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Highlights

• It is proposed that the missing value in a record is handled by utilising

the values of the corresponding fields in the k-NNs of this record.

• The proposed method for dealing with missing values allows the use of the

traditional blocking techniques to handle the scalability issue.

• The existing Bloom filter protocol has been adapted to address both issues

of missing values and privacy preservation
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Abstract

The problem of record linkage is to identify records from two datasets, which

refer to the same entities (e.g. patients). A particular issue of record linkage is

the presence of missing values in records, which has not been fully addressed.

Another issue is how privacy and confidentiality can be preserved in the process

of record linkage. In this paper, we propose an approach for privacy preserving

record linkage in the presence of missing values. For any missing value in a

record, our approach imputes the similarity measure between the missing value

and the value of the corresponding field in any of the possible matching records

from another dataset. We use the k-NNs (k Nearest Neighbours in the same

dataset) of the record with the missing value and their distances to the record for

similarity imputation. For privacy preservation, our approach uses the Bloom

filter protocol in the settings of both standard privacy preserving record link-

age without missing values and privacy preserving record linkage with missing

values. We have conducted an experimental evaluation using three pairs of syn-

thetic datasets with different rates of missing values. Our experimental results
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show the effectiveness and efficiency of our proposed approach.

Keywords: Record linkage, Probabilistic record linkage, Privacy preserving

record linkage, Missing values, k-nearest neighbours, Data encryption

1. Introduction

Record linkage, also known as data matching, duplicate detection, or entity

resolution, refers to the process of identifying and aggregating records from

one or more datasets, which represent the same real-world entities [1, 2]. For

example, Table 1 shows two datasets, R and S, which contain the personal5

information of individuals. To link the two datasets, the desirable output are

the record pairs that refer to the same individuals, i.e. (R2, S1).

Record linkage is often needed in tasks such as creating a linked dataset for

further analysis [3]. As long as the data for the same entity is spread across

more than one dataset, record linkage would be needed for the analysis of such10

data. For example, in medical and social sciences research, the disjunctive or

additional data about the same individual must be obtained by combining two

or more different datasets through record linkage, such that complete family

trees over a period of time can be created [4].

Unfortunately, records to be linked across different datasets often lack unique15

identifiers for performing such an identifying and aggregating process [1]. To

overcome this problem, many techniques have been developed for record linkage

over the past decade [5] in various applications. For example, in the areas of

national censuses and health, most of the linkage systems use the probabilistic

record linkage technique [6, 7].20

Most of the current techniques for record linkage are based on comparing the

values of several partially unique fields in a pair of records, which are generally

available (e.g. name, date of birth, and address), or even a combination of

them to identify and link records about the same individual [5]. However, in

various domains, missing values may be present in records due to a variety of25

reasons. For example, in the case of medical databases, patients may not wish

3
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to provide all the required information or clinical workflows cannot ensure that

data collection and/or documentation are accurate and complete [8]. It was

reported that for the electronic medical records of HIV patients, the median

missing data rate was about 10.9% [9]. For the problem of missing values in30

traditional databases for statistical analysis (e.g. statistical classification) [10],

a variety of methods have been developed. In general, some of these approaches

ignore either the missing values themselves or the records with missing values

altogether while the other approaches impute the missing values instead.

Another major challenge in record linkage is how to protect the privacy and35

confidentiality of sensitive information (e.g. names and addresses of people),

when datasets are linked between organisations [2]. In certain applications (e.g.

linking large datasets about people), while such personal identifying fields are

commonly used in the linkage process, they must be kept private and confidential

[11]. The problem of finding records that represent the same individual in sep-40

arate datasets without revealing the identity of the individual is called privacy-

preserving record linkage (PPRL). Although various techniques for PPRL have

been developed for linking datasets between organisations, there is currently no

work addressing the problem of missing values in record linkage while at the

same time addressing the issue of privacy and confidentiality.45

In this paper, we propose an approach to record linkage in the presence of

missing values, while simultaneously addressing the issue of privacy and confi-

dentiality. For the issue of missing values, our approach imputes the similarity

measure between the missing value and the value of the corresponding field in

any of the possible matching records in another dataset, using a collection of50

values for the corresponding field in its k-NNs (Nearest Neighbours) in the same

dataset. Our observation is that it is very likely that the record with a missing

value and its k-NNs (i.e. very similar records) have similar values for the corre-

sponding field. This observation generally holds in large datasets (e.g. census

data). For example, there is a high probability that the people who live in the55

same address share the same last name or telephone number [12].

The k-NNs of a record with a missing value are selected based on the sim-

5
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ilarity measures between these k-NNs and the record with the missing value.

Each of such similarity measures is calculated between the values for each of

the corresponding fields in a pair of records, which does not have any missing60

value. For the values of the corresponding field(s) in the k-NNs, an associated

weight vector is constructed, with each weight in the vector representing the

distance (i.e. similarity measure) between the respective k-NN and the record

with the missing value. These weights will reflect the different levels of contri-

butions that the different values of the corresponding field in the k-NNs make65

to the imputation of the similarity measure on the corresponding field between

the record with the missing value and any of the possible matching records in

another dataset.

The reason that a missing value is dealt with in this way, rather than simply

taking the value in the 1-NN record as the imputed missing value or deciding70

on a value by majority voting out of the values in the k-NNs, is to avoid any

situation in which the 1-NN record holds a totally different value from the

actual missing value, or these records have several slightly different values for

the field (e.g. due to typographical errors). For example, as shown in Table 1,

for record R5 with a missing value of Surname, the first of its k-NNs is R7,75

which, however, holds a wrong value of Surname for R5, whilst the second and

third of its k-NNs and (i.e. R4 and R6 respectively) hold the correct value of

Surname for R5.

Our approach uses both the k-NNs of the record with a missing value and

the corresponding weight vector of the k-NNs to impute the similarity measure80

between the missing value and the value of the corresponding field in any of

the possible matching records in another dataset. As a result, as long as the

majority of the k-NNs of the record with the missing value hold the same value as

or similar values (e.g. due to a typographical error) to the actual missing value

of the corresponding field, the imputed similarity measure would be reasonable.85

Since our proposed approach imputes the similarity measure between the values

of the same field in two records, traditional blocking techniques [13, 14], which

primarily rely on similarity measures on some of the fields in different records,

6
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can be simply applied to address the scalability issue. For privacy preservation,

our approach to dealing with missing values enables us to adapt the Bloom90

filter protocol [15, 16] in our approach to privacy preserving record linkage in

the presence of missing values.

This paper makes three novel contributions: First, the missing values in

a record are handled by utilising the values of the corresponding fields in the

k-NNs of the record. Second, our proposed technique for dealing with missing95

values allows use of the traditional blocking techniques for dealing with the

scalability issue. Finally, we have adapted the Bloom filter protocol in our

approach to address both issues of missing values and privacy preservation.

The remainder of the paper is organised as follows: Section 2 describes related

work. Section 3 presents the formulation of the research problem we solve in100

this paper and briefly introduces the fundamentals of the techniques proposed

for the solutions to the problem. Section 4 describes our proposed approach

to privacy preserving record linkage in the presence of missing values. Section

5 presents our experimental evaluation of the proposed approach. Section 6

concludes the paper.105

2. Related Work

Record linkage typically uses a set of non-unique identifying fields [17]. Cur-

rent approaches to record linkage can be divided into three categories. The

first category is called deterministic record linkage, in which whether a pair of

records match is determined by the exact agreement or disagreement between110

the corresponding values of each of the identifying fields [18]. The methods

of this category have the advantages of being simple, transparent, and easy to

accept [18]. However, their common drawback is that they do not tolerate the

presence of any errors (e.g. typographical or phonetic errors) in records [8].

The second category are probabilistic record linkage methods, which estimate115

the likelihood that two records match [8]. They allow the presence of some er-

rors in records by considering the similarity measure between the values of the

7
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corresponding field in the records. The last category of methods are machine

learning based, where a variety of machine learning techniques are applied to

train a classifier to decide on whether a pair of records matches. Such machine120

learning approaches can often achieve higher accuracy rates [19].

In some specific domains (e.g. patient records), no private or confidential

information can be revealed. As a result, various PPRL techniques have been

developed [2]. Although they operate differently, they share the same principle:

the records in the datasets to be linked are encoded at the sources while record125

linkage is carried out based on the encoded records only, such that no sensitive

information is ever revealed during the process of record linkage. The exist-

ing techniques for PPRL can be generally classified into three generations [2].

The first generation of methods only allow exact matching [20]. They generally

encode field values into hash codes, through using some one-way hash func-130

tions, and then decide on whether their hash values match in an exact fashion.

However, these methods have a major drawback: any small difference (e.g. a

difference in a single character) between field values would result in completely

different hash values, which makes them only work for exactly matching field

values. To overcome this drawback, the second generation of methods use ap-135

proximate matching. They aim to encrypt records in an appropriate manner

such that the similarity measure between the corresponding filed values in a

pair of records can be calculated on the basis of their encrypted values [16].

A variety of robust techniques have been developed, for example, Bloom filter

protocol [16], phonetic encoding [21], random and public reference values [22],140

and secure multi-party computation [23]. In addition to approximate matching,

the third generation of methods also consider their scalability to large datasets.

A number of approaches have been developed by combining existing blocking

techniques with some encoding, perturbation, or cryptographic methods [24, 2].

To handle missing values in statistical analysis, there are two major classes of145

methods: one is simply ignoring the missing values, and the other is estimating

the missing values based on the corresponding values of the other records in the

same dataset [10]. In the former class, two approaches have been used: either

8
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completely removing the records with missing values or ignoring the fields with

missing values in the process of record linkage. However, both approaches may150

result in valid record pairs being missed, since removing any records or any

fields of a record is equivalent to removing data that is originally used for record

linkage. In addition, because an eliminated record will never be matched, these

methods will always increase the number of non-match record pairs. While

for the class of estimation based methods, only rarely have such methods been155

applied to deal with missing values in record linkage. This is due to the fact

that majority of fields in records are strings, the values of which are difficult to

impute.

In addition to the statistical approaches to dealing with missing values, ma-

chine learning based methods have also been developed, including clustering160

based techniques [25, 26], autoassociative neural networks [27], decision tree

imputation [28] and so on. In particular, the clustering based methods rely on

the idea of dividing records in a dataset into clusters, and then replacing the

missing values of records in a cluster by some statistical values (e.g. mean or

mode values) in the same cluster. There are two different approaches: k-means165

clustering based and k-NN based. The k-means clustering based imputation

methods [26] first apply k-means clustering to divide records into clusters, and

then impute the missing values based on the records in a cluster. The k-NN

based imputation techniques [25] first decide on the k-NNs of a record with

missing values based on a similarity metric, and then use the corresponding170

values of the k-NNs to impute the missing values in the record.

Recently, three new approaches have been proposed in [8], based on adapting

the solutions for dealing with missing values in standard classification to the

problem of record linkage with missing values. The first method redistributes

field weights associated with the fields with missing values to the other fields,175

and assigns zero weights to the fields with missing values. The second method

imputes the similarity measure between two corresponding fields in a record

pair, when either of them has a missing value, rather than imputing the missing

value of a field. The last method adds previously considered non-identifying

9
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fields to the set of identifying fields to compensate for the missing values in the180

existing identifying fields. However, none of the above three methods has either

explored solutions to PPRL with missing values or addressed the scalability

issue of linking large-scale datasets.

3. Preliminary

Given two datasets, R and S, the problem of record linkage is typically for-185

mulated as a classification problem, i.e. whether a pair of records, (r, s) ∈ R×S,

is classified as match, non-match or possible match [6]. A pair of records match

if they refer to the same entity (e.g. a patient). The classification algorithm

for record linkage uses a similarity vector for each pair of records. Each ele-

ment in the similarity vector represents the similarity measure between the two190

corresponding values of an identifying filed in the record pair.

Definition 1 (Similarity Vector). Given t similarity metrics F = [F1, F2, . . . , Ft]

and a record pair (r, s) ∈ R×S, a t-dimensional similarity vector, f(r, s), is de-

fined as [f1(r1, s1), f2(r2, s2), . . . , ft(rt, st)] ∈ [0, 1]t, where fi(ri, si) (1 ≤ i ≤ t)

represents the similarity measure between the the pair of values in the corre-

sponding fields, ri ∈ r and si ∈ r, as follows:

fi(ri, si) =





1 if Fi(ri, si) ≥ γi
0 otherwise

(1)

where ri and si are the ith identifying fields of r and s respectively, and γi is the

threshold for the ith identifying field, which determines the level of similarity

measure between ri and si for them to be treated as the same (i.e. the similarity

value of 1). For example, given the two datasets R and S shown in Table 1,195

a string similarity metrics, such as Jaccard distance, can be applied to field

Surname.

For the linkage of the two datasets shown in Table 1, a record linkage al-

gorithm should return the following classifications: R2 and S1 is a match; R3

and S2 as well as R5 and S4 are possible matches hence require clerical review,200

10
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while the other pairs of records are non-matches. Clerical review involves man-

ually determining whether a pair of records matches when it cannot be decided

automatically whether such a pair of records match.

Privacy Preserving Record Linkage (PPRL) aims to classify record pairs into

two disjoint classes only: matches (M) and non-matches (U). In addition, only205

the values of those fields in a matching pair of records, which have been agreed

between two parties, are revealed. Also, no clerical review is allowed due to

privacy. For example, for the two datasets shown in Table 1, a PPRL approach

should produce the following output: R2 and S1 is a match (i.e. in M) with

the values of the agreed fields revealed only.210

For two large datasets R and S, it is not practical to enumerate all record

pairs (r, s) ∈ R×S, and classify them accordingly. Blocking techniques [13, 14]

typically use a blocking scheme to quickly identify a relatively small subset of

record pairs, which are more likely to be matched, for the subsequent classifica-

tion.215

Definition 2 (Blocking Scheme). A blocking scheme is defined as a binary

function B : R×S → {true, false}, which has the property that the set of every

record pair (r, s) ∈ R× S, where B(r, s) = true, can be computed efficiently.

For example, a blocking scheme could be a string similarity measure between

a pair of records on a selected field, such as:

Jaccard(ri, si) ≥ θ

where Jaccard refers to the Jaccard similarity coefficient, ri and si are the ith

fields of the records r and s respectively, while θ is a predefined threshold, where220

θ can be set to a level so that only the set of record pairs that can be compared

in detail efficiently are selected. A more generalised blocking scheme can be

defined, which can consist of a combination of similarity measures between two

records on one or more selected fields.

11
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3.1. Probabilistic Record Linkage225

Probabilistic record linkage is based on the probabilistic decision rule for-

malised in [6]. It assigns a comparison weight score to a pair of records based

on a number of similarity measures between the records on the corresponding

fields, and treats a pair of records with a comparison weight score above a given

threshold as a match. For a record pair (r, s) ∈ R × S, a comparison weight

score represents the likelihood ratio defined as follows:

R(f(r, s)) =
m(f(r, s))

u(f(r, s))
(2)

where

m(f(r, s)) = P (f(r, s) | (r, s) ∈M) (3)

and

u(f(r, s)) = P (f(r, s) | (r, s) ∈ U) (4)

are the conditional probabilities of f(r, s) given records r and s are a match

(i.e. in M) and a non-match (i.e. in U), respectively. Under the assumption of

conditional independence [6], both Eqs. (3) and (4) can be simplified as:

m(f(r, s)) =m1(f1(r1, s1))×m2(f2(r2, s2))× . . .

×mt(ft(rt, st)) (5)

and

u(f(r, s)) =u1(f1(r1, s1))× u2(f2(r2, s2))× . . .

× ut(ft(rt, st)) (6)

where for i = 1, 2, . . . , t

mi(fi(ri, si)) = P (fi(ri, si) | (r, s) ∈M) (7)

and

ui(fi(ri, si)) = P (fi(ri, si) | (r, s) ∈ U) (8)

are the conditional probabilities of fi(ri, si), given records r and s are a match

(i.e. in M) and non-match (i.e. in U), respectively. To further simplify the

12
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computation of the likelihood ratio in Eq. (2), a computationally convenient

function log2 is used, such that an increase of 1 unit in log2 R(f(r, s)) corre-

sponds to an increase of 2 units in R(f(r, s)). Therefore, the comparison weight

score for a pair of records r and s can be expressed as:

W(f(r, s)) = log2

m(f(r, s))

u(f(r, s))

=W1(f1(r1, s1)) + W2(f(r2, s2)) + . . .

+ Wt(ft(rt, st)) (9)

where Wi(fi(ri, si)) (i = 1, 2, . . . , t) is the comparison weight score for the ith

identifying fields of r and s, obtained as follows:

Wi(fi(ri, si)) =





Wa
i if fi(ri, si) = 1

Wd
i if fi(ri, si) = 0

(10)

where Wa
i and Wd

i are the agreement and disagreement weights for the ith

identifying field respectively, calculated as follows:

Wa
i = log2

(
mi(fi(ri, si) = 1)

ui(fi(ri, si) = 1)

)
(11)

and

Wd
i = log2

(
1−mi(fi(ri, si) = 1)

1− ui(fi(ri, si) = 1)

)
(12)

respectively. Both mi(fi(ri, si)) and ui(fi(ri, si)) (i = 1, 2, . . . , t) can be esti-

mated either using a given training dataset or by the EM algorithm as described

in [29]. Finally, whether a pair of records r and s is a match or non-match is

classified as follows:

(r, s) =





match if W(f(r, s)) ≥ λ
non-match otherwise

(13)

where λ is a pre-defined threshold, and its value can be obtained by balancing

between an acceptable recall and precision.

3.2. Bloom Filter Protocol

The Bloom filter protocol has been proposed for encryption in record linkage

[16]. Under this protocol, the dataset owners involving in the linkage process

13
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should first agree on: A bit array of length l, in which every bit is initially set

to 0, and m independent hash functions {h1, h2, . . . , hm}, each of which should

be one way only, such that it is impossible to determine the original input from

a hash output. In addition, each hash function should always generate the same

output for the same input. An input x is encrypted by each of the hash functions

hp (p = 1, 2, . . . ,m), which produces an output hp(x). In order to store each

output hp(x) in a shared Bloom filter with fixed length l, the remainder q of

the division of the output hp(x) by the length of Bloom filter l is obtained by

the modulo operation, mod, as:

q = hp(x) mod l (14)

where 0 ≤ q ≤ l − 1. Then, the (q + 1)th bit in the Bloom filter is set to 1. As

a result, for each output hp(x), there is always a bit in the Bloom filter to be230

set to 1. To reduce the possibility that two different input values x and y are

mapped onto the same bit in a Bloom filter, each input value is hashed m times

by m hash functions (i.e. by setting a large number for m), so that it is more

likely that each hash output uniquely corresponds to a bit in the Bloom filter.

If the corresponding bit has already been set to 1, no change is made.235

The similarity measure between two input values can therefore be compared

in a privacy preserving manner once they are mapped onto two respective Bloom

filters. The similarity measure between two Bloom filters can be calculated using

Dice coefficient as follows:

FDC(B(ri),B(si)) =
2× nB(ri)B(si)
nB(ri) + nB(si)

(15)

where B(ri) and B(si) are the Bloom filters of the values for the ith identifying

fields of records r and s respectively, nB(ri)B(si) represents the number of the

corresponding bits in both Bloom filters B(ri) and B(si), which have been set to

1, while nB(ri) and nB(si) represents the number of bits in Bloom filters B(ri)

and B(si) respectively, which have been set to 1.240

Dice coefficient is the most common way of measuring the similarity between

two Bloom filters. Compared to token-based similarity metrics (e.g. Jaccard
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index, overlap coefficient, and Hamming distance), Dice coefficient is insensitive

to the number of 0 bits in Bloom filters. In addition, it has been reported [15]

that Dice coefficient is more suitable for large-scale record linkage, compared245

to an alternate metric for comparing Bloom filters (i.e. secure edit distance

[30]). Secure edit distance [30] is computationally more expensive as it requires

a specific way of creating Bloom filters and the password used to encrypt data

needs to be known to the third party.

We now illustrate an example of encryption using the Bloom filter protocol.

We need to calculate the similarity measure between ri = SMITH and si =

SMY TH in a privacy preserving manner. As shown in Table 2, we assume that

the length of Bloom filter l and the number of independent hash functions m

are set to 100 and 3, respectively. The output of each of the independent hash

functions hp(x) (p = 1, . . . ,m) can be efficiently computed on the basis of two

independent hash functions ĥ1 and ĥ2 [31], as:

hp(x) = ĥ1(x) + pĥ2(x) (16)

In this example, we use two well known cryptographic hash functions SHA1

and MD5 for ĥ1 and ĥ2, respectively. As we can see in Table 2, 13 bits are set

to 1 in both B(ri) and B(si), and 17 bits are set to 1 in B(ri) while 16 bits are

set to 1 in B(si). Using Dice coefficient, the similarity measure between B(si)

and B(ri) can be calculated as follows:

FDC(B(ri),B(si)) =
2× nB(ri)B(si)
nB(ri) + nB(si)

=
2× 13

16 + 17

≈ 0.788 (17)

4. Proposed Approach250

In this section, we first describe a k-NN based approach for dealing with

missing values in the standard probabilistic record linkage setting. We then de-

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

scribe how such an approach can be used in the probabilistic privacy preserving

record linkage in the presence of missing values.

4.1. A k-NN Based Approach to Probabilistic Record Linkage in the Presence255

of Missing Values

For each record in a dataset with a missing value in any of its identifying

fields, we first find a set of records in the same dataset, which are the k-NNs

of the record. This set of records will then be used to impute the similarity

measure between the missing value and a value of the corresponding field in any260

of the possible matching records in another dataset.

4.1.1. k-NN Graph Construction

Given each record in a dataset, we first generate a k-NNG (Nearest Neigh-

bour Graph) in which a node represents the record, k other nodes represent k

records in the same dataset, which are most similar to the given record by a265

given similarity measure, with each of the k nodes connected to the node for

the given record.

The naive way of generating all the k-NNGs for all the records in a large

dataset is computationally expensive[32]. As a result, much research has been

focused on generating k-NNGs in an efficient manner [33]. For example, tech-270

niques have been proposed for generating exact k-NNGs [34], and approximate

k-NNGs using space partition trees [35, 36], local search [37] and locality sensi-

tive hashing [38]. In record linkage, blocking techniques [24] have been proposed

for reducing the number of record pairs to be compared. In particular, those

blocking techniques, referred as intra-blocking schemes can be used to split a275

dataset into non-overlapping blocks, where records within the same block are

more similar to each other than to those in a different block. For a record with

a missing value, we find its k-NNs in the same block.

An intra-blocking scheme is based on comparing either the values of a single

record field, or the concatenation of values from several record fields. As a result,280

an intra-blocking scheme would require at most nt × (nt − 1)/2 computations,
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which corresponds to a computational complexity of O(n2t/2), where nt refers

to the total number of records in a dataset. Usually, such a scheme is chosen to

be cheap to operate, so that it can be run in a reasonable time for moderately

sized datasets [39]. For an intra-blocking scheme, if there is any missing value285

in the record field(s) for intra-blocking, it would ignore the missing value and

simply return a false.

Given a t-dimensional similarity metrics ρ = [ρ1, ρ2, . . . , ρt] for t identifying

fields, for each record in a dataset R with a missing value in any of its identifying

fields, we need to calculate the similarity measure between the given record and290

each of the other records in R in order to find the k-NNs of the given record.

We use the probabilistic record linkage framework described in Section 3.1.

For a pair of records ra and rb in the same dataset, its comparison weight score

Wρ(ρ(ra, rb)) can be calculated as:

Wρ(ρ(ra, rb)) =Wρ
1(ρ1(ra1 , r

b
1)) + Wρ

2(ρ2(ra2 , r
b
2)) + . . .

+ Wρ
t (ρt(r

a
t , r

b
t )) (18)

where [ra1 , r
a
2 , . . . , r

a
t ] and [rb1, r

b
2, . . . , r

b
t ] are the t-dimensional vectors of records

ra and rb. If there is a missing value of any identifying field in either [ra1 , r
a
2 , . . . , r

a
t ]

or [rb1, r
b
2, . . . , r

b
t ], we set ρi(r

a
i , r

b
i ) = 0, for i = 1, 2, . . . , t.

Finally we set a threshold, ε, so that only those records that have a compar-295

ison weight score above the threshold are selected and ranked as the possible

k-NNs of the record. Formally, a record rc is labelled as a k-NN of record ra, if

Wρ(ρ(ra, rc)) ≥ ε and rc is among the k-NNs of ra. The pseudocode for finding

the k-NNs of a record with a missing value is presented in Algorithm 1.

In Algorithm 1, there are two iterations: the main part of the computational300

cost is in the first iteration where the comparison weight score between the

record with a missing value and each of the other records in the same dataset

is calculated. The second iteration involves filtering through a set of similarity

measures with a pre-defined threshold only to select the set of k-NNs. The total

computational complexity is in the order of O(nk × t), where nk is the number305

of records in the same block, and t is the dimensionality of the record vector.
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Algorithm 1 Finding the k-NNs of a record with a missing value

Input: record ru, nk records {rv1 , rv2 , . . . , rvn} in the same block of ru, number

of k-NNs k, threshold ε

Output: k-NN set Ku

1: G← ∅
2: Ku ← ∅
3: for i = 1 to nk do

4: Compute Wρ(ρ(ru, rvi)) with (18)

5: G← G ∪ {Wρ(ρ(ru, rvi))}
6: end for

7: Select k records in G, {rk1 , rk2 , . . . , rkk}
8: for i = 1 to k do

9: if Wρ(ρ(ru, rki)) ≥ ε then

10: Ku ← Ku ∪ {rki}
11: end if

12: end for

13: return Ku

4.1.2. Calculating Weights of k-NNs

We generate a weight vector for the k-NNs of each record with a missing

value. Each element in the weight vector is assigned on the basis of the compar-

ison weight score between the given record and each of its corresponding k-NNs.

Given a record ru in dataset R, and its k-NNs Ku = {rk1 , rk2 , . . . , rkk} in R,

the corresponding weight vector wu is computed as follows:

wu =[Wρ(ρ(ru, rk1)),Wρ(ρ(ru, rk2)), . . . ,

Wρ(ρ(ru, rkk))] (19)

where Wρ(ρ(·, ·)) is the comparison weight score calculated using Eq. (18).

Furthermore, the weight vector w is normalised to a unit vector wu, as:

wu =
wu

‖wu‖2
(20)
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where ‖wu‖2 is the 2-norm of wu and computed as:

‖wu‖2 =

√√√√
k∑

i=1

Wρ(ρ(ru, rki))2 (21)

4.1.3. Dealing with Missing Values in Record Pairs

In order to classify a pair of records as match or non-match, the classifier

needs to take as input a similarity vector for the pair. Each element in the310

similarity vector represents the similarity measure between the values of the

two corresponding identifying fields in the records. However, when either of the

values is missing, instead of imputing the missing value, we impute the similarity

measure using the k-NNs of the record with the missing value. The similarity

measure Fi(ri, si) on the ith identifying fields of records r and s, when either of315

the identifying fields has a missing value, is computed as follows:

Fi(ri, si) =





Fi(∼, si) if ri has a missing value

Fi(ri,∼) if si has a missing value

0 if both ri and si have

missing values

(22)

where Fi(∼, si) represents the imputed similarity measure given ri has a missing

value, calculated as follows:

Fi(∼, si) =Fi(r
x1
i , si)× wx1 + Fi(r

x2
i , si)× wx2 + . . .

+ Fi(r
xk
i , si)× wxk (23)

where {rx1 , rx2 , . . . , rxk} are the k values of the ith identifying fields in the k-

NNs of the record r, and wx = [ wx1 , wx2 , . . . , wxk ] is the corresponding weight

vector of the k-NNs.

Similarly, Fi(ri,∼) represents the imputed similarity measure given si has a

missing value, calculated as follows:

Fi(ri,∼) =Fi(ri, s
y1
i )× wy1 + Fi(ri, s

y2
i )× wy2 + . . .

+ Fi(ri, s
yk
i )× wyk (24)
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where {sy1 , sy2 , . . . , syk} are the k values of the i identifying fields in the k-NNs320

of record s, and wy = [ wy1 , wy2 , . . . , wyk ] is the corresponding weight vector

of the k-NNs.

To illustrate, assume that the similarity measure between the ith identifying

fields ri and si (e.g. ri = SMITH and si = SMY TH) of the records r and

s needs to be computed. We assume that an appropriate similarity metrics

can be used for measuring the similarity between the ith fields in the records.

For purpose of illustration, we use the combination of 2-gram (i.e. bigram)

and Dice coefficient. It has been shown in [40] that using the combination of

2-gram (i.e. bigram) and Dice coefficient could achieve a higher accuracy rate,

compared to other string similarity measures. Using the 2-gram technique, each

of ri and si is split into a set of two adjacent letters, with blanks first padded

on both sides of the string to make the first and last letters their own bigrams

(i.e. { S, SM,MI, IT, TH,H } and { S, SM,MY, Y T, TH,H } for ri and si,

respectively). In both bigrams of ri and si, there are 6 members, 4 of which are

in common. The Dice coefficient between ri and si is:

FDC(ri, si) =
2× nrisi
nri + nsi

=
2× 4

6 + 6

≈ 0.667 (25)

The value of Dice coefficient ranges between 0 and 1, with a higher value rep-

resenting a higher degree of similarity. Assume that we still have ri = SMITH

but the value of si is missing. In this case, we have three values SMY and

two SMY THs that are the corresponding values of the ith identifying fields

in the 3-NNs of record s, along with their corresponding weight vector w̄ =

[0.35, 0.33, 0.32]. First, we would need to generate three corresponding bi-

gram sets for the three different values (i.e. SMITH, SMY and SMY TH):

{ S, SM,MI, IT, TH,H }, { S, SM,MY, Y } and { S, SM,MY, Y T, TH,H },
respectively. It can be seen that there are 6 and 4 members in the bi-gram sets

of SMITH and SMY respectively, 2 of which are in common. Then, using the
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same similarity metrics (i.e. Dice coefficient), we can impute the similarity mea-

sure between ri and si with SMY , the two SMY TH, and their corresponding

weights as follows:

FDC(ri,∼) =
2× 2

6 + 4
× 0.35 +

2× 4

6 + 6
× (0.33 + 0.32)

≈ 0.573 (26)

It can be seen that the difference between the similarity values calculated using

Eqs. (25) and (26) is fairly small, which shows the promise of the proposed

approach for imputing similarity measures.325

4.2. Privacy Preserving Record Linkage with Missing Values

Privacy Preserving Record Linkage (PPRL) requires that the fields about

personal information in each of the two datasets to be encrypted by their corre-

sponding owner: First, the two owners agree on a password or pass phrase for

the purpose of encryption; Then they encrypt these fields using an encryption330

software; Finally, the encrypted fields are used as encrypted identifying fields

for record linkage.

4.2.1. Privacy Preservation in the Presence of Missing Values

In order to deal with missing values in privacy preserving record linkage,

we propose to adapt the Bloom filter approach to PPRL developed in [16].335

There are several reasons why we have chosen to adapt this approach over other

methods for privacy preserving record linkage in the presence of missing values.

First, the Bloom filter approach allows the similarity measure between the two

values of the corresponding identifying fields in two records to be calculated

even after the two values have been encrypted, which is required in probabilistic340

record linkage. Second, it has shown quality improvements over other privacy

preserving protocols [16] like the Swiss anonymous linkage code [41], which

implements an identifier based on the phonetic codes of some identifying fields.

Third, it appears robust, well-developed, and adaptable for large-scale record

linkage [15]. Finally, and most importantly, the Bloom filter approach can be345
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easily adapted to work with the k-NNs of a record with a missing value and the

weight vector of the k-NNs.

The Bloom filter approach to PPRL [16] uses a three-party protocol, where

the linkage is done by a (trusted) third party (i.e. the linkage unit) in a Honest-

But-Curious (HBC) model [2]. The two dataset owners encrypt their data350

records, and transfer the encrypted data securely to the linkage unit. The HBC

model assumes that each of the three parties correctly follows the protocol, while

being curious about whether they are able to find out as much information as

possible from any received data [3]. The Bloom filter approach [16] can stop

any dictionary attack as long as the third-party linkage unit does not collude355

with either of the dataset owners. Although there are still some other types

of potential attacks (e.g. frequency attacks), a number of additions to the

original Bloom filter approach have enhanced its level of security [42]. For each

record with a missing value, we need to encrypt the values of the corresponding

identifying fields in the k-NNs of the record, along with their weight vector. We360

propose a method to encrypt each of these values onto a Bloom filter, along with

the weight of the corresponding NN. To achieve this, instead of simply setting

the bit in the Bloom filter, which corresponds to the hash output of the bigram

set of such a value, to 1, it is set to the weight of the corresponding NN. When

the hash output of more than one bigram set is mapped to the same bit in the365

Bloom filter, the bit is set to the sum of all the corresponding weights.

In the previous example, we have ri = SMITH in record r while the value

of si is missing in record s. We also have three values SMY and two SMY THs

that are the corresponding values of the ith identifying fields in the 3-NNs of

record s, along with their weight vector w̄ = [0.35, 0.33, 0.32]. We now need

to map the bigrams of these three values onto two separate Bloom filers: one

for SMITH, while the other for both SMY and two SMY TH. We can then

calculate the Dice coefficient between the two Bloom filers, which imputes the

similarity measure between ri = SMITH and si with a missing value. Since we

now have real numbers instead of binary numbers in the Bloom filer for SMY

and the two SMY TH, the original Dice coefficient formula as shown in Eq.
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(15) needs to be adapted as follows:

F̂DC(B(ri),B(si)) =
2× sum(B(ri) · B(si))

sum(B(ri)) + sum(B(si))
(27)

where the two Bloom filers B(ri) and B(si) are treated as vectors, and · repre-

sents the dot product, and sum(·) corresponds to the sum of every value in a

vector. It can be seen that, for two Bloom filters with binary values, the original

Dice coefficient formula (as in Eq. (15)) is a special case of the adapted Dice370

coefficient formula (as in Eq. (27)).

With the Bloom filter length l set to the exactly same as before, and the

bigrams in Table 2, the calculation of the Dice coefficient between ri = SMITH

and si with a missing value is done in a privacy preserving manner, as follows:

F̂DC(B(ri),B(∼)) =
2× sum(B(ri) · B(∼))

sum(B(ri)) + sum(B(∼))

=
2× (0.65 + 1× 4 + 0.65× 3 + 1× 3 + 0.65 + 1)

17 + 14.250

=
2× 11.250

17 + 14.250

= 0.720 (28)

where the Bloom filter B(∼) is calculated with SMY , and SMY THs, along with

the weight vector w̄ of the corresponding 3-NNs, as shown in the last column of

Table 2. Again, comparing the similarity measures calculated by Dice coefficient

in Eqs. (17) and (28), we can see that the difference between the two measures375

is also fairly small. This shows that the proposed approach for dealing with

missing values can work well in the context of privacy preserving record linkage

using the Bloom filter protocol.

4.2.2. Computational Complexity

In this section, we analyse the computational complexity of different stages380

of our proposed approach to privacy preserving record linkage in the presence

of missing values. Our approach starts with the intra-blocking process in each

of the datasets R and S. Assume that the numbers of records in R and S are

nR and nS , and their corresponding numbers of missing values are mR and mS .
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For the two intra-blocking processes in R and S respectively, the correspond-385

ing computational complexities are O(n2R/2) and O(n2S/2), respectively. In the

next stage, our approach searches for the k-NNs of each record with missing

values in the same block. For both datasets, R and S, this search process has

the computational complexity of O((mR +mS)× nkA × t), where nkA refers to

the average number of records within each block, and t is the dimensionality of390

the record vector. For the next imputation process, the corresponding compu-

tational complexity would be O((mR + mS) × k × l), where k corresponds to

k-NN and l is the length of the Bloom filter. For the following blocking process,

it would require a hash operation with a complexity of O((nR+nS)× qB×p), a

communication cost with a complexity of O((nR+nS)×l), and a bit comparison395

with a complexity of O(nR×nS×l2), where qB is the average number of n-grams

in each record field for blocking, and p is the number of hash functions used to

map n-grams into a Bloom filter. For the final matching stage, there would be

another hash operation with a complexity of O(nB × (nRL + nSL) × qL × p),
another communication cost with a complexity of O(nB× (nRL+nSL)× l), and400

another bit comparison with a complexity of O(nB × nRM × nSM × l2), where

nB refers to the number of blocks after blocking, nRL and nSL represent the

average number of records in each block from R and S respectively, qL is the

average number of n-grams in each record field for linkage, and nRM and nSM

correspond to the maximum numbers of records in each block from R and S405

respectively.

5. Experimental Evaluation

In this section, we present the experimental results of our proposed approach.

We have compared our approach with five existing algorithms for record linkage

in both the absence (i.e. PRL and BF) and presence (i.e. FRIL-0, FRIL-100410

and FLE) of missing values: the standard Probabilistic Record Linkage (PRL)

method [6], the Bloom Filter (BF) approach [15, 16], the two methods available

in the Fine-grained Record Integration and Linkage (FRIL) tool FRIL-0 and
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FRIL-100 [43], as well as the Full Linkage Expansion (FLE) technique proposed

in [8]. We conducted all the experiments using MATLAB R2014b on a machine415

with 3.6-GHz Intel Core i7 CPU and 16-GB DDR3 RAM running the Windows

7 operating system. The objective of our evaluation is to show that our proposed

method outperforms the three existing techniques (i.e. FRIL-0, FRIL-100, and

FLE) for record linkage in the presence of missing values, while the other two

existing methods (PRL and BF) are used as the baselines for standard record420

linkage and privacy preserving recording linkage without missing values.

5.1. Datasets

For both algorithms PRL and BF, there is no missing value in the datasets for

evaluation. For the other three algorithms FRIL-0, FRIL-100 and FLE, as well

as our proposed approach, there are a certain percentage of missing values in the425

datasets. We have generated and used a collection of synthetic datasets based on

GeCo [44, 45]. There are several benefits from choosing synthetic datasets over

real ones: First, the dataset size can be set with a computational cost estimate.

Second, we can define the record fields in the dataset. For example, for our

experimental evaluation, we have chosen six fields (i.e. GivenName, Surname,430

Postcode, Telephone, Gender, and City) for linkage. These are often available

in real datasets. Third, the ground truth of the record linkage results is known,

to facilitate the quality assessment for benchmarking. Finally, the percentage

of missing values in datasets can be controlled, such that benchmarking can be

carried out at different levels. Each pair of synthetic datasets consists of two435

individual datasets, R and S, as well as the two corresponding datasets R′ and

S′ with a certain percentage of missing values. Table 3 shows the characteristics

of datasets R and S, including the sizes (i.e. the number of records), the first

six fields used as identifying fields, the similarity metrics used for each of the six

identifying fields, the blocking and intra-blocking schemes used. There is also440

an additional 7th ID field in the datasets for the purpose of labelling matching

pairs of records only. For brevity, the names of the first six fields are abbreviated

by their first letters.
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20% of the records in datasets R and S are the same (i.e. those records

with the same IDs in both datasets). To simulate various types of errors (e.g.445

typographical errors) in records to reflect the quality of typical linked datasets, a

variety of the corruption methods in GeCo [44, 45] have been used (e.g. phonetic

variation, keyboard mistake, name misspelling), to randomly corrupt any four

of the first six fields of each record. Each pair of datasets R′ and S′ have been

generated from the same pair of datasets R and S respectively with a certain450

percentage of records in R′ and S′ with a missing value in one of the first six

fields. To generalise the characteristics of synthetic datasets, three pairs of

synthetic datasets R and S have been generated, along with three pairs of R′

and S′ with missing values, which have 10%, 20%, and 25% of records with

missing values. We have used two similarity metrics (i.e. Dice coefficient (DC)455

and string equality (SE)) for calculating the similarity measures between the

corresponding values for each of the first six fields, as shown in Table 3. Both

similarity metrics can be computed efficiently [1]. In Table 3, for example,

DC(GN) denotes that Dice coefficient has been used on field GivenName, and

DC(P,C) denotes that Dice coefficient has been used on the concatenation of460

fields Postcode and City.

5.2. Algorithms

PRL and BF are the two algorithms for standard record linkage and pri-

vacy preserving record linkage respectively. We run them on the three pairs

of datasets R and S respectively, to benchmark the performances of standard465

record linkage and privacy preserving record linkage on each pair of datasets.

FRIL-0 and FRIL-100 are two of the existing algorithms for record linkage with

missing values: FRIL-0 assumes that each of the missing values is completely

different from the value of the corresponding field in the matching record from

another dataset (i.e. the similarity measure for the corresponding field in the470

similarity vector is 0). In contrast, FRIL-100 assumes that each of the missing

values is identical to the value of the corresponding field in the matching record

from another dataset (i.e. the similarity measure for the corresponding field in
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the similarity vector is 1). FLE is one of the three algorithms proposed in [8]

for record linkage with missing values, which is reported to have achieved the475

best performance among the three algorithms. For a record with missing val-

ues, FLE first redistributes the weights associated with the fields with missing

values to the other fields without missing values, where the weight redistribu-

tion is based on relative proportions across the remaining fields; It then assigns

zero weight to those fields with missing values. We have run FRIL-0, FRIL-100480

and FLE for record linkage with missing values on each pair of datasets R′ and

S′ to benchmark the performance of record linkage with missing values. Their

performances have been compared with the performances of our algorithms for

privacy preserving record linkage with missing values.

5.3. Evaluation485

For the PRL, FRIL-0, FRIL-100 and FLE algorithms, no field in the datasets

was encrypted. For the algorithm BF and our algorithm for privacy preserving

record linkage with missing values, all the fields in the datasets that contain

personal information were encrypted using the Bloom filter protocol. The sim-

ilarity measure for each of the fields in the similarity vector for each pair of490

records was calculated using a combination of bigrams and Dice coefficient. For

encryption using the Bloom filter protocol, the implementation described in [16]

was used for creating Bloom filters with some adaptations: the length of the

Bloom filters l and the number of independent hash functions m were set to 100

and 3, respectively. The settings were set the same as for the method in [15],495

with the same ratio of l to m as in [16] (i.e. the ratios of l to m set to 1000

and 30, respectively). Although these settings may result in a slightly higher

false positive rate, compared to those in [16], they helped dramatically reduce

the sizes of the Bloom filters while achieving the same performance.

For each pair of datasets, the performances of the five existing algorithms500

PRL, FRIL-0, FRIL-100, FLE and BF were compared with the performances

of our own algorithms respectively. In all the existing algorithms and our own

algorithms, we used the probabilistic record linkage framework, where the agree-
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ment and disagreement weights were calculated using the EM method described

in [29]. The performances of each algorithm with different thresholds were mea-505

sured, with the highest performance used for comparison.

Two blocking schemes, as shown in Table 3, were used for blocking: one

is Dice coefficient between the bigrams of the concatenation Surname and the

first initial of GivenName, and the other is Dice coefficient between the special

bigrams of Telephone. Since the values of field Telephone are in numeric string510

format, the order of occurrences of individual digits needs to be kept. In ad-

dition, there are smaller variations among different string positions (i.e. digits

are from 0 to 9 only), which makes the standard bigram technique less effective

for distinguishing them from each other. To tolerate small typographical errors

in Telephone (e.g. due to typing errors), special n-grams were generated for515

Telephone. The special n-grams of a string are the combinations of individual

n-grams of the string and the order of their occurrences. For example, for a value

1234567 of Telephone, its special 2-gram set is {112, 223, 334, 445, 556, 667}
(with the first digits in each bigram indicating its order). Similarly, three intra-

blocking schemes, as shown in Table 3, were defined for the efficient search of520

the k-NNs of a record with a missing value in a dataset.

5.4. Linkage Results

Figure 1 shows the comparison of performances across different algorithms.

In each of the subfigures, a vertical dashed line is used to separate those algo-

rithms that do not deal with missing values and the other algorithms that deal525

with missing values. The quality of each record linkage algorithm was evalu-

ated on precision, recall and F-measure respectively. F-measure is the harmonic

mean of precision and recall. For each of the six algorithms, a threshold λ for de-

termining whether a pair of records is a match or non-match was set to the level

that maximised the corresponding F-measure. As shown in Figure 1, for the530

three different rates of missing values, our algorithm outperforms both FRIL-100

and FLE on both precision and recall. Though the precision of our algorithm

is slightly lower than that of FRIL-0, FRIL-0 takes the most cautious approach
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by assuming that a missing value is completely different from the value of the

corresponding field in the matching record from another dataset (i.e. similarity535

measure is 0). On the other hand, our algorithm does not have this assumption,

hence handling missing values better. Compared with the other two algorithms

PRL and BF, our algorithm achieved a similar precision but a lower recall. This

was because that some records with missing values in the datasets do not have

any k-NNs or some of their k-NNs also have missing values in the same fields.540

As the rate of missing values increases, the recall of our algorithms decrease.

To show that our proposed approach works well with the traditional blocking

techniques to address the scalability issue in record linkage, the percentages of

record pairs (to be matched) rejected and true matches retained after blocking

by each of the six methods for three different rates of missing values are shown545

in Figures 2 and 3, respectively. It can be seen that our proposed approach

outperformed the other three algorithms for record linkage with missing values,

especially at a higher rate of missing values. This is because that the proposed

approach imputes similarity measures between two records on the fields with

missing values, which can then be used for blocking.550

5.5. Computational Costs

To show the scalability of the proposed approach, the runtime of each of the

methods on each of the datasets was recorded to produce the average runtimes,

as shown in Table 4. All the six methods were run independently in Matlab:

for both the proposed method and BF, the similarity calculation was done on555

vectors (i.e. Bloom filters); while for the other four methods, the similarity

calculation was done on sets of string tokens. For each experiment for each of

the six methods, the number of computational thread in Matlab was set to 1.

From Table 4, it can be seen that our proposed approach has a relatively low

computational cost at the intra-blocking stage. The additional pay of the pro-560

posed method on runtime is mainly in the stage of intra-blocking (i.e. handling

missing values). Since the missing values in a record are handled within its own

dataset, the process of handling missing values can be carried out in parallel
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Method
PRL BF FRIL-0 FRIL-100 FLE Proposed

%

60

65

70

75

80

85

90

95

100
Precision
Recall
F-measure
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Figure 1: Comparison of linkage qualities across different methods: at most one missing value

per record (the left column), and at most two missing values per record (the right column).

by each dataset owner before the process of record linkage. At the stage of

blocking, both BF and our proposed approach outperform the other methods,565
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Figure 2: Comparison of percentages of record pairs (to be matched) rejected after blocking.
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Figure 3: Comparison of percentages of true matches retained after blocking.

as both methods utilise Bloom filters (i.e. vectors) while Matlab works more

efficiently with vectors than with string tokens. At the last stage, the linkage

stage, the two methods are a little bit slower than the other methods. There

are two reasons: One is that the encryption through Bloom filters are compu-

tationally quite expensive, at the linkage stage, because all the fields need to570

be encrypted; while at the blocking stage, only the fields used as blocking keys

need to be encrypted. The other is through blocking, the number of record pairs

for comparison is significantly reduced, as a result, the advantage of Matlab on

computing vectors is not too obvious.
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6. Conclusions575

In this paper, we have proposed a new approach to privacy preserving record

linkage in the presence of missing values, while at the same time addressing the

scalability issue. Our approach is based on the assumption that the k-NNs of

a record with a missing value in a large dataset would provide a set of similar

values to the missing value, which can be used to impute the similarity measure580

between the record with the missing value and a record from another dataset.

With the imputed similarity measures, an existing blocking technique can be

directly used to deal with the scalability of record linkage. We have also adapted

the Bloom filter approach so that the k-NNs of a record with a missing value

can be encrypted together with the record, such that record linkage in the585

presence of missing values can be carried out in a privacy preserving manner.

Compared with the existing algorithms for record linkage using three pairs of

simulated datasets with different rates of missing values, we have shown that

our proposed approach has achieved reasonably good linkage performances in

the presence of missing values in a privacy preserving manner. In future work,590

we plan to apply the proposed approach to the real-world large-scale datasets.
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Table 2: Example of using the Bloom filter protocol to encrypt strings for computing the

similarity measure between strings in a privacy preserving manner.

hp(·) SMITH SMY TH SMY calculated

mod l bit bigram (p) bit bigram (p) bit bigram (p) bit

6 1 H (3) 1 H (3) 0 0.65

11 0 0 1 Y (2) 0.35

12 1 SM (3) 1 SM (3) 1 SM (3) 1

13 1 MI (2) 1 MY (1) 1 MY (1) 1

17 1 IT (1) 0 0 0

21 1 S (2) 1 S (2) 1 S (2) 1

32 0 1 Y T (2) 0 0.65

39 0 0 1 Y (3) 0.35

48 1 H (1) 1
MY (2)

1 MY (2) 1
H (1)

56 1 TH (1) 1 TH (1) 0 0.65

58 1
MI (1)

1 TH (2) 0 0.65
TH (2)

60 1 TH (3) 1 TH (3) 0 0.65

61 1 IT (3) 0 0 0

67 1 S (3) 1 S (3) 1 S (3) 1

68 1 MI (3) 0 0 0

75 1 S (1) 1 S (1) 1 S (1) 1

76 1 SM (1) 1 SM (1) 1 SM (1) 1

77 1 H (2) 1 H (2) 0 0.65

81 0 1 Y T (3) 0 0.65

83 0 1
MY (3)

1
MY (3)

1
Y T (1) Y (1)

89 1 IT (2) 0 0 0

94 1 SM (2) 1 SM (2) 1 SM (2) 1
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Table 3: Characteristics of the synthetic datasets R and S

Size: |R| = 105, |S| = 1.05× 105 records

Columns:

GivenName (GN), Surname (S),

Postcode (P ), Telephone (T ),

Gender (G), City (C)

Similarity:
DC(GN), DC(S), DC(P ), DC(P,C)

DC(T ), SE(G), DC(C)

Blocking: DC(1st of N,S) ≥ 0.7, DC(T ) ≥ 0.85

Intra-Blocking:
DC(S) ≥ 0.85, DC(P,C) ≥ 0.85,

DC(T ) ≥ 0.85

Table 4: Comparison of runtime at different computational stages (in hours).

Method
Computation Stage

Total
Intra-Blocking Blocking Linkage

PRL − 14.468 1.073 15.541

BF − 4.712 1.671 6.383

FRIL-0 − 13.523 0.946 14.469

FRIL-100 − 13.248 1.128 14.376

FLE − 14.002 1.045 15.047

Proposed 1.526 4.902 1.913 8.341
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