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Abstract 1 

A vision model is designed using low-level vision principles so that it can perform as a 2 

human observer model for camouflage assessment.  In a camouflaged-object assessment 3 

task, using military patterns in an outdoor environment, human performance at detection 4 

and recognition is compared with the human observer model.   This involved field data 5 

acquisition and subsequent image calibration, a human experiment, and the design of the 6 

vision model.  Human and machine performance, at recognition and detection, of military 7 

patterns in two environments was found to correlate highly.  Our model offers an 8 

inexpensive, automated, and objective method for the assessment of camouflage where it is 9 

impractical, or too expensive, to use human observers to evaluate the conspicuity of a large 10 

number of candidate patterns. Furthermore, the method should generalize to the 11 

assessment of visual conspicuity in non-military contexts. 12 
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 28 

1. Introduction 29 

Military personnel and equipment need protection from detection during conflict. 30 

Camouflage is the primary method to achieve this, frequently through coloured textures 31 

that match the background and/or disrupt the object’s outline (Hartcup 2008; Merilaita et 32 

al. 2017; Talas et al. 2017). Assessment of effectiveness can be carried out in a number of 33 

ways. The most intuitive method is to use human participants as observers. Such an 34 

apparently straightforward procedure, however, is not only limited by uncontrollable 35 

conditions, such as the weather: it is also impractical given the large variety of 36 

objects/patterns that one might want to evaluate and the range of environments one might 37 

want them to be assessed in. Field trials are also expensive and, in some circumstances, may 38 

not even be possible. They also do not lend themselves to precise isolation of exactly what 39 

leads to the failure of camouflage, something that a paired comparison of otherwise 40 

identical target-present and target-absent scenes would allow. Photo-simulation attempts 41 

to overcome weather constraints and problems with inaccessible environment-types by 42 

using photographic or synthetic imagery. Recent advances in synthetic rendering are 43 

impressive; however, current methods are still computationally expensive and the images 44 

are unrealistic at small spatial scales due to the current limitations of simulating realistic ray 45 
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scattering. Furthermore, human experiments are necessarily subjective and do not readily 46 

allow evaluation of camouflage against autonomous systems perhaps operating using 47 

different spectral bandwidths than the human vision. A computational approach is therefore 48 

helpful in overcoming the limitations of assessing camouflage when using human observers. 49 

Such a computational model should be ideally designed, in the first instance, in accordance 50 

with the human visual system, since it will be performing the task of a human observer and, 51 

if it is to replace subjective assessment, needs to be compared with human performance. 52 

More generally, however, such a system could be adapted to have a different ‘front end’ 53 

(e.g. infra-red sensor, hyperspectral sensor). Therefore it is surprising that a biologically 54 

motivated design for the assessment of camouflage has not been implemented. 55 

This omission means that the confidence and extendibility of current models and metrics 56 

are low, falling short in their ability to cope with high dynamic range (i.e. natural) (Bhajantri 57 

and Nagabhushan, 2006; Hecker, 1992; Sengottuvelan et al., 2008), semi-automatic labelling 58 

or tracking of the target (Chandesa et al., 2009), non-probabilistic and non-scalable distance 59 

metrics to high dimensional data or multiple observations given many images (Birkemark, 60 

1999; Heinrich and Selj, 2015; Kiltie et al., 1995). Human behavioural data need to be 61 

recorded to assess the coherence between human and model observers. This requires 62 

tasking human and model observers with the same experiment, based on a stimulus set 63 

from the real world: outdoor environments and militarily relevant objects. 64 

 65 

2. Method 66 

An experiment was devised so that human participants and a model observer could both be 67 

tasked with it, allowing for direct comparison.  This method section is broken down into the 68 

three components that comprise this study: (i) images of objects placed in real world scenes 69 
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were photographed and calibrated; (ii) a human experiment, using a protocol from 70 

psychophysics, recorded unbiased performance for recognition and detection of these 71 

objects; and (iii) the design of the visual observer model, and modelling the discrimination 72 

task.  73 

 74 

2.1  Stimuli 75 

Targets were photographed in two outdoor environments in the UK: Leigh Woods National 76 

Nature Reserve in North Somerset (2°38.6’ W, 51°27.8’ N), which is mixed deciduous 77 

woodland, and Woodbury Common in Devon (3°22' W, 50°40' N), a heathland used for 78 

Royal Marine training. A replica military PASGT helmet (Personnel Armor System for Ground 79 

Troops, the US Army’s combat helmet until the mid-2000’s) was the chosen object used in 80 

the experiment and visibility was manipulated by changes in helmet covers varying in both 81 

colour and textural appearance (Figure 1). The camouflage patterns worn by the helmet 82 

were United Nations Peacekeeper Blue (UN PKB), Olive Drab, Multi-Terrain Pattern (MTP, as 83 

used by the British Army since 2012), Disruptive Material Pattern (DPM, the dominant 84 

British Army pattern prior to the adoption of MTP), US Marine Pattern (MarPat) and, for the 85 

Woodbury Common experiment, Flecktarn (as used by the Bundeswehr, the German Army). 86 

These patterns were chosen not for the purpose of evaluation per se, but to reflect a range 87 

of styles (e.g. unpatterned Olive Drab, DPM as a subjective human design, MTP and MarPat 88 

based on spatio-chromatic analysis of natural scenes, but MarPat being ‘digital’ or 89 

pixellated), with UN PKB as a high visibility control.   90 

For the computational approach to be useful, the spectrum of visibility across the patterns 91 

should be highly correlated in the model and human observers. Scene locations were 92 

selected on a meandering transect through the habitats, at 20 m intervals and alternating 93 
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left and right. If the predetermined side was inaccessible or inappropriate due to occlusions 94 

then the opposite side of the transect path was used, and if neither side was accessible the 95 

interval was ignored and the next location in the transect was used. At each location the 96 

object was placed in a 3 × 3 grid resulting in nine images. The distance of each row of the 97 

grid was 3.5, 5 and 7.5 metres. The scene was also divided into 3 arcs: left, middle and right. 98 

The combination of distance and left-right positioning mean that, in the subsequent tests on 99 

humans, the location of the target within the scene was unpredictable. This resulted in nine 100 

images of each helmet per location for analysis, plus a scene including a Gretag-Macbeth 101 

Color Checker chart (X-Rite Inc., Grand Rapids, Michigan, USA) for calibration. The 102 

orientation of the helmet in each photograph was set an angle drawn randomly from the 103 

uniform distribution {0, 45, 90, 135, 180, 225, 270, 315°}. For efficiency of implementation, 104 

the list of random angles was generated before going into the field. Each scene was also 105 

photographed without a helmet present. Photographs were taken using a Nikon D80 digital 106 

SLR (Nikon Ltd., Tokyo, Japan) with focal length 35mm, exposure 1/30 and F-Number 16. 107 

RAW images (Nikon NEF format) were captured and these were subsequently converted to 108 

uncompressed 8-bit TIFF and calibrated. Images were calibrated by recording luminance and 109 

chromatic spectral values of the Gretag-Macbeth colour chart in the field using a Konica 110 

Minolta Chroma Meter CS - 100A colour and luminance meter (Konika, Tokyo, Japan). This 111 

process was repeated three times to average over the natural variation in lighting from 112 

moment to moment. The spectral values were transformed to the CIE sRGB colour space 113 

after first converting them to the CIE XYZ colour space. The process was then repeated in 114 

the lab from a projected image from the projector. A cubic polynomial approximated the 115 

relationship between the two sets of RGB measurements. Images were then calibrated 116 

using the coefficients of the polynomial for each RGB channel. Not only does this procedure 117 
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avoid having a colour chart in every single image, but also it calibrates the entire pipeline in 118 

a single step: calibrating the camera, projector and images individually could result in over-119 

fitting or multiplicative errors. 120 

 121 

 122 

Figure 1. Example cropped helmet images from real world scenes 123 
 An example of each camouflaged helmet cropped for recognition purposes. From left to 124 
right the patterns that the helmet wears are DPM, MarPat, MTP, UN PKB, Olive drab and 125 
Flecktarn. The top row are the helmets from Leigh Woods and the bottom row are helmets 126 
from Woodbury Common. Flecktarn was only used in Woodbury Common. 127 
 128 
 129 
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 130 
 131 
Figure 2.  Example Leigh Woods scenes  132 
Two example scenes from the Leigh Woods environment. The left column and the 133 
right column are two different scenes. The top two scenes do not contain a helmet. The 134 
middle two contain a UNPKB helmet. The bottom two contain the DPM helmet. 135 
 136 
 137 
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 138 
Figure 3.  Example Woodbury Common scenes  139 
Two example scenes from the Woodbury Common environment. The left column and the 140 
right column are two different scenes. The top two scenes do not contain a helmet. The 141 
middle two contain a UNPKB helmet. The bottom two contain the DPM helmet. 142 
 143 
 144 
 145 

2.2 Human Experiment 146 

 147 

2.2.1 Participants and Materials 148 

A human experiment using 22 participants for the Leigh Woods dataset and another 20 149 

participants for the Woodbury Common dataset was conducted.  Each of the two 150 

experiments had an equal proportion of each gender. Images were projected onto a 190 × 151 

107cm screen (Euroscreen, Halmstad, Sweden) from 310cm using a 1920 × 1080 pixel HD 152 

(contrast ratio 300,000:1) LCD Projector (PT-AE7000U; Panasonic Corporation, Kadoma, 153 
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Japan). Participants were seated at a distance of 255 cm from the screen and therefore 154 

images subtended 41° horizontally and 24° vertically.  155 

 156 

2.2.2 Procedure 157 

At the start of each block participants were informed which helmet to search for by 158 

presenting an image of the helmet; only one camouflage type was present in any one block. 159 

There were 27 and 22 trials per block, respectively, for Leigh Woods and Woodbury 160 

Common, and the order of patterns across blocks and replicated within blocks were 161 

separately randomised for each participant. A trial consisted of sequentially presenting two 162 

scenes for 250 ms with a 250ms blank screen, of luminance and chromaticity equal to the 163 

mean of all the test images, immediately followed by a 250 ms cue screen, prior to each 164 

scene. One of the scenes presented contained a helmet and the other did not, the order 165 

being randomised. The participant’s task was a two alternative force choice, reporting which 166 

of the two scenes contained the helmet. Responses were given using the number keys one 167 

and two on the keyboard, reporting the first scene or the second scene respectively during a 168 

1000 ms response period after each pair of scenes.   A presentation time of 250 ms is 169 

enough time to ensure a single saccade to the cued location, but not long enough to allow 170 

more complicated scan patterns. Since these scan patterns will be possibly highly variable, 171 

they will introduce variability into the responses above and beyond that due to the stimuli, 172 

and hence decrease the power of the study. One thousand milliseconds were allowed for 173 

subject’s responses to allow more than adequate time to respond, but not so long as to 174 

increase the time of the total experiment.  There were four general conditions of viewing, 175 

the factorial combination of two levels of colour information and two levels of location 176 

cueing. Cueing was of interest to separate effects of pattern recognition from detection, 177 
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because the model was initially designed for recognition. Colour was of interest because it 178 

has been suggested that camouflage is more effective when there is chromatic as well as 179 

spatial noise (Melin et al., 2007; Morgan et al., 1992). In the first cueing condition, (‘cued’), 180 

participants were cued to the location of the helmet.  In the scene that did not contain the 181 

helmet, this cue’s location was a random selection of one of nine possible pre-determined 182 

target locations. In the second condition, (‘uncued’), the cue was presented in the centre of 183 

the screen for both scenes. The spatial cue was a white circle, 50 pixel diameter, 5 pixel line 184 

width, circle that was presented for 250ms. The whole experiment was repeated in 185 

greyscale and colour. As with pattern, the order of conditions for each participant was 186 

randomised. 187 

188 
 189 

Figure 4.  Human experiment storyboard 190 
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Storyboard for one trial in the experiment. Sequence is in alphabetical order.  Duration of 191 
each interval was 250msec.  Either C or F contains the helmet.  Intervals A and D cue the 192 
participant to the spatial location of the helmet.   Intervals B and E present a blank interval of 193 
average chromaticity across all scenes.  At the end of the sequence, participants are asked 194 
which scene the helmet was in and are given 1000msec to respond.  The procedure is 195 
identical for the uncued condition however the spatial cue in A and D are uninformative. 196 

 197 

 198 

 199 

 200 

2.3 The Human Observer Model 201 

 202 

2.3.1 The Model Framework 203 

The model is a four-stage process as outlined below. By modelling low level visual 204 

processing, a side effect of the features chosen produces Gaussian variation from small 205 

metric distortions.  The resultant Gaussian variation can then be approximated using a 206 

mixture of multivariate Gaussian distributions. The centre of each Gaussian distribution 207 

stores a familiar view. Probabilistic principal components (Tipping and Bishop, 1999b) 208 

describe the variability in an interpretable way to recognise unseen and unfamiliar views. 209 

Estimating the density and evaluating the maximum posterior probability determines the 210 

object class. This method turns the difficult problem of learning a complex invariant 211 

representation of an object into the simple problem of estimating parameters of a mixture 212 

of multivariate Gaussian distributions.  213 

 214 

Stage 1. Filter Images with a Log Gabor Filter Bank 215 

Grey scale images are cropped to a square and resized to 128×128 pixels, preserving the 216 
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aspect ratio of the object. They are then filtered by a log Gabor wavelet filter bank, 217 

comprising three spatial scales (wavelengths of 16, 32 and 64 pixels), and four orientations 218 

(0, 45, 90 and 135) (Kovesi, 2000). This first stage captures the early linear properties of the 219 

visual system. Whilst 2D Gabors can be used to approximate simple cells (Daugman, 1985; 220 

Jones and Palmer, 1987), we know that (i) simple cells are tuned to spatial frequency with a 221 

Gaussian bell-shaped tuning curve on a log frequency scale (De Valois et al., 1982; Field, 222 

1987) and (ii) the Gabor filter has a D.C. component. The power in natural images is 223 

dominated by the D.C. component (Field, 1987), and, given that the cosine Gabor is 224 

sensitive to it and the sine Gabor is not, it will corrupt any computation of phase 225 

information in the next stage. The solution to both these problems is to employ log Gabors 226 

instead, which do not have a D.C. component (Kovesi, 1999). 227 

 228 

Stage 2. Process the Filtered Output 229 

Next we compute local energy and phase from the filtered output in stage 1. Stage 2 230 

accounts for two non-linear properties of the visual system, illumination invariance and shift 231 

invariance. The energy is logged and the effect is two-fold: (i) the energy is positive, and not 232 

symmetrical for Gaussian approximation in the fourth stage; and (ii) introducing logarithms 233 

will turn differences in illumination into additive offsets. Denoting the response of the real 234 

and imaginary filters as R(x,y) and I(x,y), where x and y indicate the index in the image and 235 

atan2 computes the four quadrant arc tangent, log local energy and phase can be computed 236 

as Energy = ln|R(x,y)+I(x,y)|+c and Phase = atan2(I(x,y),R(x,y)), where c is a small 237 

constant, 0.05, to avoid the undefined logarithm of zero and || is the absolute. The absolute 238 

is the magnitude of the real (cosine log Gabor) and imaginary (sine log Gabor) filters. The 239 
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sum of the squared filter responses is the magnitude, since 𝑠𝑖𝑛2 + 𝑐𝑜𝑠2 = 1. The energy 240 

loses local position, but confers some translational invariance and therefore small shifts are 241 

turned into small variations.  Local energy represents lines as symmetrical Gaussians.  242 

Therefore the variance of these features is Gaussian through small metric distortions such 243 

as shift and object pose.   244 

 245 

Phase angles will cycle from π to −π as the distortion moves through sampling locations, 246 

resulting in correlated variation. Phase information is a polar, circular variable; in order to 247 

use this feature for Gaussian approximation one must convert this feature into Cartesian 248 

space. Therefore the sine and cosine of the phase are computed, doubling the number of 249 

dimensions required for phase information. Concatenating this sampled local logged energy, 250 

sine and cosine phase information creates the feature vector. 251 

 252 

Stage 3. Sample the Local Energy and Phase. 253 

A hexagonal lattice, of equal size to the image, is placed over the image and the local energy 254 

and phase is sampled at the centres of each hexagon. A hexagonal lattice provides optimal 255 

sampling where samples are equidistant from each other (Yfantis et al., 1987). Phase angles 256 

vary less at larger spatial scales and therefore, to avoid over complete and redundant 257 

sampling, hexagonal lattices at larger spatial scales have fewer hexagons.  258 

 259 

Stage 4. Evaluate Recognition Decision Using Bayes’ Rule 260 

The Gaussian variation computed in stage 2 can now be approximated. A unimodal 261 

distribution can represent a single view of an object. A mixture of Gaussians can model a 262 
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multimodal distribution where multiple views of an object are learnt. The dimensions of 263 

each Gaussian component should represent the local variation of that view. The 264 

concatenation of the local energy and phase results in a high-dimensional feature vector 265 

and therefore a mixture of probabilistic components (Tipping and Bishop, 1999a,b) or a 266 

mixture of factor analysers (Ghahramani and Hinton, 1996) provides a local subspace for 267 

each Gaussian component and approximates the high dimensional covariance structure. To 268 

evaluate the recognition of an object, a model is created explicitly for each class. Likelihoods 269 

are computed for each explicit class and the posterior probability that an unseen object 270 

came from each object class is then evaluated using Bayes’ rule, P(A|B) = P(A)P(B|A). Where 271 

P(A|B) is the posterior probability that the data A is from the object class B and P(B|A) is the 272 

likelihood of data A under the object class B. The prior probability P(A) is equal for each 273 

object class and this therefore cancels out. 274 

 275 

2.3.2 Modelling the 2AFC Recognition Task 276 

Human participants were tasked with recognising a helmet given two different images.  One 277 

of the images contained a helmet and the other did not.  For a direct comparison, both 278 

observers need to be tasked in a similar way.  Ten-fold cross-validation was used to assess 279 

the model’s accuracy.  However, instead of evaluating a single image at a time, two images, 280 

one with a helmet and one without, were both evaluated under both background and 281 

helmet models.  Therefore each image needs to be evaluated under both models, producing 282 

four likelihoods (Fig. 5). There are two scenarios: either the helmet is in image A or it is in 283 

image B. In the first scenario the helmet is in image A, where there is a high likelihood that it 284 

came from the helmet model and so the likelihood that image B came from the background 285 

class will therefore have a high likelihood. Bayes’ rule will integrate over the mutually 286 
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exclusive probabilities as shown in the diagram by incorporating the four likelihoods 287 

P(A|Helmet), P(A|Background), P(B|Helmet) and P(B|Background).  Using Bayes’ rule, the 288 

probability that image A is a helmet is simply:  289 

 290 

1. P (𝐻𝑒𝑙𝑚𝑒𝑡|𝐴) =
𝑃(𝐴|𝐻𝑒𝑙𝑚𝑒𝑡)×𝑃(𝐵|𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)

𝑃(𝐴|𝐻𝑒𝑙𝑚𝑒𝑡)×𝑃(𝐵|𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)+𝑃(𝐵|𝐻𝑒𝑙𝑚𝑒𝑡)×𝑃(𝐴|𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)
 . 291 

 292 

 293 

 294 

 295 

296 
 297 

Figure 5.  Graphical illustration at modelling the 2AFC procedure 298 
To model the 2AFC task that humans were given, likelihoods under both models are 299 
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computed for both images. 300 
 301 

2.3.3 Modelling the Detection Task 302 

The model is trained on a series of cropped images, where the object fills the crop. If the 303 

model is presented with an image of the target at a different spatial scale, i.e. the object 304 

does not fill the crop, it would be unable to recognise the object. To accommodate scale, 305 

likelihoods are computed for both the helmet and background classes at different spatial 306 

scales, at intervals of 10 ranging from the smallest helmet to the largest helmet across all 307 

images. Weightings are computed for each scale using Bayes’ rule by evaluating which scale 308 

is most probable from the helmet class whilst evaluating that the other spatial scales belong 309 

to the background class. The weightings are multiplied with the likelihoods from each scale 310 

and summed. In short this procedure integrates probabilities over all spatial scales into a 311 

single likelihood for classification. This probabilistic approach, graphically demonstrated 312 

below where A and B denote two different sized crops at location in an image, is superior 313 

over simply taking the maximum, because the maximum only considers one model and if 314 

two scales are likely under the probabilistic approach the maximum would be too brittle and 315 

would ignore one of the likely scales. Equations below 2 - 7, show how Bayes’ rule integrates 316 

the likelihoods over all the spatial scales, denoting two spatial scales A and B.  Detection was 317 

modelled using leave-one-out cross-validation instead of the 2AFC approach. This was 318 

because there were too few scenes to compare the helmet scenes with. Problematically, if 319 

one were to compare likely peaks between two scenes, one scene would always have the 320 

same area of interest and this would be compared to many helmets. Leave-one-out cross-321 

validation also provides a straightforward way to manipulate the training data so that the 322 

model did not see any of the scene whilst detecting the helmet.  323 
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 324 

 325 

2.   𝑃(𝐻𝑒𝑙𝑚𝑒𝑡|𝐴, 𝐵) =  
𝑃(𝐴|𝐻𝑒𝑙𝑚𝑒𝑡) × 𝑃(𝐵|𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)

𝑃(𝐴|𝐻𝑒𝑙𝑚𝑒𝑡) × 𝑃(𝐵|𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) +  𝑃(𝐵|𝐻𝑒𝑙𝑚𝑒𝑡) × 𝑃(𝐴|𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)
 

 326 

3.   𝑃(𝐻𝑒𝑙𝑚𝑒𝑡|𝐵, 𝐴) =  
𝑃(𝐵|𝐻𝑒𝑙𝑚𝑒𝑡) × 𝑃(𝐴|𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)

𝑃(𝐴|𝐻𝑒𝑙𝑚𝑒𝑡) × 𝑃(𝐵|𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) +  𝑃(𝐵|𝐻𝑒𝑙𝑚𝑒𝑡) × 𝑃(𝐴|𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)
 

 327 

4.                                      𝐿1 = 𝑃(𝐴|𝐻𝑒𝑙𝑚𝑒𝑡) × 𝑃(𝐻𝑒𝑙𝑚𝑒𝑡|𝐴, 𝐵) +  𝑃(𝐵|𝐻𝑒𝑙𝑚𝑒𝑡) × 𝑃(𝐻𝑒𝑙𝑚𝑒𝑡|𝐵, 𝐴) 

5.                𝐿2 = 𝑃(𝐴|𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) × 𝑃(𝐻𝑒𝑙𝑚𝑒𝑡|𝐴, 𝐵) +  𝑃(𝐵|𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) × 𝑃(𝐻𝑒𝑙𝑚𝑒𝑡|𝐵, 𝐴) 

 328 

6.                                                𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 ℎ𝑒𝑙𝑚𝑒𝑡 𝑖𝑠 𝑎𝑡 (𝑥, 𝑦) =  
𝐿1

𝐿1 + 𝐿2
 

          7.                          𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 ℎ𝑒𝑙𝑚𝑒𝑡 𝑖𝑠 𝑎𝑏𝑠𝑒𝑛𝑡 𝑎𝑡 (𝑥, 𝑦) =  
𝐿2

𝐿1+𝐿2
 329 

 330 

Equations 2-7 elaborate an example of how the model evaluates over spatial scale, where A 331 

and B denote two images each at a different spatial scale.  332 

 333 

2.3.4 Colour 334 

There are three main issues to consider when including colour: i) colour in the periphery, ii) 335 

efficient feature combination of texture and colour and iii) appropriate choice of colour 336 

space for measuring the distance between colours. The representation of short, medium 337 

and long wavelength receptors on its own is insufficient because computed distances in the 338 

colour space do not correlate with human perception (Tkaclic and Tasic, 2003; Wyszecki and 339 

Stiles, 1982). Projections in the CIE L*a*b* colour space are consistent with the judgements 340 

of human observers and are appropriate for discrimination purposes (Renoult et al., 2015). 341 

The model is a human observer model. Whilst recognition accuracy should be high, similar 342 
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to human observers, it should not be able to recognise camouflaged objects all the time. 343 

The aim of the model is not to break camouflage and achieve perfect recognition. Therefore, 344 

instead of opting to use the CIE L*a*b* colour space, the MacLeod-Boynton chromaticity 345 

diagram is used. The MacLeod-Boynton chromaticity diagram (MacLeod and Boynton, 1979) 346 

is an isoluminant cone excitation space that is particularly good at discriminating large 347 

chromatic differences (Renoult et al., 2015). Modelling the detection of camouflaged 348 

helmets therefore is being treated as evaluating saliency, which this colour space has been 349 

shown to be successful at (Tatler et al., 2005). Colour is perceived differently in the 350 

periphery, because there are fewer cone receptors outside of the fovea (Hubel, 1995).  The 351 

receptive field sizes in the periphery increase with eccentricity (Abramov et al., 1991), and 352 

therefore for objects to appear chromatically similar as if they were in the fovea, they must 353 

be spatially larger (Hansen et al., 2009; Vakrou et al., 2005). Given that an object is big 354 

enough to be scaled, the upper bound of eccentricity has been found to be 40° to 50° 355 

(Abramov et al., 1991; Hansen et al., 2009), after which it has not been found to be possible 356 

to simulate chromaticity as if it were in the fovea. An object that subtends 2° of visual angle 357 

has been found to appear approximately chromatically similar as if it were in the fovea up to 358 

20° away. Therefore colour patterns can be simulated by low-pass-filtering the image 359 

(Mullen, 1985). Given the approximate appearance of foveal chromaticity with eccentricity 360 

up to 20° (half of the display), of objects that subtend 2° of visual angle, the scene was 361 

convolved with a Gaussian, whose standard deviation was measured to be 1° of visual angle, 362 

which was chosen so that it was comfortably smaller than 2°. It must be noted that the 363 

Gaussian blur is only an approximation and does not accommodate larger receptive fields as 364 

objects are more distant. The brightness varies the most across an image. Without 365 

processing the luminance, the mixture of Gaussians will have to explain this large variation, 366 
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which will result in noisy likelihoods. The luminance information across all images could be 367 

normalised between one and zero, however that would no longer be Gaussian and, because 368 

we are only interested in chromaticity and not luminance at this point, the luminance 369 

channel was excluded and was therefore not modelled. Excluding the luminance channel is 370 

straightforward to do using some colour spaces such as hue, saturation and value (HSV), 371 

where luminance is represented in the channel named value, or opponency colour spaces 372 

such as the Macleod and Boynton or L*a*b*, where again the luminance is represented in 373 

its own channel. Removing the luminance channel is a standard method to avoid the large 374 

variance of brightness in images (Cai and Goshtasby, 1999; Shadeed et al., 2003). Instead of 375 

concatenating colour onto the feature vector of energy and phase, another Gaussian 376 

mixture model was trained for colour, allowing probabilities of colour and texture to be 377 

independent and a full covariance structure of colour to be modelled rather than a mixture 378 

of factor analysers. For each posterior map, the probabilities in the region where the target 379 

was located were logged and the maximum was taken. The summed log probabilities were 380 

plotted against human performance to visualise the correlation. 381 

 382 

 383 

3. Results 384 

Human data were not normally distributed and therefore a Generalised Linear Mixed 385 

(Effects) Model with binomial error and logit link function was used to generate 386 

interpretable means and error for analysis.   Figures 6 - 9 compare the model accuracy with 387 

that of human accuracy and below in table 1 are the correlation coefficients between the 388 
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model and human observers for each condition.  Correlations coefficients are very high, all 389 

above 0.85 with the exception of detection in Woodbury Common in colour.  390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

Condition Correlation 

Leigh Woods 

Recognition 0.90 

Detection Greyscale 0.93 

Detection Colour 0.89 

Woodbury Common 

Recognition 0.91 

Detection Greyscale 0.87 

Detection Colour 0.68 

Table 1. The correlation coefficients between the model and human participants at 3 different 400 
conditions in two different environments, Leigh Woods and Woodbury Common 401 
 402 
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 403 

Figure 6.  Human and model recognition accuracy: Leigh Woods 404 
Leigh Woods model accuracy at recognition in greyscale plotted against human 405 
accuracy at recognition in greyscale. Correlation coefficient: 0.937. Error bars are 95% 406 
confidence intervals. 407 

 408 

 409 
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 410 

Figure 7.  Human and model recognition accuracy: Woodbury Common 411 
Woodbury Common model accuracy at recognition in greyscale plotted against 412 
human accuracy at recognition in greyscale. Correlation coefficient: 0.859. 413 
 414 

 415 

 416 

 417 

 418 

 419 
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 420 

Figure 8.  Human and model detection accuracy: Leigh Woods 421 
Model and Human Accuracy at Detection in Leigh Woods. Left: Texture Only, Right: Colour 422 
and texture. Error bars are 95% confidence intervals. 423 
 424 

 425 

 426 

Figure 9.  Human and model detection accuracy: Woodbury Common 427 
Model and Human Accuracy at Detection in Woodbury Common. Left: Texture Only, Right: 428 
Colour and texture. Error bars are 95% confidence intervals. 429 

 430 

 431 
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4. Discussion 432 

This paper has described and validated a visual recognition system that is designed to 433 

behave in a similar way to humans.  The principles of its design are based upon low-level 434 

visual processing in the primary visual cortex.  Although it is well-known that Gabor filters 435 

can approximate simple cells found in the primary visual cortex, and simple models using 436 

Gabor filters can achieve high recognition accuracy on simple datasets (Pinto et al., 2008), 437 

we present physiological evidence and a computational argument for the use of log Gabor 438 

filters.  Such applicability of a human observer model is high, because using human 439 

participants is impractical given a variety of viewpoints, environments and objects.  This 440 

paper also defined a task, a judgement of whether a target is present or absent in a scene, 441 

that would allow a direct comparison between the biologically motivated visual observer 442 

and human participants.  The analysis of the behavior from both observers provides the 443 

necessary evidence to assess whether the model is an adequate surrogate for a human 444 

observer. The task was to estimate the accuracy with which camouflaged objects, military 445 

helmets with different coverings, could be detected and recognised. The selection of a 446 

single object class with different colour patterns, rather than an array of different objects, 447 

avoided the problem of object choice and allowed visibility to be easily controlled through 448 

only colouration and textural properties. The visibilities of the objects were unknown prior 449 

to the experiment because, to our knowledge, they had never been evaluated in the two 450 

environments nor directly compared. However, a priori, the UN PKB helmet was expected to 451 

be easy to detect, the Olive Drab harder to detect and the three (Leigh Woods) or four 452 

(Woodbury Common) patterned camouflages hardest to detect. It was essential that the 453 

visibility of the patterns varied. If human recognition and detection for all camouflaged 454 

objects was at ceiling performance, or all the patterns were equally visible, then we would 455 
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lack any evidence that the model reflects what human subjects find difficult and what they 456 

find effortless.  457 

There were clear differences in detectability of the patterns to human subjects (Figs. 6 and 458 

7) and the patterns do indeed provide a spectrum of conspicuousness that is sufficient to 459 

draw conclusions from. The two different environments did not contain bright blue 460 

elements and the texture of the pattern was smooth and therefore UN PKB was, as 461 

predicted, very visible and the motivation for its inclusion as a control was vindicated. Olive 462 

Drab is also texturally smooth and its colouration is perceptually much closer to the 463 

environments used than UN PKB. The cost of pattern design is expensive and if simple olive 464 

drab were effective this would have implications for the design of camouflage; in fact this 465 

was not the case, with the patterned Flecktarn, Marpat and DPM performing better in most 466 

contexts. These patterns’ visibilities could not be as easily predicted as UN PKB, because 467 

they have never previously been compared in the two environments. We should not over-468 

interpret their relative effectiveness in our experiment, as the experiment was not designed 469 

with this goal. Multiple replicates of each pattern type, and habitat class, would be needed 470 

before we could conclude that, say, Marpat was better than MTP for these environments. 471 

Similarly, we cannot be sure that tendency of humans to outperform the model for 472 

Flecktarn, Marpat and DPM, but not MTP or the untextured patterns, is due to specifics of 473 

the textures or colours involved.  474 

The PASGT helmet, the standard issue for the US Armed Forces from the 1980s to 2000s, 475 

was chosen as a typical item of camouflaged military equipment but unvarying in shape 476 

(unlike a soldier or combat uniform) and easily portable.  It is difficult to predict how the 477 

model might perform with larger objects such as vehicles because these objects would have 478 

to be placed much further away from the camera and so the spatial scale of the background 479 
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textures relative to the object would change. However, given the success of the model in 480 

this task and the multiresolution nature of log Gabor filters, there are grounds for thinking it 481 

has general applicability.  The primary function of camouflage is to avoid detection in plain 482 

sight by enemies.  But it is also the case that friendly personnel need to identify peers, and 483 

therefore there is a trade off in visibility and identification such that one needs, not to be 484 

easily visible (to avoid attack) and yet remain identifiable (to avoid friendly fire) (Talas et al. 485 

2017).  The framework elaborated here, where classification was evaluated in a paired 486 

manner, helmet versus background, can be easily extended for this problem as a multi-class 487 

classification task. 488 

 489 

5. Conclusion 490 

A human observer model has been designed, and its detection and recognition behavior 491 

was compared with human participants.   Its behavior correlated highly with human 492 

participants.  There is large applicability for such a human observer model, where it is 493 

impractical to use human participants.  We have shown that an inexpensive and automated 494 

objective assessment of camouflage effectiveness is possible in a real-world setting.   495 
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