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Highlights

• A novel unsupervised approach to record linkage has been proposed

• The approach combines ensemble learning and automatic self learning

• An ensemble of diverse self learning models is generated through applica-

tion of different string similarity metrics schemes

• Application of ensemble learning alleviates the problem of having to select

the most suitable similarity metric scheme and improves the performance

of an individual self learning model

• The proposed method obtained comparable results with the supervised

methods
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Abstract

Record linkage is a process of identifying records that refer to the same real-

world entity. Many existing approaches to record linkage apply supervised ma-

chine learning techniques to generate a classification model that classifies a pair

of records as either match or non-match. The main requirement of such an

approach is a labelled training dataset. In many real-world applications no

labelled dataset is available hence manual labelling is required to create a suffi-

ciently sized training dataset for a supervised machine learning algorithm. Semi-

supervised machine learning techniques, such as self-learning or active learning,

which require only a small manually labelled training dataset have been applied

to record linkage. These techniques reduce the requirement on the manual la-

belling of the training dataset. However, they have yet to achieve a level of

accuracy similar to that of supervised learning techniques. In this paper we

propose a new approach to unsupervised record linkage based on a combination

of ensemble learning and enhanced automatic self-learning. In the proposed

approach an ensemble of automatic self-learning models is generated with dif-

ferent similarity measure schemes. In order to further improve the automatic

self-learning process we incorporate field weighting into the automatic seed selec-

tion for each of the self-learning models. We propose an unsupervised diversity

measure to ensure that there is high diversity among the selected self-learning

models. Finally, we propose to use the contribution ratios of self-learning mod-
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els to remove those with poor accuracy from the ensemble. We have evaluated

our approach on 4 publicly available datasets which are commonly used in the

record linkage community. Our experimental results show that our proposed

approach has advantages over the state-of-the-art semi-supervised and unsuper-

vised record linkage techniques. In 3 out of 4 datasets it also achieves comparable

results to those of the supervised approaches.

Keywords: Unsupervised record linkage, data matching, classification,

ensemble learning

1. Introduction

Record linkage (RL), also referred to as data matching or entity resolution,

is a process of finding records that correspond to the same entity from one or

more data source [1]. Given two data sources, each pair of records from the

data sources can be classified into one of two classes: match and non-match.

Table 1 shows a simple example of RL. The table contains records from two

bibliographic data sources (DBLP, ACM digital library). The aim is to iden-

tify those pairs of records referring to the same publications, which in this case

are (ACM1, DB1) and (ACM2, DB2). Any other pairs of records should be

identified as non-match. RL has been widely applied in data management,

data warehousing, business intelligence, historical data collection and medical

research [2]. If records have error-free and unique identifiers, such as social se-

curity numbers, RL is a straightforward process that can be easily performed by

the standard database join operation. In many cases, however, such a unique

identifier does not exist and the linkage process needs to be performed by match-

ing the corresponding fields of two records. A lot of efforts have been made to

develop techniques for RL [3]. Unfortunately, in many cases the same data can

be represented in different ways in different data sources due to factors such

as different conventions (e.g., International Conference on Management of Data

versus SIGMOD Conference). Furthermore, data quality is often affected by

typographical errors, missing and out of date values. As a consequence, it is
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Table 1: An Example of RL.

ID Authors Title Venue

ACM1 A compact B-tree Peter Bumbulis,

Ivan T. Bowman

International Conference

on Management of Data

ACM2 A theory of redo re-

covery

David Lomet, Mark

Tuttle

International Conference

on Management of Data

DB1 A compact B-tree Ivan T. Bowman,

Peter Bumbulis

SIGMOD Conference

DB2 A theory of redo re-

covery

Mark R. Tuttle,

David B. Lomet

SIGMOD Conference

not always the case that records referring to the same entity have the same

values on the corresponding fields. Therefore, sophisticated RL techniques are

required in order to identify records that refer to the same real-world entity.

Existing RL methods rely strongly on use of similarity measure, in which

selection of such measures is a key issue [3]. There are many of available simi-

larity measures, e.g., Edit Distance, Jaro and Smith-Waterman [3]. Depending

on the types of data in RL, similarity measures have different levels of accuracy

[4].

Linking two large datasets could be computationally expensive. If we need to

link two datasets, A and B, then potentially we should compare each record from

A with each record from B. Hence, the total number of comparisons would be

|A|×|B|. To reduce the potentially large number of record comparisons different

forms of indexing and filtering, collectively referred to as blocking [5], [6], are

deployed in RL systems. The idea of blocking is to use a blocking function to

divide records into a set of blocks. The candidate pairs of records for linkage are

then selected from records in the same block only. The existing approaches to

RL can be broadly divided into two categories. The first category of approaches

rely on applying generic rules and similarity measures to identify those pairs

of records that are similar enough to be matched [7], [8]. The second category
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of approaches rely on a training dataset to train a classification model using

appropriate statistical and machine learning techniques. In these techniques,

each pair of records is represented as a similarity vector with N elements. The

similarity vector represents a set of N numeric similarities, each calculated with

a similarity measure on the corresponding pair of field values of the two records.

The task of RL is then considered as a similarity vector classification problem

[9], i.e., whether a similarity vector is classified as match or non-match, for a

pair of matching or non-matching records respectively.

The main limitation of the second category of approaches is that they require

a labelled training dataset. In many real world situations no labelled dataset is

available. In addition, given the sensitivity of the data in RL, very often it is

not possible to manually label the records [10]. Therefore, there is a big need

for fully unsupervised RL models. To meet this challenge we propose a new

approach to RL, which does not require any labelled dataset. The proposed ap-

proach combines ensemble learning [11] and automatic self-learning techniques

[12]. With self-learning [13] a supervised learning algorithm is trained on a

small set of labelled records (seeds) to generate an initial classification model.

The initial classifier is then applied to unlabelled records in order to gener-

ate more labelled records for the supervised learning algorithm. Only those

records that the classifier is most certain about are labelled and added into

the training dataset. The updated training dataset is further used to generate

another classifier. This process iterates until all unlabelled records have been

labelled with the final classifier generated. When there is no labelled record

readily available for training the initial classifier, a small set of records needs to

be selected and labelled automatically (automatic seed selection). It has been

shown that self-learning can outperform other unsupervised algorithms, such as

Expectation-Maximization [13]. Self-learning with automatic seed selection has

been already investigated in RL and promising results have been achieved [12].

The goal of ensemble learning [11], [14] is to train and combine a number of

different classification models to obtain better performance than any of those

individual classifiers. A combination of multiple classification models is refereed
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to as a classifier ensemble. Classification models included in an ensemble are

commonly refereed to as base classifiers (BCs). Ensemble learning has been

shown to improve the performance of classification algorithms, such as SVM

[15], Decision Tree [16] and Nearest-Neighbor [17]. The key objective in ensem-

ble learning is to train a set of highly diverse base classifiers. Two classification

models are considered highly diverse if they make mistakes on (misclassify) dif-

ferent groups of instances. It has been shown that combining classifiers with

low diversity does not improve classification accuracy [18]. One approach to

training a collection of diverse classification models is to use a different (ran-

domly selected) subset of the training dataset to train each of the classifiers

(Bagging) [19]. Classifiers trained on different datasets are expected to make

different classification decisions. An alternative is to, instead of randomly sam-

pling from the training dataset, randomly select features, like in the case of

Random Forest [20]. With Random Forest, each of the BC is trained with a

different subset of features. With another technique, referred to as Boosting

[21], the weights of the instances from the training set are dynamically altered

based on the accuracy of the classifier. After a BC is built and added to the

ensemble, all instances are re-weighted: those that have been correctly or incor-

rectly classified lose or gain weights respectively. The modified distribution of

the training dataset is taken under consideration in the training process of the

next BC. Any supervised classification learning algorithm can be applied with

the aforementioned techniques to generate the base classifiers. The goal of all

the ensemble techniques is to construct a multitude of BCs at training time and

output the class that is the mode of their individual predictions at classifica-

tion time. Very often only a subset of BCs is selected in order to increase the

diversity of the ensemble. A common practice is to measure diversity among a

group of BCs and select a group of classifiers with the highest diversity to form

an ensemble [22]. A number of methods for measuring the diversity among the

BCs in an ensemble have been proposed, including pairwise and non-pairwise

diversity measures [23]. Pairwise diversity measures are defined for a pair of

BCs and the diversity of the ensemble is obtained by averaging all the pairwise
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diversity values. Non-pairwise diversity measures are defined on the ensemble

as a whole.

Our proposed approach incorporates ensemble learning and self-learning

techniques into RL. Self-learning with automatic seed selection addresses the

problem of lack of labelled datasets. However, it has yet to achieve a level of

accuracy similar to that of supervised learning techniques [12]. Another issue

with the unsupervised models for RL is related to the selection of an appropriate

similarity measure used for generating similarity vectors. The performance of

the RL algorithms relies strongly on the selected similarity measure [4]. It is,

however, difficult to select an appropriate similarity measure without labelled

datasets [24]. With our proposed approach we generate an ensemble of diverse

self-learning models by applying different combinations of similarity measure.

By using different combinations of similarity measures we can generate differ-

ent sets of similarity vectors that can be used to generate different self-learning

models. To ensure high diversity among the self-learning models we apply the

proposed seed Q-statistic diversity measure. We also propose to use Contribu-

tion Ratios of BCs to eliminate those with very poor accuracy from the final

ensemble.

In this paper we make the following contributions: (1) We propose a frame-

work for unsupervised RL, which incorporates ensemble learning and self-learning

into RL. (2) We improve the existing automatic self-learning technique for RL

[12] by incorporating unsupervised field weighting into the process of automatic

selection of seeds. (3) We propose an ensemble learning method based on the

selection of different similarity measure schemes. This alleviates the problem

of having to select the most suitable similarity measure scheme and improves

the performance of an individual classifier. (3) We propose a new unsupervised

diversity measure, which ensures high diversity among the self-learning models.

(4) We propose to use the contribution ratios of BCs to eliminate the weakest

BCs from the final ensemble.
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2. Related Work

Given the importance and challenges of RL, there has been strong interest

in the last decade and significant progress has been made in this field [25][26].

In order to address the problem of lack of labelled data various semi-supervised

learning techniques have been proposed for RL over the past few years. In

semi-supervised learning only a small set of labelled instances and a large set

of unlabelled instances are used in the training process. A popular approach

to semi-supervised RL is referred to as active learning (AL) [27]. AL identifies

highly informative instances for manual labelling that are later used for training

classification models. In [28] the most informative instances are selected for

manual labelling based on the classifications by a group of classifiers. The

instances that are not assigned to the same class by majority of the classifiers

are selected for manual labelling. In [29] a set of similarity vectors are ranked

and those in the middle (fuzzy) region are selected for manual labelling. The

labelled instances are further used to train a classification model.

An interactive training model based on AL is proposed in [30]. In this

approach all the record pairs are clustered by their similarity vectors. A number

of similarity vectors from each cluster are selected and their corresponding pairs

of records are selected for manual labelling. If all selected pairs of records from

a cluster are labelled as match, then the remaining similarity vectors from the

cluster are automatically labelled as match and added to the training dataset.

Similarly, if all selected pairs of records from a cluster are labelled as non-match,

the remaining similarity vectors in the cluster are automatically labelled as non-

match and included in the training dataset. If the selected pairs of records from

a cluster belong to different classes then the cluster is further split into sub-

clusters. The process is repeated recursively until all the pairs of records are

added to the training dataset.

A different semi-supervised learning based approach to RL is proposed in

[31]. The system takes as input a small set of training examples, referred to as

seeds, to initially train the classification model. The initial classification model
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is then applied to classify the unseen data. A small percentage of the most con-

fidently classified record pairs are selected to iteratively train the classification

model. The process is repeated for a number of iterations or until all the unseen

data are labelled. To maximize the performance of the model on unseen data an

ensemble technique referred to as boosting is employed together with weighted

Majority Voting. Random Forest and Multilayer Perceptrons are applied as the

BCs in the ensemble. The proposed system requires a number of parameters to

be specified, including the maximum number of iterations, the percentages of

the most confident matching and non-matching examples to be selected in each

iteration.

Semi-supervised learning significantly reduces the number of manually la-

belled examples required for generating a classification model. However, it still

requires a certain amount of human input in the training process. In [9] two

unsupervised RL methods were proposed. The first one, referred to as Clus-

tering Record Linkage Model, uses k-means clustering to divide all similarity

vectors into three clusters. Depending on the values in the similarity vectors,

each cluster is labelled with one of the three matching status, match, non-match

and possibly match. The similarity vectors in the first two clusters were auto-

matically labelled, while the third cluster required manual labelling. With the

second method, referred to as Hybrid Record Linkage Model, the RL process

consists of two steps. First, clustering is used to predict the matching status

of a small set of similarity vectors. In the second step, the labelled similarity

vectors are used as training set for a supervised learning algorithm.

In [12] an unsupervised approach to RL based on automatic self-learning

is proposed. In this work an approach to automatic seed selection referred to

as nearest based was applied. With the nearest based approach, all similarity

vectors are sorted by their distances (e.g., Manhattan or Euclidean distance)

from the origin [0, 0, . . . ] and from the vector with all similarities equal to 1

([1, 1, . . . ]). Following this, the respective nearest vectors are selected as match

and non-match seeds. The numbers of match and non-match seeds to be selected

are taken as input parameters to the method. The authors evaluated three sizes
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of the non-match seeds, namely 1%, 5% and 10% of the entire dataset. Following

this, an appropriate ratio of similarity vectors was selected as match seeds. After

selecting seeds, a classification model is trained incrementally as with the self-

learning technique. In the same work it was observed that this approach did

not provide good quality match seeds when the dataset contained only a small

number of matching records or there were some fields with a large proportion

of abbreviations.

In more recent work unsupervised techniques for RL based on maximizing

the value of pseudo F -measure [32] were proposed [32], [33]. Pseudo F -measure

is formulated based on the assumption that while different records often repre-

sent the same entity in different repositories, distinct record within one dataset

is expected to denote distinct entity. It can be calculated using sets of unlabelled

records. The idea is to find the decision rule for record matching which maxi-

mizes the value of the objective function (pseudo F -measure) applying genetic

programming [32] or a hierarchical grid search [33]. The RL rules are formu-

lated by manipulating weights and similarity measures for pairs of attributes,

modifying the similarity threshold value and changing the aggregation function

for individual similarities. To the best of our knowledge, the approaches based

on the application of the pseudo F -measure are the state-of-the-art in the area

of unsupervised RL.

It can be noted that, apart from the method presented in [12], [32], [33],

in each of the aforementioned methods some level of human input is required.

These methods are not applicable in many real-world situations. In particular

for privacy preserving RL, where the data is private and confidential [10], it

may be impossible to label the data manually. The method proposed in [12]

does not require any labelled data, however, it performs significantly worse than

supervised methods. At the same time a recent study found that on real data

the pseudo F -measure is often negatively correlated with the true F -measure

[33], which raises concerns about whether currently defined pseudo F -measure

can be successfully applied to predict the real accuracy.
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3. Preliminary and Problem Formulation

Given two sets of records R1 and R2, RL is defined as a task of identifying

pairs of records (r1, r2) ∈ R1×R2 that refer to the same entity (e.g., a person).

The decision whether a pair of records represent a match is based on the simi-

larity between the two records on each of their fields, which can be determined

with a similarity measure.

Definition 3.1. (Similarity measure) Given two records r1 and r2 represented

by N fields f1, . . . , fN , a similarity measure m quantifies similarity between the

two records on one of the fields. It returns a numeric value ranging between 0

and 1, referred to as a similarity value. A similarity measure is represented as

m(r1.fi, r2.fi) where r1.fi and r2.fi represent the values of field fi in records r1

and r2 respectively.

Value 1 indicates that the pair of records have the exact same values on a filed

according to the similarity measure. Value 0 indicates that there is no similarity

between the filed values for the two records. An example similarity measure

could be Edit distance which for given two strings (e.g., surnames) determines

the minimum number of operations that are required to transform one string

into the other. For a pair or records represented by N fields a combination of

N different similarity measure can be applied to determine similarity between

the records on each of the N fields.

Definition 3.2. (Similarity measure scheme). Given two records r1 and r2

represented by N fields f1, . . . , fN , a similarity measure scheme is defined as

Sc = m1, . . . ,mN , where mi represents a similarity measure used to measure

the similarity between r1 and r2 on field fi, for i = 1, . . . , N .

Following the application of a similarity measure scheme, for each pair of records

with N fields we can construct a N -dimensional vector representing similarity

values between the records on the fields.

Definition 3.3. (Similarity vector). Given two records r1 and r2 represented

by N fields f1, . . . , fN and a similarity measure scheme Sc = m1, . . . ,mN , a
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similarity vector for r1 and r2 is defined as:

−−−−−−−−→
(Sc(r1, r2)) =< m1(r1.f1, r2.f1), . . . ,mN (r1.fN , r2.fN ) > (1)

The aim of RL process is to classify each similarity vector into one of two classes:

matches (M) and non-matches (U). The goal of our work is to develop a learning

algorithm, which, given two sets of records R1 and R2 and a set of available

similarity measures M , can be used to construct a model for classifying a pair

of records as match or non-match. The classification model should be trained

without requiring any manually labelled data as input.

The general idea of our proposed approach is to generate an ensemble of

self-learning classifiers using different similarity measure schemes. Self-learning

is an approach to semi-supervised learning where small amount of labelled data

and large amount of unlabelled data are used for training.

Definition 3.4. (Self-learning). Given training dataset L = {xi, yi}li=1 (ref-

ereed to as seeds) and unlabelled dataset U = {xj}l+u
j=l+1 (usually L � U), the

self-learning process aims to train a classifier h on L initially and then use the

classifier to label all unlabelled data in U. Following this, the most confidently

classified unlabelled examples are selected as new training examples and moved

into L. The process is repeated until a stopping condition is met.

One may notice a major difference between self-learning and the aforemen-

tioned active learning. Instead of choosing the most confident examples to be

labelled by itself, active learning actively selects the most problematic examples

from the unlabelled dataset and asks these examples to be manually labelled.

With the proposed approach a number of different similarity measure schemes

are selected. Each of the selected similarity measure schemes is used to generate

a different set of similarity vectors. Each set of similarity vectors is then used

to generate a different self-learning classifier. To a certain extent, our ensemble

method is based on a similar principle to Bagging. With Bagging, each BC is

trained with different (randomly selected) subset of the training dataset. In-

stead of randomly selecting samples for the training set, we construct different

12
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training datasets using a set of different similarity measure schemes. As it is

the case in Bagging, with the proposed approach all BCs are trained with the

same learning algorithm but with different training datasets.

4. Proposed Approach

Figure 1 shows our proposed RL framework. Two sets of unlabelled records

are provided as input. The RL process is performed in six steps. As with

a typical RL approach, blocking is the first step and it can be thought of as

a pre-processing step. We investigated two techniques, a standard blocking

method referred to as canopy clustering [5] and a recently proposed unsupervised

blocking scheme learner for blocking [34]. Better reduction ratio of the record

pairs was obtain with the latter technique therefore we used it in our paper. To

our best knowledge, this is the state-of-the-art method for unsupervised blocking

in RL. It is relatively easy to implement and performs well empirically. The

blocking method is divided into two phases. First, a weakly labelled dataset is

generated automatically. In the second phase the problem of learning a blocking

scheme from the weakly labelled dataset is cast as a Fisher feature selection

problem [35].

The second step of the RL process is the selection of similarity measure

schemes. In this step we search the whole space of all possible similarity measure

schemes in order to select the most diverse subset of it. In the third step (seed

selection with field weighting) each of the selected similarity measure schemes

is first used to generate a set of similarity vectors. Then the automatic seed

selection process is performed on each set of similarity vectors. As the output

of this step different sets of seeds are selected. In the fourth step (Selecting

the most diverse sets of seeds), the diversity between sets of seeds is measured

using the proposed technique referred to as Seed Q Statistics. Only those most

diverse sets of seeds are selected. In the fifth step the self-learning algorithm

is applied with each of the selected sets of seeds. In the last step the proposed

contribution ratios of BCs are used to eliminate the weakest BCs from the final
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ensemble. Finally, for each pair of records the mode of the predictions of the

selected self-learning models is provided as the final prediction. Each of the

aforementioned steps is described in detail in the following sections.

Generating pool of 

similarity schemes 
Similarity metrics: 

𝐷 = 𝑑1, … , 𝑑𝑀  

Generating similarity 

vectors with each 

similarity scheme  

Selecting seeds for 

each set of similarity 

vectors 

Final Classification 

Selecting sets of 

seeds with the 

highest diversity 

Self learning with 

the selected sets of 

seeds 

Selecting the final 

ensemble using the 

Contribution Ratio 

  

  Records A 

Records B 

Blocking 

  Record Pairs 

Step 1: Blocking Step 2: Similarity schemes selection 

Step 3: Seed selection with fields weighting Step 4: Selecting diverse set of 
seeds 

Step 5: Self-learning Step 6: Selecting BCs for final ensemble  

Figure 1: RL process with the proposed approach.

4.1. Selecting similarity measure schemes

For a given set of M similarity measures we could construct MN possible

similarity measure schemes of size N , where N is the number of fields. However,

when M and N are large numbers, it would be infeasible to learn all BCs using

each of the possible similarity measure schemes. In addition, the key of ensemble

learning is to combine a set of diverse BCs. We need to select those similarity

measure schemes that produce the most diverse sets of similarity vectors from

the given dataset. We propose a method for selecting such a pool of similarity

measure schemes. We first select a set of similarity measure for each of the

fields. A pool of similarity measure schemes can then be generated, as a cross
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product of the sets of similarity measure selected for each of the fields. In order

to select a set of similarity measure for field f , in which no similarity measure is

too similar to another, we define the similarity between two similarity measure.

Definition 4.1. (Field similarity between records) Given a similarity measure

m and a pair of records r1 and r2, each with N fields, f1, . . . , fN , the field

similarity between r1 and r2 on field fi, for i = 1, 2, . . . , N , is defined as:

m(r1.fi, r2.fi).

Definition 4.2. (Similarity between Similarity Measures) For a given set of

records R and two similarity measures m1 and m2, let
−−−−−−→
m1(R, f) and

−−−−−−→
m2(R, f)

be two vectors with each corresponding pair of elements in
−−−−−−→
m1(R, f)and

−−−−−−→
m2(R, f)

representing the field similarity between each possible pair of records in R on field

f. The similarity between mi and mj on field f is defined as:

simf (mi,mj) = cossim(
−−−−−−→
mi(R, f),

−−−−−−→
mj(R, f)) (2)

Cosine similarity [36] measures the similarity between two vectors of an inner

product space by the cosine of the angle between them. We aim to select a set

of similarity measures for each of the fields, in which no cossim between two

similarity measures is greater than a threshold.

The selection method is described in Algorithm 1. It takes as input a set of

similarity measures, a set of records and parameter p. The parameter indicates

the similarity threshold, i.e., the maximum similarity that two measures selected

for the same field can have. The method selects a subset of similarity measures

V̌f for each field f . The set Vf refers to all the similarity measures provided as

input. In the first step a pair of similarity measures from Vf with the lowest

similarity on f is selected and moved to V̌f (line 3). The remaining of the

process is performed in iterations. First, we remove all similarity measures from

Vf that have similarity on f higher than p with any of the similarity measures in

V̌f (Line 5). Following this, in lines 6-7 we select a similarity measures from Vf

which has the highest similarity on f with any of the measures from V̌f and move

it to V̌f . The process repeats until there is no similarity measures in Vf . In the
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last step, a pool of similarity measure schemes is generated as a cross product

of the similarity measures selected for each of the fields (line 10). The value

of parameter p influences the number of similarity measures selected for each

field and consequently the number of similarity measure schemes selected. The

higher the value of p, the more similarity measure schemes will be generated.

For p = 1, the number of similarity measure schemes will be MN . If the run

time of each similarity measure is bounded above by O(c) then for P pairs of

records represented by N fields the process of generating similarity vectors with

one scheme should take O(N×P×c). With our proposed approach the run time

will be O(s×N ×P × c) where s is the number of selected similarity schemes.

Algorithm 1 Generating a pool of similarity measure schemes

Input: ψ = m1, . . . ,mM : a set of similarity measures, R: a set of records each

with N fields f1, . . . , fN , p ∈ (0, 1): similarity threshold

Output: Č: a set of similarity measures schemes

1: for all f ∈ F do

2: Vf = m1, . . . ,mM , V̌f = ∅
3: Select a pair of similarity measures from Vf with the lowest similarity and

move them to V̌f

4: while Vf 6= ∅ do

5: Remove every m from Vf such that argmaxmi∈V̌f
simf (mi,m) > p

6: Select m ∈ Vf where m = argmaxmj∈Vf
argmaxmi∈V̌f

simf (mi,mj)

7: Move m from Vf to V̌f

8: end while

9: end for

10: return Č = V̌1 × · · · × V̌N

Theorem 4.1. Let ψ be a set of similarity measures and C̈ be a set of all

possible similarity measure schemes generated from ψ for a set of records R.

If Č is a set of similarity measure schemes selected by Algorithm 1, then the
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following is true:

∀Ci∈C̈ ∃Cj∈Č ∀fn∈F simfn(mi
n,m

j
n) ≥ p (3)

where Ci = mi
1, . . . ,m

i
n, Cj = mj

1, . . . ,m
j
n and p is the similarity threshold given

as an input.

Theorem 4.1 claims that the selection method presented in Algorithm 1

generates a pool of similarity measure schemes that covers a space of similarity

measure schemes with the level of similarity equal to p. This means that for

any similarity measure scheme Ci we can find a similarity measure scheme Cj

from the selected pool, such that any corresponding pair of mi and mj from Ci

and Cj have similarity higher than p(sim(Ci, Cj) > p).

Proof. Following Algorithm 1 Č is generated as a cross product Č = V̌1×, . . . ,×V̌N .

Let Ci =< mi
1, . . . ,m

i
N > be a similarity measure scheme selected from C̈. We

show that there exists Cj ∈ Č such that sim(Ci, Cj) > p. We consider the

following two scenarios:

I. Ci ∈ Č then ∀fn∈F simn(mi
n,m

j
n) = 1 > p

II. Ci ∈ Č
Let Cj ∈ Č be as follows:

Cj =< mj
1, . . . ,m

j
N >: mj

n =




mi

n if mi
n ∈ V̌n

argmaxm∈V̌n
simfn if mi

n /∈ V̌n

If mi
n ∈ V̌n then simn(mi

n,m
j
n) = 1 > p. Otherwise we have:

mi
n /∈ V̌n =⇒ ∃m∈V̌n

sim(m,mi
n) > p =⇒ max

m∈V̌n

sim(m,mi
n) > p

Finally we have the following.

∀fn∈F simfn(mi
n,m

j
n) > p
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4.2. Seed selection with field weighting

Each of the selected similarity measure schemes is used to generate a set of

similarity vectors for all the pairs of records produced by the blocking algorithm.

For each vector set, a small group of similarity vectors are automatically labelled

as match and non-match, which will be used as seeds in the self-learning method.

4.2.1. Field weighting

In this paper we propose an improvement to the approach, proposed in [12],

to automatic seed selection for self-learning. In the original approach in [12]

those similarity vectors that are the nearest to the perfect match and perfect

non-match as the seeds.

Definition 4.3. (Perfect Match). A perfect match is a similarity vector, with

each of its elements having a similarity value of 1, that is,

−→
1 =< xi >i=1,...,n,∀i xi = 1 (4)

which indicates that the pair of records represented by the similarity vector has

the same value on each of their corresponding fields.

Definition 4.4. 5 (Perfect Non-Match). A perfect non-match is a similarity

vector, with each of its elements having a similarity value of 0, that is,

−→
0 =< xi >i=1,...,n,∀i xi = 0 (5)

which indicates that the pair of records represented by the similarity vector has

completely different values on each of their corresponding fields.

In our improved approach we still select similarity vectors nearest to the

perfect match and perfect non-match. However, we take into account the dis-

tinguishing power of fields when calculating the distance between a similarity

vector and the perfect match or non-match. It is known that some fields may

be more distinguishing than the others in the RL process [37]. For example,

the field last name is more distinguishing than the field first name given that

more people share the first name than the last name. This is referred to as
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the distinguishing power of a field. We say that a field has high distinguishing

power if the similarity between any pair of records on the field is close to 1 when

the records match and 0 otherwise.

Definition 4.5. (Distinguishing Power of a Field) For a set of similarity vectors

labelled as match (XM ) and non-match (XU ), the distinguishing power of field

fj is defined as:

dpfj =

∑
x∈XM

xj +
∑

x∈XU

(1− xj)

|XM |+ |XU | (6)

where xj represents the value of field j in similarity vector x.

The numerator sums up the distances between each similarity vector from

XM and
−→
0 and each similarity vector from XU and

−→
1 on fj . The dpfj is the

average of such distances among all vectors in XM or XU . It equals to 1 if all

the matches have a similarity value of 1 on fj , and all the non-matches have a

similarity value of 0 on fj . In such a case, field fj has the highest distinguishing

power for the given dataset.

Our intention is to assign a weight to each field in proportion to its distin-

guishing power. The weights are then used for calculating the distance between

a similarity vector and either the perfect match or the perfect non-match in

the seed selection process. Given that our proposed method is fully unsuper-

vised and we do not have any labelled data we are not able to calculate the

distinguishing power of a field as described in Definition 4.5. For this reason

we instead use an unsupervised field weighting method that was proposed for

the k-means clustering algorithm in [38]. We are able to show (Theorem 4.2)

that the weight assigned to a field with this method is in proportion to the

distinguishing power of the field.

The method in [38] first clusters the unlabelled records using the k-means

algorithm. Then, a weight is assigned to each field based on the sum of within

cluster distances of the field. Each of the within cluster distances for a field

represents the difference on this field between the centroid of the cluster and

one of the records in the cluster. The principle is to assign a higher weight to
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a field with a lower sum of the within cluster distances. The weights are then

used in the clustering process in the next iterations. The process iterates until

there is no change to any of the weights. It has been shown in [38] that the

weights of fields reflect their levels of significance.

In our work we follow the same principle as in [38] with two specific clusters

representing two sets of seeds, one containing the match seeds (XM with the

perfect match as the centroid) and another containing the non-match seeds

(XU with the perfect non-match as the centroid). After the two sets of seeds

are selected the weights of fields are calculated as follows:

ωj =





1
|{fi:Di=0}| ,if Dj = 0,

0 ,if Dj 6= 0 ∧ |{fi6=j : Di = 0}| 6= 0,

1
n∑

k=1

(Dj/Dk)
,otherwise.

(7)

The Dj is the sum of all the distances between every vector in XM and the

perfect match, and every vector in XU and the perfect non-match on field fj

for j = 1 . . . n. It can be seen from Definition 4.5 that, if Dj = 0 then the

distinguishing power of fj is 1. Therefore, if there are any fields with Dj = 0

(condition 1) they are assigned with equal weights and the remaining fields

have a weight of 0 (condition 2) and are not taken under consideration while

calculating the final similarity. If there is no field with Dj = 0 then all the fields

are assigned with weights calculated using formula in condition 3. The weights

total to 1 (Theorem 4.3).

Theorem 4.2 states that the weight of a field calculated with Formula 7 is

proportional to the distinguishing power of the field.

Theorem 4.2. For a set of similarity vectors, each labelled as either match

(XM ) or non-match (XU ), for any two fields fi and fj we have:

ωi ≤ ωj ⇔ dpfi < dpfj (8)

Proof. First we show that the theorem holds if |{fi : Di = 0}| 6= 0. According

to the Formula 7, if there is one or more field with Di = 0 then weight of any
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field fj is equal to either 0 (if Dj 6= 0) or 1
|{fi:Di=0}| (if Dj = 0). Obviously 0 <

1
|{fi:Di=0}| and according to Definition 4.5, fields with Dj = 0 have the highest

distinguishing power. Therefore: dpfj :Dj 6=0 < dpfi:Di=0 so the theorem holds.

Below we demonstrate that the theorem also holds when |{fi : Di = 0}| = 0.

ωi < ωj ⇒
1

n∑
k=1

Di/Dk

<
1

n∑
k=1

Dj/Dk

⇒
n∑

k=1

Di/Dk >
n∑

k=1

Dj/Dk ⇒

Di > Dj ⇒
∑

x∈XM

(1− xi) +
∑

x∈XU

xi >
∑

x∈XM

(1− xj) +
∑

x∈XU

xj ⇒

∑

x∈XM

1−
∑

x∈XM

xi +
∑

x∈XU

xi >
∑

x∈XM

1−
∑

x∈XM

xj +
∑

x∈XU

xj ⇒

−
∑

x∈XM

xi +
∑

x∈XU

xi > −
∑

x∈XM

xj +
∑

x∈XU

xj ⇒

−
∑

x∈XU

1−
∑

x∈XM

xi +
∑

x∈XU

xi > −
∑

x∈XU

1−
∑

x∈XM

xj +
∑

x∈XU

xj ⇒

∑

x∈XU

1 +
∑

x∈XM

xi −
∑

x∈XU

xi <
∑

x∈XU

1 +
∑

x∈XM

xj −
∑

x∈XU

xj ⇒

∑

x∈XM

xi −
∑

x∈XU

(1− xi) <
∑

x∈XM

xj −
∑

x∈XU

(1− xj)⇒

∑
x∈XM

xi −
∑

x∈XU

(1− xi)

|XM ∪XU | <

∑
x∈XM

xj −
∑

x∈XU

(1− xj)

|XM ∪XU | ⇒ dpfi < dpfj

The implication dpfi < dpfj → ωi < ωj can be proved accordingly.

Theorem 4.3.
∑n

i=0 ωi = 1.

Proof. If there is at least one field fi such as Di = 0 then the weights of all the

files with Di = 0 are the same and add up to 1 so the theorem holds. Let′s

assume that there are N fields f1, . . . , fN and ∀j=1...,NDj 6= 0. According to

Formula 7 we have:

ωj =
1

N∑
k=1

Dj/Dk

=
1

Dj/D1 + · · ·+Dj/DN
(9)
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Denoting D1×· · ·×Di−1×Di+1×· · ·×DN by D̈−i and bringing all the fractions

to the common denominator we get:

1
Dj

D1
+ · · ·+ Dj

DN

=

∏N
i=1Di∏N

i=1Di +Dj ×
∑

i=1...n,i6=j D̈−i
=

=
Dj × D̈−j

Dj × D̈−j +Dj ×
∑

i=1...N,i6=j D̈−i
=

=
D̈−j

D̈−j +
∑

i=1...N,i6=j D̈−i
=

D̈−j∑
i=1...n D̈−i

Consequently:

N∑

j=1

ωj =
D̈−1∑N
i=1 D̈−i

+ · · · +
D̈−N∑N
i=1 D̈−i

=
D̈−1 + · · ·+ D̈−N∑N

i=1 D̈−i
= 1

4.2.2. Seed Selection

For a given set of similarity vectors X, the seed selection process is performed

in two phases as illustrated in Figure 2. All the steps of the seed selection proces

are described in Algorithm 2. In the first phase, an initial set of similarity

vectors is selected using the given distance metric (dw) and two thresholds,

tM for match seeds and tU for non-match seeds (lines 4-11). In this paper

we use Manhattan distance. However, other distance metrics could also be

used. Initially both Manhattan and Euclidean distances were considered but

empirically Manhattan distance worked slightly better. At the beginning all

the field weights have the same values. The minimum numbers of similarity

vectors to be selected initially as match and non-match seeds are specified by

two parameters, mM and mU (line 4 and 8). All similarity vectors within tM

distance from the perfect match and tU distance from the perfect non-match

are selected (lines 6 and 10). Initially, both thresholds, tM and tU are set to

0.05. They are gradually increased until the minimum numbers of matches and

non-matches are reached (lines 5 and 9). After the initial set of seeds is selected,

the process moves to Phase II, where the weights of fields are calculated using
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Formula 7 and the seeds selected in Phase I (line 12). The new weights are then

used to select a new set of seeds (lines 14-16).

XU ← x if dw(x,~0) < tU

XM ← x if dw(x,~1) < tM

if |XM | < mM → tM+ = 0.05

if |XU | < mU → tU+ = 0.05
No

Y es

|XM | ≥ mM

|XU | ≥ mU

AND
(1)

(2)

XM ∪XU
Calculating weights

Phase 1: Seeds selection

Phase 2: Field weighting

Select match and non-
match seeds from X as:

Change in
weights

Y es

Output: No

Figure 2: The complete process of automatic seed selection. In Phase 1 a small set of matches

and non-matches is selected with equal weight assigned to each field. In Phase 2 the seeds

selected in Phase 1 are used to calculate the weights of the fields. Phase 1 is then repeated

using the new weights while calculating distances.

The computational complexity of the field weighting process is comparable

to the k-means clustering algorithm for k = 2, which is O(2×P × i×N) with i

being the number of iterations. For s number of similarity schemes selected in

the previous step the computational complexity is O(s× 2× P × i×N).

Example 1. To illustrate the seed selection process an example of selecting non-

match seeds is shown in Figure 3. The example refers to a dataset with two fields,

which means that each similarity vector contains two values (x and y) only. The

similarity threshold tU is set as 0.1. In the first iteration both fields have the

same weight of 0.5. Consequently, based on the Manhattan distance metric, all

those similarity vectors meeting the selection criterion 1
2 |x−0|+ 1

2 |y−0| < 0.1 are

selected as non-match seeds (blue dots). In the second iteration, based on the
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Input: X: set of unlabelled similarity vectors, mM , mU : minimum numbers of

labelled matches and non-matches to be selected in Phase I

Output: XM , XU : sets of labelled match and non-match seeds

1: XM , XU ← Θ

2: ωi=1...N = 1
|number of attributes|

3: tM , tU = 0

4: while |XM | < mM do

5: Increase tM by 0.05

6: Get vectors from X within tM distance from ~0 and add them to XM

7: end while

8: while |XU | < mU do

9: Increase tU by 0.05

10: Get vectors from X within tU distance from ~0 and add them to XU

11: end while

12: Calculate new weights ω′i using XM and XU and Formula 7

13: while |ωi − ω′i| > ε do

14: Remove all vectors from XM and XU

15: Select x from X within tM weighted distance from ~1 and add it to XM

16: Select x from X within tU weighted distance from ~0 and add it to XU

17: Calculate new weights using XM and XU

18: end while

19: return XM , XU
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selected seeds, the weights are recalculated as 2
3 and 1

3 , and the selection criterion

is changed to 2
3 |x|+ 1

3 |y| < 0.1. Consequently a new set of seeds is selected (red

dots). In the third iteration, using the newly selected seeds, the weights are

updated to 3
4 and 1

4 and the selection criterion is set as 3
4 |x| + 1

4 |y| < 0.1. In

this case, no new seed is selected. Hence there is no change to the weights and

no more iteration.
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Figure 3: An example of the non-match seed selection process with 2-dimentional similarity

vectors. The process is performed in 3 iterations. In the first iteration (blue) the weights of

the fields are ( 1
2
, 1
2

). In the second iteration (red) the weights were updated to ( 2
3
, 1
3

). In the

last iteration (green) the weights were set as ( 3
4
, 1
4

).

4.3. Selecting highly diverse sets of seeds

For each set of similarity vectors we now have a small number of labelled

examples (seeds). Consequently, any binary classifier can be trained using the

selected seeds to classify the remaining unlabelled similarity vectors. With en-

semble learning it is a common practice to select a collection of BCs that has

the highest diversity to form an ensemble. Table 2 shows a simplified example

of two ensembles, each consisting of three BCs. The output of each classifier
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is denoted as 1 for being correct and 0 for being wrong. The final prediction

of the ensemble is determined as the mode of the three individual predictions.

It can be seen that in Ensemble I each of the BCs makes mistakes on different

examples. As a consequence the combined classification is better than any of

the BCs. In Ensemble II, every BC misclassified the same example. Therefore,

combining them does not make any overall improvement.

Table 2: Two ensembles of three BCs. Each BC in Ensemble I makes a mistake on a different

example, while every BC in Ensemble II makes a mistake on the same example.

Ensemble I Ensemble II

x1 x2 x3 x1 x2 x3

C1 0 1 1 C1 0 1 1

C2 1 0 1 C1 0 1 1

C3 1 1 0 C1 0 1 1

Final: 1 1 1 Final : 0 1 1

In [23] different pairwise and non-pairwise diversity measures for classifier

ensembles are presented. However, these diversity measures can only be cal-

culated with labelled data. Given that our approach is fully unsupervised, we

propose a diversity measure that does not require any labelled data. In [23]

the Q statistic measure is recommended as the most appropriate diversity mea-

sure. The Q statistic is a pairwise diversity measure that is defined based on a

2 × 2 table representing the relationship between predictions of two classifiers

as shown in Table 3.

Table 3: A 2 × 2 table representing agreements between predictions of two classifiers..

C1 is right C1 is wrong

C2 is right N00 N10

C2 is wrong N01 N11

The Q statistic for classifier C1 and C2, Q1,2, is then defined as:

Q1,2 =
N00N11 −N01N10

N00N11 +N01N10
(10)

The value of Q1,2 is between −1 and 1. The classifiers with high values of
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N00 and N11 (classifiers that make the same predictions) will have a positive

value. On the other hand, the classifiers with high values of N10 and N01

(classifiers that have different classifications on the same examples) will have a

negative value. For a set of L classifiers, the average Q statistic over every pair

of classifiers is:

Qav =
2

L(L− 1)

L−1∑

i=0

L∑

j=i+1

Qi,j (11)

Therefore, we will select the set of classifiers with the lowest possible value of

Qav. We propose to use the Q statistic to select the most diverse sets of seeds.

As a result, the final ensemble contains a set of self-learning models that were

generated using the most diverse sets of seeds. Our observation is that the most

diverse sets of seeds lead to the most diverse classifiers. We formalize seed Q

statistic in Definition 4.6.

Definition 4.6. (Seed Q statistics) For K sets of seeds S1, . . . , SK , let S =

S1 ∪ · · · ∪ SK , Q statistics for two seed collections Si and Sj, is defined as

follows:

QSi,j
=
S00S11 − S01S10

S00S11 + S01S10
(12)

where:

S00 = x ∈ S : x /∈ Si ∧ x /∈ Sj

S11 = x ∈ S : x ∈ Si ∧ x ∈ Sj

S01 = x ∈ S : x /∈ Si ∧ x ∈ Sj

S10 = x ∈ S : x ∈ Si ∧ x /∈ Sj

If Si and Sj are the same then we expect to obtain two same self-learning models,

which means there will be no diversity between them (Qsi,j = 1). At the same

time, if Si ∩Sj = ∅ then the initial classifiers in the self-learning process will be

trained on two completely different datasets. So we expect to have high diversity

between the two models (Qssi,j = −1). Similar to the standard Q statistic, we

will select the ensemble with the lowest possible average value Qssav. The
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process of selecting the most diverse sets of seeds is presented in Algorithm 3.

The time complexity of the seed selection process is O(b × (K − T )) where b

refers to the complexity of the evaluation function which is linear with respect

to K and N .

Algorithm 3 Selecting similarity measure schemes for an ensemble

Input: Š = S1, . . . , SK : pool of seed collections, T : number of sets of seeds to

be selected

Output: Sets of seeds with the lowest Qsav

1: Calculate pair Qs statistic matrix using Š and formula in Definition 4.6

2: while |Š| > T do

3: Select S from Š such as: argmins∈Š , Š QSav (Š¬S)

4: Remove S from Š

5: end while

6: Return Š

4.4. Self-learning ensemble

The self-learning process is performed with each selected set of seeds. In [12]

a SVM is used in the self-learning process. However, the computational com-

plexity of training the SVM classifier may be a limitation when dealing with

large amount of data. Ensemble methods require to train multiple BCs, which

makes the problem even worse. In addition, for a large dataset the self-learning

process may involve multiple iterations, which means that the SVM needs to

be trained multiple times. To improve the efficiency of the learning process

we apply the Stochastic Gradient Descent (SGD) algorithm for estimating the

parameters of SVMs, which is very effective for large-scale online learning prob-

lems. SGD has been recently used [39] for the online training of various linear

models. In general SGD is preferred for being faster as it optimizes parameters

by using one training example at a time till it converges, instead of using the

whole training dataset in each of the iterations. In the self-learning process the

instances that the classifier is the most confident about are iteratively added to
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the training dataset. With the proposed method the class probability distribu-

tion of an instance produced by the SVM-SGD algorithm as output is used to

determine the level of its confidence on the classification of the instance. For

example, if the class probability distribution of an instance is 0 on match and 1

on non-match then the SVM-SGD classifies the instance as non-match and the

level of its confidence on the classification is 1. The complete classification pro-

cess performed through the self-learning of a SVM-SGD classifier is described

in Algorithm 4. In the first step the seeds are used to generate the initial SVM-

SGD classification model (line 3). The initial trained classification model is then

used to classify the remaining unlabelled instances (line 4). Instances that have

been classified with a level of confidence above the threshold are added to the

training dataset (lines 6-10). This process iterates until all instances are added

to the training dataset.

4.5. Selecting the final ensemble using the contribution ratios of BCs

Following the self-learning process, a collection of classification models is

generated. Since the proposed method is fully unsupervised we are not able to

evaluate how good each of classification models is. Therefore, there is a risk

of including classifiers with very poor accuracy (i.e., below 0.5) which are not

valid in general, into the ensemble. In order to address this issue we propose a

statistic which takes into account the contribution ratio of each individual BC

to the final output of the ensemble. Each BC makes a prediction on each record

pair as match or non-match. Following this, the mode of all the predictions by

all the BCs is taken as the prediction of the ensemble. The contribution ratio

of a BC is formalized in 4.7.

Definition 4.7. (Contribution Ratios of Base Classifiers) Let Č = C1, . . . , Cn

be an ensemble of BCs, X = x1, . . . , xm be a set of unlabelled examples on

which any two BCs in Č have different prediction. The contribution ratio of Ci
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Algorithm 4 self-learning SVM-SGD

Input: X: set of unlabelled similarity vectors, XM : set of match seeds, XU :

set of non-match seeds, p: minimum number of unlabelled similarity vectors

selected in each iteration

Output: XMU : completely labelled dataset

1: XMU ← XM ∪XU

2: while X = ∅ do

3: Update SVM-SGD classifier on XMU

4: Classify X with SVM-SGD

5: S = Θ, T = 1

6: while |S| < p do

7: S ← select examples from X witch confidence at least T

8: Remove S from X

9: Decrease T byt 0.05

10: end while

11: Add S into XMU

12: end while

13: Return XMU
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is defined as:

contr(Ci) =
1

m

m∑

j=1





1 if Ci(xj) = Č(xj)

0 otherwise

(13)

where Ci(xj) and Č(xj) represent the predictions of classifier Ci and the en-

semble on xj respectively.

Our intuition is that if there is a BC with very poor accuracy in the en-

semble, its contribution ratio will be significantly lower than the other BCs.

Removing this BC from the ensemble may help improve the performance of the

ensemble. Therefore, we calculate the average contribution ratio of all BCs and

only those BCs with contribution ratios above the average are included in the

final ensemble. In the last step, the mode of the predictions of the selected BCs

is taken as the final output for each candidate record pair.

5. Experimental evaluation

In this section we present the experimental evaluation of our proposed RL

approach. The objectives of our experimental evaluation are:

1. To evaluate whether the proposed automatic seed selection with field

weighting can improve the quality of the seeds in the self-learning pro-

cess.

2. To evaluate whether the proposed ensemble learning technique can im-

prove the overall performance of individual self-learning models and hence

alleviate the problem of manually selecting the best similarity measure

scheme.

3. To evaluate whether the proposed Seed Q Statistic and the Contribution

Ratio help form a better ensemble.

4. To evaluate whether the proposed unsupervised approach to RL can out-

perform recently proposed semi-supervised and unsupervised RL methods

and achieve comparable results to supervised classification methods such

as J48 and SVM-SGD.
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The proposed self-learning SVM-SGD ensemble method has been imple-

mented in Java with the Weka and Simmetrics Java libraries for SVM-SGD

classification and string similarity measures respectively. Five commonly used

similarity measures for RL have been used, namely Jaro (J), Smith-Waterman

(SW), Q-Gram (Q), Jaro-Winkler (JW) and Levenshtein edit distance (L). How-

ever, any other similarity measures could be applied.

The experiments were conducted with four datasets commonly used for eval-

uating RL methods: Restaurant1, Cora1, ACM-DBLP2 and DBLP-Scholar2.

The Restaurant dataset contains 864 restaurant records (372,816 record pairs

with 112 pairs of matching records), each with five fields, including name, ad-

dress, city, phone and type. The Cora dataset is a collection of 1,295 (837,865

record pairs with 17,184 pairs of matching records) citations to computer sci-

ence papers. Each citation is represented by 4 fields (author, title, venue, year).

The ACM-DBLP and DBLP-Scholar are a bibliographic datasets of Computer

Science bibliography records represented by four attributes. The total number

of entity pairs (cross product) is 6,001,104 and 168,181,505 for ACM-DBLP and

DBLP-Scholar respectively.

5.1. Automatic Seed Selection

We first evaluated whether the proposed technique for field weighting for seed

selection improves the performance of the self-learning algorithm. The algorithm

for automatic seed selection takes two parameters as input, mM and mU , which

specify the minimum numbers of match and non-match seeds that need to be

selected in the first phase of the seed selection process. We used mU = 1% of

the total number of similarity vectors and a smaller value of mM = 0.01% due

to the imbalanced distribution of match and non-match examples. Commonly

in RL the number of matching pairs of records is significantly smaller than the

number of non-matches. Therefore, the value of mM needs to be smaller. If we

1https://www.cs.utexas.edu/users/ml/riddle/data.html
2http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/

benchmark_datasets_for_entity_resolution

32



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

set it too high we could get a large number of false positive seeds. Since the

number of non-matches is much larger than the one of matches we can allow for

mU to be much higher to provide a bigger set of seeds.

We compared the precision and recall of the seeds selected in two phases.

Phase I is where the seeds are selected using unweighed Manhattan distance.

Phase II is where the seeds selected in Phase 1 are used to calculate the weights

of fields and then the final seeds are selected using the weighted Manhattan

distance. The results are presented in Tables 4-7. Due to the large initial pool

of the similarity measure schemes generated in Step 2, we only compared the

results for the 10 most diverse sets of seeds selected in Step 4. The second

column in each of the tables indicates which similarity measure scheme was

selected for generating the ensemble with each of the datasets.

Table 4: Precision and Recall of the seeds selected for the Restaurant dataset without (Phase

I) and with (Phase II) field weighting

Phase I Phase II

Precision Recall Precision Recall

BC Sim. Scheme M NM M NM M NM M NM

1 J + J +J +J +J 0.91 1 0.13 0.01 0.86 1 0.45 0.02

2 J + J +J +J +Q 0.96 1 0.18 0.01 0.18 1 0.2 0.3

3 J + Q +J +J +J 0.95 1 0.16 0.01 0.93 1 0.13 0.04

4 Q + J +J +J +Q 0.95 1 0.36 0.01 1 1 0.73 0.9

5 Q + J +J +Q +J 0.98 1 0.36 0.1 1 1 0.73 0.89

6 Q + J +J +Q+Q 0.94 1 0.16 0.02 1 1 0.73 0.9

7 Q + Q+J +J +J 0.92 1 0.3 0.01 1 1 0.74 0.91

8 Q + Q +J +J +Q 0.97 1 0.1 0.02 1 1 0.73 0.9

9 Q + Q +J +Q +J 0.97 1 0.27 0.03 1 1 0.72 0.89

10 Q + Q +J +Q +Q 0.92 1 0.3 0.05 1 1 0.73 0.91

With the Restaurant dataset, in three out of ten cases (cases 1-3) better

precisions of the match seeds were obtained in Phase I. In the other cases better

results for match seeds were obtained in Phase II. For the non-match seed sig-

nificantly better results were obtained in Phase II. For the Cora dataset, apart

from cases 6-8, better precision and recall of both match and non-match seeds

were obtained in Phase II. For the DBLP-ACM dataset, apart from case 2-3
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Table 5: Precision and Recall of the seeds selected for the Cora dataset without (Phase I) and

with (Phase II) field weighting

Phase I Phase II

Precision Recall Precision Recall

BC Sim. Scheme M NM M NM M NM M NM

1 J + J +J +J 0.99 0.98 0.14 0.01 0.99 0.99 0.28 0.3

2 J + J +L +J 0.92 0.98 0.14 0.01 0.99 1 0.28 0.32

3 J + SW +J +J 0.99 0.99 0.16 0.01 0.99 1 0.28 0.32

4 J + SW +J +SW 0.99 0.99 0.16 0.02 0.99 1 0.25 0.39

5 J + SW +L +SW 0.99 0.99 0.14 0.01 0.99 0.99 0.23 0.3

6 J + SW +SW +J 0.99 0.99 0.16 0.02 0.92 0.89 0.14 0.3

7 J + SW +SW +SW 0.99 0.99 0.15 0.02 0.98 0.83 0.25 0.32

8 SW + SW +J +J 0.99 0.99 0.15 0.02 0.99 0.81 0.2 0.35

9 SW + SW +J +SW 0.99 0.99 0.15 0.02 0.99 1 0.29 0.39

10 SW + SW +L +J 0.99 0.99 0.16 0.01 0.99 0.99 0.23 0.32

Table 6: Precision and Recall of the seeds selected for the DBLP-ACM dataset without (Phase

I) and with (Phase II) field weighting

Phase I Phase II

Precision Recall Precision Recall

BC Sim. Scheme M NM M NM M NM M NM

1 J + J +J +J 0.73 0.99 0.1 0.63 0.73 0.99 0.1 0.63

2 J + L +J +J 0.72 1 0.09 0.73 0.67 0.98 0.27 0.9

3 J + SW +J +J 0.66 0.99 0.09 0.74 0.36 0.99 0.29 0.87

4 J + Q +J +J 0.75 0.99 0.11 0.79 0.9 0.99 0.43 0.9

5 L + Q +J +J 0.79 0.99 0.12 0.9 0.86 0.99 0.4 0.93

6 SW + J +J +J 0.86 0.99 0.4 0.9 0.91 0.99 0.35 0.93

7 SW + Q +J +J 0.84 0.99 0.4 0.93 0.86 0.99 0.42 0.93

8 Q + J +J +J 0.73 0.99 0.1 0.83 0.9 0.99 0.2 0.93

9 Q + SW +J +J 0.72 0.99 0.1 0.83 0.89 0.99 0.26 0.93

10 Q+Q+J+J 0.84 0.99 0.4 0.9 0.94 0.99 0.27 0.93

(M precision) and 6, 10 (M Recall) better match and non-match seeds were ob-

tained in Phase II. For the DBLP-Scholar dataset the better results in term of

recall were obtained in Phase II for both matches and non-matches. However,

much better precision for matches was obtained in Phase I. It can be observed

from the results that in majority of the cases higher precision and higher recall,

for both match and non-match seeds, were achieved in Phase II for each of the
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Table 7: Precision and Recall of the seeds selected for the DBLP-Scholar dataset without

(Phase I) and with (Phase II) field weighting

Phase I Phase II

Precision Recall Precision Recall

BC Sim. Scheme M NM M NM M NM M NM

1 L+L+J+J 1 0.99 0.1 0.2 0.47 0.99 0.2 0.21

2 J+J+J+J 1 0.99 0.09 0.21 0.5 0.99 0.24 0.2

3 L+L+L+J 1 0.99 0.09 0.2 0.47 0.99 0.2 0.21

4 L+L+S+J 1 0.99 0.12 0.21 0.47 0.99 0.2 0.21

5 S+J+J+J 1 0.99 0.12 0.21 0.48 0.99 0.25 0.22

6 S+J+L+J 1 0.99 0.1 0.21 0.48 0.99 0.25 0.22

7 S+J+S+J 1 0.99 0.1 0.21 0.48 0.99 0.25 0.22

8 S+L+J+J 1 0.99 0.15 0.21 0.45 0.99 0.2 0.21

9 S+L+L+J 1 0.99 0.1 0.21 0.45 0.99 0.2 0.21

10 S+L+S+J 1 0.99 0.12 0.21 0.45 0.99 0.2 0.21

datasets apart from the DLBP-Scholar dataset. We presume that the low pre-

cision for DBLP-Scholar could be caused by the large number of missing values

in this dataset. Because of the missing values the algorithm was not able to

determine the weights correctly which caused a large number of false positive

seeds. This issue will be addressed in the future work.

In order to see how the quality of the seeds affects the self-learning process,

for each set of seeds from Tables 4-7 we evaluated the performance of the self-

learning model. Each of the diagrams in Figure 4 shows the F -measure obtained

by the self-learning models for each of the 4 datasets. For each of the datasets,

the self-learning process was performed with the similarity vectors generated

with each of the 10 selected similarity schemes. The self-learning process was

performed with field weighting (we refer to this method as SL-AW) and without

field weighting (we refer to this method as SL). Note that the self-learning

without field weighting is the same as the method proposed and evaluated in

[12]. It can be noted that for the Cora dataset the SL-AW performed better than

SL for each of the similarity schemes apart from cases 6-8, which is in line with

the results presented in Table 5. For the Restaurant dataset, the SL method

outperformed SL-AW in one case (2). It can be observed from the corresponding
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row in Table 4 that for the same similarity measure scheme significantly better

precision of match seeds was obtained with the SL method. At the same time,

it can be noted that even though for similarity measure schemes 1 and 3 better

match seeds were selected with SL, the SL-AW method still performed better

in term of F -measure. This could be due to the fact that the precision and

recall of the non-match seeds were slightly better with the SL-AW in those

two cases. For the DBLP-ACM dataset the SL method performed equally or

slightly better than SL-AW in 4 cases (1, 3, 6 and 10). It can be observed from

the corresponding rows in Table 6 that for each of the four similarity measure

schemes SL obtained either better precision or recall of the match seeds. It can

be observed from Figure 4 that even though for the DBLP-Scholar dataset the

SL method had much higher precision that SL-AW, it performed better only in

four cases (4, 5, 8, 10). The reason for this could be the higher recall for the

matches obtained by SL-AW.
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Figure 4: F -measures obtained by the self-learning models with (SL-AW) and without (SL)

field weighting. Each chart refers to one dataset. For each dataset the 10 similarity measure

schemes selected for the ensemble were evaluated
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To further explore the relation between seeds and the final output of the self-

learning process we measured the correlation between the precision and recall of

the seeds and the F -measure obtained by the self-learning model. Following our

analysis, it appeared that the most correlated with the F -measure are the recall

of the non-match seeds and the precision of the match seeds. This observation

reflects the experimental results shown in Figure 4.

Based on the results shown in Tables 4-7 and Figure 4 it can be concluded

that the proposed field weighting technique allows obtaining better quality of

seeds and consequently improves the final performance of the self-learning algo-

rithm.

5.2. Ensemble Selection

The process of creating the ensemble starts with creating a pool of similarity

measure schemes. For each of the 4 datasets we used the same similarity thresh-

old (0.8) for selecting similarity measure schemes. The threshold was selected

empirically. We noted that for the value of 0.8 the initial pool of similarity mea-

sure schemes (and BCs) was big enough and manageable. For any smaller value

we received only 3 or 4 similarity schemes, which wasn’t enough to generate an

ensemble. The size of the initial pool for each dataset is shown in Table 8. For

the Restaurant and Cora datasets 24 different similarity measure schemes were

generated, for the DBLP-ACM and DBLP-Scholar it was 16 and 17 respectively.

Each of the similarity measure schemes was then used for generating a set of

similarity vectors. Following this and the automatic seed selection, a group of

10 most diverse sets of seeds were selected. Finally, following the self-learning

process, the final ensemble was selected based on the contribution ratios of the

BCs in the ensemble. The last row in Table 8 shows the size of the final ensemble

for each of the datasets.

Table 9 shows the contribution ratio of each BC in the ensemble. We can

see that for each of the 4 datasets some of the BCs have a significantly lower

contribution ratio than others. From Figure 4 we can see that for each of the

datasets the same classifier obtained significantly lower F -measure than the

37



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 8: Initial and final sizes of the ensemble for each of the 4 datasets.

Datasets

Restaurant Cora DBLP-ACM DBLP-Scholar

Sim. measure schemes 24 24 16 17

Final ensemble size 8 8 8 7

Table 9: Contribution ratio of each of the 10 BCs in the ensemble. Each of the columns refers

to one BC in an ensemble. For each of the datasets, each of the classifiers was generated with

different similarity scheme as shown in Tables 4-7

BC: BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9 BC10

Restaurant 0.3 0.3 0.9 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Cora 0.98 0.89 0.98 0.97 0.99 0.59 0.97 0.98 0.99 0.97

DBLP-ACM 0.32 0.65 0.88 0.95 0.95 0.96 0.95 0.95 0.94 0.97

DBLP-Sch. 0.36 0.89 0.89 0.89 0.9 0.74 0.71 0.93 0.97 0.97

other BCs. For the Restaurant dataset, for example, the first two BCs have a

lower contribution ratio than the average, which is reflected in the results in

Figure 4. The results in Figure 4 and Table 9 have shown that the contribution

ratio is a good indicator of BCs with poor accuracy. The bold cells in Table 9

indicate which of the BCs were removed from the final ensemble.

5.3. Record Pair Classification

In this section we evaluate the classification performance of the proposed

ensemble method. As a baseline for the proposed approached we used the

following methods.

Semi-supervised Boosted Classifiers [31]. This is recently proposed minimally

supervised approach which uses both ensemble learning and self-learning. It

requires a seed training set as input which is then used to start the self-learning

process. The seed set is composed of a set of similarity vectors labelled as

matches and a set of similarity vectors labelled as non-matches. In each iteration

of the learning process the AdaBoost algorithm is used to first train BCs with

the seed training set and then classify unlabelled similarity vectors representing

candidate pairs of records. A small number of similarity vectors classified with
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the greatest confidence are added to the training set. The algorithm runs for

a predefined number of iterations. We implemented the algorithm as described

in [31] with the same seed training set as selected in our approach. Given that

in our approach different seeds were selected for different similarity schemes we

evaluated the boosting algorithm with each set of seeds individually and then

presented the best result.

Pseudo F -measure [32]. This RL algorithm was implemented as described

in the original paper. The algorithm takes as input two sets of records, two sets

of potential attributes and a set of similarity measures. We used the same five

similarity measures as in our approach . Following this a genetic algorithm is

applied with the pseudo F -measure as the fitness function. The output of the

algorithm is a RL rule composed of selected pairs of attributes, their weights,

similarity measure for each pair of attributes, aggregation function and simi-

larity threshold. All the parameters including rates for combination operators,

rates for mutation options and termination criterion were set to the same values

as described in the original paper. The methods based on the pseudo F -measure

have a great advantage over any other approach since they don’t require any

training data. However, as demonstrated in [33] formulation of the right pseudo

F -measure is still an unsolved problem.

In addition we compared our method with a two supervised classification

models, J48 decision tree and the SGW model.

Due to the imbalanced distribution of matches and non-matches among

record pairs [9] the classification accuracy is not a suitable measure for the

evaluation of a RL approach. In this paper we use the F -measure instead of

accuracy, which is the harmonic mean of Recall and Precision, and is most com-

monly used. For the evaluation of the supervised techniques we used 10-fold

cross validation, while the RL process with the semi-supervised and unsuper-

vised methods was performed on the whole dataset. Table 10 shows the results

of all the classification methods we have used in this paper. The first 2 rows

refer to 2 supervised methods, J48 decision tree and SVM-SGD. For training the

supervised models we generated a set of labelled similarity vectors using each
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of the same 10 similarity measure schemes that were selected for the ensemble.

Each supervised learning method was evaluated with each of the training sets

and the best results were recorded. Rows 3 and 4 refer to the Semi-supervised

Boosted Classifier and the pseudo F -measure respectively. The last 4 rows in

Table 10 show the results obtained by the following methods.

• Best SL-AW: self-learning model with the proposed field weighting for seed

selection. For each dataset, the self-learning process was performed with

each set of similarity vectors and the best result was recorded,

• SL-AW-E: ensemble composed of all SL-AW models,

• SL-AW-D-E: ensemble composed of 10 SL-AW models selected using the

proposed seed diversity measure,

• SL-AW-D-A-E: ensemble composed of the SL-AW models selected using

the seed diversity measure and the average contribution ratio (the final

ensemble).

To measure the statistical significance of the obtained results we performed

the McNemar's statistical test [40]. The F -measure values in bold in Table 10

indicate that the difference between the corresponding method and SL-AW-D-E

was statistically significant with the p values equals to 0.05.

It can be seen that the final ensemble performed equally well as the best

of the self-learning models (Best SL-AW) in term of F -measure. This confirms

that the proposed method alleviates the issue of selecting the most appropri-

ate similarity measure scheme in the absence of labelled data. Comparing the

results of SL-AW-E and SL-AW-D-E it can be seen that the selection method

based on the seed diversity significantly improved the performance of the en-

semble for each of the 4 datasets. For each of the datasets the difference was

statistically significant. We can also observe that SL-AW-E performed worse

than the Best SL-AW. This shows that generating an ensemble using all of the

similarity measure schemes without taking under consideration the diversity
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Table 10: P -precision, R-recall and F -measure obtained by each of the evaluated classification

methods on each of the 4 datasets.

Method
Datasets

Restaurant Cora

P R F P R F

Best J48 0.96 0.97 0.96 0.97 0.94 0.95

Best SVM-SGD 0.93 0.97 0.95 0.98 0.92 0.95

Semi-Sup SL 0.92 0.77 0.84 0.75 0.98 0.85

Pseudo F -measure 0.98 0.75 0.93 0.9 0.6 0.72

Best SL-AW 0.97 0.9 0.93 0.98 0.88 0.93

SL-AW-E 0.97 0.84 0.9 0.94 0.86 0.9

SL-AW-D-E 0.96 0.89 0.93 0.98 0.88 0.93

SL-AW-D-A-E 0.97 0.9 0.94 0.98 0.88 0.93

DBLP-ACM DBLP-Scholar

P R F P R F

Best J48 0.94 0.98 0.96 0.69 0.6 0.64

Best SVM-SGD 0.95 0.98 0.96 0.58 0.74 0.65

Semi-Sup SL 0.85 0.96 0.9 0.45 0.74 0.57

Pseudo F -measure 0.94 0.98 0.96 0.36 0.86 0.5

Best SL-AW 0.88 0.96 0.92 0.43 0.75 0.55

SL-AW-E 0.9 0.84 0.87 0.4 0.81 0.54

SL-AW-D-E 0.88 0.92 0.9 0.44 0.75 0.55

SL-AW-D-A-E 0.87 0.97 0.92 0.44 0.75 0.55

does not provide the expected outcome. Comparing SL-AW-D-E and SL-AW-

D-A-E we can see that the ensemble selection method based on the contribution

ratio improved the final performance of the Restaurant and DBLP-ACM but

the difference was statistically significant only for DBLP-ACM dataset. It did

not make any difference for the two remaining datasets. This indicates that the

weak BCs identified through the contribution ratio have a negative impact on

the final prediction of the ensemble in DBLP-ACM dataset. For Restaurant,

Cora and DBLP-Scholar outliers do not affect the performance of the ensemble.

The results in Table 10 demonstrate the ensemble obtained comparable re-

sults to the supervised classification methods with 3 out of 4 datasets. For the

DBLP-Scholar our proposed approach performed significantly worse. However,

it can be as well observed that the semi-supervised SL and pseudo F -measure
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methods performed equally bad with this dataset. It may be the case that none

of the three methods can handle dataset with significant amount of missing

data. We would like to look into this problem in more detail in the future work.

It can be noted in Table 10 that the semi-supervised SL method performed

significantly worse than the proposed approach with the Restaurant, Cora and

DBLP-ACM datasets. In the original paper better results for this method are

reported. However, this is most likely related to the fact that in the original

version of the method manually labelled data are provided as seeds for the self-

learning process. In our paper the method was evaluated with the same set

of automatically labelled seeds that were applied with our proposed approach.

Apart from this, in the original paper the authors applied 28 different similarity

measures without any selection. In our paper, for a fair comparison, we applied

the same 5 similarity measures that were used with our proposed approach.

The method based on maximizing the pseudo F -measure performed out-

standingly well with the DBLP-ACM dataset, obtaining equal results with the

supervised methods. Nevertheless, it performed significantly worse for Cora

and DBLP-Scholar datasets. It has been discussed in [33] that the pseudo F -

measure tend not to be correlated with the original F -measure for some real

world datasets, which must have been the case in our experiments. No statis-

tically significant difference between the pseudo F -measure and our proposed

method was noted for the Restaurant dataset. A number of interesting observa-

tions have been made based on the presented results. First, as shown in Figure

4, SL and SL-AW can obtain significantly different results for different similarity

measure schemes. This indicates that the performance of both methods relies

on the selection of an appropriate similarity measure scheme. However, it can

be seen that the ensemble method always performs equally well as the best of

the individual classifiers. Therefore, the ensemble technique has the advantage

of not relying on the selection of an appropriate similarity measure scheme. Sec-

ond, using field weighting in the automatic seed selection process can provide

better quality of the seeds and consequently lead to better classification. Fi-

nally, for 3 out of 4 datasets, the proposed method obtained comparable results
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with the supervised methods. Our experimental results have shown that the

proposed self-learning ensemble approach can be applied to the RL problem

when no labelled data is available. The big advantage of the approach is that it

alleviates the problem of manually selecting the best similarity measure scheme

without labelled data.

5.4. Analysis of computational complexity

The runtime results are determined for a workstation with Intel(R) Core(TM)

i7-4790 CPU @ 3,60 GHz processor, 16 GB (RAM) and 64-bit Windows 7 Op-

eration System. For each of the datasets the proposed method was evaluated

with the record pairs produced as output by the blocking method. Table 11

shows the number of record comparisons before and after blocking. Table 12

Table 11: Number of record pairs comparison before and after blocking

Restaurant Cora DBLP-ACM DBLP-Scholar

Total number of

record pairs

372,816 837,865 6,001,104 168,772,783

Number of record

pairs after blocking

50,853 181,850 554,726 3,675,685

shows the runtime of each of the steps in the proposed RL approach for each

of the 4 datasets. It can be noted that for small datasets (Restaurant, Cora)

each of the steps is performed very efficiently. For the last two largest datasets

(DBLP-ACM and DBLP-Scholar) the steps of generating similarity schemes (I)

and selecting seeds with the highest diversity (IV) still have low execution time.

However, the execution time of the remaining 3 steps is much higher. For step

II (generating similarity vectors) this was an expected output since the time

complexity of a record linkage algorithm is dominated by the number of record

comparison performed. This is because the performance bottleneck is usually

the expensive comparison of attribute values between records [6]. The aim of

blocking is the reduction of the number of record comparisons. While we re-

ceived a good reduction ration for each of the datasets as a result of the blocking
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process, we increased the number of record comparisons by applying different

combination of similarity schemes to generate the ensemble. In the self-learning

process (step V) a SVM-SGD is re-trained in each iteration with the available

labelled data. It has been demonstrated that SVM-SGD is very efficient with

large-scale learning [41]. Given the nature of ensemble learning and self-learning

the training process of SVM-SGD needs to be repeated s × j times where j is

the number of iterations.

It can be noted that the time complexity of each of the steps could be reduced

by decresing the size of the ensemble, which is the number of similarity schemes

(s) selected in step I. Optimization of the similarity measure schemes selection

process will be considered in the future work.

Table 12: Execution time in seconds for each step of the proposed RL method. I: Generating

similarity schemes, II: Generating similarity vectors, III: Selecting Seeds, IV: Selecting seeds

with the highest diversity, V: self-learning.

I II III IV V

Restaurant 0.6 50 1 0.5 26

Cora 3.2 85 1 0.5 150

DBLP-ACM 3 545 31 5 1159

DBLP-Scholar 2 1772 1050 548 1600

6. Conclusions

It this paper we have proposed a new unsupervised approach to RL, which

combines ensemble learning with automatic self-learning and unsupervised field

weighting. The ensemble is generated using a number of different similarity

measures schemes. The initial pool of similarity measure schemes is selected

using cosine similarity. Each of the selected similarity measure schemes is then

used to generate a set of similarity vectors. An unsupervised field weighting

technique has been proposed for seed selection to improve the self-learning pro-

cess. Following the automatic seed selection, we use the proposed unsupervised

ensemble selection method based on seed diversity. Each selected set of seeds

is then used as input to the self-learning algorithm. The contribution ratio of
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each BC has been used to select a set of BCs to form the final ensemble. The

final prediction is obtained as mode of the predictions of self-learning models

from the ensemble.

Our experimental results have shown that the proposed self-learning ensem-

ble method can be successfully applied in RL when no labelled data is available.

It is shown that applying unsupervised field weighting in the automatic selection

of seeds improves the quality of the initial training dataset in the self-learning

process and leads to better classification results. By applying an ensemble of

self-learning models we are able to obtain as good results as the best of the

individual models. The proposed approach is not able to outperform supervised

classification models. However, it can obtain comparable results. In comparison

to some existing unsupervised RL techniques our proposed approach seems to

perform better overall.

There are two limitations that have been identified. First, the proposed

approach cannot handle missing data very well. We presume that this is mainly

related to the process of features weighting while selecting the seeds for self-

learning. Second, the proposed approach requires a larger number of record

pair comparisons because it uses multiple similarity schemes for generating the

similarity vectors.

In future work we intend to investigate the problems related to the scalability

of the proposed approach. We want to evaluate how the proposed approach

performs with different numbers of selected similarity measure schemes. In

this paper we only used 5 different similarity measures. However, we would

like to increase the number of the similarity measures provided as input to the

algorithm and then optimize the process of selecting similarity measure schemes

so that fewer sets of similarity vectors need to be calculated.
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