wk



3.2.3 Spectral Subtraction

The  power  or  the  magnitude  spectrum  of  a  signal  in  additive  noise  is  restored  through

subtracting the estimate of the average noise spectrum from noisy spectrum using spectral

subtraction methods[38]. When the signal is missing and only the noise is present, the noise

spectrum is usually predicted and updated from the periods. It is assumed that the noise is

stationary and that the noise spectrum is not altered much in between the update periods. An

estimate of the magnitude spectrum is merged with the phase of the noisy signal for recovery

of  time-domain  signals  and  converted  to  the  time  domain  using  an  inverse  Fourier

transform[39]. 

In  some applications, the noise is accessible on a separate channel in addition to the noisy

signal and it is possible to restore the signal by subtracting an estimate of the noise from the

noisy signal. However, the noisy signal is the only signal available in many applications. It is

impossible to cancel the random noise completely in these situations, however, it is possible to

diminish the average effects of the noise on the signal spectrum[40]. The magnitude of the

mean and the variance of the signal spectrum increases with the effect of an additive noise.

Subtracting an estimate of the noise spectrum mean value from the noisy signal spectrum can

remove the increase in the mean of the noise spectrum. However, the random fluctuations of

the noise causing the increase in the variance of the signal spectrum cannot be cancelled out.

Spectral  subtraction is  relatively uncomplicated in  terms of  computational  complexity[41].

However, spectral subtraction can create non-linear processing distortions caused by random

variations  of  the  noise  spectrum.  This  distortion  creates  a  musical  tone  noise  due  to  its

narrowband spectrum. The ability of the algorithm to reduce the noise variations and remove

the  processing  distortions  can  increase  the  success  of  spectral  subtraction.  It  has  been

suggested that  the results can be improved by over-subtraction, in other words, subtracting

more than the  average noise  value  in  spectral  subtraction applications[42].  Wiener  filters

outperform the spectral subtraction due to the fact that spectral subtraction handles too little

prior information. Also, the benefits of spectral subtraction lessen as noise levels in the order

of 0 dB are approached and exceeded. Results shows that under high noise conditions, the

degradations are explicit in the noise estimate, which are broadly believed to have by far the

21



greatest influence on spectral subtraction performance[43].  

3.2.4 Wiener Filtering

Wiener  filtering  is  a  classical  signal  estimation  technique  that  has  been  implemented

primarily  on  one-dimensional  continuous  signals  based  upon  the  continuous  Fourier

transform[44]. 

The Wiener filter is a popular technique that has been used in wide range of applications such

as echo cancellation,  signal restoration,  system identification and linear prediction. Wiener

theory presumes that the signals are stationary processes. 

Wiener solved the least mean square error (the continuous-time estimation) problem in his

classic work on interpolation, extrapolation and smoothing of time series[45]. More practical

use  of  Wiener  theory  for  digital  signal  processors  is  achieved  by  extending  it  from  the

continuous time form to the discrete time form. Infinite-duration Impulse Response (IIR) and

Finite-duration Impulse Response (FIR) filters are two types of Wiener filtering. While the

formulation of a FIR Wiener filter leads to a set of linear equations and has a closed-form

solution, the formulation of an IIR Wiener filter leads to a set of non-linear equations. FIR

Wiener filters are explained in this section because of their computational simplicity, stability

and practicality[46]. 

An FIR Wiener filter is represented by the coefficient vector W and the input vector X as[47]:

(3.7)

  

where T denotes the transpose of a matrix.
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The input–output relation of the filter is given by:

(3.8)

where m is the discrete-time index. The P initial input signal samples [x(–1), . . ., x(–P–1)] are

assumed either known or set to zero. The alternative and equivalent forms of a convolutional

sum and an inner vector product define the filtering operation in equation 3.8. 

The Wiener filter error signal e[m] is defined in Equation 3.9 as the difference between the

desired signal d[m] and the filter output signal y[m].

 (3.9)

The Wiener filter error  e[m] depends on the filter coefficient vector  w for  a desired signal

d[m] and a  given  input  signal  x[m] as  shown  in  equation  3.9.  The  filter  coefficients  are

23

P 1

k
k 0

T

y[m] w x[m k]

y[m] w x

-

=

= -

=

å

T

e[m] d[m] y[m]

e[m] d[m] w x

= -

= -

Figure 3.6: FIR Wiener Filter

Input
x[m] Z-1 Z-1

w0 w1 w2

Z-1

wP-1

+

y[m]

x[m-1] x[m-2]

+ d[m]e[m] -



calculated  in a way to decrease an average error cost function, such as the average absolute

value  of  error  E[|e[m]|],  or  the  mean  square  error  E[e2[m]].  The  optimality  and  the

computational complexity of the solution depends on the choice of the error function.

The least mean square error (LSE) between the filter output and the desired signal is  the

objective criterion in Wiener theory.  The LSE criterion is  optimal  for Gaussian distributed

signals and causes a linear and closed form solution for FIR filters as shown in what follows.

The Wiener filter coefficients are acquired by minimising an average squared error function

E[e2[m]] with respect to the filter coefficient vector w.

Wiener filtering is one of the most widely used tools in signal processing especially for signal

denoising because of its well documented implementations such as LMS, RLS, Kalman filters

and  easy  implementation  in  real  time.  On  the  other  hand,  Wiener  filter  has  some

disadvantages as it gives a fixed frequency response at all frequencies, needs to estimate both

the  power  spectral  density  of  the  clean signal  and  the  noise  signal  prior  to  filtering  and

handles processes only with additive noise.

3.3 Summary

Speech enhancement algorithms are used for improving the performance of communication

systems  when  their  input  or  output  signals  are  corrupted  by  noise.  The  existence  of

background noise lets the quality and intelligibility of speech to degrade. Speech enhancement

algorithms  may  be  broadly  classified  into  two  categories:  single  and  multi-channel

enhancement. In this chapter, single channel methods, where the input is only obtained from

one microphone, have been discussed. The advantages and limitations of some of the main

single channel speech enhancement methods were reviewed and explained in details. Table

3.1 summarises the advantages and disadvantages of  these speech enhancement methods.

Another  speech  enhancement  technique  consists  of  the  wavelet  transform.  This  is  very

powerful tool and is introduced in detail in the next chapter. 
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Speech Enhancement
Method

Advantages Disadvantages

Comb Filter Linear phase and guaranteed 

stability.

Low computational 

complexity.

Reduces the speech 

intelligibility.

Adaptive Noise Enhancement Does not require prior 

knowledge of the speech 

signal.

Has many well documented 

implementations(LMS, RLS).

Can only handle processes 

with additive noise. 

Spectral Subtraction Uncomplicated in terms of 

computational complexity.

Can create non-linear 

processing distortions caused

by random variations of the 

noise spectrum.

The degradations are explicit

under high noise conditions

Wiener Filtering Easy to implement in real 

time. 

Gives a fixed frequency 

response at all frequencies.

Table 3.1: Comparison Table of Speech Enhancement Methods
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4 WAVELET BASED APPROACH

4.1 Introduction

Wavelets are mathematical functions that separate data into different frequency components

and  then  investigate  each  component  with  a  resolution  matched  to  its  scale.  Unlike  the

traditional Fourier methods,  with the wavelet approach, different frequencies are analysed

using different resolutions, depending on the signal type instead of using the same window

(consequently same resolution) for each spectral component[48]. In the Fourier theory(FT), a

signal is considered as a sum of theoretically infinite sines and cosines which makes the FT

useful for infinite and periodic signal analysis[49]. The FT dominated the signal processing

field for many years because it works well in providing the frequency information of the signal

being analysed. Although it provides frequency information, unfortunately, it fails to give any

information about the occurrence time, which led the scientists to suggest new methods such

as the Short-Time Fourier Transform (STFT). This approach cuts the target signal in several

parts and then analyse each part separately, which creates another problem: How to cut the

signal?  This  problem  is  solved  by  the  wavelet  transform,  which  provides  a  fully  scalable

modulated window, requiring thus no signal cutting.

The wavelet transform is described as a mathematical method in which the target signal is

analysed in  the  time domain by using  different  versions  of  a  dilated and translated basis

function  called  the  mother  wavelet.  The  Haar  wavelet,  the  first  wavelet  transform,  was

introduced at the beginning of the 20th  century by a German scientist, and then named after

him. The Haar wavelet basis function has compact support and integer coefficients and was

later used in physics to study Brownian motion[50]. From then on, several studies have been

carried out either in  the development of the wavelet theory or its applications in different

fields. In the field of signal processing, the great accomplishments achieved by Mallat, Meyer

and  Daubechies  led  to  a  wide  range  of  successful  wavelet-based  applications.  Meyer[51]

developed  the  first  non-trivial  wavelets  after  the  work  carried  out  by  Mallat[52]  on  the
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relationships  between  the  Quadrature  Mirror  Filters  (QMF),  pyramid  algorithms  and

orthonormal wavelet basis. Inspired by Mallat's work, another important work was developed

by  Ingrid  Daubechies.  Daubechies  achieved  the  cornerstone  of  many  applications  by

constructing  a  set  of  wavelet  orthonormal  basis  functions[53].  The  same  author   in

collaboration with others[54] introduced a set of wavelet biorthogonal basis functions which

are  used  in  different  applications  such  as  image  coding,  compression  and  pattern

recognition[55].        

In this chapter, the basic concepts of the classic wavelet transform and its relationship to the

Fourier transform will be introduced. The implementation of discrete wavelet transform will

be  explained  in  Section  5  and  6.  In  Section  7,  denoising  using  wavelet  transform will  be

described.  Some  relevant  information  about  wavelets  is  introduced  in  Section  8  and  the

chapter is summarised in Section 9.

4.2 Continuous Wavelet Transform

There are different ways to explain the wavelet transform. This goal is in general achieved by

introducing the Fourier theory at the beginning. In practice, signals are represented in time-

amplitude format in the time domain. However, for most speech processing applications, there

is  a  need  for  other  representations  as  some  important  information  are  hidden  in  the

frequency content of the signal. A Fourier Transform (FT) decomposes the signal into complex

exponential  functions at  different frequencies in order to get the frequency content of the

signal as [56]:

(4.1)

where t stands for time in sec,  ω stands for frequency in rad/sec, x(t) denotes the signal in

time domain and X(ω) denotes the signal in the frequency domain, respectively.

The  original  signal  can  be  recovered  ,  under  certain  conditions,  by  the  inverse  Fourier

Transform as follows:

(4.2)
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The integration covers all time instances from minus infinity to plus infinity. Therefore the

frequency component w is equally reflected in the result of the integration, whenever it occurs

over time. Simply, the integration won’t change whether the frequency component f appears at

time t1 or time t2.  This makes the Fourier Transform unsuitable for non-stationary signal

whose frequency content changes over time. The signal is supposed to have the frequency

component w at all times in a way that the Fourier transform will turn to be useful. Therefore

the stationary and the non-stationary nature of the signal is of importance to the FT. 

It is then natural that a transform with both time and frequency localisation is required for

non stationary signals.  The short  time Fourier  transform(STFT)  falls  into  this  category of

transforms.

There is only a minor difference between the STFT and the FT. In STFT, the signal is divided

into small enough segments, where these segments (portions) of the signal can be assumed to

be stationary. For this purpose, a window function "w" is required. The width of this window

must  be  equal  to  the  segment  of  the  signal  where  its  stationarity  is  valid.  The  STFT  is

summarised in one line in equation 4.3.

(4.3)

where x (t) represents the signal under consideration and w(t) the window function. As it can

be seen from the equation,  the  STFT of the  signal  is  the  FT of the  signal  multiplied by a

window function. The STFT transform of a signal x(t) is thus defined around a time θ through

the usage of a sliding window w[57]. As it can be seen from equation 4.3, even if the integral

limits are infinite, the analysis is always bounded by the limits [-θ , θ ] of the sliding window. 

The  combination  of  time  domain  and  frequency-domain  analysis  yields  a  more  revealing

picture of the signal, showing which spectral components are present in a signal at a given

time slot[58].
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According  to  Heisenberg's  uncertainty  principle,  it  is  not  possible  to  know what  spectral

components exist at a particular time instance[59]. This leads to some limitations of the STFT.

A time interval is necessary to find which specific frequencies occur at this specific time. The

time information is limited to the time interval, leading to a low resolution. While a Kernel

function  being  infinite  in  length  leads  to  perfect  frequency  resolution  (with  no  time

information)in the case of the FT, finite window length in STFT assures no perfect frequency

resolution. Moreover, the window used in the STFT should be short enough to assure that the

signal  is  stationary.  The narrower the  better  is  the  time resolution and the  poorer  is  the

frequency resolution. 

This situation can be improved depending on the application. If the frequency components are

well  separated,  then good time resolution can be  targeted while  sacrificing the  frequency

resolution. If not, then a good window function is essential and the wavelet transform is a

good candidate to solve this problem by providing good time resolution at high frequencies

and good frequency resolution for slowly varying functions.

Grossman and Morlet  [60]  formulate  the  Continuous Wavelet  Transform(CWT) as  seen in

equation 4.4 after realising the poor time localisation of the FT and fixed time and frequency

localisation limitation of the STFT. Unlike the STFT, with this approach, different frequencies

are analysed with different resolutions depending on the signal type instead of using the same

window  (consequently  same  resolution)  for  each  spectral  component.  Low  frequency

resolution  (high  time  resolution)  is  reached  for  low  frequencies  and  vice  versa  for  high

frequencies. The Wavelet Transform is useful if the signal to be processed has high frequency

components for a short while and low frequency components for longer time; which is typical

of speech signals. 

Although the CWT is applied in a similar way as the STFT, there are two main differences:

Unlike the STFT,  the window function is modified as the transform is computed for every

single spectral component. The continuous wavelet transform of a function x(t) at a scale s and

translational value τ is defined as:

(4.4)

29

*1
( , s) (t) ( ) dt

| |
x

t
CWT x

ss
y tt y -

= ò



where  ψ(t)  is a continuous function in both time domain and the frequency domain called the

mother wavelet and x(t) belongs to the square integrable functions space, L2(R). In the same

way, The inverse CWT can be defined as:

(4.5)

The  Cψ factor  is  crucial  for  reconstruction  purposes  which  is  known  as  the  admissibility

condition.  The  time-frequency  planes  of  a  STFT  and  Wavelet  Transformation(WT)  are

illustrated in Figure 4.1. The difference between  the STFT and the WT is visually clear. 

After  this  brief  introduction,  let's  define what  wavelet  transforms are.  Although a wavelet

transform is defined as a mathematical tool or technique, there is no agreed definition on the

wavelet transform within the scientific community. According to Sweldens, three properties

have to be fulfilled to call a particular function a wavelet system[61]:

• Most  of  the  energy  of  a  wavelet  is  limited  in  a  finite  interval  and  the  transform

contains  frequencies  only  from  a  certain  frequency  band  which  is  called  space-

frequency localisation.

• Wavelets are building blocks for general functions. Namely, a function is represented

in the wavelet space by mean of infinite series of wavelets.

• Wavelets support fast and efficient transform algorithms which is important when

implementing the transform.   
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4.3 Multiresolution Analysis

The  Multiresolution  Analysis(MRA)  concept  was  initiated  by  Mallat[52],  which provides  a

natural framework for the understanding of wavelet bases. MRA was formulated based on the

study  of  orthonormal  and  compactly  supported  wavelet  bases.  The  attraction  of

multiresolution is its ability to represent a function at multiple levels of details. Also, it allows

the description of a signal in terms of time-frequency or time-scale analysis.

4.3.1 Subspaces

Multiresolution analysis requires the existence of a set of approximation subspaces of L 2(R)

(square integrable function space) with different resolutions as:

(4.6)

If x(t)ϵVj  then  x(t)ϵVj+1 which  means  that  the  subspace  containing  high  resolution  will

automatically  contains  those  of  lower resolution.  In a  more common case,  if  x(t)ϵ V0  then

x(2kt)ϵ Vk  which is known as the scale invariance property.

Three intermediate subspaces are schematically represented in Figure 4.2.
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4.3.2 Scaling Functions

In order to benefit from multiresolution analysis, the presence of a so-called scaling function

ϕ(t)  is  crucial.  First  of  all,  we can define the scaling function and then define the wavelet

function through it[62]. Let the scaling function be defined by the following equation:

               k ϵ Z       ϕ ϵ L2(R) (4.7)

which constructs with its translates an orthonormal basis (the orthogonality is not necessary

since non orthogonal basis can always be orthogonalised [63]) of the space V0:

(4.8)

It means that any function belonging to this space (x(t) ϵ V0) can be expressed using the scaling

function  and  its  consecutive  translates(since  ϕk(t) are  the  basis  functions)  as  a  linear

combination of a set of expansion coefficients:

(4.9)

where ak or a(k), the expansion coefficients, are calculated using the inner product:

 

(4.10)

A two-dimensional  scaling function can be produced from the original  scaling function by

simply scaling and translating using equation 4.7:

(4.11)

where s is the scaling factor and τ is the shifting factor as defined in equation 4.4. To make the

implementation easier, the translation and the scaling factors have been adopted to be a factor

of two[50]:

(4.12)
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Equation 4.11 can be rewritten by adopting these values for the remaining of the chapter:

(4.13)

Similarly, the two-dimensional scaling function forms an orthonormal space over k with its

translates:

k ϵ Z and     j ϵ Z (4.14)

and x(t), as any function, of this space can be described as:

(4.15)

As a result, if ϕ(t) ϵ V0, then since V0⊂V1, ϕ(t) can be expressed as a linear combination of the

scaling function ϕ(2t) spanning the space V1:

(4.16)

where the coefficients h(k) are the scaling function coefficients. The value         guarantees that

the norm of  the  scaling  function is  always  equal  to  the  unity.  Equation  4.16 is  called the

multiresolution  analysis  equation  and  it  is  essential  for  the  multiresolution  theory  as

introduced by Mallat.

4.4 Wavelet Function

The same  methodology can be applied to the wavelet function as it  has been applied to the

scaling function, its translates and the corresponding spanned spaces.  V1 can be represented

as a combination of V0 and W0 when it is assumed that W0 is an orthogonal complement of the

subspace V0⊂V1.

(4.17)

where the complementary space W0 is spanned also by an orthonormal basis:
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k ϵ Z and     ψ ϵ L2(R) (4.18)

where the function ψ(t) is known as the mother wavelet, the wavelet prototype or the wavelet

function. A function  x(t) ϵ W0  can be expressed in the same way as it has been done for the

scaling function.

(4.19)

where the expansion coefficients dk or d(k) are calculated using the inner product:

(4.20)

ψ(t) can be expressed in terms of the scaling function ϕ(2t) of the higher space V1 since V0⊂V1.

(4.21)

where g(k) are the wavelet coefficients. This leads to a dyadic decomposition as represented

by the grid of Figure 4.4.  The equation 4.17 can be generalised to an arbitrary number of

subspaces, such as, V2 is represented in terms of V1 and W1,  V3 in terms of V2  and  W2, and so on

as shown in Figure 4.3.
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A subspace Vj  is spanned by Wj-1 and Vj-1  in general. Thus, the L2(R) space can be decomposed

as follows:

(4.22)

The index j shows the depth or the level of decomposition, which is arbitrary in this case. A

two dimensional scaled and translated wavelet function is defined by:

(4.23)

In such a way:

(4.24)
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4.5 Discrete Wavelet Transforms

While  the  continuous  wavelet  transform  uses  contraction  and  dilatation  of  the  wavelet

functions, the discrete wavelet transform (DWT) benefits from filter banks to construct the

multi-resolution time-frequency plane[64]. Multi resolution filter banks and special wavelet

filters are used for the analysis and reconstruction of signals[65].

The  DWT  is  a  discrete-time  framework  or  a  fast  algorithm  for calculating  the  wavelet

transform.  The  analysis  can  be  described  as  a  single  continuous  to  discrete  conversion

procedure  followed  by  an  iterative  discrete-time  processing  instead  of  implementing  the

analysis as a sequence of continuous filter and sample operations[66]. The synthesis can also

be similarly formulated.  

4.6 Filter Bank Implementation of the Discrete Wavelet Transform

In  general,  wavelet  transform-based  applications  include  discrete  coefficients  instead  of

scaling and/or wavelet functions. Discrete time filter banks are necessary for practical and

computational reasons.  The signal  is  analysed at different resolutions by decomposing the

signal into approximation and detail information[67].  The approximation coefficients an  and

detail coefficients dn
 of a given signal x(t) can be obtained via a filtering and a downsampling

procedure as as shown in equation 4.25:

(4.25)

The signal is decomposed into different frequency bands by consecutive lowpass and highpass

filtering of the time domain signal as seen in Figure 4.5. 
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A low pass filter h[n] and a high pass filter g[n] are applied to the original signal x[n]. The

filtering  process  is  followed by down sampling by a factor  of  2.  Consequently,  half  of  the

sample are discarded for each filter.

The synthesis algorithm is structured in a similar manner as shown in Figure 4.6.  The signals

are upsampled by a factor two at every level and passed through the synthesis low pass filter

h'[n],  the  synthesis  high  pass  filter  g'[n]  and  then  merged.  Since  halfband  filters  form

orthonormal bases, synthesis is achieved by following the same procedure in reverse order.
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The  analysis  and  synthesis  filters  are  identical  with  each  other,  therefore  the  synthesis

formula becomes:

(4.26)

The relationship between the impulse responses of the low pass filter and the high pass filter

is one of the most important property of discrete wavelet transform. The high pass and the

low pass filter are related to each other as shown in equation 4.27[68]:

(4.27)

where g[n] is the highpass filter, h[n] is the low pass filter and L is the filter length. Filters

satisfying  this  condition  are  called  Quadrature  Mirror  Filters(QMF),  which  is  valid  for

orthogonal discrete wavelets and commonly used in signal processing. 

The analysis divides the time resolution into two since the signal is characterised by only half

the  number  of  samples.  On  the  other  hand,  the  frequency  resolution  is  doubled  by  this

process, since the frequency band of the signal spreads half of the previous frequency band.

This procedure, called subband coding, can be repeated for further analysis. The filtering and

subsampling will halve the number of samples and the frequency band spanned. A signal can

thus be divided into many lower resolution components by an analysis process called Subband

Coding  structure,  as  shown  in  Figure  4.7.  At  each  stage,  the  spectrum  frequency  of  the

analysed signal is halved by a factor of two[62]. The decomposition process can be continued

indefinitely in theory as it is iterative. However, the decomposition can proceed only until the

individual details consist of a single sample.
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x[n] is the original signal to be analysed, h[n] and g[n] are the lowpass and the highpass filters,

respectively. The signal bandwidth is symbolised as "f" at every level.

The original signal x[n] has n sample points divided from 0 to П in the frequency band. The

signal is passed through a high pass and a low pass filters and followed by downsampling by 2

at the first analysis level. The product of the high pass filter which constitutes the first level of

the DWT coefficients has n/2 points and it is only divided from П/2 to П in the frequency

band.
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Figure 4.7: Three-Stage analysis Subband Coding
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The output of the lowpass filter also has n/2 samples which are spanned in the other half of

the frequency band. This signal is then passed through the same lowpass and high pass filters

for  further  analysis.  The  DWT  of  the  original  signal  is  then  acquired  by  collecting  all

coefficients starting from the last level of analysis. 

The most dominant frequencies in the original signal will appear as high amplitudes in that

DWT signal  region,  which has  those  particular  frequencies.  The time localisation of  these

frequencies will not disappear as it is the case for the FT. If the high frequencies have the main

information of the signal, as it is the case, the time localisation of these frequencies will be

more accurate since more number of samples are representing them. If the low frequencies

have the main information of the signal, the time localisation of these frequencies will not be

very  accurate  since  few  samples  are  representing  them.  This  process  provides  a  good

frequency resolution at low frequencies and a good time resolution at high frequencies, which

is the case for most practical signals.

More  detailed  information  can  be  offered  by  a  DWT  method  called  the  wavelet  packet

transform. A signal is split into an approximation and a detail in the wavelet analysis. Then a

second-level approximation and detail are obtained from the approximation and the process is

repeated[69]. However, the details as well as the approximations are divided into parts in a

wavelet packet transform.

A 3-layer wavelet packet decomposition tree or Mallat's pyramid is shown in Figure 4.8 where

x[n]  represents  the  original  signal.  The low-frequency components(details)  of  the  original

signal  are  represented  with  cA  and  the  high-frequency  components(approximations)  are

represented  with  cD.  The  index  number  defines  the  layer  number  of  the  wavelet  packet

decomposition[70].  

Since  the  one-dimensional  decomposition  and  reconstruction  schemes  have  been  already

introduced  before,  we  will  explain  the  two-dimensional  scheme.  The  two-dimensional

decomposition approach is based on the property of separation of the functions into arbitrary

x  and  y  directions.  The  first  step  is  identical  to  the  one-dimensional  approach,  however,

instead of keeping the low-level resolution and processing the high level resolution, both are

processed using two identical filter bank after a transposition of the incoming data. Thus, the
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signal is scanned in both horizontal and vertical directions in this technique. 

4.7 Signal Denoising Using Wavelet Transform

In 1995, Donoho introduced wavelet thresholding (shrinking) as a powerful tool in denoising

signals  degraded  by  additive  white  noise. Wavelets  have  been  successfully  applied  to

denoising tasks and there has been recent interest in using the Wavelet Transform in speech

denoising  because  of  its  robust  features[71].  A  modified  wavelet  speech  enhancement  is

proposed  by  M.  Bahoura  and  J.  Rouat  which is  based  on the  teager  energy operator[72].

Although an explicit estimation of the noise level or a priori knowledge of the SNR is usually

needed in many popular speech enhancement methods, this technique does not require them.

A wavelet transform approach to the blind adaptive filtering(BAF) of speech from unknown

noises  is  introduced  by Veselinovic  and  Graupe[73].  The  paper  describes  the  BAF system

which  performs  Discrete  Wavelet  Transform  of  noisy  speech  signals  and  identifies  and

separates noise from speech. Lu and Wang introduced a closed-form solution of gain factor for

wavelet coefficients in a subband by constraining the residual noise to be lower than the noise

masking  threshold[74].  The  paper  shows  that  this  approach  can  efficiently  remove  the

corrupting  noise  without  any  empirical  factor.  A  wavelet-based  speech  enhancement  is

proposed by S. Liby using an improved discrete wavelet packet  decomposition method called

wavelet-packet  frequency  algorithm[75].  The  system  can  be   more  robust  to  noise  and

spectrum distortions  by including more  time  and  frequency  information to  the  denoising
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Figure 4.8: The 3-layer wavelet packet decomposition tree
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wavelet algorithm. 

A  pre-processing  phase  based  on  wavelet  denoising  for  extracting  MFCC  features  in  the

existence of white Gaussian noise is proposed by Farooq and Datta[77]. They found that MFCC

features extracted after wavelet denoising were improved recognition by 2 to 28 % for SNRs in

the range 20 to 0 dB. 

Bionic Wavelet Transform (BWT) for speech signal processing is used by Yao and Zhang in

cochlear  implants[77].  The BWT is  an alteration of  a  wavelet  transform that  includes  the

active cochlear mechanism into the transform. After speech material processed with the BWT

and the WT is compared, they concluded that application of the BWT in cochlear implants has

some advantages such as enhanced recognition rates for both vowels and consonants, decline

in the number of channels in the cochlear implant and the average stimulation duration for

words, better noise tolerance and higher speech intelligibility rates.

Another wavelet speech enhancement scheme which is based on the Teager energy operator

is proposed by Bahoura and Rouat[78]. The Teager energy operator is a nonlinear operator

which can extract signal energy based on mechanical and physical analysis[79]. They used a

wavelet thresholding method where the discriminative threshold in various scales was time

adapted to the speech waveform. Their method gives higher SNR improvements after they

compared their results  with the results Ephraim et al  are obtained[80].  Unlike the speech

enhancement method of Ephraim et al,  the method of Bahoura et al  did not need explicit

evaluation of the noise level or a priori knowledge of the SNR. 

Another wavelet based speech enhancement research has been conducted by Saeed Ayat, M. T.

Manzuri and R. Dianat using a new thresholding algorithm[81]. The noisy signal is transferred

to wavelet domain in this research. The wavelet coefficients are improved with applying  a

thresholding algorithm. A new method of thresholding is introduced at this point  for speech

enhancement. At last the enhanced signal is obtained using the inverse transform. The speech

signals corrupted by additive white Gaussian noise with various global signals to noise ratios

(SNR) from OdB to 12dB were used for performance evaluation of all thresolding algorithms.

The best  SNR improvement is  achieved as 3.86dB which is  used for comparison with our

results. The shortcoming of this research is only one type of noise, white Gaussian noise, is
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used  to  test  the  new  method.  Also,  the  method  is  not  evaluated  for  memory  usage  and

operational speed which are important parameters of a new method.

Bing-yin XIA and Chang-chun BAO presented a new method for speech enhancement using a

wavelet fusion method[82]. In the proposed method, the noisy speech is first decomposed into

several  sub-bands by wavelet  packet  analysis,  and then enhanced by the  statistical  model

based method and wavelet thresholding method, respectively. The output of each sub-band is

obtained under the fusion rule based on the cross-correlation and the a priori SNRs of the two

enhanced  coefficient  sets.  Finally,  the  enhanced  coefficients  are  transformed  back  to  time

domain to get the enhanced speech. The performance results are compared with some other

reference algorithms such as Weighted Euclidean Distortion Measure (WEDM) and wavelet

thresholding.  In  their  experiments,  the  clean speech sequences  are  chosen from the  NTT

speech database of Chinese language and Gaussian White noise is generated by software, and

coloured noise signals are taken from the ITU-T and NoiseX-92 noise database. Both noise and

speech samples have been down-sampled to 8 kHz for their tests. Although the result of noise

reduction test using proposed method gives better SNR results compared to WEDM, it does

not provide better SNR results compared to wavelet thresholding when Gaussian white noise

is  used  as  a  reference  noise.  Similar  results  are  obtained  using  coloured  noise  in  their

experiments. The test is carried out under four kinds of noise conditions, including babble,

factory, street and white noise for objective result comparison. The SNR conditions of 6dB,

12dB and 18dB are used. The quality of enhanced speech produced by the proposed algorithm

is slightly improved in comparison with the WEDM method and wavelet thresholding. The

best score is obtained as 3.25 out of 5 with the proposed algorithm under 18dB factory noise

while the noisy speech is rated as 3 out of 5. 

 

In conclusion, wavelet transform is a powerful tool for modelling and analysing non-stationary

signals,  such  as  speech  signals.  These  signals  show  slow  temporal  variations  in  low

frequencies and sudden changes in high frequencies. Therefore, the wavelet transform can

provide an appropriate model of speech signal for denoising applications and that is why it is

used in our research work.
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4.7.1 Wavelet Thresholding

The wavelet thresholding approach can be used to reduce the background noise, especially

white noise,  in speech signals.  White noise can be transformed without losing its features

using the orthogonality of the the DWT. Therefore, if xjk are the wavelet coefficients of xi, where

j is  the decomposition level and k is the   index of the coefficient in this level,  the wavelet

decomposition is: 

(4.28)

where ajk are the clean wavelet approximation coefficients and d jk are the detail coefficients.

The wavelet coefficients of the observed signal have the effect of noise on the original signal

and most coefficients of the noiseless signal in a wavelet transform are effectively zero. For

that reason, recovering the coefficients of the observed signal which are relatively bigger than

Gaussian white noise can enhance the speech signal. In other words, coefficients with small

magnitude can be evaluated as noise and can be set to zero. This method, which matches each

coefficient with a threshold value to agree whether it  is  a beneficiary part  of  the original

signal, is called wavelet thresholding.  

The  thresholding  is  only  applied  to  the  detail  coefficients  instead  of  the  approximation

coefficients since the latter ones contain low-frequency elements which represent the main

components  of  the  signal.  The  most  important  coefficients  are  extracted  by  setting  the

coefficients which are below a determined threshold value denoted λ. 

The result of the thresholding are obtained using either hard or soft thresholding methods.

Hard thresholding can be described as the process of setting the elements whose absolute

values are lower than the threshold to zero as: 

(4.29)
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Soft thresholding is an extension of hard thresholding which shrinks the non zero coefficients

towards  0  and  then sets  to  zero  the  elements  whose  absolute  values  are  lower  than the

threshold as:

(4.30)

where δjk is the coefficient of the denoised noisy speech signal, d jk is the coefficient of the noisy

speech signal and λ is the threshold value which is generally a function of j and k.

 

The thresholding value λ is estimated by different algorithms using thresholding method. The

first action is to calculate the noise level σ in these algorithms. If the noisy signal is not fairly

flat, it cannot be assumed that σ is equivalent to the standard deviation of the coefficients.

Donoho and Johnstone propose a well-known estimate for the noise level σ[83]. According to

the  median  absolute  deviation,  σ  can  be  calculated  based  on  the  last  level  of  the  detail

coefficient as:

(4.31)

where the number in the denominator is the scale factor. It is equal to 0.6745 for a normally

distributed data and depends on the distribution of djk.

For a series of length n, the universal threshold value is:

(4.32)
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4.8 Other Aspects of the Wavelet Families 

In most practical problems, both the orthonormal basis [84] and the biorthogonal basis [54]

can  be  used.  There  are  some  similarities  and  differences  between  these  two  bases.  The

following briefly  explains  the  main characteristics  of  orthonormal  and biorthogonal  bases

together.  The wavelet families that are used in our work are also explained in details in this

section. 

4.8.1 Orthonormal Basis

Mallat's and Daubechies's work [54] [58] initiated the orthonormal basis. The orthonormality

property is seen as the discrete version of the orthogonality property to a limited extend[85] .

However, the basis functions are further normalised. These terms have been explained when

the multiresolution feature and the scaling function have been introduced. The admissibility

and the orthogonality conditions guarantee the existence and the orthogonality feature of the

scaling function as shown in equation 4.27. This is achieved if:

(4.33)

and

(4.34)

The orthogonality of the scaling function and the wavelet function can be derived using the

two equations above alongside with equation 4.27. This can be achieved only if the following

equality is confirmed.

(4.35)

The orthogonality between the wavelet coefficients and the scaling coefficients is then:

(4.36)
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The scaling coefficients are called Quadrature Mirror Filters (QMF) if  the equation 4.36 is

satisfied.

The  analysed  signal  has  to  be  identical  to  the  synthesised  one  to  achieve  perfect

reconstruction as shown in Figure 4.9. In other words, aj(n)=âj(n), where aj(n)is the input and

âj(n) is the output of a filter bank.

4.8.2 Biorthogonal Basis

Biorthogonal wavelet basis is a generalisation of the orthogonal wavelet basis where some

placed restrictions on the latter have been softened. The scaling and wavelet functions does

not need to be of  the same length or even numbered unlike the case of  orthogonal  basis.

Therefore, the quadrature mirror property is not applicable and replaced with a dual property.

The scaling and the wavelet coefficients have to fulfil the following equations for the perfect

reconstruction equation to hold.

(4.36)

It is clear that the system becomes orthogonal when the analysis and the synthesis filters are

similar. In this case, the orthogonality condition is defined by:
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Figure 4.9: Two-band analysis and synthesis filter bank
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(4.37)

In orthogonal basis, only the analysis scaling coefficients along with their shifted versions are

used. However, in the biorthogonal case, the analysing scaling coefficients are kept unchanged,

while their shifted versions are changed by the shifted versions of the synthesis dual filter.

Namely,  the  analysis  filter  is  orthogonal  to  its  synthesis  dual  filter.  The  biorthogonal

denomination comes from this feature.

One of the most important features in the biorthogonal basis is the linear phase property,

which makes the filter coefficients being symmetric when a wavelet system is implemented.

Moreover, the difference of length between dual filters must be even, leading either to odd or

even length of the low pass and the high pass filters [84].

4.8.3 Wavelet Types

Different families of wavelets can be created based on the selection of the wavelet function

ψ(t) and the scaling function ϕ(t)[85]. This section starts with a list of wavelet properties and

then presents particular wavelet families classifying them from those properties point of view,

not from the type of wavelet analysis. The suitability of a particular wavelet family depends on

the properties of its wavelets and also on the type of application[86].

4.8.3.1 Orthogonal Wavelets

Orthogonal  wavelets  enable  orthogonal  MRA  as  well  as  the  possibility  of  perfect

reconstruction. When orthogonal wavelets are used, the energy of the signal is preserved in

both time and frequency domains.  Moreover,  most of  orthogonal wavelets have a compact

support, which make them the most often used wavelets in practise. 

4.8.3.1.1 Daubechies Wavelets 

The Daubechies  wavelets,  named after  Ingrid  Daubechies,  are  orthogonal  wavelet  families

with vanishing moments[53]. The coefficients of Daubechies for the scaling and the wavelet

filters are unique.  This  is  why they have a high degree of  smoothness. They are normally

represented as dbn  where n represents the size of the resulting filter.
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4.8.3.2 Symlet Wavelets

The  solution  of  smoothness  is  solved  by  Symlet  wavelets  using  the  symmetry  feature  of

Daubechies wavelet family. They are also recognised as the least asymmetric wavelets and the

construction of Symlet wavelets is almost identical to the Daubechies wavelets.  Symlets are

also known as the Daubechies least asymmetric wavelets. Their construction is very similar to

the Daubechies wavelets. They are represented as  symn where n represents the size of the

resulting filter. 

4.8.3.3 Coiflet Wavelets

Coiflet  wavelets  are designed to have better symmetry than the Daubechies wavelets.  The

Coiflet wavelets family is orthogonal and near symmetric. The near symmetry property results

in  linear  phase  characteristics  of  the  Coiflet  wavelets[87].  They  are  represented  as  coifn,

where the size of the resulting filter is 6*n.    

4.8.3.4 Crude wavelets 

Some wavelets are expressed by a mathematical definition and are known as continuous and

infinite and are called crude wavelets[88]. Such an expression enables a very good localisation

in frequency. Crude wavelets can only be used in the CWT method. Although there is always a

way to calculate their explicit formula in equi-spaced points in time to obtain a discrete-time

approximation, however such an approximation is not orthogonal and cannot be used in the

DWT method. 

4.9 Summary

The Wavelet transform is an effective tool in speech enhancement for both its time-frequency

localisation and its multi resolution characteristic. Unlike the Fourier transform, the wavelet

transform  is  suitable  for  applications  involving  non-stationary  signals  with  transitory

phenomena, whose frequency response varies in time. The wavelet coefficients represent a

measure of similarity in the frequency content between signal and a chosen wavelet function.

These coefficients are computed as a convolution of the signal and the scaled wavelet function,

which can be defined as a dilated band-pass filter because of its band-pass like spectrum. The

scale is inversely proportional to radian frequency. Therefore, low frequencies are identical to

high scales and a dilated wavelet function. By wavelet analysis at high scales, we extract global
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information  from  a  signal  called  approximations.  Whereas  at  low  scales,  we  extract  fine

information from a signal called details. Signals are usually band-limited, which is equivalent

to having finite energy,  and therefore we need to use just a constrained interval of scales.

However, the continuous wavelet transform provides us with lots of redundant information.

The discrete wavelet transform needs less space using the space-saving coding based on the

fact  that  wavelet  families  are  orthogonal  or  biorthogonal  bases,  and thus  do not  produce

redundant analysis.   
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5 OFFLINE AUDIO WAVELET DENOISING

In this chapter,  the  implementation and performance  assessment of the  wavelet transform

based  speech  enhancement  algorithm  are  presented  using  three  different  platforms.  The

wavelet packet decomposition is used for denoising instead of the common wavelet pyramid

decomposition.  The method  gives  much better  results  than the  common wavelet  pyramid

decomposition. The results are compared in conclusion of this chapter. The proposed method

gives better results as the high frequency coefficients are not ignored. Moreover, the algorithm

is designed in such a way that the memory is allocated just once at the size of the corrupted

audio signal and the same memory is used until  the end of the process. It  gives users the

opportunity to denoise any size audio file without increasing the memory usage and makes

the algorithm implementation possible for low memory processors. A graphical user interface

(GUI) is also implemented. The GUI allows flexible parameter settings to experience different

wavelet levels and wavelet families on different audio files. Threshold values are calculated

automatically and can be fine-tuned with a sliding bar which gives user an extra option to

improve SNR value or speech quality.  Performance  assessment of the proposed algorithm is

very important. It is carried out using signal to noise ratio(SNR), speech quality and speech

intelligibility. SNR is a value that indicates the amount of the audio signal compared to the

amount of noise present in the signal and is expressed in decibels. However, SNR cannot be

used as the only specification to evaluate the speech enhancement algorithm. Speech quality

signifies  how fine  or  natural  the  speech is  and speech intelligibility  shows  how clear  the

speech can be understood by listeners. Although objective quality evaluation can reflect the

speech quality on the basis of mathematical measures, they cannot be totally consistent with

human perception. Subjective measures in addition to objective measures are used for speech

enhancement evaluation in this thesis. 

51



In section 5.1, the algorithm is implemented in Matlab and the performance and results of the

wavelet transform speech enhancement are presented. Extensive experiments are conducted

to  find  the  best  wavelet  for this  audio  denoising  application.  Section  5.2  explains  the

implementation and performance evaluation of the wavelet transform speech enhancement

algorithm using C language. The use of C is a necessary step to porting the proposed denoising

method to  a hardware platform.  Different  noise  types  with different  SNR values  are  used

which gives a comprehensive result set for the reader to compare the improvement as an SNR

value, human perception and operational time. As already stated, to ease the experimental

process, a GUI has been designed. It provides flexible parameter settings for evaluating the

performance using different wavelet families, levels, types and thresholds.  

5.1 Wavelet Thresholding Implementation And Results In Matlab

Six different utterances from a noisy speech corpus (NOIZEUS) library were used to evaluate

the wavelet packet decomposition thresholding algorithm. Sentences from the IEEE sentence

database  were  recorded  in  a  sound-proof  booth  using  Tucker  Davis  Technologies  (TDT)

recording equipment. The sentences were produced by three male and three female speakers.

The IEEE database was used as it contains phonetically-balanced sentences with relatively low

word-context predictability. The six sentences were selected from the IEEE database to allow

the inclusion of all phonemes of the American English language. The list of sentences used for

NOIZEUS  are  given  in  Table  5.1.  The  sentences  were  originally  sampled  at  25  kHz  and

downsampled to 8 kHz.

File Name Gender Sentence Text

Sp01.wav Male The birch canoe slid on the smooth planks. 

Sp07.wav Male We find joy in the simplest things. 

Sp11.wav Female He wrote down a long list of items.
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Sp16.wav Female The stray cat gave birth to kittens. 

Sp21.wav Male Clams are small, round, soft and tasty. 

Sp27.wav Female Bring your best compass to the third class.

Table 5.1: List of sentences used from NOIZEUS 

5.1.1 Implementation

The wavelet transform speech enhancement algorithm through wavelet thresholding is based

on the  fact  that  the  original  signal  can  be  reconstructed  by  a  limited  number  of  wavelet

coefficients in the lower bands. The proposed denoising algorithm as shown in Figure 5.1 can

be summarised as follow:

1. Choose a wavelet basis.

2. Choose a wavelet packet decomposition level.

3. Compute the discrete wavelet packet transform for a noisy signal.

4. Perform thresholding on the wavelet coefficients based on the standard deviation of

noise.

5. Compute the inverse discrete wavelet transform.

In order to extract the features of a noisy signal, a proper wavelet function must be chosen.

This  choice  is  motivated  by  the  fact  that  different  wavelet  functions  have  different

characteristics.  In  my  experiments,  different  wavelet  functions  are  selected  and  their

performance are compared.
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It is known that the performance of a wavelet based speech denoising method are affected by

the level of wavelet decomposition layers[89]. The tinier frequency division is achieved in the
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Figure 5.1: Proposed Denoising Algorithm
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deeper layer. In order to attain the ideal speech denoising result, suitable layers of wavelet

packet decomposition should be selected.

The low frequency content is the most important part of the speech signal since the signal's

identity is mainly enclosed in it.  On the other hand, the high frequency content contains the

details of the signal. There are two different methods available for discrete wavelet transform

as described in section 4.6.  The wavelet packet transform which is a wavelet method that

offers more detailed information for signal analysis, is adopted in this research work. A signal

is  split  into  an  approximation  and  a  detail  in  the  wavelet  analysis.  Then  a  second-level

approximation and detail are obtained from the approximation and the process is repeated.

However, the details as well as the approximations can be split in wavelet packet transform. In

theory, the process of analysis can be continued indefinitely because the analysis process is

iterative. In practice, the analysis process can continue until there is no sample to analyse.    

In order to denoise the signal, thresholding should be performed on the wavelet coefficients.

The noise can be eliminated from the noisy signal by thresholding the noisy coefficients to

zero.  The  wavelet  threshold  denoising  algorithm  which  was  proposed  by  Donoho  and

described in section 4.7 is adopted in our experiments.

Hard and soft thresholding is applied to the coefficients obtained after wavelet decomposition.

Thresholding is applied on the detail's coefficients and the approximate's coefficients are left

untouched.

The inverse Wavelet transform can be used to synthesise the  signals as described in section

4.6. Synthesis is the process of gathering the main components back into the original signal

without, theoretically, any loss of information. 

5.1.2 Results

First of all one clean speech sp01.wav is corrupted using white Gaussian noise at the following

SNR levels in dB: 0, 5, 10, 15. The results are evaluated using objective and subjective measure

approaches.
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5.1.2.1 Results Using Objective Measures

The signal-to-noise ratio (SNR) is the most widely used objective measure for speech quality

assessment. The global SNR value of an input signal is determined by the following equation:

(5.1)

where s(N) is a clean speech signal, n(N) is a noise signal and N is the number of samples. 

On the other hand, the global SNR value of an output signal is determined by the following

equation:

(5.2)

As  in  Equation  5.1,  s[N]  represents  the  clean  speech  signal  while  s'[N]  represents  the

enhanced speech.

An important condition of using objective measures is that the clean speech and the processed

speech must be coordinated during the calculation since there is a time delay after the signal

is  processed  by  the  enhancement  algorithm.  Another  important  objective  measure  is  the

computational  complexity  of  the  algorithm.  Complexity  means  the  number  of  real

multiplications and real additions required by the algorithm[90]. Complexity is evaluated by

measuring the time elapsed in each experiment in seconds.   

The results of the wavelet based speech enhancement algorithm as applied to the clean speech

"sp01.wav" and corrupted by a Gaussian white noise are shown in Table 5.3, Figure 5.2 and

Figure 5.3, respectively. Table 5.2 provides the overall results of the simulations for different

wavelets. Figure 5.2 and Figure 5.3 provide details about the SNR values and the operation

times.
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Speech File
Name

SNR Input
(dB)

SNR output
(dB)

Wavelet
Family

Thresholding
Method

Level Operation 
Time
(sec)

Sp01.wav 0 5.5 Daub4 Soft 8 0.91

Sp01.wav 0 5.1 Daub4 Hard 8 0.95

Sp01.wav 0 6.1 Daub6 Soft 8 0.99

Sp01.wav 0 5.9 Daub6 Hard 8 1.04

Sp01.wav 0 6.8 Daub10 Soft 8 1.2

Sp01.wav 0 6.1 Daub10 Soft 4 0.72

Sp01.wav 0 6.1 Daub10 Hard 8 1.25

Sp01.wav 0 5.4 Coif1 Soft 8 1.12

Sp01.wav 0 5 Coif1 Hard 8 1.18

Sp01.wav 0 5.9 Coif3 Soft 8 1.22

Sp01.wav 0 5.6 Coif3 Hard 8 1.29

Sp01.wav 0 6.4 Coif5 Soft 8 1.42

Sp01.wav 0 5.9 Coif5 Soft 4 0.96

Sp01.wav 0 5.9 Coif5 Hard 8 1.48

Sp01.wav 0 5.3 Sym6 Soft 8 1.1

Sp01.wav 0 4.9 Sym6 Hard 8 1.18

Sp01.wav 0 5.8 Sym10 Soft 8 1.32

Sp01.wav 0 5.4 Sym10 Hard 8 1.38

Sp01.wav 0 6.2 Sym14 Soft 8 1.54

Sp01.wav 0 5.8 Sym14 Soft 4 1.04

Sp01.wav 0 5.7 Sym14 Hard 8 1.65

Table 5.2: Results of Wavelet based speech enhancement algorithm
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Figure 5.2: SNR output results of the Wavelet based speech enhancement
algorithm

Soft Hard

0

1

2

3

4

5

6

7

8

Daub4

Daub6

Daub10

Coif1

Coif3

Coif5

Sym6

Sym10

Sym14

Thresholding Method

S
N

R
 O

ut
pu

t(
dB

)

Figure 5.3: Operation times of the Wavelet based speech enhancement
algorithm
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The results of the wavelet based speech enhancement for a Daub10are shown in Figure 5.4

and Figure 5.5, respectively. Figure 5.4 illustrates the original signal, the corrupted signal and

the  denoised  signal.  Figure  5.5  illustrates  the  spectrum  or  the  frequency  domain

representation of the signals of Figure 5.4.

 

The wavelet  type was chosen as "Daubechies10",  the  level  was chosen as "eight"  and the

wavelet thresholding technique was chosen as "soft thresholding" in this example. The input

SNR value of the speech was "0dB". The output value of "6.8dB" was achieved as a result. The

operational time of the whole process was 1.2 seconds.
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Figure 5.4: Wavelet based speech enhancement using Daub10, level 8 and soft
thresholding



The best SNR value is achieved using a wavelet "Daub10", with a decomposition of 8 and using

the "soft" thresholding method . The operation time increases with the level of decomposition

as shown in Table 5.2.  Keeping the same settings,  the operation time increases from 0.72

seconds at  level  4,  to 1.2 seconds at  level  8 as highlighted in  Table 5.2.  It  is  noticed that

between level 8 and level 4, there is only a small difference for the output SNR values. The

output SNR value after the speech enhancement algorithm is 6.8dB for level 8 and 6.1 dB for

level 4. Although the difference in level does not change the SNR value too much, the speech

quality decreases drastically as shown in Figure 5.6 and Figure 5.7, respectively. 
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Figure 5.5: Spectrum of original, noisy and denoised signal for Daub10, level 8 and
soft thresholding



As shown in Figure 5.7,  the speech enhancement algorithm based on daub10 wavelet and

using the "soft" thresholding method decreases the speech quality. The spectrum shows the

frequency components of the speech before and after the speech enhancement. 

While  the  original  speech  shown  in  Figure  5.5  does  not  have  any  discontinuities  in  the

spectrum, the denoised signal shown in Figure 5.7 has considerable amount of discontinuties.

These discontinuities in the speech frequency map shows that the speech distortion increases

while the number of level decreases.  
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Figure 5.6: Wavelet based speech enhancement using daub10, level 4, soft
thresholding



Three  different  wavelet  families  Daubechies  10(Daub10),  Coiflet  5(Coif5)  and  Symlet

14(Sym14) were used to compare the results after each speech enhancement. The wavelet

level  was  8  and  the  thresholding  method  was  selected  as  soft  thresholding  on  all  the

experiments as shown in both Figure 5.8 and 5.9. The speech samples sp01.wav, sp11.wav and

sp07.wav,  sp16.wav  were  corrupted  by  white  Gaussian  noise,  respectively.  The  best  SNR

output results were obtained with Daub10 and the output SNR result is not much different

from the results of Coif5 and Sym14. The main difference has appeared on the operation times

as seen in Figure 5.10 and 5.11. The operation time of the wavelet based speech enhancement

algorithm was the  shortest  with the  Daub10.  The experiments  shows that  the  number of

coefficients affects the operational time as expected. Since the Daub10 has the least number of

coefficients, the algorithm using it completes quicker than the others. Also, the operation time

increases in parallel with the wavelet level number as seen in Figure 5.10 and 5.11.  

62

Figure 5.7: Spectrum of original, noisy and denoised signal for Daub10, level 4 and
soft thresholding
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Figure 5.8: SNR results for sp01.wav, corrupted with white Gaussian noise. 
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Figure 5.9: SNR results for sp11.wav, corrupted with white Gaussian noise.
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Figure 5.10: Operational time for sp07.wav, corrupted with white Gaussian noise.
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Figure 5.11: Operational time for sp16.wav, corrupted with white Gaussian noise.
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5.1.2.2 Results Using Subjective Measures

A subjective judgement by a listener determines the speech quality result after completion of

the speech enhancement algorithm. One of the best subjective test method is the Absolute

Category Rating (ACR) Test[91]. 

A group of listeners judge a series of audio files using a five grade scale varying from 1 to 5:

5 Excellent

4 Good

3 Fair

2 Poor

1 Bad

The Mean Opinion Score (MOS) is  calculated for each audio file  after collecting individual

scores. ACRs  are  averaged  to  obtain  MOS  as  a  quantitative  indicator  of  the  system

performance.  The  test  should  be  organised  under  regulated  conditions  using  quiet

environment. High number of listeners increases the stability of the scores. 

Table 5.3 shows the MOS scores from an actual ACR test with 8 listeners with no previous

familiarity with test materials. 

Speech File
Name

SNR Input
(dB)

SNR output
(dB)

Wavelet
Family

Thresholding
Method

Level MOS

Sp01.wav 0 5.5 Daub4 Soft 8 4.000

Sp01.wav 0 5.1 Daub4 Hard 8 4.000

Sp01.wav 0 6.1 Daub6 Soft 8 4.250

Sp01.wav 0 5.9 Daub6 Hard 8 4.125

Sp01.wav 0 6.8 Daub10 Soft 8 4.750
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Sp01.wav 0 6.1 Daub10 Hard 8 4.625

Sp01.wav 0 5.4 Coif1 Soft 8 4.000

Sp01.wav 0 5 Coif1 Hard 8 3.750

Sp01.wav 0 5.9 Ciof3 Soft 8 4.000

Sp01.wav 0 5.6 Coif3 Hard 8 3.500

Sp01.wav 0 6.4 Coif5 Soft 8 4.500

Sp01.wav 0 5.9 Coif5 Hard 8 4.250

Sp01.wav 0 5.3 Sym6 Soft 8 4.000

Sp01.wav 0 4.9 Sym6 Hard 8 3.750

Sp01.wav 0 5.8 Sym10 Soft 8 4.000

Sp01.wav 0 5.4 Sym10 Hard 8 3.750

Sp01.wav 0 6.2 Sym14 Soft 8 4.250

Sp01.wav 0 5.7 Sym14 Hard 8 3.875

Table 5.3: MOS results of the Wavelet based speech enhancement algorithm

For these tests, the sp01.wav file is corrupted with a 0dB white Gaussian noise. The sp01.wav

clean audio file is rated 5 by listeners and 1.25 after 0dB white Gaussian noise corruption. 

Different  wavelet  families,  thresholding  methods  and  levels  are  rated  for  speech  quality

measurement.  Although the SNR values are similar for different wavelet levels,  the speech

quality gets better when increasing the wavelet level. 

To assess  the  impact  of  different  SNR values,  sp21.wav corrupted using  a white  Gaussian

noise. The clean sp21.wav audio file was rated as 5 by listeners.
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The file corrupted with 0dB, 5dB, 10dB and 15dB white Gaussian noise was rated 1.25, 2, 2.5

and 3, respectively. While the speech quality improvement is considerably higher in the case of

the  0dB  corrupted  audio  file,  there  is  a  minor  speech  quality  improvement  in  the  15dB

corrupted audio file. Since the MOS values are already high when the speech is corrupted with

15dB noise, the speech quality does not increase a lot.
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Figure 5.12: MOS results of Wavelet based speech enhancement algorithm
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5.2 Automating the Wavelet Based Speech Enhancement Algorithm 

After the implementation of the wavelet based speech enhancement algorithm on Matlab, the

same algorithm is  automated  using  C.  A  GUI  has  been devised for  this  purpose.  The GUI

consists of  four different parts as shown in Figure 5.13. While the upper window shows the

noisy audio signal, the lower window shows the enhanced audio signal. For both windows, the

audio data is represented in volts vs time(sec) and scaled between 0 and 1 (normalised). The

lower  area,  underneath  the  lower  window,  allows  the  user  to  experiment  with  different

settings, including the type of wavelet, the level of decomposition and the threshold value. It

also provides the user with the opportunity to choose either to use an offline file or a real time

audio file. The other functionalities include, a threshold calculation button, a filter button to

start the offline denoising algorithm, an exit bar for closing the application and a status bar to

show the status of the operation.

Six different  utterances with white Gaussian noise from a noisy speech corpus (NOIZEUS)

library and three different speeches with 6 different noise types from SpEAR Database were

used to evaluate the wavelet packet decomposition thresholding algorithm. The same speech

files  from chapter  5.1  are  chosen to  make a  comparison with  Matlab performance  of  the

algorithm. 

5.2.1 Implementation

The wavelet speech enhancement algorithm which has been tested successfully in Matlab is

implemented in C to allow the algorithm to be ported to a hardware platform easily. The user

interface of the program is designed using GTK as shown in Figure 5.13. 
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The program consists of 8 main blocks as shown in Figure 5.14.
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Figure 5.13: The wavelet speech enhancement graphical user interface



1. Load the noisy file:  Any audio file with a wav extension can be loaded using load

button as seen in Figure 5.15. The selected noisy file is stored in a buffer in preparation

of its enhancement. The selected file is then plotted in window 1. If the file is read and

plotted successfully, The message "File is loaded successfully" is written to the message

box.  
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Figure 5.14: The block diagram of C implementation

Load File

Plot in
 Window1

Wavelet 
Type

Wavelet
Level

Thresholding
 Type

Calculate
Threshold Value

Write in
Threshold 

Filter

Plot in
 Window2



2. Select Wavelet Type: The wavelet type can be chosen using family dialog box. There

are 24 different wavelet families in the dialog box which are Daubechies1-10, Symlets2-

10 and Coiflets 1-5. More wavelet families can be added by the user using the GUI. The

four different  wavelet  type filter  values are saved in "xwaveletfamilies.h"  as arrays.

Daub1 coefficients are provided as an example as shown below. 

static floatanalysis_db1_lp[2] = {0.7071067811865476,0.7071067811865476};

       static float analysis_db1_hp[2] = {-0.7071067811865476,0.7071067811865476};

       static float synthesis_db1_lp[2] = {0.7071067811865476,0.7071067811865476};

       static float synthesis_db1_hp[2] = {0.7071067811865476,-0.7071067811865476};

71

Figure 5.15: Loading a file



3. Select the Wavelet Level: The wavelet level can be chosen using level dialog box. Since

the number of samples is divided by 2 at each level, the sample value of the file must be

multiples by 2n where n is the level number. This is why, the sample number is checked

against level number when a file is loaded. If the sample number is not a multiple of 2,

the speech signal is truncated by ignoring the last values.

4. Select  the Threshold Type: The thresholding type can be  selected using  the  type

dialog  box.  Two  different  types  of  thresholding  can  be  selected:  soft  or  hard

thresholding. These two methods are explained in detail in chapter 4.7.1.

5. Calculate  Threshold Value: The  threshold  value  can  be  calculated  using  calculate

button.  "XWaveletCalculate(char  *faFilePath,  int  faLevel,  float  *faAnalysis_lp,  float

*faAnalysis_hp, int faFilter_size)" function is called to calculate the threshold value.   The

selected file is analysed using the wavelet level and wavelet type. The threshold nodes

are saved in a temporary buffer as shown in Figure 5.16. Each node stores  sample

size/2n  value.  The default threshold value is calculated using 2n-4   th node using the

formula described in chapter 4.7.1. The calculated value is written into the threshold

section and can then be tuned further using the slide bar for filtering.

6. Filter the audio file: The loaded audio file can be filtered using "filter" button. The

chosen wavelet type, wavelet level, threshold type and the calculated threshold value is

used for  filtering  the  audio file  by the  fuction  XwaveletFilter  (  char  *faFilePath,  int

faLevel,  float  *faAnalysis_lp,  float  *faAnalysis_hp,  float  *faSynthesis_lp,  float

*faSynthesis_hp,  int  faFilter_size,  double  faThreshold,  XTH_TYPE  faType,  XFamily

faXFamily,int faNumber ). 
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Figure 5.16: The temporary buffer after wavelet analysis 
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The filtering process consists of 3 stages as seen in Figure 5.17. 

Wavelet analysis can be simply achieved by a tree of digital filter banks. Filter banks have been

playing a central role in the area of wavelet analysis. The selection of desired scaling functions

and mother  wavelets  reduces  the  design process  to lowpass  and highpass  filtering,  which

represents the two-channel perfect reconstruction (PR) filter bank. The wavelet transform can

simply be described as a tree of two-channel PR filter banks as shown in Figure 5.18. 
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Figure 5.17: Filtering steps
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where g(z) and  g*(z) denote the lowpass filters,  while  h(z) and  h*(z) denote the highpass

filters of the PR filter bank, respectively.

As shown in Figure 5.16, the signal X(z) is first analysed by a filter bank consisting of g(z) and

h(z), called analysis filters. The outputs of g(z) and h(z) are downsampled by 2 to obtain Y0(z)

and Y1(z). After thresholding, the modified signals are upsampled and filtered by another filter

bank consisting of g*(z) and h*(z) called synthesis filters. 

The downsampling operators are decimators and the upsampling operators are expanders. If

no processing takes place between the two filter banks, the output signal  X(z) is identical to

the original signal  X(z), except for a time delay. Such a system is commonly referred to as a

two-channel perfect reconstruction filter bank.

The output X(z) is:

         (5.3)

where one term involves  X(z) and the other involves  X(–z).  For perfect reconstruction, the

term with X(–z), traditionally called the alias term, must be zero. To achieve this, we need

(5.4)

To fullfil the equality of Equation 5.4, Equation 5.5 must be satisfied.

                  and (5.5)
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There are many different wavelet families and the ones which is used in our experiments fulfil

the  Equation  5.5.  The low pass  filter  and high pass  filter  coefficient  values  are  shown in

Appendix A.

The low pass filter coefficients are shown as (g0 g1 g2 g3 g4 g5 g6 g7) and the high pass filter

coefficients are shown as (h0 h1 h2 h3 h4 h5 h6 h7) in Figure 5.19. They are representing a

wavelet type which has 8 coefficients as it would change for the other wavelet families.

Wavelet analysis is achieved using algorithm shown in Figure 5.19, which has especially been

selected, instead of matrix calculations, as it leads to low memory usage. g[n] is the low pass

analysis filter array and h[n] is the high pass analysis filter array. x[n] represents the input

audio  samples.  a[n]  represents  the  approximation values  while  d[n]  represents  the  detail

values. Downsampling is achieved by shifting the filter values to the left by 2.
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Figure 5.19: Wavelet Analysis First Level
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The  analysis  continues  in  a  similar  manner  until  the  wavelet  level  value  is  achieved.  The

approximation and detail values are saved in an array in each layer. Since the memory usage

increases with the level number, the same array is used in each level in this work as shown in

Figure 5.20.  While the approximation values are stored in the first  half  of  the lBuffer,  the

details are stored in the second half of the lBuffer. When the second level is processed, the

lbuffer is used as an input to lowpass and highpass filtering. The output of the filtering is also

stored in the same lBuffer. At the end of the analysis process, lBuffer is passed to the next

stage. 

Wavelet thresholding takes the lBuffer,  the thresholding type and thresholding value as an

input of the thresholding stage. Soft or hard thresholding methods can be selected by the user

and the thresholding is applied as described in chapter 4.7.1.
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Figure 5.20: Wavelet Analysis First Layer

a0
a1
a2
a3
.
.
.

d0
d1
d2
.
.
.
.

aa0
aa1
.

ad0
ad1
.

da1
da2
.
.
dd1
dd2
.
.

a0
d0
a1
d1
.
.
.
.

lbuffer
level1

lbuffer
level1

lbuffer
level2



The synthesis stage is required for perfect reconstruction. The process is shown in Figure 

5.21. It works in a similar manner as the analysis stage   

5.2.2 Results of Automated Wavelet Based Speech Enhancement Algorithm 

First of all one clean speech sp01.wav is corrupted using white Gaussian noise at the following

SNR levels  in dB:  0,  5,  10,  15.  The results  are evaluated using as objective measures  and

subjective measures, respectively.

5.2.2.1 Objective Measure

A two minutes long audio file sp01.wav is corrupted by a Gaussian white noise. The results of

the wavelet based speech enhancement algorithm are shown in Table 5.4.
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Figure 5.21: First level wavelet synthesis
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Speech File
Name

SNR Input
(dB)

SNR output
(dB)

Wavelet
Family

Thresholding
Method

Level Operation 
Time

(msec)

Sp01.wav 0 5.6 Daub4 Soft 8 29

Sp01.wav 0 5.1 Daub4 Hard 8 32

Sp01.wav 0 6.1 Daub6 Soft 8 36

Sp01.wav 0 5.8 Daub6 Hard 8 41

Sp01.wav 0 6.7 Daub10 Soft 8 54

Sp01.wav 0 6.1 Daub10 Hard 8 57

Sp01.wav 0 5.5 Coif1 Hard 8 52

Sp01.wav 0 5 Coif1 Soft 8 54

Sp01.wav 0 5.9 Ciof3 Hard 8 59

Sp01.wav 0 5.7 Coif3 Soft 8 63

Sp01.wav 0 6.4 Coif5 Hard 8 71

Sp01.wav 0 5.9 Coif5 Soft 8 72

Sp01.wav 0 5.4 Sym6 Hard 8 50

Sp01.wav 0 4.9 Sym6 Soft 8 54

Sp01.wav 0 5.7 Sym10 Hard 8 66

Sp01.wav 0 5.4 Sym10 Soft 8 70

Sp01.wav 0 6.2 Sym14 Hard 8 86

Sp01.wav 0 5.8 Sym14 Soft 8 90

Table 5.4: Results of the Wavelet based speech enhancement algorithm in C

As expected the  results  are  similar  to  the  Matlab  simulations  except  the  operation times.

Operation time results are improved in C as it is clear from Table 5.4. 
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Sample  wavelet  thresholding  is  shown  in  Figure  5.22.  The  wavelet  type  was  chosen  as

"Daubechies10", the level was chosen as "eight" and the wavelet thresholding technique was

chosen as "soft thresholding" in this example. The input SNR value of the speech was "0dB".

The  output  value  of  "6.7dB"  was achieved as  a  result.  The operational  time of  the  whole

process was 54 milliseconds.

Three  different  wavelet  families  Daubechies  10(Daub10),  Coiflet  5(Coif5)  and  Symlet

14(Sym14) were used to compare the results after each speech enhancement. The wavelet

level was 8 and the thresholding method was soft thresholding on all the experiments. The

speech samples sp01.wav and sp11.wav were corrupted by white Gaussian noise respectively.

The SNR results obtained in C implementation are very similar to the ones obtained in Matlab

implementation. This is why, the SNR value chart of C implementation is not shown again. 
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Figure 5.22: Waveform of noisy and denoised signals



The best SNR output results were obtained with Daub10 with not much difference between

the noisy signal and the enhanced signal. The main difference has appeared on the operation

times as seen in Figure 5.23. The operational time of the wavelet based speech enhancement

algorithm was  the  shortest  with  the  Daub10.  The  experiments  shows  that  the  coefficient

number affects the operational time as expected. Since the Daub10 has the least coefficient

number,  the algorithm using it  finishes quicker than the others.  Also,  the operational time

increases in parallel with the wavelet level number as seen in Figure 5.23.  

5.2.2.2 Results Using Subjective Measure

The Mean Opinion Score (MOS) is  calculated as in section 4.4.1.2 for each audio file  after

collecting individual scores. The test should be organised under regulated conditions using

quiet environment.
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Figure 5.23: Operational time in white Gaussian noise case for sp07.wav

4 6 8
0

10

20

30

40

50

60

70

80

90

100

Daub10

Coif5

Sym14

wavelet level number

op
er

at
io

na
l t

im
e(

m
se

c)



Table 5.5 shows the MOS scores from an actual ACR test with 8 listeners with no previous

familiarity with test materials. 

Speech File
Name

SNR Input
(dB)

SNR output
(dB)

Wavelet
Family

Thresholding
Method

Level MOS

Sp01.wav 0 5.6 Daub4 Soft 8 4.000

Sp01.wav 0 5.1 Daub4 Hard 8 3.625

Sp01.wav 0 6.1 Daub6 Soft 8 4.000

Sp01.wav 0 5.8 Daub6 Hard 8 3.750

Sp01.wav 0 6.7 Daub10 Soft 8 4.250

Sp01.wav 0 6.1 Daub10 Hard 8 4.000

Sp01.wav 0 5.5 Coif1 Soft 8 3.500

Sp01.wav 0 5 Coif1 Hard 8 3.250

Sp01.wav 0 5.9 Ciof3 Soft 8 4.000

Sp01.wav 0 5.7 Coif3 Hard 8 3.750

Sp01.wav 0 6.4 Coif5 Soft 8 4.250

Sp01.wav 0 5.9 Coif5 Hard 8 4.000

Sp01.wav 0 5.4 Sym6 Soft 8 3.750

Sp01.wav 0 4.9 Sym6 Hard 8 3.500

Sp01.wav 0 5.7 Sym10 Soft 8 4.000

Sp01.wav 0 5.4 Sym10 Hard 8 3.500

Sp01.wav 0 6.2 Sym14 Soft 8 4.000

Sp01.wav 0 5.8 Sym14 Hard 8 3.750

Table 5.5: MOS results of the Wavelet based speech enhancement algorithm
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The sp01.wav file is  corrupted with 0dB white Gaussian noise for the tests. The sp01.wav

clean audio file is rated 5 by listeners and 1.25 after 0dB white Gaussian noise corruption. 

Different  wavelet  families,  thresholding  methods  and  levels  are  rated  for  speech  quality

measurement.  Although the SNR values are similar for different wavelet levels,  the speech

quality gets better with an increase of the wavelet level.

The test was carried out with different SNR values with sp21.wav audio file as seen in Figure

5.24. The clean sp21.wav audio file was rated 5 by all listeners. 

     

The file corrupted with 0dB, 5dB, 10dB and 15dB white Gaussian noise was rated 1.25, 2, 2.5

and 3 respectively. While the speech quality improvement is considerably higher in the 0dB

corrupted audio file, there is little speech quality improvement in the 15dB corrupted audio

file.
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Figure 5.24: MOS results of the Wavelet based speech enhancement algorithm
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5.2.3 Results of Automated Wavelet Based Speech Enhancement Algorithm with

different types of noises

Three different speech signals with six different noise types from the SpEAR Database were

used to evaluate the  wavelet packet decomposition  thresholding algorithm to compare the

results of different noise types.  The SpEAR Database contains carefully selected samples of

noise corrupted speech with clean speech references. All speech and noise sources have been

acoustically  combined  and  re-recorded.  Synchronous  clocking  is  used  to  provide  an  exact

time-aligned reference to the clean speech signal which is important for SNR calculations.

Playbacks and recordings of the speech signals were done at 48KHz by upsampling from the

original sampling rate. All Recordings were subsequently downsampled to 16kHz, and stored

as 16 bit wav files. Sampling conversion was performed by a polyphase implementation in

MATLAB using the "resample" function. The sentences are shown in Table 5.6.

File Name Gender Sentence Text

bigtips.wav Male Good service should be rewarded by big tips.

vega.wav Female I am sitting in the morning at the diner on the corner. I am 
waiting at the counter for the man to pour the coffee. And he 
fills it only halfway and before I even argue. He is looking out 
the window at somebody coming in.

draw.wav Female Draw every outer line first, then fill in the interior

Table 5.6: List of sentences used from SpEAR 
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Original Speech Files:

Playbacks and recordings of the speech signals were done at 48KHz and all recordings were

subsequently downsampled to 16kHz, and stored as 16 bit wav files. 

Original Noise Files:

F-16 noise:  It is  acquired by recording samples from 1/2" B&K condenser microphone onto

Digital Audio Tape (DAT). The noise was recorded at the co-pilot's seat in a two-seat F-16,

traveling at a speed of 500 knots, and an altitude of 300-600 feet. The sound level during the

recording process was 103 dB. It was found that the flight condition had only a minor effect on

the noise. The reproduced noise can therefore be considered to be representative. Sampling

rate is 19.98 Khz. and Analog to Digital Conversion(ADC) rate is 16 bits[6]. 

Factory Noise: It is acquired by recording samples from 1/2" B&K condenser microphone onto

DAT. This noise was recorded in a car production hall. Sampling rate is 19.98 Khz. and ADC

rate is 16 bits[6]. 

Pink Noise: Pink noise is a representation of coloured noise, which has a predominantly low

frequency spectrum[89]. It is acquired by sampling a high-quality analogue noise generator. It

exhibits equal energy per 1/3 octave. Sampling rate is 19.98 Khz. and ADC rate is 16 bits[6]. 

Volvo 340 Noise:  It is acquired by recording samples from 1/2" B&K condenser microphone

onto DAT. This recording was made at 120 km/h, in 4th gear, on an asphalt road, in rainy

conditions. Sampling rate is 19.98 Khz. and ADC rate is 16 bits[6]. 

White Noise: White noise is defined as a random signal process and its frequency spectrum is

flat which means that it has equal power in all frequencies[89-96]. It is acquired by sampling a

high-quality analogue noise generator  and exhibits equal energy in all frequencies. Sampling

rate is 19.98 Khz. and ADC rate is 16 bits[6]. 
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Bursting  Noise: It  is  computer  generated  noise  using  a  white  Gaussian  random  number

generator.

The objective and subjective results of the wavelet based speech enhancement algorithm on

bigtips.wav, draw.wav and vega.wav with different SNR value noise corruptions are shown in

Table 5.7. The Daub10 wavelet type, level 8 and soft thresholding are used in all experiments

at this stage. 8 listeners are used to get MOS values.

Speech File
Name

Noise Type SNR Input
(dB)

SNR output
(dB)

Level MOS 
Before

Denoising 

MOS 
After

Denoising

bigtips.wav burst 1 2.3 8 2.125 3.375

bigtips.wav f16 1 3.8 8 2.250 3.500

bigtips.wav factory 1 3.2 8 2.125 3.250

bigtips.wav pink 1 4 8 2.500 4.000

bigtips.wav white 1 6.6 8 1.750 4.250

bigtips.wav volvo 1 5.9 8 2.500 3.750

draw.wav burst 1 2.1 8 2.250 3.500

draw.wav f16 1 3.3 8 2.000 3.375

draw.wav factory 1 3.3 8 2.000 3.500

draw.wav pink 1 4.5 8 2.250 4.250

draw.wav white 1 5.4 8 1.500 4.250

draw.wav volvo 1 5.2 8 2.250 3.500

vega.wav pink 1 4.6 8 2.250 3.750

vega.wav pink 3 6.1 8 2.750 4.000

vega.wav pink 5 7.6 8 3.000 4.250
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vega.wav pink 7 8.7 8 3.000 4.250

vega.wav pink 11 11.9 8 3.250 4.500

vega.wav pink 15 15.6 8 3.750 4.500

Table 5.7: The results of the Wavelet based speech enhancement algorithm for

different type of noise signals

The results shows that Wavelet based speech enhancement algorithm improves the SNR and

MOS values at the same time. The algorithms works especially well for a speech corrupted

with white Gaussian noise. While the speech corrupted with "burst" noise is enhanced 1.3dB,

the speech corrupted with "white Gaussian" noise is enhanced 5.6dB when the input SNR is

1dB. The reason is that while the white Gaussian noise is spreaded over all frequency bands,

the other types of noises are concentrated on specific frequencies. The Wavelet based speech

enhancement  algorithm  is  able  to  decrease  the  noise  in  speech  for  different  frequencies

without decreasing the speech quality. 

 

5.3 Summary

In  this  chapter,  the  Wavelet  based  speech  enhancement  algorithm  is  implemented  using

Matlab  at  the  beginning.  One  audio  file  is  corrupted  with  five  different  SNR  value  white

Gaussian noise. Different wavelet families, levels and methods are used to denoise the sample

audio files. The output SNR values and operation times are recorded using tables and graphs

which gives the reader a comprehensive result set about the wavelet packet transform. The

best  SNR  output  value  is  obtained  using  Daubechies  10  wavelet  type,  soft  thresholding

method and level 8. It is found out that the SNR output values are not so different in different

wavelet  families,  thresholding method and level.  The  main difference  is  the  MOS and the

operation  time.  The  increase  in  the  level  gives  much better  results  in  MOS  but  worse  in

operation time. These results lead us to the requirement of a friendly user interface to obtain

the best denoising result using flexible wavelet type, thresholding method, level and threshold
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value  selection.  The  same  algorithm  is  implemented  in  C  with  better  memory  usage  and

flexible settings. A new memory with the size of the audio file was allocated in Matlab which

was increasing the memory usage by the size of level number N. The memory usage is limited

to the size of the audio file with the developed algorithm which decreased the memory usage.

Similar results are obtained in C implementation with Matlab as expected.  The wavelet packet

transform is implemented instead of pyramid wavelet transform. The SNR output results are

improved using the wavelet packet transform method when it is compared with the results in

Table 5.8[92].  The reason is  that  the details  as well  as the approximations can be split  in

wavelet packet transform which keeps the useful information in high frequencies. Moreover,

flexible threshold value adjustment gives the user fine adjustment of the threshold value. By

increasing or decreasing the threshold value around the calculated value, the user gets better

SNR and MOS values. 

SNR input 0 2 4 6 8 10 12

Hard 3.48 2.78 2.65 2.23 1.35 1.38 1.08

Soft 6.53 5.76 5.04 4.31 3.87 3.07 2.36

Firm 6.52 5.76 5.13 4.49 4.02 3.33 2.75

Garrote 6.13 5.3 4.89 4.32 3.63 3.22 2.8

Step-
garrote

5.93 5.28 4.93 4.41 3.86 3.41 2.94

Table 5.8: Performance evaluation for different thresholding algorithms in different input

SNRs and their SNR improvements

Different  wavelet  families,  thresholding  methods  and  levels  are  rated  for  speech  quality

measurement.  Although the SNR values are similar for different wavelet levels,  the speech

quality  gets  better  with  the  increasing  wavelet  level.  The  best  results  obtained  using

Daubecies 10 family, level 8 and hard thresholding is used for denoising different types of

noises. The results showed that the audio corrupted with noise spread over all frequencies
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such as white and pink noise could be denoised more effectively using wavelet transform than

with noise accumulated in some frequencies such as burst noise.

In the following chapter, the real time wavelet denoising is implemented using a custom build

audio equipment called Xad-ML100. Also wavelet denoising algorithm for real time denoising

is impemented with a notch filter for an improved speech enhancement under fixed frequency

and white Gaussian noise. At the end, the denoising algorithm results are shown in tables and

graphs.
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6 REAL TIME AUDIO WAVELET DENOISING

Real time audio denoising allows users to process, edit and listen to a modified audio signal on

the fly. Although it requires more CPU power, however, it significantly improves professional

digital audio. Real time denoising also helps editing signals where the original content is not

modified at the time of editing and can reduce the required disk space for the filtered sections.

Nowadays, real time digital audio denoising on personal computers is becoming more and

more common, which makes it easier for any potential end user to experiment digital audio

systems without  prior  knowledge.  Audio denoising  in  real  time lets  modified audio to  be

evaluated by listeners while being enhanced[93].

Common denoising methods that are widely used in real time audio operates mainly in the

time domain. They consist of a gate that controls the volume of an audio signal, and a filter

that  enhances  the  speech  signal  only  in  time  domain.  These  systems  are  very  useful  for

nondemanding applications. In many other applications, an increase of the effectiveness , by

transforming a signal to the frequency domain, denoising it and back to the time domain in

real time are required. Wavelet denoising algorithm can be computationally efficient and fast

enough to achieve this goal. 

This chapter outlines the implementation of the proposed wavelet denoising algorithm in real

time. The custom Xad-ML100 product is used as a real time platform. 

In  section  6.1,  the  custom  hardware  platform,  XAD-ML100,  is  introduced  and  explained.

Section 6.2 describes the implementation of  the real time Wavelet denoising algorithm. In

section 6.3,  boundary problems of the real time wavelet denoising algorithm are analysed and

solutions are suggested. Section 6.4 shows the effectiveness of the method when applied to

audio  data  corrupted  with  different  levels  of  white  noise.  In  section  6.5,  results  of  audio

signals corrupted with white noise and fixed frequency noise using only wavelet based speech
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enhancement are provided. Section 6.5 describes and demonstrates the benefits of combining

notch filtering  with  discrete  wavelet  transform to  denoise audio  signals  corrupted with  a

combination of white noise and fixed frequency noise.

6.1 XAD-ML100 System Overview

The main goal of this unit is to acquire 16 analogue audio signals from custom build audio

equipment  and store  and play them in custom build  computers  as  shown,  respectively in

Figure 6.1 and 6.2. The audio signals are then sent to a central location over the IP network. 

It  is  mainly  used  for  recording  conversations,  where  the  conversations  are  recorded  in  a

secure environment. The main goal is to use where recorded audio files as evidence when

required such as in a court of the law.

The features of XAD-ML100 include:

• 16 embedded audio receivers (2 channels from each receiver board) including low pass 

filters with a cut-off frequency of 8Khz.

• 48V DC and 220V AC power options.

• Mountable rack for outdoor cabinet installation.

• Based on a scalable architecture to interconnect multiple units.
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Figure 6.1: Outside View of the Xad-ML100



The block diagram of the Xad-ML100 is shown in Figure 6.3. As it is clearly illustrated, the unit

consist of 12 sub units or boards, namely:

1. Power Supply & Switch Board:

Power supply & switch board provides the required input voltages to all other boards.

It accepts 90-265 VAC main voltage to produce 48VDC. It also accepts 48VDC as it can

be used in telecommunication environment where only 48VDC is available. It produces

-12VDC and +12VDC for receiver boards(sub-units),  as well  as,  a 12VDC for the PC

board.  It  also  has  a  microcontroller  which  communicates  with  the  PC  board  using

RS232 protocol for the switching on and off the whole unit.  
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Figure 6.2: Inside View of the Xad-ML100



2. Receiver Boards:  There are  8  receiver  boards  which can process  2  channels.  Two

analogue lines are connected to the receiver boards. They are pre-amplified to get a

better speech quality and amplified with a ratio of 22. The amplified signals are sent to

the acqusition&computer board.

3. Line Input Board: Line input board is designed to get 16 analogue audio signals with a

custom built connector. It connects 16 audio signals to the receiver boards.

4. Back Plane Board:  All the board are connected to each other using the back plane

board. It provides an easy access to all of the boards for maintenance using an easy

connection platform.

5. Acquisition& Computer Board:  The acquisition part of the board gets 16 analogue

audio signals and converts them to digital signals before sending them, using a USB

protocol, to a mini PC, where all the digital speech data are processed. The processed

data is available to users with a UDP connection via a secure protocol. The PC is shown

in Figure 6.3 and the specifications of the PC are:

• IntelR Atom™ E3800 processors (COMe-cBTi6)

• COM ExpressR modules are very compact, highly integrated computers.

• A memory unit of up to 2x 8GB

• 1x USB 3.0 and 8x USB 2.0 is available.
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In summary, the analogue speech signals come to the Line Input Board using custom build 16

pair connectors. The microphones are connected to those lines and can be switched on and off

from a remote computer using network connection to the computer inside the ML100. Each

receiver  board  can  handle  2  analogue  signals.  At  this  stage,  the  analogue  signal  is  pre-

amplified,  filtered and then amplified.  Finally,  the amplified analogue signal  is  sent to the

Acquisition & Computer Board as shown in Figure 6.4.
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Figure 6.3: XAD-ML100 Mini PC
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Figure 6.4: XAD-ML100 General Description
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The acquisition hardware provides a sampling rate of 16000 samples per second with a 16-bit

resolution. A 16 Khz sampling rate, 8-bit resolution is used in the Xad Client Software side. The

block diagram of the Acquisition & Computer Board is shown in Figure 6.5. 
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Figure 6.5: Wavelet Denoising using Xad ML100
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The  16  analogue  audio  input  signals  are  converted  to  digital  signals  using  a  16  channel

acquisition card which consists of an ADC and a field programmable gate array (FPGA) which

provides a USB interface between the acquisition part and the PC. The converted signals are

then sent to an AMD based computer, where all the input speech signals are recorded and can

be played. 

The audio channel data which is stored in the XAD-ML100 can be acquired by remote users

using a TCP/IP protocol. The XAD Audio Software, XaudiNet Client, can be installed on any

remote user PC, which can access the 16 recorded offline channels of the XAD-ML100. Also,

remote users can access to a single real time audio channel using XaudiNet Client as shown in

Figure 6.6. 
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Figure 6.6: Xad Communications Audio Software User Interface



6.2 General Algorithm

Real time audio can be enabled using "Enable Realtime" button in Xaudio Client User Interface

as shown in Figure 6.6. The discrete wavelet transform noise reduction algorithm is activated

by enabling the "Wavelet Filtering" button as shown in Figure 6.7. The software can display

the real time audio signal in the time domain or frequency domain as shown in both Figure 6.6

and Figure 6.7.

The wavelet filtering algorithm is implemented in C as an add-on feature to Xaudionet Client

and it can be enabled using Xaudionet Client when the wavelet filtering is requested.  UDP

based  asyncronous,  non-blocking  socket  is  opened  in  between  the  wavelet  filtering  and

Xaudionet programme as shown in Figure 6.8. In our case, the wavelet filtering program and

Xaudionet  Client  main program  are  running in  the  same computer,  however,  the  wavelet
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filtering program can run on an independent computer with some extra changes.  In other

words,  both programs are running in the same computer in our case but they can run on

independent computers as well. 

The wavelet filtering program with its interface to the Xaudionet Client program and the XAD-

ML100 program is  shown in the flowchart of Figure 6.9.  First of all,  an asyncronous non-

blocking socket communication is started between the Xaudionet Client program, running on

an user PC, and the XAD-ML100 program, running on an XAD-ML100. All the audio channels

are accessible on the user PC through this protocol. The UDP packages are then received from

the Xaudionet Client. The audio data is then written into a FIFO and is available to the wavelet

denoising program with the required data size. The wavelet denoising program starts when

2048 byte of data is received. The size of the buffer will ensure a minimum real time delay. It

is worth noting that a 10 levels of decomposition max for the wavelet denoising algorithm can

be achieved with the 2048 FIFO data. The wavelet denoising algorithm is the same as the

offline  wavelet  filtering which has  been explained in  chapter 5.  There are,  however,  small

differences between the offline and the real time wavelet algorithm, which will be explained

later in this chapter.  The enhanced audio signal is  then sent back to Xaudionet Client and

displayed on the graphical user interface, both in time and frequency domains, for the user to

observe the improvements.    
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Figure 6.8: Real Time Denoising Program Description
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6.3 Boundary Analysis

In real time wavelet analysis, the convolution needs N samples which is the size of the filter for

the multiplication with the input samples. However, N following samples are not available for

the first and the last N multiplications since there is not enough input samples. There are
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many  different schemes available to solve this problem by expanding the input data[94]. The

most used extension schemes are presented in what follows.

Circular convolution: The input signal is extended with the required size of the first samples.

The main disadvantage of this approach is that the time information of the wavelet coefficients

is not accurate for the boundaries. Thresholding a coefficient at the edge has an impact on the

other edge when it  is  reconstructed.  It  is  not an acceptable behaviour for real time audio

processing.

Zero padding: The input signal is extended with N-2 zeros at end and beginning which causes

discontinuities at the borders. There are wavelet coefficients added which makes the 0th level

detail size (M+N-1)/2 for an input signal of length M samples. On reconstruction, the padded

values are discarded. The main disadvantage of zero-padding is that artificial discontinuities

are created at the border.

Symmetric extension: The input signal is extended symmetrically at the borders. The signal

is  mirrored  at  the  boundaries  to  achieve  this.  It  does  not  generate  discontinuities  at  the

borders  and  produces  relatively  low  error.  Like  with  zero  padding,  there  are  wavelet

coefficients added. 

The extension methods only have an impact on the wavelet coefficients at the boundaries not

on the inner wavelet coefficients.  Also,  the extension has an impact on the decomposition

process not on reconstruction. This is because the added paddings are eventually discarded

during reconstruction.

In the implementation, all  the methods described above are compared as a solution to the

boundary  problem.  Experimental  results  gives  better  results  for  audio  signals  when

symmetric  extension  method  is  implemented[95].  Whereas,  zero  padding  and  circular

extension methods creates errors on the boundaries. Also, it is worth mentioning here that

symmetric extension method gives better subjective results to listeners.
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6.4 Audio Data Corrupted with White Noise

To assess the effectiveness of the implementation, signals are corrupted with white noise. In

this context, a clean speech sp01.wav is corrupted with white Gaussian noise at the following

SNR  levels  in  dB:  0,  5,  10,  15.  The  recording  is  achieved  using  an  external  microphone.

Secondly, the same audio file is corrupted using a fixed frequency noise at the following SNR

levels in dB: 0, 5, 10, 15 as well as a white Gaussian noise. The results are evaluated using

objective and subjective measures. 

6.4.1 Objective Measure

The objective results of the experiments are shown in Table 6.1. The SNR output values and

the operation times are measured to compare the effect of the wavelet type, the thresholding

method and the wavelet level on the wavelet algorithm.

Speech File
Name

SNR Input
(dB)

SNR output
(dB)

Wavelet
Family

Thresholding
Method

Level Operation 
Time

(msec)

Sp01.wav 0 5.5 Daub4 Soft 8 1.8

Sp01.wav 0 4.9 Daub4 Hard 8 2.1

Sp01.wav 0 5.9 Daub6 Soft 8 2.4

Sp01.wav 0 5.8 Daub6 Hard 8 2.7

Sp01.wav 0 6.5 Daub10 Soft 8 3.6

Sp01.wav 0 6 Daub10 Soft 4 1.9

Sp01.wav 0 6 Daub10 Hard 8 3.7

Sp01.wav 0 5.4 Coif1 Soft 8 3.1

Sp01.wav 0 5 Coif1 Hard 8 3

Sp01.wav 0 5.6 Coif3 Soft 8 3.5
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Sp01.wav 0 5.5 Coif3 Hard 8 3.4

Sp01.wav 0 6.3 Coif5 Soft 8 4.1

Sp01.wav 0 6.1 Coif5 Soft 4 2.7

Sp01.wav 0 5.7 Coif5 Hard 8 4

Sp01.wav 0 5.4 Sym6 Soft 8 3.3

Sp01.wav 0 5.3 Sym6 Hard 8 3.4

Sp01.wav 0 5.6 Sym10 Soft 8 4.5

Sp01.wav 0 5.4 Sym10 Hard 8 4.7

Sp01.wav 0 6.1 Sym14 Soft 8 5.8

Sp01.wav 0 5.8 Sym14 Soft 4 3.8

Sp01.wav 0 5.8 Sym14 Hard 8 5.9

Table 6.1: Results of the real time wavelet based speech enhancement algorithm

The SNR output results are consistent with the offline wavelet de-noising results except for

the operation times as shown in Figure 6.10. The operation times are much better since the

2048 byte data chunks are used in each denoising step.
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The SNR output results of the real time wavelet speech enhancement algorithm are shown in

Figure 6.10. SNR results do not change too much with different wavelet families and wavelet

thresholding methods.

Figure  6.11  shows  the  operation  times  of  the  real  time  wavelet  speech  algorithm.  While

thresholding methods do not change the operation times, wavelet levels and wavelet families

affect the operation times. This is because the coefficient numbers increase with the level of

decomposition. 
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Figure 6.10: SNR results of real time Wavelet speech enhancement algorithm
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The best SNR output results were obtained with the Daub10 with no much differences in

comparison to other wavelet  families.  The main difference has appeared on the operation

times as seen in Table 6.1. The operational time of the wavelet based speech enhancement

algorithm was  the  shortest  with  the  Daub10.  The  experiments  shows  that  the  coefficient

number affects the operational time as expected. Since the Daub10 has the least number of

coefficients, the algorithm using it finishes quicker than the others. Also, the operational time

increases in parallel with the wavelet level number as seen in Table 6.1. 

6.4.2 Subjective Measure

The Mean Opinion Score (MOS) is calculated as defined in section 5.1.2.2 for each audio file

after collecting individual scores.  The test is  organised under regulated conditions using a

quiet environment.
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Figure 6.11: Operation times of real time Wavelet speech enhancement algorithm
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Table 6.2 shows the MOS scores from an actual  ACR test for 8 listeners with no previous

familiarity with test materials. 

For this experiment, sp01.wav file is corrupted with 0dB white Gaussian noise for the tests.

The sp01.wav clean audio file is rated 5 by listeners and 1.25 after 0dB white Gaussian noise

corruption. 

Speech File
Name

SNR Input
(dB)

SNR output
(dB)

Wavelet
Family

Thresholding
Method

Level MOS

Sp01.wav 0 5.5 Daub4 Soft 8 3.875

Sp01.wav 0 4.9 Daub4 Hard 8 3.500

Sp01.wav 0 5.9 Daub6 Soft 8 4.000

Sp01.wav 0 5.8 Daub6 Hard 8 3.625

Sp01.wav 0 6.5 Daub10 Soft 8 4.125

Sp01.wav 0 6 Daub10 Soft 4 3.375

Sp01.wav 0 6 Daub10 Hard 8 4.000

Sp01.wav 0 5.4 Coif1 Soft 8 3.250

Sp01.wav 0 5 Coif1 Hard 8 3.125

Sp01.wav 0 5.6 Coif3 Soft 8 3.625

Sp01.wav 0 5.5 Coif3 Hard 8 3.250

Sp01.wav 0 6.3 Coif5 Soft 8 3.875

Sp01.wav 0 6.1 Coif5 Soft 4 3.000

Sp01.wav 0 5.7 Coif5 Hard 8 3.500

Sp01.wav 0 5.4 Sym6 Soft 8 3.375

Sp01.wav 0 5.3 Sym6 Hard 8 3.000
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Sp01.wav 0 5.6 Sym10 Soft 8 3.500

Sp01.wav 0 5.4 Sym10 Hard 8 3.125

Sp01.wav 0 6.1 Sym14 Soft 8 3.875

Sp01.wav 0 5.8 Sym14 Soft 4 3.125

Sp01.wav 0 5.8 Sym14 Hard 8 3.500

Table 6.2: MOS results of the real time wavelet based speech enhancement algorithm

Different  wavelet  families,  thresholding  methods  and  levels  are  rated  for  speech  quality

measurement. Although the SNR value enhancements are similar for different wavelet families

and thresholding methods, the speech quality gets better when soft thresholding is used. Also,

the  wavelet  type  choice  is  affecting  the  speech  quality.  The  wavelet  types  with  more

coefficients such as Daub10, Coif5 and Sym14 give better speech quality. 

6.5 Audio Signal Corrupted with White Noise and Fixed Frequency Noise

The same audio file, sp01.wav, is corrupted using a fixed frequency noise as well as a white

Gaussian noise at a 0dB SNR value. The fixed frequency noises are applied to the signals at the

same level.  Since they are located at single frequencies,  they do not change the total  SNR

values of the signals.   

Different frequencies  are  applied to  assess the impact on the  real  time wavelet  denoising

algorithm.  A Daub10 wavelet  type,  soft  thresholding and  an  8  level  of  decomposition are

selected.  The  selection  of  the  Daub10  wavelet  is  driven by  the  results  from the  previous

experiments.  

6.5.1 Results Using Objective and Subjective Measure

The SNR output and MOS values are shown in Table 6.3 after combining extra fixed frequency
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noises with a white Gaussian noise. The fixed frequency noises are obtained using a sine wave

siren sound generator. 500, 2000, 4000, 6000 and 8000 Hz are used in our experiments to

show the impact on the wavelet denosing algorithm.

Speech File
Name

SNR
Input
(dB)

Frequency
(Hz)

SNR output
(dB)

MOS
before

de-noising

MOS
after

de-noising

Sp01.wav 0 500 6 1.125 3.375

Sp01.wav 0 2000 6 1.250 3.250

Sp01.wav 0 4000 6.2 1.000 3.000

Sp01.wav 0 6000 6.2 1.250 3.000

Sp01.wav 0 8000 6.3 1.125 2.750

Table 6.3: Results of the real time wavelet based speech enhancement algorithm

when combining white Gaussian noise with fixed frequency noises

It is  clear from Table 6.3 that the SNR for the combined noises,  fixed frequency noise and

white Gaussian noise, decreases in comparison to the SNR for white Gaussian noise only. This

is also true for the MOS values. These values are degraded in the case of combined noises as

shown in Table 6.3.

   

The SNR output values are increasing with the increase in frequency. Since the thresholding

value  is  calculated  automatically  using  filtered  coefficients,  it  is  then  increasing  with  the

increase  of  the  frequency.  The  calculated  threshold  value  increase  suppresses  more

coefficients which causes an increase in the SNR output value. However, the MOS outputs after

de-noising does not give better results since the thresholding value is miscalculated because

of the fixed frequency signal. Moreover, the high frequency content increases the thresholding

value, which causes more corruption in the audio signal quality as seen in Table 6.3.
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To overcome the problem of fixed frequency noise, a combination of two filtering methods is

adopted.

6.6 Notch Filtering with Discrete Wavelet Transform

In the previous section, experimental results have shown that the wavelet transform cannot

handle the combination of a white Gaussian noise and a fixed frequency noise. To remedy to

this problem, a modified algorithm is suggested. It consists of combining a wavelet filter with a

more traditional Notch filter.

6.6.1 Notch Filter

A notch filter decreases the gain of a narrow band frequency spectrum while leaving the  rest

of the audio signal unaffected. The filter is controlled by three parameters. The first parameter

defines the cut-off frequency of the filter, which is in general the centre frequency of the filter.

The second parameter of the filter consists of the steepness of the roll-off of the filter. Finally,

the third parameter defines the gain, which represent the amount of gain reduction within the

frequency band. The shape of the filter and the frequencies are defined by these parameters.

A  notch  filter  can  be  classified  by  the  length  of  its  impulse  response  as  a  finite  impulse

response(FIR) and infinite impulse response (IIR). While the FIR notch filter is always stable

and provides a linear phase response, the IIR notch filter is potentially unstable and do not

provide  a  linear  phase  response.  The  advantage  of  IIR  filter  structures  over  FIR  filter

structures  is  that  they can  be  designed  with  a  much lower  order  for  fulfilling  equivalent

magnitude specifications[96]. A digital FIR notch filter uses a large of coefficients to greet the

same requirement of the magnitude response.  As the number of coefficients increases the

delay, which is the main concern in real time audio de-noising, an IIR filter is preferred in real

time applications. IIR filters are also called recursive filters because their impulse responses

are composed of decaying exponentials. In this thesis, a second order recursive notch filter is

used because of its effectiveness and practicality[97]. 
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6.6.1.1  Recursive Notch Filter

Recursive filters are an effective way of obtaining a long impulse response without having to

perform a long convolution. Although they execute very quickly, they have less performance

and  flexibility than other digital filters.

A recursive filter is described by a difference equation of the form:

(6.1)

In this equation,  x[ ] is the input signal,  y[ ] is the output signal, and the  a's  and  b's are the

coefficients. The transfer function of the filter is then:

(6.2)

The  z-transform  can  be  used  for  switching between  the  recursive  coefficients  and  the

frequency response, merging cascaded and parallel stages into a single filter and transforming

an analogue filter to its digital equivalent using the bilinear transformation, which is used to

obtain the  recursion coefficients in our algorithm.

A second order analogue notch filter Laplace transfer function:

(6.3)
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where Ω0 is the notch frequency, B is 3-dB notch bandwidth and s is the Laplace variable. Using

bilinear transform, the imaginary plane axis in the s plane can be mapped onto the unit circle

of the z plane using equation 6.3 as:

(6.4)

 

where

(6.5)

and where

(6.6)

Two parameters must be selected before using equation 6.5: the notch frequency f0, and the

sampling frequency fs.  From these specified values,  the intermediate values Bw and w0 are

calculated. Then, the filter coefficients are evaluated using the values α and β as in equation

6.2. The coefficient values are used to calculate the output signal values. 

The  designed  digital  notch  filter  rejects  a  specific  annoying  frequency  and  keep  other
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broadband signals unchanged. In the proposed algorithm, five different frequencies can be

attenuated using multiple notch filters. The simplest way consists of cascading single notch

filters.

In the proposed algorithm, the notch frequencies can be selected through the graphical user

interface  in  real  time.  The  default  notch  filter  frequency  is  selected  as 6Khz  and  can  be

modified by the user. The coefficients are calculated with the selected notch frequency and

bandwidth. This approach makes notch filtering much easier and more efficient.  

A second-order IIR notch filter is applied before applying the discrete wavelet transform as

seen in Figure 6.12 and Figure 6.13 using the XaudioNet Client. The 6Khz noise is filtered out

using a notch filter as shown in Figure 6.13.
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Figure 6.12: Frequency Spectrum Before Notch Filter



Noises with different centre frequencies are filtered using a combination of notch filters and a

wavelet filter. The results are shown in Table 6.4.

Speech File
Name

SNR
Input
(dB)

Frequency
(Hz)

SNR output
(dB)

MOS
before

de-noising

MOS
after

de-noising

Sp01.wav 0 500 6.3 1.125 4.125

Sp01.wav 0 2000 6.4 1.250 3.875

Sp01.wav 0 4000 6.3 1.000 3.250

Sp01.wav 0 6000 6.3 1.250 3.500

Sp01.wav 0 8000 6.4 1.125 3.500

 

Table 6.4: Results of the combination of notch filtering with the wavelet transform speech

enhancement algorithm
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Figure 6.13: Frequency Spectrum After Notch Filtering



The  SNR  output  values  are  improved  after  combining  notch  filtering  with  the  wavelet

transform speech enhancement algorithm as seen in Table 6.4.  The SNR output value was

6.5dB when there was no extra fixed frequency noise insertion. The SNR output values are

very  close  to  6.5dB  after  the  successfull  combination  of  notch  filtering  with  the  wavelet

transform. The MOS values are also improved after the combination of the two algorithms.

They are very close to the MOS values of the signal without the extra fixed frequency noise.      

6.7 Summary

In this chapter, the wavelet denoising algorithm is implemented in real time using the custom

built Xad-ML100. The main goal of this product is to acquire 16 analogue audio signals from

custom built audio equipment and store and play them in custom built computers. 

Experimental results show that real time wavelet algorithm is working as effective as offline

wavelet  algorithm.  While  SNR  output  results  do  not  change  much  with  wavelet  type,

thresholding method and wavelet level, MOS values and operation times change rapidly with

wavelet  type  and  wavelet  level.  The  optimisation  of  wavelet  level,  wavelet  type  and

thresholding method is crucial for user to get better results and less delay after using real time

wavelet denoising  algorithm. 

After successful results with added white Gaussian noise, the fixed frequency components are

added to experiment wavelet denoising algorithm. New method is introduced after getting

unsatisfactory experimental results under mixed fixed frequency and white Gaussian noise.

Notch filter is applied before wavelet denoising algorithm to remove the fixed frequency noise

as fixed frequency noise is misleading the thresholding value calculation and confuses the

wavelet denoising algorithm. 

Experimental results show that combination of notch filter and wavelet denoising algorithm is

successful for mixed fixed frequency and white Gaussian noise in real time. 
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7 SUMMARY AND CONCLUSIONS 

7.1 Introduction

In this chapter,  the outcomes of the research work and some of the recommendations for

future work in the area of enhancing noisy speech data are summarised. Important points

about the research are highlighted and an outline of the achievements is presented as well.

This shows how the objectives of the research programme have been met.

7.2 Summary and Conclusion

The first part of the thesis introduces some important concepts in relation with the topic of

this  research work. In this  context,  chapter 2 is  dedicated to the characteristics of  speech

signals.  It  includes  the  theory  behind  speech  production  and  perception  as  well  as  a

description of a variety of auditory models. It also, importantly, highlights the noise chain in

an audio system (acquisition stage and play back stage).  Chapter 3 critically review some

existing techniques used in speech enhancement or denoising. It includes different techniques

such  as  comb  filters,  adaptive  enhancement  methods,  spectral  subtraction,  and  Wiener

filtering.  These  methods  are  then  compared  and  their  advantages  and  disadvantages  are

presented. Chapter 4 consists of a thorough review of the theory on the wavelet transform.

The definition of  the  transform is  introduced first,  then,  concepts  such as  the  continuous

wavelet transform and Mallat’s multiresolution analysis are presented. The concepts of filters

banks and the discrete wavelet transform are introduced in the second part of the chapter.

Filters banks are very important when implementing a wavelet based system. Other aspects

like wavelet families (orthonormal and biorthogonal) and wavelet types (Daubechies, Coiflet

and Symlet)  are  also  presented.  To complement  chapter 3,  some existing work on speech

enhancement (denoising) using the wavelet transform is reviewed at the end of this chapter.

The second part  of  the thesis  deals  with the objective 1 which is  to implement an offline

speech  enhancement  algorithm  using  discrete  wavelet  packet  transform instead  of  the
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traditional wavelet tree decomposition. The implementation uses the discrete wavelet packet

algorithm  for  the  decomposition  instead  of  the  traditional  wavelet  decomposition.  This

approach, though time consuming, will provide finer wavelet coefficients at higher levels of

decomposition and consequently provides a more efficient way of calculating the threshold

value. Automatic soft thresholding and hard thresholding has been implemented. Since the

wavelet transform presents a range of peculiarities not present in any other transform, it was

very important to select the best wavelet for the speech enhancement problem. Unlike the

Fourier transform, the wavelet transform is not unique.  In fact,  there are several  wavelets

having  different  features  and  characteristics.  These  features  include  the  wavelet  family

(orthonormal  or  biorthogonal),  the  wavelet  type  (Daubechies,  Coiflet,  etc.)  the  number of

coefficients for both the low pass filter and the high pass filter, the level of the decomposition

and the type of threshold if the speech enhancement application is included. In the context of

our research work, only some orthonormal wavelets were considered. To validate this initial

work,  different  experiments  have  been  carried  out.  In  these  experiments,  the  proposed

wavelet  packet  decomposition  algorithm  for  speech  enhancement  has  been  implemented

initially in Matlab. Six different utterances from a noisy speech corpus (NOIZEUS) library were

used to evaluate the proposed wavelet packet decomposition algorithm. Clean speech signals

have been corrupted with 0dB white Gaussian noise. The experiments were carried out using

different wavelet types, levels of decomposition and thresholding methods. 

The results  have been evaluated using objective and subjective measures as introduced in

objective 2, which are in this case the Signal to Noise Ratio (SNR) and the Mean Opinion Score

(MOS), respectively. The wavelet thresholding algorithm performed well and produced good

quality speech signals. The best SNR value was achieved by the "Daub10" wavelet with a level

of decomposition of "8", using the "soft" thresholding method. The operation time increased

proportionally  with  the  level  of  decomposition  as  it  was  expected.  However,  it  is  worth

mentioning that the output SNR values for two different levels were not too much different

from each other. For example, the output SNR value after the speech enhancement algorithm

was 6.8dB for the level 8 and 6.1 dB for level 4. Although the difference of levels does not

improve the SNR value too much, the speech quality is drastically improved in higher levels.

While the increase in the number of coefficients for the same wavelet family has not improved

the SNR value remarkably, it increased the output speech quality immensely. Unfortunately,
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the increase of the number of coefficients for the same wavelet family gradually increases the

operation time.

The  second  stage  of  the  experimental  work  consisted  of  making  the  proposed  wavelet

algorithm suitable for a hardware platform as mentioned in objective 3. For this purpose, an

efficient implementation that uses limited memory resources has been developed. This will

make the algorithm more suitable for hardware platforms with limited resources. In addition,

to ease the experimentation process, a graphical user interface (GUI) has been designed as

indicated in objective 6. It allows users to implement speech enhancement through graphical

icons and visualise the improvement before and after the enhancement algorithm. Moreover, a

sliding bar is added to the GUI to fine-tune the thresholding value,  which is automatically

calculated as part  of  the  wavelet  denoising algorithm. Thresholding value fine adjustment

gives user the option to determine the speech quality against SNR value as the increase of the

thresholding value leads to a better SNR value; unfortunately, it will make worse the speech

quality.  Six  different  utterances  with  white  Gaussian  noise  from  a  noisy  speech  corpus

(NOIZEUS) library and three different speeches with six different noise types in different SNR

values  from  SpEAR  Database  were  used  to  evaluate  the  wavelet  packet  decomposition

thresholding algorithm in C. The Daub10 wavelet type, level 8, using soft thresholding method

is used in all experiments at this stage.

The results are evaluated using objective and subjective measures,  which are the signal to

noise ratio (SNR) and the Mean Opinion Score (MOS), respectively. The wavelet thresholding

algorithm as implemented in C performed well and produced good quality speech signals. It

gave similar results to the ones in Matlab. The algorithm is designed such that it does not use

much memory. The operation time which is less than 100 milliseconds for a 2 minute long

audio  file  satisfies  the  operation  time  requirements  for  offline  speech  enhancement

algorithms. When dealing with different types of noise signals, such as, white Gaussian noise,

pink noise, f16 noise, burst noise, factory noise and Volvo noise, the results have shown that

the proposed wavelet  thresholding algorithm performs far better in white Gaussian noise,

pink noise and Volvo noise. The nature of these different noises is very irregular and non-

stationary compared to real life noises, where on the other hand, pink and car interior noises

present  some low-pass  characteristics.  Applying a wavelet  thresholding method for all  six

different noises with diverse nature is not a good idea and this is one issue we should further

address  in  any future  research work.  Moreover,  the  experimental  results  showed that  the
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wavelet thresholding algorithm in C performed well and produced good quality speech using a

low memory, which makes the algorithm implementation on low memory processors more

than plausible as stated in objective 3. 

Finally, the implementation of the real time wavelet enhancement algorithm using the wavelet

packet decomposition method is outlined. A custom build computer, Xad-ML100, is used as a

real time platform as introduced in objective 4. The wavelet packet decomposition method

which takes more time compared to wavelet pyramid decomposition is implemented to notice

the latency in real time applications as referred in objective 5. After the experiments, our real

time wavelet  enhancement  algorithm gives  less  than 10 milliseconds  latency for  different

combinations of noise types, wavelet type, wavelet level of decomposition and thresholding

method. This  latency result is  quite satisfactory as tolerable limits to latency for real time

processing is estimated to be between 6 and 20 milliseconds[98].

After obtaining very successful results when dealing with added white Gaussian noise, fixed

frequency  components  are  added  to  experiment  the  wavelet  enhancement  algorithm.

Different wavelet types,  wavelet levels and thresholding methods are applied to enhance a

clean  speech,  corrupted  by  white  Gaussian  noise  in  different  SNR  levels  and  by  a  fixed

frequency noise. The results are compared using output SNR values and Mean Opinion Score

(MOS). The results show that the wavelet packet decomposition is not producing good results

for fixed frequency noise mixed with white noise. To cater for this problem, a Notch filter is

applied prior to applying the wavelet enhancement algorithm to remove the fixed frequency

noise as discussed in objective 7. The fixed frequency noise actually misleads the thresholding

value calculation and confuses thus the wavelet enhancement algorithm. Experimental results

show that  the  combination  of  Notch  filtering  with  the  wavelet  enhancement  algorithm is

successful in dealing with fixed frequency noise when combined with white Gaussian noise in

real time.
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7.3 Suggestions for Future Research

With the continual growing success of the wavelet transform in the field of speech processing,

different other aspects related to the transform have to be addressed. Some of these points are

summarised in what follows.

7.3.1 Algorithm Experiments

The  different  wavelet  types  make  different  trade-offs  between  how  compactly  the  basis

functions are localised in space and how smooth they are. Since there are different mother

wavelets belonging to different wavelet types available, the choice of the wavelet type, mother

wavelet and its order greatly affect the accuracy of the analysis. There are different examples

of wavelet types such as Haar, Daubechies, Biorthogonal, Symlets, Coiflets, Morlet, Mexican

Hat, and Meyer etc. [101]. Daubechies, Coiflet and Symlet are used to experiment suggested

algorithms in this  thesis.  The common feature  of  these  wavelet  types  is  that  they are  all

orthogonal. Biorthogonal wavelet families need to be added for future experiments to get a

relation  between the  features  of  the  wavelets  and  the  characteristics  of  the  input  speech

signal.

7.3.2 Optimal Wavelet Type Selection

Different wavelet types can be used in speech enhancement. Wavelets vary in the length of

support  of  the  mother  wavelet,  the  number  of  vanishing  moments,  the  symmetry  or  the

regularity,  the  existence  of  a  corresponding  scaling  function  etc.  [100].  Since  all  the

translations and scaling are over the mother wavelet, the selection of the mother wavelet plays

a  crucial  role  in  obtaining  good  results  in  terms  of  SNR  and  MOS  values  in  speech

enhancement. Moreover, a wavelet type which works well for a particular noise type may not

be good for some other noise type. In our work, GUI is designed to give user an easy selection

of  wavelet  types.  However,  getting  the  best  speech enhancement  result  takes  time in  our

method since user needs to try all the wavelet types to compare the results. To overcome this

problem,  the  best  wavelet  type  for  different  types  of  noises  needs  to  be  obtained  and

suggested to the user automatically in the future. 
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7.3.3 Embedded Hardware Implementation

Speech enhancement deals with improving some perceptual aspect of speech that has been

impacted by background noise. It is very necessary for listeners, especially when the speech is

greatly corrupted by the interference on portable  devices  such as  mobile phones.  Various

speech enhancement and noise suppression techniques has been proposed in the last  few

decades. However, many of them either have unsatisfied performance, or are too complex to

implement, particularly in portable devices [101]. In our work, real time speech enhancement

is  implemented  successfully  using  Xad-ML100.  The  suggested  wavelet  algorithm  is

implemented on a mini PC which can acquire 16 channels. However, it is not possible to use

mini PCs on any portable device since they are not small in size and need large amount of

power.  However,  the  evolution  of  the  digital  devices  aims  to  small  size  and  low  power

consumption.  Taking all  the  above  into  consideration,  the  suggested  speech enhancement

system  needs  to  be  implemented  in  an  embedded  system  such  as  DSP.  Our  suggested

algorithm  is  improved  for  low  memory  usage  to  make  the  low  memory  portable  device

implementation possible.
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APPENDIX A 

THE WAVELET FAMILY FILTER COEFFICIENTS

Analysis_..._lp[ ] shows analysis low-pass filter coefficients of the selected wavelet type,

analysis_..._hp[ ] shows analysis high-pass filter coefficients of the selected wavelet type,

synthesis_..._lp[ ] shows synthesis low-pass filter coefficients of the selected wavelet type,

synthesis_..._hp[ ] shows synthesis high-pass filter coefficients of the selected wavelet type.

analysis_Daub4_lp[8] = 

{-0.010597401784997278,0.032883011666982945,0.030841381835986965,-
0.18703481171888114,0.02798376941698385,0.6308807679295904,0.714846570552541
5,0.23037781330885523};

analysis_Daub4_hp[8] = 

{-0.23037781330885523,0.7148465705525415,-0.6308807679295904, 
0.02798376941698385,0.18703481171888114,0.030841381835986965,-
0.032883011666982945,-0.010597401784997278};

synthesis_Daub4_lp[8] = 
{0.23037781330885523,0.7148465705525415,0.6308807679295904, 
0.02798376941698385,0.18703481171888114,0.030841381835986965,0.0328830116669
82945,-0.010597401784997278};

synthesis_Daub4_hp[8] = 

{-0.010597401784997278, 0.032883011666982945, 0.030841381835986965, 
0.18703481171888114,0.02798376941698385, 
0.6308807679295904,0.7148465705525415,-0.23037781330885523};

analysis_Daub6_lp[12] = 

{-0.0010773010849955, 0.00477725751101065, 0.000553842200993801, 
0.031582039318031156,0.0275228655300162,0.09750160558707936, 
-0.12976686756709563, -0.22626469396516913, 0.3152503517092432, 
0.7511339080215775,0.4946238903983854,0.11154074335008017};
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analysis_Daub6_hp[12] = 

{-0.11154074335008017, 0.4946238903983854, -0.7511339080215775 ,
0.3152503517092432, 0.22626469396516913, -0.12976686756709563, 
-0.09750160558707936, 0.02752286553001629, 0.031582039318031156 ,
0.0005538422009938016, -0.004777257511010651, -0.00107730108499558};

synthesis_Daub6_lp[12] = 

{0.11154074335008017, 0.4946238903983854, 0.7511339080215775 ,
0.3152503517092432, -0.2262646939651691, -0.12976686756709563 ,
0.09750160558707936, 0.02752286553001629, -0.031582039318031156 ,
0.0005538422009938016, 0.004777257511010651, -0.00107730108499558};

synthesis_Daub6_hp[12] = 

{-0.00107730108499558, -0.004777257511010651, 0.0005538422009938016 ,
0.031582039318031156, 0.02752286553001629, -0.09750160558707936 ,-
0.12976686756709563, 0.22626469396516913, 0.3152503517092432,-
0.7511339080215775, 0.4946238903983854, -0.11154074335008017};

analysis_Daub10_lp[20] = 

{-1.326420300235487e-05,9.358867000108985e-05,-0.0001164668549943862,-
0.0006858566950046825,0.00199240529499085,0.0013953517469940798,-
0.010733175482979604,0.0036065535669883944,0.03321267405893324,-
0.02945753682194567,-0.07139414716586077, 0.09305736460380659, 
0.12736934033574265, -0.19594627437659665, -0.24984642432648865, 
0.2811723436604265, 0.6884590394525921, 0.5272011889309198, 
0.18817680007762133, 0.026670057900950818};

analysis_Daub10_hp[20] = 

{-0.026670057900950818, 0.18817680007762133, -0.5272011889309198, 
0.6884590394525921, -0.2811723436604265, -0.24984642432648865, 
0.19594627437659665, 0.12736934033574265, -0.09305736460380659, 
-0.07139414716586077, 0.02945753682194567, 0.03321267405893324, 
-0.0036065535669883944, -0.010733175482979604, -0.0013953517469940798, 
0.00199240529499085, 0.0006858566950046825, -0.0001164668549943862, 
-9.358867000108985e-05, -1.326420300235487e-05};

synthesis_Daub10_lp[20] = {0.026670057900950818, 0.18817680007762133, 
0.5272011889309198, 0.6884590394525921, 0.2811723436604265, 
-0.24984642432648865, -0.19594627437659665, 0.12736934033574265, 
0.09305736460380659, -0.07139414716586077, -0.02945753682194567, 
0.03321267405893324, 0.0036065535669883944, -0.010733175482979604, 
0.0013953517469940798, 0.00199240529499085, -0.0006858566950046825, 
-0.0001164668549943862, 9.358867000108985e-05, -1.326420300235487e-05};

synthesis_Daub10_hp[20] = 

{-1.326420300235487e-05, -9.358867000108985e-05, -0.0001164668549943862, 
0.0006858566950046825, 0.00199240529499085, -0.0013953517469940798, 
-0.010733175482979604, -0.0036065535669883944, 0.03321267405893324, 
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0.02945753682194567, -0.07139414716586077, -0.09305736460380659, 
0.12736934033574265, 0.19594627437659665, -0.24984642432648865, 
-0.2811723436604265, 0.6884590394525921, -0.5272011889309198, 
0.18817680007762133, -0.026670057900950818};

analysis_Coif1_lp[6] = 

{-0.01565572813546454, -0.0727326195128539, 0.38486484686420286, 
0.8525720202122554, 0.3378976624578092, -0.0727326195128539};

analysis_Coif1_hp[6] = 

{0.0727326195128539, 0.3378976624578092, -0.8525720202122554, 
0.38486484686420286, 0.0727326195128539, -0.01565572813546454};

synthesis_Coif1_lp[6] = 

{-0.0727326195128539, 0.3378976624578092, 0.8525720202122554, 
0.38486484686420286, -0.0727326195128539, -0.01565572813546454};

synthesis_Coif1_hp[6] = 

{-0.01565572813546454, 0.0727326195128539, 0.38486484686420286, 
-0.8525720202122554, 0.3378976624578092, 0.0727326195128539};

analysis_Coif3_lp[18] = 

{-3.459977283621256e-05, -7.098330313814125e-05, 0.0004662169601128863, 
0.0011175187708906016, -0.0025745176887502236, -0.00900797613666158, 
0.015880544863615904, 0.03455502757306163, -0.08230192710688598, 
-0.07179982161931202, 0.42848347637761874, 0.7937772226256206, 
0.4051769024096169, -0.06112339000267287, -0.0657719112818555, 
0.023452696141836267, 0.007782596427325418, -0.003793512864491014};

analysis_Coif3_hp[18] = 

{0.003793512864491014, 0.007782596427325418, -0.023452696141836267, 
-0.0657719112818555, 0.06112339000267287, 0.4051769024096169, 
-0.7937772226256206, 0.42848347637761874, 0.07179982161931202, 
-0.08230192710688598, -0.03455502757306163, 0.015880544863615904, 
0.00900797613666158, -0.0025745176887502236, -0.0011175187708906016, 
0.0004662169601128863, 7.098330313814125e-05, -3.459977283621256e-05};

synthesis_Coif3_lp[18] = 

{-0.003793512864491014, 0.007782596427325418, 0.023452696141836267, 
-0.0657719112818555, -0.06112339000267287, 0.4051769024096169, 
0.7937772226256206, 0.42848347637761874, -0.07179982161931202, 
-0.08230192710688598, 0.03455502757306163, 0.015880544863615904, 
-0.00900797613666158, -0.0025745176887502236, 0.0011175187708906016, 
0.0004662169601128863, -7.098330313814125e-05, -3.459977283621256e-05};

synthesis_Coif3_hp[18] = 

{-3.459977283621256e-05, 7.098330313814125e-05, 0.0004662169601128863, 
-0.0011175187708906016, -0.0025745176887502236, 0.00900797613666158, 
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0.015880544863615904, -0.03455502757306163, -0.08230192710688598, 
0.07179982161931202, 0.42848347637761874, -0.7937772226256206, 
0.4051769024096169, 0.06112339000267287, -0.0657719112818555, 
-0.023452696141836267, 0.007782596427325418, 0.003793512864491014};

analysis_Coif5_lp[30] = 

{-9.517657273819165e-08, -1.6744288576823017e-07, 2.0637618513646814e-06, 
3.7346551751414047e-06, -2.1315026809955787e-05, -4.134043227251251e-05, 
0.00014054114970203437, 0.00030225958181306315, -0.0006381313430451114, 
-0.0016628637020130838, 0.0024333732126576722, 0.006764185448053083, 
-0.009164231162481846, -0.01976177894257264, 0.03268357426711183, 
0.0412892087501817, -0.10557420870333893, -0.06203596396290357, 
0.4379916261718371, 0.7742896036529562, 0.4215662066908515, 
-0.05204316317624377, -0.09192001055969624, 0.02816802897093635, 
0.023408156785839195, -0.010131117519849788, -0.004159358781386048, 
0.0021782363581090178, 0.00035858968789573785, -0.00021208083980379827};

analysis_Coif5_hp[30] = 

{0.00021208083980379827, 0.00035858968789573785, -0.0021782363581090178, 
-0.004159358781386048, 0.010131117519849788, 0.023408156785839195, 
-0.02816802897093635, -0.09192001055969624, 0.05204316317624377, 
0.4215662066908515, -0.7742896036529562, 0.4379916261718371, 
0.06203596396290357, -0.10557420870333893, -0.0412892087501817, 
0.03268357426711183, 0.01976177894257264, -0.009164231162481846, 
-0.006764185448053083, 0.0024333732126576722, 0.0016628637020130838, 
-0.0006381313430451114, -0.00030225958181306315, 0.00014054114970203437, 
4.134043227251251e-05, -2.1315026809955787e-05, -3.7346551751414047e-06, 
2.0637618513646814e-06, 1.6744288576823017e-07, -9.517657273819165e-08};

synthesis_Coif5_lp[30] = 

{-0.00021208083980379827, 0.00035858968789573785, 0.0021782363581090178, 
-0.004159358781386048, -0.010131117519849788, 0.023408156785839195, 
0.02816802897093635, -0.09192001055969624, -0.05204316317624377, 
0.4215662066908515, 0.7742896036529562, 0.4379916261718371, 
-0.06203596396290357, -0.10557420870333893, 0.0412892087501817, 
0.03268357426711183, -0.01976177894257264, -0.009164231162481846, 
0.006764185448053083, 0.0024333732126576722, -0.0016628637020130838, 
-0.0006381313430451114, 0.00030225958181306315, 0.00014054114970203437, 
-4.134043227251251e-05, -2.1315026809955787e-05, 3.7346551751414047e-06, 
2.0637618513646814e-06, -1.6744288576823017e-07, -9.517657273819165e-08};

synthesis_Coif5_hp[30] = 

{-9.517657273819165e-08, 1.6744288576823017e-07, 2.0637618513646814e-06 
-3.7346551751414047e-06, -2.1315026809955787e-05, 4.134043227251251e-05, 
0.00014054114970203437, -0.00030225958181306315, -0.0006381313430451114, 
0.0016628637020130838, 0.0024333732126576722, -0.006764185448053083, 
-0.009164231162481846, 0.01976177894257264, 0.03268357426711183, 
-0.0412892087501817, -0.10557420870333893, 0.06203596396290357, 

123



0.4379916261718371, -0.7742896036529562, 0.4215662066908515, 
0.05204316317624377, -0.09192001055969624, -0.02816802897093635 ,
0.023408156785839195, 0.010131117519849788, -0.004159358781386048, 
-0.0021782363581090178, 0.00035858968789573785, 0.00021208083980379827};

analysis_Sym6_lp[12] = 

{0.015404109327027373, 0.0034907120842174702, -0.11799011114819057, 
-0.048311742585633, 0.4910559419267466, 0.787641141030194, 0.3379294217276218, 
-0.07263752278646252, -0.021060292512300564, 0.04472490177066578, 
0.0017677118642428036, -0.007800708325034148};

analysis_Sym6_hp[12] = 

{0.007800708325034148, 0.0017677118642428036, -0.04472490177066578, 
-0.021060292512300564, 0.07263752278646252, 0.3379294217276218, 
-0.787641141030194, 0.4910559419267466, 0.048311742585633,  
-0.11799011114819057, -0.0034907120842174702, 0.015404109327027373};

synthesis_Sym6_lp[12] = 

{-0.007800708325034148, 0.0017677118642428036, 0.04472490177066578, 
-0.021060292512300564, -0.07263752278646252, 0.3379294217276218, 
0.787641141030194, 0.4910559419267466, -0.048311742585633,   
-0.11799011114819057, 0.0034907120842174702, 0.015404109327027373};

synthesis_Sym6_hp[12] = 

{0.015404109327027373, -0.0034907120842174702, -0.11799011114819057 
0.048311742585633, 0.4910559419267466, -0.787641141030194,       
0.3379294217276218, 0.07263752278646252, -0.021060292512300564, 
-0.04472490177066578, 0.0017677118642428036, 0.007800708325034148};

analysis_Sym10_lp[20] = 

{0.0007701598091144901, 9.563267072289475e-05, -0.008641299277022422, 
-0.0014653825813050513, 0.0459272392310922, 0.011609893903711381, 
-0.15949427888491757, -0.07088053578324385, 0.47169066693843925 
0.7695100370211071, 0.38382676106708546, -0.03553674047381755, 
-0.0319900568824278, 0.04999497207737669, 0.005764912033581909, 
-0.02035493981231129, -0.0008043589320165449, 0.004593173585311828, 
5.7036083618494284e-05, -0.0004593294210046588};

analysis_Sym10_hp[20] = 

{0.0004593294210046588, 5.7036083618494284e-05, -0.004593173585311828 
-0.0008043589320165449, 0.02035493981231129, 0.005764912033581909 
-0.04999497207737669, -0.0319900568824278, 0.03553674047381755, 
0.38382676106708546, -0.7695100370211071, 0.47169066693843925 
0.07088053578324385, -0.15949427888491757 -0.011609893903711381 
0.0459272392310922, 0.0014653825813050513 -0.008641299277022422 
-9.563267072289475e-05, 0.0007701598091144901};

synthesis_Sym10_lp[20] = 

{-0.0004593294210046588, 5.7036083618494284e-05, 0.004593173585311828 
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-0.0008043589320165449, -0.02035493981231129, 0.005764912033581909 
0.04999497207737669, -0.0319900568824278, -0.03553674047381755 
0.38382676106708546, 0.7695100370211071, 0.47169066693843925 
-0.07088053578324385, -0.15949427888491757, 0.011609893903711381 ,
0.0459272392310922, -0.0014653825813050513, -0.008641299277022422 
9.563267072289475e-05, 0.0007701598091144901};

synthesis_Sym10_hp[12] = 

{0.0007701598091144901, -9.563267072289475e-05, -0.008641299277022422 
0.0014653825813050513, 0.0459272392310922, -0.011609893903711381 
-0.15949427888491757, 0.07088053578324385, 0.47169066693843925 
-0.7695100370211071, 0.38382676106708546, 0.03553674047381755 
-0.0319900568824278, -0.04999497207737669, 0.005764912033581909 ,
0.02035493981231129, -0.0008043589320165449, -0.004593173585311828 
5.7036083618494284e-05, 0.0004593294210046588};

analysis_Sym14_lp[28] = 

{-2.5879090265397886e-05, 1.1210865808890361e-05, 0.00039843567297594335, 
-6.286542481477636e-05, -0.002579441725933078, 0.0003664765736601183, 
0.01003769371767227, -0.002753774791224071, -0.029196217764038187, 
0.004280520499019378, 0.03743308836285345, -0.057634498351326995, 
-0.03531811211497973, 0.39320152196208885, 0.7599762419610909, 
0.4753357626342066, -0.05811182331771783, -0.15999741114652205, 
0.02589858753104667, 0.06982761636180755, -0.002365048836740385, 
-0.019439314263626713, 0.0010131419871842082, 0.004532677471945648, 
-7.321421356702399e-05, -0.0006057601824664335, 1.9329016965523917e-05, 
4.4618977991475265e-05};

analysis_Sym14_hp[28] = 

{-4.4618977991475265e-05, 1.9329016965523917e-05, 0.0006057601824664335, 
-7.321421356702399e-05, -0.004532677471945648, 0.0010131419871842082, 
0.019439314263626713, -0.002365048836740385, -0.06982761636180755, 
0.02589858753104667, 0.15999741114652205, -0.05811182331771783,  
-0.4753357626342066, 0.7599762419610909, -0.39320152196208885, 
-0.03531811211497973, 0.057634498351326995, 0.03743308836285345, 
-0.004280520499019378, -0.029196217764038187, 0.002753774791224071, 
0.01003769371767227, -0.0003664765736601183, -0.002579441725933078, 
6.286542481477636e-05, 0.00039843567297594335, -1.1210865808890361e-05, 
-2.5879090265397886e-05};

synthesis_Sym14_lp[28] = 

{4.4618977991475265e-05, 1.9329016965523917e-05, -0.0006057601824664335 
-7.321421356702399e-05, 0.004532677471945648, 0.0010131419871842082, 
-0.019439314263626713, -0.002365048836740385, 0.06982761636180755 
0.02589858753104667, -0.15999741114652205, -0.05811182331771783 
0.4753357626342066, 0.7599762419610909, 0.39320152196208885, 
-0.03531811211497973, -0.057634498351326995, 0.03743308836285345 
0.004280520499019378, -0.029196217764038187, -0.002753774791224071 ,
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0.01003769371767227, 0.0003664765736601183, -0.002579441725933078, 
-6.286542481477636e-05, 0.00039843567297594335, 1.1210865808890361e-05 
-2.5879090265397886e-05};

synthesis_Sym14_hp[28] = 

{-2.5879090265397886e-05, -1.1210865808890361e-05 ,0.00039843567297594335 
6.286542481477636e-05, -0.002579441725933078 ,-0.0003664765736601183 
0.01003769371767227, 0.002753774791224071, -0.029196217764038187, 
-0.004280520499019378, 0.03743308836285345, 0.057634498351326995, 
-0.03531811211497973, -0.39320152196208885, 0.7599762419610909 
-0.4753357626342066, -0.05811182331771783, 0.15999741114652205 ,
0.02589858753104667, -0.06982761636180755, -0.002365048836740385 
0.019439314263626713, 0.0010131419871842082, -0.004532677471945648 
-7.321421356702399e-05, 0.0006057601824664335, 1.9329016965523917e-05 
-4.4618977991475265e-05};
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