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Abstract

When a robot is learning it needs to explore its en-
vironment and how its environment responds on its
actions. When the environment is large and there
are a large number of possible actions the robot can
take, this exploration phase can take prohibitively
long. However, exploration can often be optimised
by letting a human expert guide the robot during its
learning. Interactive machine learning, in which a
human user interactively guides the robot as it learns,
has been shown to be an effective way to teach a
robot. It requires an intuitive control mechanism
to allow the human expert to provide feedback on
the robot’s progress. This paper presents a novel
method which combines Reinforcement Learning and
Supervised Progressively Autonomous Robot Com-
petencies (SPARC). By allowing the user to fully
control the robot and by treating rewards as implicit,
SPARC aims to learn an action policy while main-
taining human supervisory oversight of the robot’s
behaviour. This method is evaluated and compared to
Interactive Reinforcement Learning in a robot teach-
ing task. Qualitative and quantitative results indicate
that SPARC allows for safer and faster learning by
the robot, whilst not placing a high workload on the
human teacher.

Human-Robot Interaction; Reinforcement
Learning; Interactive Machine Learning;
Robotics; Progressive Autonomy; Supervised
Autonomy

1 Introduction

In the not too distant future robots will be expected
to have social skills, leaving the factory to interact
with people in environments designed exclusively for
use by humans (Fong et al., 2003). Their users will
not be academics or engineers but the elderly, ther-
apists, children or simply non-experts in technology
and science. Each user will have specific needs that
cannot be totally anticipated at the robot’s design
stage. Many researchers have argued that this issue
can be best addressed by having the user involved in
generating the behaviour (e.g. Gorostiza and Salichs,
2011; Hoffman, 2016). However, we cannot assume
that users will have the technical knowledge required
to make changes to the code controlling the robot.
Therefore, we believe that robots need to have a mech-
anism allowing a human to teach the robot in an easy,
natural and efficient manner.

One way to provide a robot with such learning ca-
pability is to use machine learning. Classic machine
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learning is often designed by experts to be used by
experts, its interface being often too complex for peo-
ple not involved in the design process (Amershi et al.,
2014). Many methods also suffer from practical is-
sues: Deep Learning (LeCun et al., 2015) relies on
having large datasets to train networks, while Rein-
forcement Learning (Sutton and Barto, 1998) uses
extensive and costly exploration to gather data points
used for learning. As we aim at allowing a non-expert
end-user to personalise the robot’s behaviour, com-
plex interfaces are not desirable, large dataset are not
available and random exploration can lead to unde-
sired actions by the robot. This suggests two main
challenges: how to empower the user with the ability
to teach the robot and how to gather safe training
experiences for the robot. A solution aiming to solve
these two challenges is interactive machine learning
(Amershi et al., 2014; Fails and Olsen Jr, 2003; Olsen,
2009). In this framework, the human is part of the
machine learning process. By providing ground truth
labelling or guiding the agent during exploration to
the interesting parts of the environment, the human
can bootstrap and guide the learning. Furthermore,
the human can provide more information than simply
labelling the samples, bringing further improvements
to the learning (Holzinger, 2016; Stumpf et al., 2007)
and if enough control is provided, the human teacher
can also prevent the robot from making undesirable
or potentially dangerous errors.

In this paper, we present a novel approach to com-
bine reinforcement learning with interactive machine
learning following the Supervised Progressively Au-
tonomous Robot Competencies (SPARC) method pro-
posed in Senft et al. (2015b). By giving control of the
robot’s actions to a teacher, we aim to maximally use
the human’s knowledge and transfer it to a robot in a
quick, safe and efficient manner. This method is com-
pared to Interactive Reinforcement Learning (IRL),
described in Thomaz and Breazeal (2008), using a
study involving 40 participants interacting with both
approaches in Sophie’s Kitchen, the environment used
to demonstrate IRL.

The reminder of the paper is organised as follows.
Section 2 presents different approaches used to teach
robots in an interactive fashion. We then describe
the scope of the study, including our hypotheses (Sec-

tion 3) and methodology (Section 4). Results are
presented in Section 5 and are discussed in Section 6.
We also propose guidelines for designing robots which
interactively learn from people. Finally, we conclude
by summarising the main results and the guidelines
in Section 7.

2 Related Work

In human-robot interaction, the expected behaviour
of the robot is often solely known by the users: for
therapies, therapists are the experts and they know
how the robot is supposed to behave when interacting
with patients. For assistive robots in homes, each user
has his own desires and preferences concerning the
robot’s behaviour. Consequently, these users have to
be able to adapt the behaviour of the robot in a way
which suits them without requiring technical skills.
One approach to allow non-technical persons to teach
a robot an action policy is Learning from Demonstra-
tion (Billard et al., 2008; Argall et al., 2009). In this
framework, a human provides a robot with demon-
strations of the expected behaviour and the robot
learns the correct action policy. This methods is often
used for teaching motor trajectories to a robot, but
is also applicable to high level action policy learning
in robotics (Taylor et al., 2011). The conventional
approach consists of a set of demonstrations from
the teacher followed by additional learning without
supervision until reaching an appropriate action pol-
icy. However, human-robot interactions are not a
static process, the learning should happen during all
interactions and be interactive: the user should at all
times be able to correct the robot when it selects a
suboptimal action.

In interactive machine learning a human is included
in the learning loop, allowing him to provide input
during the learning process, this approach has re-
ceived increased attention over the last decade. One
of the main domains being extensively researched is
active learning (Settles, 2010). Active learning has
been used in a range of fields: from medical image
classification (Chyzhyk et al., 2013) to robotics (Cher-
nova and Veloso, 2009). In this framework, an agent
has to classify points in a dataset and an ‘oracle’ is
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present and available. The oracle, often a human, can
provide ground truth labelling, but its use has a cost
(time or money for example) and consequently should
be minimised. As such, the conventional challenge
of active learning is to find how to optimise the use
of the oracle to improve the learning. Multiple ap-
proaches have been tested, such as requiring labels
for the points with the higher uncertainty or which
categorisation would provide the best improvement
of the learning.

However, as pointed out by Cakmak and Thomaz
(2012), one of the main limits of active learning is
that the robot is in control of the interaction: the
robot takes initiative to request training data from
the user, regardless of what the human wants the
robot to do, potentially leading to frustration or in-
comprehension on the human side. For this reason,
methods have been developed to give the initiative
back to the human, placing the human in a teach-
ing role. For example, when set in a reinforcement
learning framework, the human teacher can provide
additional feedback (Knox and Stone, 2010; Thomaz
and Breazeal, 2008) and actively decides to reward or
not to reward a specific action.

In human robot interactions, the robot’s actions
can have a real impact on the world and some ac-
tions, if executed at an incorrect moment, can create
discomfort for the user or even cause physical or psy-
chological harm. These errors can be the result of an
incorrect action policy or a sensor failure for example,
but they have to be prevented. When using a robot
in real human-robot interaction applications, a safe-
guard should therefore be present to prevent the robot
from executing undesirable actions, especially when
working with vulnerable users, where some actions
would have severely negative effects. It is on this basis
that the concept of supervised autonomy was intro-
duced (Thill et al., 2012): a safeguard is provided by
a human supervising the robot in a semi-autonomous
setup. The robot is mainly autonomous, but a human
teacher has enough control over the interaction to
step in at any time to correct the action about to be
executed by the robot. This approach ensures that
only desired actions will be executed by the robot
whilst not relying completely on a human to control
the robot as with Wizard of Oz (Riek, 2012). The

challenge is then the incorporation of robot learning
into this scheme to facilitate progressive performance
improvement: this approach can be combined with
interactive machine learning to let the robot learn
from its errors without requiring the robot to actually
make them. At the same time, the human is used
to bootstrap the learning with their knowledge, but
also to ensure that the robot behaviour is always ap-
propriate. This would allow the robot to improve its
behaviour over time, while reducing the frequency of
human interventions, having the robot learning with-
out needing to face the consequence of its actions.

An analogous system is predictive texting on mobile
phones: as a user types a message, possible words are
suggested, but the user has full control over which
word to select. All the while, the algorithm learns: it
adopts new words, spellings and tunes its predictive
models to suit the user’s particular language use and
preferences. We propose a similar mechanism for
Human-Robot Interaction, and in this context we
introduced the Supervised Progressive Autonomous
Robot Competencies (SPARC) (Senft et al., 2015a,b).

By combining interactive machine learning and su-
pervised autonomy, SPARC provides an agent with on-
line learning whilst keeping the control of the agent’s
actions in the user’s hand. This method based on
a suggestion/correction mechanism allows the robot
to adapt its behaviour to the user whilst ensuring,
due to the presence of the human teacher, that the
actual actions executed by the robot are suited to
the current interaction. This approach is especially
useful in context where the cost of having the robot
making errors is high, such as when interacting with
vulnerable population.

3 Scope of the study

Following on from our earlier research on using people
to teach an action policy to a robot during interaction
(Senft et al., 2015b), we seek to evaluate SPARC when
combined with the widely used learning paradigm
of Reinforcement Learning (RL) (Sutton and Barto,
1998). We compare this approach to an alternative
method combining interactive machine learning and
reinforcement learning: IRL (Thomaz and Breazeal,
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2008). To this end we tested both learning methods
in the environment initially used by Thomaz and
Breazeal and described in Section 4.

3.1 Interactive Reinforcement Learn-
ing

IRL implements the principles presented in Thomaz
and Breazeal (2008). In IRL the human teacher can
provide positive or negative feedback on the last ac-
tion executed by the robot. The robot combines this
with environmental feedback into a reward which is
used to update a Q-table: a table with a Q-values
(the expected discounted reward) assigned to every
state-action pair and used to select the next action.
Three additions to the standard algorithm have been
proposed and implemented by Thomaz and Breazeal
and are used here as well: guidance, communication
by the robot and an undo option.

The guidance emerged from the results of a pilot
study where participants assigned rewards to objects
to indicate that the robot should do something with
these objects. With the guidance, teachers can direct
the attention of the robot toward certain item in
the environment to indicate the robot that it should
interact with them.

The robot can communicate its uncertainty by di-
recting its gaze toward different items in the environ-
ment with equally high probability of being used next.
The aim of this communication of uncertainty is to
provide transparency about the robot’s internal state,
for example indicating when a guidance should be
provided.

Finally, after a negative reward, the robot tries to
cancel the effect of the previous action (if possible), re-
sulting in a undo behaviour. As shown in the original
paper, these three additions improve the performance
on the task.

3.2 SPARC

SPARC (Supervised Progressively Autonomous Robot
Competencies) uses a single type of input similar to
the guidance present in IRL. However with SPARC,
it is used to control the actions of the robot. The
robot communicates every of its intentions (i.e the

action it plans to execute next) to its teacher. The
teacher can either not intervene and let the robot
execute the suggested action or he can step in and
force the robot to execute an alternative action. This
combination of suggestions and corrections gives the
teacher full control over the actions executed by the
robot. This also makes the rewards redundant: rather
than requiring the human to explicitly provide rewards
a positive reward can directly be assigned to each
action executed by the robot as it has been either
forced or passively approved by the teacher.

3.3 Differences of approaches

Unlike IRL, SPARC offers full control over the actions
executed by the robot. SPARC changes the learning
paradigm from learning from the environment’s re-
sponse to learning from the users preferences. We use
an expert in the task domain to evaluate the appro-
priateness of actions before their execution and we
use this evaluation and control provided to the expert
not to rely on observing negative effect of an action
to learn that this action should be avoided, but rather
what the best action is for each state. Even in a non-
deterministic environment such as HRI, some actions
can be expected to have a negative consequence. The
human teacher can stop the robot from ever executing
these actions, preventing the robot from causing harm
to itself or its social or physical environment.

Another noticeable difference is the way in which
the robot communicates with the user: in IRL, the
robot communicates its uncertainty about an action
and with SPARC its intention of executing an action.

It should also be noted that the quantity of infor-
mation provided by the user to the robot is similar for
both IRL and SPARC: in SPARC the user can offer
the whole action space as commands to the robot, but
removes the need for explicit rewards. While in IRL,
the teacher can guide the robot toward a subset of the
action space but has to manually provide feedbacks
to evaluate the robot’s decisions.

3.4 Hypotheses

Three hypotheses are tested in this study:
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• H1: Effectiveness and efficiency with non-experts.
Compared to IRL, SPARC can lead to higher
performance, whilst being faster, requiring fewer
inputs and less mental effort from the teacher
and minimising the number of errors during the
teaching when used by non-experts.

• H2: Safety with experts. SPARC can be used by
experts to teach an action policy safely, quickly
and efficiently.

• H3: Control. Teachers prefer a method in which
they can have more control over the robot’s ac-
tions.

4 Methodology

4.1 Task

The task used in this study is the same as Thomaz
and Breazeal (2008): Sophie’s kitchen, a simulated
environment on a computer where a virtual robot has
to learn how to bake a cake in a kitchen. As the source
code was not available, the task was reimplemented
to stay as close as possible to the description in the
paper and the online version of the task1.

The scenario is the following: a robot, Sophie, is in
a kitchen with three different locations (shelf, table
and oven) and five objects (flour, tray, eggs, spoon
and bowl) as shown in Figure 1a. Sophie has to
learn how to bake a cake and the user has to guide
the robot through a sequence of steps while giving
enough feedback so the robot can learn a correct series
of actions. As presented in Figure 1, there are six
crucial steps to achieve a successful result:

1. Put the bowl on the table.

2. Add one ingredient to the bowl (flour or eggs).

3. Add the second ingredient.

4. Mix the ingredients with the spoon to obtain
batter.

5. Pour the batter in the tray.

1http://www.cc.gatech.edu/~athomaz/sophie/

WebsiteDeployment/

(a) Initial state (b) Step 1 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 6

Figure 1: Presentation of different steps in the en-
vironment. 1a initial state, 1b step 1: the bowl on
the table, 1c step 3: both ingredients in the bowl, 1d
step 4: ingredients mixed to obtain batter, 1e step 5:
batter poured in the tray and 1f step 6 (success): tray
with batter put in the oven. (Step 2: one ingredient
in the bowl has been omitted for clarity)

6. Put the tray in the oven.

The environment is a deterministic Markov Deci-
sion Process, defined by a state, a set of actions (move
left, move right, pick up, drop and use), a determin-
istic transition function, absorbing states (success or
failure) after which the simulation is restarted in its
initial state and an environmental reward function
(+1 for success and -1 for failure and -0.04 for every
other step to penalise long sequences). Different ac-
tion policies can lead to success, but many actions end
in a failure state, for example putting the spoon in the
oven results in a failure. As argued by Thomaz and
Breazeal, this environment provides a good setup to
evaluate teaching methods to a robot due to the large
number of possible states (more than 10,000), the
presence of success and failure states and the sparse
nature of the environmental reward function which
increases the need for a teacher to aid the learning.
More details on the environment are available in the
original paper.
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4.2 Implementation

In this experiment two systems are tested: IRL and
SPARC. The underlying learning algorithm is strictly
identical for both system, only the way of interacting
with it is different: participants have more control in
SPARC, implicitly reward action rather than explicitly
and evaluate the intention of the action rather than its
results. The learning algorithm (see algorithm 1) is a
variation on Q-learning, without reward propagating2.
This guarantees that any learning by the robot is
only due to the teaching by the human, and as such
provides a lower bound for the robot’s performance.
By using Q-learning, the performance of the robot
would be higher.

4.2.1 Interactive Reinforcement Learning

We have implemented IRL following the principles
presented in Thomaz and Breazeal (2008). The user
can use the left click to display a slider in order to
provide rewards. The guidance is implemented by
right-clicking on objects: it directs the robot’s at-
tention to the object if facing it (a click on objects
in different locations has no effect). Following the
guidance, the robot will execute the candidate action
involving the object. The action space is not entirely
covered by this guidance mechanism: for example,
it does not cover moving from a location to another.
This guidance if used correctly, limits the exploration
for the current step to the part of the environment
evaluated as more interesting by the user without
preventing the robot to explore in further steps. The
robot can communicate its uncertainty by looking at
multiple objects having similarly high probability of
being used.

Some modifications were required to the original
study due to the lack of implementation details in
the original paper, one of them being the use of a
purely greedy action selection instead of using softmax,
due to the absence of parameters descriptions. The
reliance on human rewards and guidance limits the
importance of autonomous exploration, and thus, the
greediness of the algorithm should assist the learning

2In Q-learning the update function is Q(st, at)← Q(st, at)+
α(rt+1 + γ(max

a
Q(st+1, a))−Q(st, at))

while learning do
a = action with the highest Q[s, a] value
look at object or location used with a
while waiting for correction (2 seconds) do

if received command then
a = received command
reward, r = 0.5

else
reward, r = 0.25

end

end
execute a, and transition to s′

Q(st, at)← Q(st, at) + α(rt+1 +
γ(max

a
Q(st, a))−Q(st, at))

end
Algorithm 1: Algorithm used in SPARC.

by preventing the robot to explore outside of the
guided policy. Additionally, as the human teacher can
vary the rewards provided to the system, they have
full control of the convergence or divergence of the
algorithm.

4.2.2 SPARC

SPARC uses the gaze of the robot toward objects
or locations to indicate which action the robot is
suggesting to the teacher. Similarly to the guidance in
IRL, the teacher can use the right click of the mouse on
objects to have the robot execute the action associated
to this object in the current state and this has been
extended to also cover locations. With SPARC, the
command covers all the action space: at every time
step, the teacher can specify, if desired, the next action
executed by the robot. If an action is not corrected, a
positive reward of 0.25 is automatically received (as it
has the implicit approval from the teacher) and if the
teacher selects another action, a reward of 0.5 is given
to the correcting action (the corrected action is not
rewarded). That way, actions actively selected are
more reinforced and participants can still have give
higher rewards when using IRL. This system allows
for the use of reinforcement learning with implicit
reward assignation, which simplifies the Human-Robot
Interaction.
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4.3 Experimental design

Participants are divided into 2 groups and interact
first either with IRL or SPARC as shown in Figure 2.
Before interacting, participants receive an information
sheet explaining the task (describing the environment
and how to bake a cake) and one explaining the sys-
tem they are interacting with. Then they interact for
three sessions with the assigned system. Each session
is composed of a training phase and a testing phase.
The training phase is composed of as many teaching
episodes as the participant desires, a teaching episode
ends when a success or failure state has been reached
which returns the environment to the initial state. In
the same way as in the initial experiment by Thomaz
and Breazeal, participants can decide to terminate
the training phase whenever they desire by clicking on
a button labelled ‘Sophie is ready’, however it is also
terminated after 25 minutes to impose an upper time
limit to the study. After the end of a training phase,
the robot will run a testing phase where the partici-
pant’s inputs are disabled and which stops as soon as
a ending state is reached or the participants decide
to stop it (for example if the robot is stuck in a loop).
This testing phase is used to evaluate the performance
of the participants for this session. The interaction
with a system consists of three repeated independent
sessions with their own independent training and test-
ing phases to observe how the interactions evolve as
participants are getting used to the system.

After participants completed their three sessions
with the first system, they are asked to interact for
three more sessions with the other system. This way,
every participant interacts three times with each sys-
tem (IRL and SPARC) and the order of interaction
is balanced. Additionally, a demographic question-
naire is given before the first interaction, a first post-
interaction questionnaire after the interaction with
the first system, a second identical one after the in-
teraction with the second system and a final post-
experiment questionnaire at the end of the experi-
ment. All information sheets and questionnaires can
be found online 3.

This experimental design prevents the risk of hav-

3http://www.tech.plym.ac.uk/SoCCE/CRNS/staff/

esenft/experiment2.html

ing an ordering effect by having a symmetry between
conditions. Both conditions having an identical exper-
imental procedure only with the order of interaction
varying.

4.4 Participants

A total of 40 participants have been recruited using
a tool provided by the university to reach a mixed
population of students and non-student members of
the local community. All participants gave written
informed consent, and were told of the option to
withdraw at any point. All participants received re-
muneration at the standard U.K. living wage rate,
pro rata. Participants were distributed randomly be-
tween the groups whilst balancing gender and age
(age M =25.6, SD=10.09; 24F/16M). Participants
were mostly not knowledgeable in machine learning
and robotics (average familiarity with machine learn-
ing M =1.8, SD=1.14; familiarity with social robots
M =1.45, SD=0.75 - Likert scale ranging from 1 to 5).

In addition to naive non-expert users, an expert
user (one of the authors) interacted five times with
each system following a strictly optimal strategy in
both cases. These results from the expert are used to
evaluate hypothesis 2 and show the optimal charac-
teristics of each system (IRL and SPARC) when used
by trained experts such as therapist in a context of
assistive robotics.

4.5 Metrics

4.5.1 Objective Metrics

We collected three metrics during the training phase:
the number of times a participant reached a failure
state while teaching, which can be related to the
risks taken during the training and the teaching time
(from 0 to 25 minutes) and the number of inputs
provided during the training, which can be seen as
the efforts invested in the teaching. The testing phase
being only a single run of the taught action policy
ending as soon as the robot reaches an ending state
(failure or success) or if stopped by the participants.
We only use the performance achieved during this
single test as evaluation of the success of training.
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Figure 2: Participants are divided into two groups. They first complete a demographic questionnaire, then
interact for three independent sessions (with a training and a testing phase each) with a system (IRL or
SPARC). After a first post-interaction questionnaire, participants interact for another three sessions with
the other system before completing the second post-interaction questionnaire and a final post-experiment
questionnaire.

As not all participants reached a success during the
testing phase, we used the six key steps defined in
Section 4.1 as a way to evaluate the performance
ranging from 0 (no step has been completed) to 6 (the
task was successfully completed) during this testing
run: for example a testing where the robot puts both
ingredients in the bowl but reaches a failure state
before mixing them would have a performance of 3.

4.5.2 Subjective Metrics

The post-interaction and post-experiment question-
naires provide additional subjective information to
compare with the objective results from the interac-
tion logs. Two principal metrics are gathered: the
workload on participants and the perception of the
robot.

Workload is an important factor when teaching
robots. As roboticists, our task is to make the teach-
ing of the robot as undemanding as possible, meaning
that the workload for user should be minimal. Multi-
ple definitions for workload exist and various measures
can be found in the literature. Due to its widespread
use in human factors research and clear definition
and evaluation criteria, we decided to use the NASA-
Task Load Index (TLX) (Hart and Staveland, 1988).
We averaged the values from the 6 scales (mental,
physical and temporal demand, performance, effort
and frustration) to obtain a single workload value per
participant for each interaction. So we have two mea-

sures for each participant, after interaction with the
first system (IRL or SPARC) and after the interaction
using the other system.

Finally, the perception of the robot has been eval-
uated in the post-interaction and post-experiment
questionnaires using subjective questions (measured
on a Likert scale), binary questions (which robot did
you prefer interacting with) and open questions on
preference and naturalness of the interaction.

5 Results

Most of the results are non-normally distributed. Both
ceiling and floor effects can be observed depending on
the conditions and the metrics. For the teaching time,
some participants preferred to interact much longer
than others, resulting in skewed data. Likewise for
the performance: often participants either reached a
successful end state or did not hit any of the sub-goals
of the task ending often in two clusters of participants:
one at a performance of 6 and one at 0. Similarly,
some participants who interacted a long time with the
system did not complete any step, while others could
achieve good results in a limited time. Due to the
data being not normally distributed, non-parametric
statistical tests have been used. We use a combination
of Friedman test for one way comparison with repeated
measures, Wilcoxon rank sum test for between subject
comparisons and the Wilcoxon signed rank test for
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within subject pairwise comparisons. Additionally, as
each interaction consists of three sessions, a Bonferroni
correction has been applied to pairwise comparison
between sessions. A similar correction was used when
comparing between systems to account of the two
different groups. To apply the Bonferroni correction,
we multiply the p-values by the correcting factors,
which allows us to keep a global significance level at
p = .05.

Initial results of the first interaction of the partici-
pants have been reported in Senft et al. (2016).

5.1 Effectiveness and Efficiency with
non-experts

Four objective metrics (performance, teaching time,
number of inputs used and number of failures) and
one subjective metric (workload) have been used to
evaluate the efficiency of IRL and SPARC.

5.1.1 Performance

Figure 3 presents the performance of participants
during the interaction. In the first three sessions
participants interacted with either IRL or SPARC,
and swapped for the remaining three sessions. There
is a significant difference of performance between
systems; a Friedman test shows a significant differ-
ence between systems during the first three sessions
(χ2 = 50.8, p < .001) and during the next three ses-
sions (χ2 = 36, p < .001). Similarly, a significant
difference in performance is noted within participants
(Group 1: χ2 = 37.9, p < .001 - Group 2: χ2 = 55.3,
p < .001). So in all the cases, participants interacting
with SPARC achieved a significantly higher perfor-
mance than those interacting with IRL, regardless of
the order in which they interacted (p < .05 for all
pairwise comparison). No difference of performance
has been observed when using Wilcoxon signed rank
test on the three repetitions between participants
when interacting with the same system, so interacting
for a second or third session with the same system
does not have a significant impact on participants’
performance.

It must be noted that in our study, only a limited
number of participants managed to teach the robot

to complete the task using IRL, this observation will
be discussed in more details in Section 6.

Group1 Group2 Group1 Group2 Group1 Group2 Group1 Group2 Group1 Group2 Group1 Group2
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 Session 1  Session 2  Session 3  Session 4  Session 5  Session 6

 IRL
 SPARC

Figure 3: Comparison of the performance for the six
sessions (three with each system, IRL and SPARC,
with interaction order balanced between groups). A
6 in performance shows that the taught policy leads
to a success. The circles represent all the data points
(n=20 participants per group), the black horizontal
line the median and the top and bottom of the boxes
the first and third quartiles. The learning is consis-
tently better when using SPARC.

5.1.2 Teaching Time

The teaching times for all the interactions are shown
in Figure 4. Regardless of the order in which they
used SPARC or IRL, participants needed significantly
less time to teach the robot when using SPARC than
with IRL (Friedman test between participants for the
first three sessions: χ2 = 9.77, p = .0018 - next three
sessions: χ2 = 20.2, p < .001). Pairwise comparison
also show significance (p < .05) except for sessions
3 and 5 which can be explained by the floor effect
observed when teaching with SPARC and a potential
loss of motivation when using IRL.

Additionally, when interacting multiple times with
the same system, participants interacted significantly
less in the second interaction with a system than dur-
ing the first one (cf. Table 1) and only for SPARC the
teaching time significantly decreases again between
the second and the third session.
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Table 1: Medians of the teaching time. In the first
three sessions, group 1 interacted with IRL and group
2 with SPARC and participants interacted with the
other system for the next three sessions.

X̃1 X̃2 X̃3 X̃4 X̃5 X̃6

Group 1 16.3 7.44 6.17 3.97 2.45 1.53
Group 2 8.97 3.57 2.49 9.36 5.18 3.01
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Figure 4: Comparison of the teaching time (in min-
utes) for all the interactions. Participants spent less
time teaching the robot when using SPARC than IRL.

5.1.3 Number of Inputs

The number of inputs used in both system is presented
in Figure 5. For IRL, this represents every time a
participant provided guidance or a reward to the robot,
and for SPARC every time a participant provided
a command. The number of inputs used is lower
when teaching with SPARC than with IRL (Friedman
test between participants for the first three sessions:
χ2 = 11.7, p < .001 - next three sessions: χ2 = 11,
p < .001). However with pairwise comparisons only
session 2 (p = .008) and session 4 (p < .001) present
a significantly different number of inputs used.

5.1.4 Number of failures

Figure 6 shows the number of failures observed with
both systems for every session. In all the interactions,
participants interacting with SPARC faced fewer fail-
ures during the training of the robot than those inter-
acting with IRL (Friedman test between participants
for the first three sessions: χ2 = 47.8, p < .001- next
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Figure 5: Comparison of the number of inputs used
during the teaching phases.

three sessions: χ2 = 41.8, p < .001 - within par-
ticipants in group 1: χ2 = 56.6, p < .001 - group
2: χ2 = 20.7, p < .001 - all pairwise comparison:
p < .002).
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Figure 6: Comparison of the number of failure states
reached during the teaching process. Due to the ability
to stop the robot from executing a suggested action,
there are fewer failure states when using SPARC.

5.1.5 Workload

The average workload felt by participants after each
interaction with a system is shown in Figure 7. As
the workload data is normally distributed, a student t-
test has been used. Participants interacting with IRL
first reported an average workload of 12.9 (SD=2.33),
with SPARC first this was 8.95 (SD=3.02). With
SPARC after having interacted with IRL the reported
workload was 7.44 (SD=3.33) and with IRL after
SPARC it was 13.9 (SD=2.85). We found a signifi-
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cant difference between the reported workload when
interacting with IRL or SPARC regardless of the or-
der of interaction. This was also observed between
participants (interaction with system 1, independent
t-test: t(38) = 4.63, p < .001 - system 2, independent
t-test: t(38) = −6.5, p < .001 - Group 1, paired t-
test: t(19) = 9.82, p < .001 - Group 2, paired t-test:
t(19) = −6.8, p < .001). Regardless of the interaction
order, participants rated SPARC as having a lower
workload than IRL.
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Figure 7: Comparison of the workload experienced by
participants. SPARC was perceived as having a lower
workload. Results being normal, student t-test has
been used for the comparisons.

5.1.6 Validation of the hypothesis

The objective data (performance, teaching time, num-
ber of inputs and number of failures) show that despite
spending a shorter time interacting with SPARC and
using less inputs, participants reached a higher per-
formance than with IRL whilst facing fewer failures
during the teaching. Additionally, when interacting
with SPARC, participants’ time required to teach the
robot decreased with successive sessions, without af-
fecting the performance. This indicates that after the
first session, participants understood the interaction
mechanism behind SPARC and consistently managed
to achieve a high performance whilst requiring less
time to teach the robot the task. On the other hand,
when interacting with IRL, participants’ performance
remains low over the session, and their teaching time
decreases between session 1 and 2 but not between

session 2 and 3. This might be due to a loss of mo-
tivation after session 1 where often participants did
not succeed to teach the robot, reducing the desire to
further interact in successive sessions.

The results suggest that teaching the robot using
SPARC allows the robot to achieve a higher perfor-
mance than with IRL, in a shorter time, without re-
quiring more inputs, while making fewer errors when
teaching. These objective results are also supported
by subjective measures: the workload on the teacher
is lower when using SPARC than when using IRL.
For these reasons, H1 ( ‘Compared to IRL, SPARC
can lead to higher performance, whilst being faster,
requiring fewer inputs and less mental effort from the
teacher and minimising the number of errors during
the teaching when used by non-experts.’) is sup-
ported.

5.2 Safety with experts

To evaluate the safety offered by SPARC and IRL,
an expert (one of the authors) interacted five times
with each systems. In both cases, the expert followed
a strictly optimal strategy. This shows the expected
behaviours in optimal conditions, the best metrics
achievable. Results of the interactions are presented
in Table 2. In both cases, the expert successfully
taught the robot (as indicated by a performance of
6), which indicates that both systems can be used
to teach a robot an action policy. However the time
required to teach the robot with IRL is significantly
higher than with SPARC.

Additionally, when using IRL, even an expert can-
not prevent the robot from reaching failure states
during the training due to the lack of control over the
robot’s action. This is prevented when interacting
with SPARC, due to the full control and clear com-
munication, the teacher can ensure that only desired
actions are executed. So with sufficient knowledge,
an expert can teach the robot to behave safely with-
out having to explore undesired states. This has real
world applications, as random exploration is often
impossible or undesirable, SPARC offers a way for the
teacher to stop the robot from executing actions with
negative consequences.

Similar results have been observed with the non-
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expert participants: in their last interaction with
SPARC, both groups had a median of 0 failures for
a performance of 6, meaning that more than half of
the participants taught the robot the task without
ever hitting a failure state. These results support H2
(‘SPARC can be used by experts to teach an action
policy safely, quickly and efficiently’).

Table 2: Results of an expert interacting 5 times with
each system following an optimal strategy. Both IRL
and SPARC reached a success during all the testing
phase, but the time required to teach SPARC was
significantly shorter, and unlike IRL, not a single
failure was reached during the training with SPARC.
Data following a normal distribution, student t-test
has been used.

IRL
M(SD)

SPARC
M(SD)

t(8) p

Perf. 6 (0) 6 (0) NA NA
Time (mn) 4.5 (0.67) 0.60 (0.03) 13.1 < .001
# of Fail. 3.2 (0.84) 0 (0) 8.55 < .001

5.3 Control

One of the main differences between the two meth-
ods is the way in which the concept of teaching is
approached. With IRL an exploratory individual
learning approach is followed: the robot has freedom
to explore, and it can receive feedback on its actions
and hints about actions to pursue next from a teacher.
This is to some extent inspired by how children are
taught, where the learning process can be more im-
portant than the achieved results. This is supported
by the behaviours observed by Thomaz and Breazeal:
their participants gave motivational rewards to the
robot, just as one would to do to keep children moti-
vated during learning, despite the absence of effect or
use in classical reinforcement learning.

The post-experiment questionnaire included the
open question: ‘which robot did you prefer interact-
ing with and why?’. Almost all the participants (38
out of 40) replied that they preferred interacting with
SPARC. Half of all the participants used vocabulary

related to the control over the robot actions (‘con-
trol’, ‘instruction’, ‘command’, ‘what to do’ or ‘what I
want’) to justify their preferences without these words
being used in the question. Furthermore, multiple
participants reported being frustrated to have only
partial control over the robot’s actions with IRL, they
would have preferred being able to control each action
of the robot.

To the question ‘which interaction was more natu-
ral?’, 10 participants rated IRL as being more natural,
using justifications such as: ‘The robots thinks for
itself’, ‘Some confusion in the [IRL] robot was obvi-
ous making it more natural’, ‘More like real learning’,
‘Because it was hard to control the robot’ or ‘Peo-
ple learn from their mistakes faster’. But despite
acknowledging that IRL is more natural, closer to
human teaching, participants still preferred teaching
using SPARC. This suggests that when humans teach
robots, they are focused on the results of the teach-
ing: can the robot do the new task requested. This
relates to the role of robots, they often interact in
human-centred scenario where they have to complete
a task for their users. And due to the absence of
life-long learning for robots today, it is not worth
investing time and energy to allow the robot to im-
prove its learning process or explore on its own. These
comments from the participants show support for H3
(‘Teachers prefer a method providing more control
over the robot’s actions.’).

6 Discussion

Despite not being originally designed to be used in
combination with Reinforcement Learning, SPARC
does achieve good results. This shows that principles
covered by SPARC (control over the robot’s actions,
communication and evaluation of intentions and auto-
matic execution of proposed actions) are agnostic to
the learning algorithm and promote efficient teaching.
Furthermore, SPARC achieves a higher performance,
in a shorter time and facing less failures than IRL,
whilst requiring a lower workload from the human
teacher (supporting H1). Finally, when used by ex-
perts, SPARC demonstrates that teaching can be safe
and quick: the full control over robot’s action in the
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teacher’s hands ensures that only desired actions will
be executed (validating H2). These results show an in-
teresting feature of teaching; as robots mainly interact
in task oriented, human-centred environments, human
teachers seem to prefer direct approaches focused on
commands rather than letting the robot explore on
its own (partial support for H3).

6.1 Comparison with original Inter-
active Reinforcement Learning
study

Unlike in the original experiments evaluating IRL
(Thomaz and Breazeal, 2008), in the study presented
in this paper most of the participants did not succeed
in teaching the robot the full cake baking sequence
using feedback and guidance. In the Thomaz and
Breazeal (2008) study, the participants were knowl-
edgeable in machine learning (M=3.7, SD=2.3 - range:
1 to 7), but the population in the current study was
drawn from a more general public having little to no
knowledge of machine learning (M=1.8, SD=1.13 -
range: 1 to 5). This can explain why a much larger
number of participants did not achieve success with
IRL in this study whereas Thomaz and Breazeal only
reported 1 participant out of 13 failing the task. In
our study, 12.5% of the participants and the expert
did manage to train the robot using IRL. This seems
to be largely due to participants not consistently re-
warding correct actions, preventing the reinforcement
learning algorithm from learning. This is why implicit
rewards –every action allowed by the teacher is pos-
itively rewarded– tend to work better than explicit
ones. This is consistent with Kaochar et al. (2011)
who note that feedback is not well suited for teaching
an action policy from scratch, but better for fine tun-
ing. For teaching the basis of the action policy, they
recommend using demonstrations, the method used
by SPARC.

6.2 Advantages and limitations of
SPARC

In the SPARC implementation for this study, SPARC
reproduces actions selected by the teacher. So one can

argue that no learning algorithm is required, instead
the actions could just be blindly reproduced by the
robot. However SPARC combined with reinforcement
learning does provide advantages: due to the Q-Table,
all the loops in the demonstration are removed when
the robot interacts on its own and it provides a way
to deal with variations in teaching. It also allows the
robot to continue from any state in the trajectory.
And finally, due to the suggestion/correction mech-
anism, the teacher can leave the robot to act on its
own as long as it attempts correct actions, and the
human to intervene only when the robot is about to
execute an incorrect action.

Over the 79 successful trials using SPARC, partici-
pants used 47 different strategies to teach the robot
the task of baking a cake. This shows how SPARC, as
a single control mechanism, allows for different action
policies to be learnt depending on the person teaching
the robot. With SPARC the robot can adapt its be-
haviour to the human it is interacting with, profiling
the user to find the desired way of behaving.

However SPARC also has limitations in the current
implementation, related to the quality of the human
supervised guidance. If the teacher allows an action
to be executed by mistake (through inattention or by
not responding in time), this action will be reinforced
and will have to be corrected later on. This might
lead to loops when successive actions are cancelling
each other (such as move left, then right). In that
case, the teacher has to step in and manually guide
the robot to break this cycle. Furthermore, due to
the automatic execution of actions, the teacher has
to be attentive at all times and ready to step in when
a wrong action is suggested by the robot.

In this version, SPARC has been applied to a sce-
nario where a clear strategy with optimal actions is
present. The interaction also takes place in a vir-
tual environment with a discrete time. Real HRI are
stochastic, happen in real time and often there is no
clear strategy known in advance. However, we argue
that human experts in the application domain can
know what type of actions should be executed when,
and which features of the environment they used for
their decision. As this knowledge can not be avail-
able to the robot’s designers, robots should be able to
learn from a domain user in an interactive fashion. In
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the current implementation, SPARC mainly receives
inputs from a teacher at predefined discrete times and
still does not use the human knowledge to it’s fullest:
the learning algorithm is still simple and with limited
inputs, but as described in Section 6.4, we are working
on improving SPARC to suit real-world HRI.

Nevertheless, we argue that SPARC allows for easy
and safe teaching due to the presence and control by
the teacher. And the suggestion/correction mecha-
nism with automatic execution of actions allows for a
smooth teaching process where the workload on the
teacher can decrease over time as shown in Senft et al.
(2015b). The workload of the teacher when starting
is relatively high, when the robot has no information
on which actions to take yet, and decreases over time
requiring only limited intervention by the teacher.

6.3 Recommendations for designing
interactive machine learning for
human-robot interactions

From observing the participants interacting with both
systems, we derived four recommendations for future
designs of interactive learning robot. Although the
study here used a simulated robot, we believe these to
be also relevant for real-world, physical installations.

6.3.1 Clarity of the interface

Algorithms used in machine learning often need pre-
cisely specified inputs and outputs and require an in-
ternal representation of the world and policies. These
variables are often not accessible to a non expert: the
weights of a neural network or the values in a Q-table
are not easily interpreted, if at all. The inner work-
ings of the machine learning algorithms are opaque,
and people only have access to input and output of
the black box that is machine learning. As such,
care needs to go into making the input and output
intuitive and readable. For example, in this study
(following Thomaz and Breazeal’s original study), the
communication between the robot and the teacher
occurred through the environment: using clicks on ob-
jects rather than buttons on a graphical user interface.
This design decision has important consequences as
participants first have to familiarise themselves with

the interface: how to interpret the robot’s behaviour,
what actions are available for each state and what is
the exact impact of the actions? This lack of clarity
leads to a high number of failures and high teach-
ing time during the first session in our study. So we
argue that to avoid this precarious discovery phase
for the teachers, roboticists have to design interfaces
taking into account results from the Human Factors
community as advocated by Adams (2002).

6.3.2 Limits of human adaptability

Human-Robot Interaction today is facilitated by re-
lying on people adapting to the interaction, often
making use of anthropomorphisation (Z lotowski et al.,
2015). Roboticists use people’s imagination and cre-
ativity to fill the gaps in the robot’s behaviour. How-
ever, human adaptivity has its limits: in our study,
often participants adopted one particular way of in-
teracting with the system and they hold on to it for
a large part of the interaction. For example, partic-
ipants clicked on an object requiring two actions to
interact with, assuming that the robot had planning
capabilities which it did not. Or when the robot was
blocked in some cycles (due to constant negative re-
ward in IRL or due to a loop created and not stopped
with SPARC), participants kept on trying the same
action to break the loop, without really exploring
alternatives. For these reasons, if robots are to be
used with a naive operator, they need a mechanism
to detect these ‘incorrect’ uses and either adapt to
these suboptimal human inputs or they need to inform
the user that this type of input is not supported and
clarify what human behaviour is appropriate instead.

6.3.3 Importance of keeping the human in
the learning loop

Other methods have been used to provide a robot
with an action policy, for example Liu et al. (2016)
argue that instead of having a human teach the robot,
interactive behaviours can be extracted from observ-
ing human experts interacting and by using big data
machine learning techniques on these observations.
This approach has shown some promise (Liu et al.,
2014), but we argue that an action policy for human-

14



robot interaction should be able to be modified online
by a human. Furthermore, the presence of a human
in the loop can allow the machine learning to deal
with sensor errors or imperfect action policies. An
expert supervising the robot should also be able to
prevent the execution of specific actions or force the
execution of others. This was one of the important
points we considered when proposing SPARC: there is
no distinction between a teaching and a testing phase,
they are merged into a single phase. The teacher can
correct the robot when needed and let it act when it
behaves correctly. Participants used this feature of
SPARC in this study: many participants corrected
SPARC only when required rather than forcing every
action, 37.5% of the participants even let the robot
complete the task without giving a single command
before starting the test to be sure that the robot is
ready. So SPARC has been used as a tool to provide
online learning to a robot whilst keeping the teacher
in control, but reducing the need of intervention over
time.

6.3.4 Keeping people in control

Most of the scenario where a robot has to learn how to
interact with humans are human-centred: the robot
has to complete a task to help a human (such as in
socially assistive robotics). In these scenarios, the
goal of the learning is to ensure that the robot can
complete the task assigned to it, not to provide the
robot with tools to learn more efficiently in further
interactions. Similarly, participants in our study did
not desire to have the robot exploring on its own and
learn from its experience, they wanted to be able to
direct the robot. Furthermore, a lack of control over
the robot’s actions can lead to frustration and loss
of motivation for the teacher. This human control
is especially critical when the robot is designed to
interact with other people as undesired actions can
have a dramatic impact, such as causing harm for the
interaction partners or bystanders. For these reasons,
we argue that when designing an interactively learning
robot for Human-Robot Interaction in human-centred
scenario, it is critical to keep the human in control.

However, a drawback of Interactive Machine Learn-
ing is that the human can prevent the algorithm from

converging if feedback is not provided correctly. This
was also a limitation in the original study (Thomaz
and Breazeal, 2008), as participants can break a con-
verged policy or not create the gradient of Q-Values
required for convergence with Q-Learning.

It should be noted that this control does not mean
that the robot cannot learn and become autonomous.
We take stronger inspiration from Learning from
Demonstration, using human input more efficiently to
guide the learning, speeding it up and making it safer,
especially in the early stages of the learning. The
human is in control mainly when the robot is prone to
making exploratory mistakes, and can prevent them
before they occur, but once the action policy is ap-
propriate enough, the teacher can leave the robot to
learn mostly on its own and refine its action policy
with limited supervision from a human.

6.4 Future work

We are currently working on a new experiment in
which people interacting with a robot in a continuous
time and non-deterministic environment. In this ex-
periment, the teacher is able to send commands to
the robot, provide rewards and identify features in
the environment they consider important. The learn-
ing algorithm will take these inputs into account and
combine them with interaction metrics to learn. An
approach could be to use the actor-critic paradigm:
the critic being an objective evaluation of the action
results (environmental rewards), and the actor us-
ing results from the critic and teacher’s guidance to
update the action policy.

7 Conclusion

SPARC has been proposed to address the problem
of providing a robot with adaptive behaviour whilst
guaranteeing that the behaviour expressed by the
robot remains suitable for task at hand. To achieve
this, a suggestion and correction system has been used
to allow a teacher to be in control of the robot at all
times whilst not having to manually select every single
action. This approach has been combined with rein-
forcement learning and was compared to IRL, where

15



the operator manually provides feedback and guid-
ance to the learning agent. The results from a user
study involving 40 participants show that SPARC can
be used to let naive participants successfully teach an
action policy. While doing so SPARC requires less
teaching time and limits undesired actions during the
teaching phase when compared to IRL. Additionally,
the workload on users was lower when using SPARC.
Based on these results and other observations, we
propose four guidelines to design interactive learning
robots: (1) the interface to control the robot has to
be intuitive, (2) the limits of human adaptability have
to be taken into account (robots should detect dead-
locks in human behaviours and adapt their way to
be controlled or inform the human about it), (3) the
operator should be kept in the learning loop and (4)
teachers should stay in control of the robot behaviour
when interacting in sensitive environment. The first
two points can be seen to apply to all robot teaching
methods, and should be addressed at the time of de-
signing the interface. By definition, SPARC aims to
address these last two points: maintaining the per-
formance of an adaptive system by remaining under
progressively decreasing supervision.
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