
Vanishing point detection for visual surveillance systems in railway platform environments

Abstract

Visual surveillance is of paramount importance in public spaces and especially in train and metro platforms which are particularly
susceptible to many types of crime from petty theft to terrorist activity. Image resolution of visual surveillance systems is limited
by a trade-off between several requirements such as sensor and lens cost, transmission bandwidth and storage space. When image
quality cannot be improved using high-resolution sensors, high-end lenses or IR illumination, the visual surveillance system may
need to increase the resolving power of the images by software to provide accurate outputs such as, in our case, vanishing points
(VPs). Despite having numerous applications in camera calibration, 3D reconstruction and threat detection, a general method for
VP detection has remained elusive. Rather than attempting the infeasible task of VP detection in general scenes, this paper presents
a novel method that is fine-tuned to work for railway station environments and is shown to outperform the state-of-the-art for
that particular case. In this paper, we propose a three-stage approach to accurately detect the main lines and vanishing points in
low-resolution images acquired by visual surveillance systems in indoor and outdoor railway platform environments. First, several
frames are used to increase the resolving power through a multi-frame image enhancer. Second, an adaptive edge detection is
performed and a novel line clustering algorithm is then applied to determine the parameters of the lines that converge at VPs; this is
based on statistics of the detected lines and heuristics about the type of scene. Finally, vanishing points are computed via a voting
system to optimise detection in an attempt to omit spurious lines. The proposed approach is very robust since it is not affected by
ever-changing illumination and weather conditions of the scene, and it is immune to vibrations. Accurate and reliable vanishing
point detection provides very valuable information, which can be used to aid camera calibration, automatic scene understanding,
scene segmentation, semantic classification or augmented reality in platform environments.
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1. Introduction

Security often requires reliable and robust video analytics
software from visual surveillance systems to monitor unstruc-
tured indoor and outdoor environments. Visual surveillance is
a broad research field in computer vision that has become very
active in recent years [1, 2, 3] for security and many other ap-
plications. Apart from the necessity of ensuring high levels of
security in public areas and facilities, the development of com-
puter vision devices at decreased costs as well as their miniatur-
ization and integration in lots of environments have accelerated
the use of visual surveillance systems. The increasing power of
standard computing platforms, with general purpose GPU cap-
abilities, allows computer vision tasks —implemented as soft-
ware layers or modules— to be executed in real-time over the
scene action provided by surveillance cameras. Video surveil-
lance systems can be used indoors or outdoors. Applications
of these systems range from security concerns, such as crime
protection, prevention and forensics, to management, such as
traffic and infrastructures.

Image resolution of video surveillance systems is limited
by a trade-off between several system requirements, such as
sensor and lens cost, transmission bandwidth and storage space,
among others. However, the acquisition rate of modern video
surveillance cameras makes it possible to reconstruct an en-
hanced image from a set of low-resolution images when the
computer vision modules of the system are expected to provide

accurate outputs. Multi-frame-based reconstruction techniques
require a precise alignment of the set of original images to
provide an enhanced image, that is, precise subpixel image re-
gistration is required.

Most man-made environments are composed of numerous
buildings, roads, streets and objects that can be represented by
simple volumes such as cubes or basic surfaces such as planes.
These volumes and surfaces are themselves formed from ele-
mentary geometrical elements such as straight lines. These
lines, when projected onto an image, intersect at vanishing
points (VPs) and define the perspective of the scene. Moreover,
lines are common in the type of environment being considered
here (i.e. railway and underground station environments). Such
environments make it easy to extract lines and VPs as they ap-
pear many times in the captured images. However, due to the
large number of straight lines in scenes such as railway or un-
derground stations, VP detection can be problematic. This is
partly because of external elements such as variation in lighting,
noise, distortion from the camera and occlusions. In addition,
these scenes also contain a large number of people, luggage
etc. which make the analysis task even more complex. This
implies that any VP detection method needs to be specifically
adapted to the type of scene geometry in order to offer a ro-
bust and effective system. In this paper, we aim to adapt the
detection method to railway scene surveillance, an especially
common security scenario, but the principles can be tuned for
other environments also.
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The large majority of past research into VP detection is
only applied to relatively simple volumes such as cubes, par-
allelepipeds, or other environments such as roads or architec-
tural images. These such environments are often termed ”Man-
hattan” as the lines tend to be mostly parallel or perpendicular
to each other. In addition, the images are generally captured
with good illumination conditions and where the perspective is
sufficiently extreme that the extraction of lines and VPs is rel-
atively straightforward. The main difference between previous
work and this contribution is the adaptation of well-established
techniques to a different and more complex environment, where
geometrical elements such as lines and VPs are so numerous
that they create noise and occlusions. Furthermore, complica-
tions arise due to non-Manhattan lines such as escalator rails.
For the majority of this paper, we assume Manhattan geometry,
i.e. the imaged scene contains three mutually orthogonal dir-
ections. However, we also conduct preliminary experiments to
show that the method has scope to locate VPs considering non-
Manhattan lines near the end of the paper.

This paper presents a novel method for VP detection, im-
proving upon our earlier works described in [4] [5], that is
fine-tuned for railway and underground station environments,
a common application of CCTV. Unlike much other work from
the computer vision community, the proposed approach takes
advantage of using real CCTV data acquired by the video sur-
veillance system in a multi-frame image processing method, as
well as the geometry of the environment in train and metro plat-
forms. Figure 1 shows four different examples of images ac-
quired by video surveillance systems in rail platform environ-
ments. As can be seen, the main planes and objects are delim-
ited by straight lines denoting strong perspective effects, which
is a common feature in these platforms.

The contribution of this paper is two-fold, first, we present an
optimised super-resolution technique to enhance image quality
in a railway platform setting. Second, we propose a novel VP
detection method that is fine-tuned to railway station environ-
ments and uses the enhanced image as input. Moreover, the
novelty of this work lies in the use of specific a priori know-
ledge and constraints related to the type of scene we are dealing
with in order to compute VPs from Manhattan directions. Our
algorithm is composed of four main steps:

1. Enhance the raw set of CCTV frames by noise/distortion
reduction and extract lines using the Canny edge detector and
the Hough transform.

2. Apply a priori information from the scene to cluster lines
into those emanating from each VP.

3. Reduce the number of lines using a sub-clustering scheme
before their intersections are computed based on Singular Value
Decomposition (SVD).

4. Apply a voting scheme to extract the most likely VP loca-
tions from the intersections found above.

The principal lines extracted from the scene and the vanish-
ing points computed from their intersections can be used as in-
puts for different modules of surveillance systems, such as auto-
matic camera calibration [6, 7, 8, 9] and scene understanding
[10, 11, 12]. Also, these inputs could be used in future develop-
ments involving robotic surveillance devices that could freely

move around within the environment to perform security tasks
such as surveillance, or maybe assist passengers in this type of
environment. Such autonomous devices would certainly need
to be able to automatically make sense of their changing 3D
view as they move about. Finally, surveillance devices in plat-
form environments could augment the view it captures to help
raise alerts when anomalous behaviour is detected.

The rest of the paper is organized as follows: Section 2 ex-
amines different methods to compute an enhanced image given
a sequence of images and reviews the state-of-the-art methods
to detect lines and compute vanishing points from 2D images.
Section 3 proposes an image enhancing technique to increase
the resolving power of low-resolution images acquired by video
surveillance systems in rail platform environments based on
state-of-the-art methods. Section 4 describes how vanishing
points are computed from images acquired in railway platforms.
Finally, Sect. 5 shows the experimental results and Sect. 6 re-
ports the main conclusions of this work.

2. Related work

In this section, the previous works related with the two main
topics covered in this paper are reviewed, namely: increasing
the resolving power of low-resolution images and vanishing
point detection.

2.1. Improving the resolving power of low-resolution images

Images provided by common visual surveillance cameras are
usually of low resolution, often have poor image contrast, many
times are acquired under uneven or hostile lighting conditions
and, in outdoor applications, with changing weather conditions.
Thus, random variations or noise appear in the images. In ad-
dition, most of the video surveillance cameras transmit the im-
ages to the host computer or the recorder system after being
compressed using lossy codecs. Many visual surveillance ap-
plications can perform well with this type of images. However,
if the application needs to perform accurate computations or
measurements over the objects of the scene, high quality im-
ages are required. This type of application may include ac-
curate camera calibration, accurate distance or object measure-
ment, and accurate semantic classification of the objects of the
scene. In the case of an application computing vanishing points
from a scene, the higher the resolving power of the images, the
higher the accuracy of the coordinates of the determined van-
ishing points. In these scenarios, either a hardware or a software
improvement can be proposed to meet this requirement. On one
hand, high-end visual surveillance cameras —featuring high-
resolution sensors, high-end lenses, and even IR projectors to
properly image dark scenes— can be used, though the cost of
the system would be sharply increased. On the other hand, an
enhanced image can be computed from the compressed, low-
resolution images acquired by inexpensive cameras.

Visual surveillance cameras acquire many consecutive
frames of the same scene in most of the configurations. In
the case of static cameras it is always from the same orienta-
tion. But even in the case of PTZ cameras, several frames of
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Figure 1: Examples of platform environments denoting strong perspective effects: (a) and (b) outdoor rail platforms in different weather conditions; (c) and (d)
indoor rail platforms.

the same orientation are often captured. Although these cam-
eras can follow moving objects or a human operator may direct
them to see another part of the scene, most of the time they re-
main static. Also, the acquisition rate of these cameras is high
enough to get several frames from the same direction. This al-
lows computer vision modules of video surveillance systems
to use several frames to reconstruct an enhanced image redu-
cing the signal-to-noise ratio (SNR) of the original frames and
increasing the image resolving power. Furthermore, this recon-
struction can also be used to remove misalignments between
images acquired by surveillance cameras that can be introduced
by small vibrations. In the case of rail platforms, these vi-
brations can be produced by trains approaching or leaving the
platform, or by the wind when cameras are attached to outdoor
poles.

Enhancing or improving the resolving power of images is
widely studied in computer vision [13, 14]. This problem can
be addressed using super-resolution (SR) methods, which aim
at recovering a high-resolution image from low resolution im-
ages. These methods can be classified [15] into interpolation-
based methods [16], reconstruction-based methods [17], and
learning-based methods [18]. Recent SR methods are mostly
learning-based, that learn a mapping between the low resol-
ution and the high resolution image spaces [19, 20, 21, 22].
Among these methods, the Super-Resolution Convolutional
Neural Network (SRCNN) has achieved superior performance

than the state-of-the-art methods [23].

2.2. Vanishing point detection
Lines that are parallel in the real-world intersect at a common

point in image space known as a vanishing point. Assuming a
pinhole camera, the vanishing point of a set of lines (that are
parallel in the real world) is obtained geometrically by inter-
secting the image plane with a ray parallel to the line of the
scene and passing through the camera centre [24]. These points
indicate a unique orientation in the scene which is a valuable
source of information to have a better understanding of 3D geo-
metry. The computation of VPs requires the estimation of the
coordinates where lines of the image with a same real-world
orientation converge. The first step is therefore the extraction
of the main lines from a 2D image.

Many line detection and extraction methods have been pro-
posed in the literature [25]. This is an active research field [26]
since the approaches developed can be used in a wide range of
disciplines, such as industrial [27, 28], aerial [29] and medical
imaging [30] to name but a few. Among them, the technique
most commonly used to detect straight lines from images is the
Hough transform (HT) [31]. The Hough Transform algorithm
describes features as a parameterized model used to transform
them from the original image space into a 2D parameter space.
A voting scheme is then used to describe how well a feature in
the image fits the model. Then, a threshold is applied to the
votes to effectively detect the feature. Initially intended as a
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method to recover complex patterns of points in binary images
[32], Hough Transform was later generalized to detect several
features in images, such as lines and curves [33], and arbit-
rary shapes [34]. These methods are commonly referred to as
standard Hough transform or non-probabilistic methods. One
of the key advantages is that Hough Transform can provide
very good results even in very noisy images [31]. However,
standard methods require a high computation time and memory
cost. Therefore, several methods, namely probabilistic methods
such as the randomized Hough transform [35, 36] have been
developed to reduce its complexity. Note that these methods
require an edge detection of the original image prior to the ap-
plication of the Hough Transform. Most commonly, the Canny
edge detector is used [37].

The seminal method for detecting vanishing points is based
on the projection of an image onto a Gaussian sphere centered
on the optical centre of the camera [38]. The Gaussian sphere
represents an accumulator space where circles correspond to
lines in the image plane and their intersections to VPs. Lut-
ton et al. [39] analysed different error sources in this accumu-
lator space, such as the extension of the image, and Shufelt [40]
concludes that the Gaussian sphere can lead in some occasions
to spurious VPs. One alternative to the bounded accumulator
space of the Gaussian sphere is the use of the image plane as an
unbounded accumulator space, and the intersections of all pairs
of lines in the image as accumulator cells [41].

The Hough Transform has been widely used to assist the de-
tection of VPs in several approaches [6, 39]. Usually, VP detec-
tion methods require a high computational cost. Consequently,
several approaches have been developed to tackle this issue by
means of Expectation-Maximization (EM) [42], J-linkage [43],
RANdom SAmple Consensus (RANSAC) [44] and M- estim-
ator SAmple Consensus (MSAC) [45]. Conversely, other ap-
proaches are computationally more expensive since they are fo-
cused on accuracy rather than speed [41].

The use of vanishing points for camera calibration has been
pioneered by Caprile and Torre [6], who proposed a method
to calibrate a stereo system using simple properties of vanish-
ing points. Wang [7] introduced the calibration of a camera
using vanishing lines. More recently, Grammatikopoulos [9]
proposed a method using three vanishing points of orthogonal
direction and a priori information of object geometry.

Vanishing point detection is a well-studied problem that has
been specialised in some scenarios to take advantage of par-
ticular features of specific environments. The most common
scenario where VP detection has been specialised is in archi-
tectural environments [43, 47, 9]. In these environments high-
end cameras and lenses are typically used with good illumin-
ation conditions and no vibration or other camera movement.
These images are generally acquired using tripods, so no vibra-
tion effects are transmitted to the image. Furthermore, these
images are processed off-line were computational complexity
is not a limiting issue. Conversely, in railway platform envir-
onments, images are commonly acquired using low-resolution
video surveillance cameras under uneven illumination and often
with changing weather conditions. In addition, vibrations often
affect the camera when trains approach or leave the platform

or in the presence of strong winds. Furthermore, in outdoor
platform scenes, windy weather conditions may also introduce
vibrations in cameras installed in poles, as mentioned above.

3. Enhancing the resolving power of rail platform scenes

In this work, we compute an enhanced image to be used as
the input for the line detection stage from a set of video frames
based on two steps. These two steps are the classical steps used
in super-resolution techniques [48]. First, we align the original
frames using a precise sub-pixel image registration method to
remove undesirable effects caused by small vibrations of the
camera. Second, we reconstruct an enhanced image from the
set of frames registered in the first step. After these steps the
image can be corrected, if necessary, to remove the effects of
the radial lens distortion. We use an enhanced image since some
errors in the vanishing point detection methods come from poor
line detection and extraction [39, 47], which introduce errors in
the coordinates of the main lines of the scene, and thus, in the
coordinates of the computed vanishing points. Figure 2 shows
the architecture of the proposed approach.

3.1. Image registration

Image registration can either be done in the spatial or fre-
quency domain. On one hand, methods based on the spatial
domain can deal with general motion models, such as homo-
graphies. On the other hand, methods based on the frequency
domain are restricted to global motion models and usually only
consider planar shifts, planar rotations and scale, which can be
easily managed in the Fourier domain. Most of the state-of-the-
art image registration methods have difficulties when dealing
with noisy images. This is the case of the images acquired by
video surveillance systems in rail platform environments due to
the use of low-cost cameras and/or the use of lossy compression
methods to transmit the acquired frames.

In this work, we align the low resolution frames, ILR, ac-
quired by video surveillance cameras in train and metro plat-
forms using a procedure built on the frequency-based method
to estimate image rotations proposed by Vandewalle et al. [49].
This method outperforms other state-of-the-art frequency do-
main methods and also performs better than spatial domain
methods if the image presents some directionality, as it is the
case of railway platform images showing strong perspective ef-
fects (see Figure 1). This process follows the next steps:

1. Multiply the frames ILR,n, n ∈ [1,N], by a Tukey window
to make them circularly symmetric.

2. Compute the Fourier transforms FLR,n of all low-resolution
images.

3. Estimate the rotation angles, φn, between every frame
ILR,n, n ∈ [2,N] and the reference frame ILR,1.

4. Estimate the vertical and horizontal translations, ∆xn,
between every frame ILR,n, n ∈ [2,N] and the reference
frame ILR,1.

In this alignment process, only low-frequency information
of the images is used, that is, the part of the image with the
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Figure 2: Architecture proposed for VP detection in outdoor and indoor rail platform environments.

highest SNR. This part of the image is aliasing-free and, thus, if
the surveillance camera (or the codec) provides aliased images,
this method can deal with this issue. In frames acquired from
railway platform environments aliasing may appear in long dis-
tances when imaging rail ties or ground tiles, for instance. Two
requirements are imposed to properly align the original images:
the original images are undersampled, and the imaged scenes
cover large distances. These requirements are met by the im-
ages acquired in railway platform scenes.

3.2. Image reconstruction

Image reconstruction can be achieved by means of interpol-
ation methods, statistical techniques and Bayesian estimation
[50, 51], iterative backprojecton and the projection onto convex
sets (POCS) algorithm [52] among others. For our image en-
hancer, we chose interpolation due to its ideal balance between
performance and computational cost. Once the original frames
are accurately aligned, an enhanced image can be computed.
First, an estimation of the optimal number of frames, n f , to be
used in the reconstruction step is required.

The video sequences used in all the experiments shown in
this paper were acquired using Sony SNC-DF70 surveillance
cameras, equipped with a 1/4′′ Sony Super HAD (Hole Ac-
cumulation Diode) CCD sensor with an effective resolution of
768 x 494 pixels, capable of providing images up to 640 x 480
pixels. We ran an experiment over six video sequences acquired
from three outdoor and three indoor railway platform environ-
ments to determine the optimal number of frames to use in the
reconstruction step. This experiment was carried out over the
frames provided by the video surveillance cameras compressed
using MPEG-4 (image resolution was set to 640 x 480 pixels).
One frame from each video was randomly selected, acting as
ground truth. Starting with the frame after the selected one in
each video sequence, a low-resolution image (with a 320 x 240
pixel resolution) was computed from each frame of the experi-
ment by subsampling. Then, several images were reconstructed
(with a 640 x 480 pixel resolution) using a different number of
frames. Figure 3 shows the mean-squared error (MSE) of the
reconstructed image as a function of the number of the original
frames used. The reconstruction step provides the best relation-
ship between performance and computational cost when five to
seven input frames are used. Thus, in this work we determine
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Figure 3: MSE of the reconstructed image as a function of the number of input
frames; the solid line represents the outdoor scene and the dotted line the indoor
scene.

n f = 6, that is, six frames are used in the reconstruction of the
enhanced image for further stages.

Once the number of aligned frames to be used in the recon-
struction step is determined, the optimal time interval between
the acquisition of these frames, t f (in seconds), must be estim-
ated. We ran an experiment over six different video sequences
acquired by surveillance cameras in rail platforms to determ-
ine the best gap between frames to reconstruct an enhanced
image. The video sequences used in this experiment were ac-
quired when no train was approaching or leaving the platform
and with no people in the platform. Figure 4(a) shows an ex-
ample frame of each of the video sequences used in this exper-
iment. A ground truth image was randomly chosen from each
video sequence. Then, sets of n f frames were extracted from
each video, right after the frame considered as the ground truth
image, using different time intervals between the frames. After
that, a low-resolution image (with a 320 x 240 pixel resolution)
was computed from each frame. Finally, an enhanced image
from each set of frames was reconstructed. Figure 4(b) shows
the MSE of the reconstructed image as a function of the time
interval. As can be seen, the best results are obtained when
the input frames are chosen with a gap between two and three
seconds, t f ∈ [2, 3]. Shorter gaps do not allow to enhance the
quality of the image. Larger gaps introduce more noise maybe
due to changes in illumination (this can be seen because the
MSE in the reconstructed images from the indoor mainly re-
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mains constant regardless the gap used).
The reconstruction of the high-resolution image follows the

next steps:

1. For every image ILR,n, n ∈ [2, np], compute the coordinates
of its pixels in ILR,1, using the registration parameters, φn

and ∆xn, estimated for each frame.
2. Interpolate the values on a high-resolution grid using cubic

interpolation.

The simplest method to fuse several images is averaging.
Using this method, the resolving power of the enhanced im-
age is not increased compared to the original ones. We also
ran an experiment averaging all the original frames to obtain
an enhanced image. Although this method is only capable of
reducing noise and does not increase the resolving power of
the image, it can be used to estimate the error obtained in the
reconstruction step using the frequency-based method. Fig-
ure 4(c) shows the MSE of the images enhanced by averaging
the original frames as a function of the time interval. As can be
seen, the frequency-based reconstruction method may increase
or even reduce the level of noise compared to the average-
based method. In the worst case, the error is double that of
the error introduced by the averaging method. However, in
the frequency-based reconstruction method the size of the en-
hanced image is quadrupled and, most importantly, the resolv-
ing power is increased.

Figure 5 shows the effect of edge detection from an image en-
hanced using the procedure described above. Figure 5(a) shows
the original frame of a video sequence acquired in an outdoor
railway platform; Figure 5(b) and Figure 5(c) show the out-
put of an edge detection performed over the original frame and
over the enhanced image in a given region, respectively. The
edge detection was carried out using the Canny edge detector
with equivalent hysteresis thresholds and values for smoothing,
taking the difference between the size of the images into ac-
count. As can be seen, there are some hints on the edge detec-
tion that reveals that the resolving power of the enhanced image
has been improved. First, in the original frame only, two edges
of the railway tracks were detected, whereas three edges were
detected in the enjavascript:void(0);hanced image. An accur-
ate detection of the railway tracks is of paramount importance
when computing the vanishing points of the scene, since they
are known to be parallel lines in the real world and their inter-
section in the coordinate system of the image is a clear vanish-
ing point. Second, the edges of the vertical structure on the left
of the shelter are better identified in the enhanced image. This
information can be of utmost importance for a semantic seg-
mentation of the objects of the scene. Finally, the yellow area
on the right edge of the platform is also better identified in the
enhanced image.

Although the frequency-based reconstruction method built
based on [49] is computationally efficient, we developed a
pipelined architecture which allows performing the image en-
hancer online. In this architecture, all the stages can run in
parallel and once a new image is available for the enhancing
stage, it is added to the previous images that have already been
registered and the enhanced image is reconstructed very fast.

Figure 6 shows a diagram of the pipeline evolution for a se-
quence of input frames Ii, i ∈ [1, 15], where t0, . . . t15 are separ-
ated by the interval specified in t f , Ii− j is the image registered
using input frames Ii to I j, I′i− j is the image reconstructed using
registered image Ii− j, Ei− j is the edge detection over image I′i− j,
UI′i− j is the undistorted version of I′i− j computed using Ei− j, and
VPi− j is the vanishing point output computed as a result of input
frames Ii to I j.

As mentioned above, after the image has been reconstructed,
a correction step could be added to remove the radial lens dis-
tortion to the enhanced image. The effects of the radial lens
distortion in the image can be removed without user interven-
tion using the main straight lines of the image —detected in the
next stage. Since the vanishing point computation involves ex-
tracting the main straight lines from the image, the radial lens
distortion of the camera can be determined based on a least-
squares adjustment of the points belonging to these lines, as
proposed in [9]. Figure 7 shows an example of an image en-
hanced using the procedure described above. Once the image
was enhanced, its radial lens distortion was corrected. In this
example, a moving person appears in some of the input frames
of the image enhancer (see Figure 7(a)) but the registration step
diffused this area. Thus, it does not affect further stages, and
enables data to be captured in the presence of passengers. Fig-
ure 7(b) shows the enhanced and corrected images.

4. Vanishing point detection in rail platform scenes

Images from video surveillance systems are mostly of low
resolution, which makes scene analysis a difficult task. How-
ever, the method presented in the previous section allowed to
increase the resolving power of the image and thus to get better
results for line extraction and clustering and VP computation
stages. Images with a high resolving power in video surveil-
lance systems can be used to accurately perform several com-
puter vision operations. In this work, the images enhanced as
described in the previous section constitute the input of a van-
ishing point detection procedure (see Figure 2). The procedure
described in this work follows a three-step approach for vanish-
ing point detection from 2D images: first, the main lines of the
image are detected, second, the lines are clustered according to
a priori knowledge from the scene, finally the coordinates of the
vanishing points are computed. We compute all possible van-
ishing points from the image. Then, geometry restrictions are
applied over the set of provided vanishing points to compute
those corresponding to Manhattan directions.

4.1. Line detection

In this section, we present the method for extraction and clus-
tering of lines before computation of the VP coordinates. Our
input is a greyscale frame F captured by the CCTV camera and
enhanced using the methods mentioned in the previous section.
Note that the above methods typically use multiple input frames
to obtain F and are therefore somewhat robust to the movement
of pedestrians etc. which will effectively be averaged out across
frames. The Canny edge detector is then applied to extract
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Figure 4: Effects of the multi-frame image enhancing: (a) examples of frames of the video sequences used in the experiment; (b) MSE of the enhanced image using
frequency-based reconstruction as a function of the gap used to select the frames from the video sequence; (c) MSE of the enhanced image using averaging as a
function of the gap used to select the frames from the video sequence; in (b) and (c) solid lines represent outdoor scenes and dotted lines represent indoor scenes.

(a)

(b) (c)

Figure 5: Edge detection from an original, low resolution frame and from and enhanced, high resolution image obtained using the multi-frame image enhancer
described in this paper (the resolution of the latter is double the resolution of the former): (a) original low-resolution frame (yellow lines highlight a given region of
interest; (b) edge detection from the original frame in the given region; (c) edge detection from the enhanced image in the given region.
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Figure 6: Pipeline evolution.

(a) (b)

Figure 7: Example of an image showing a platform environment enhanced and corrected using the procedure described in this paper: (a) original frames acquired
with a two-second time interval between them (first frame of the sequence is top left; last frame is bottom right); (b) enhanced image after registration and
reconstruction with more resolving power (above) and enhanced image after correcting the radial lens distortion (below).
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edges from the enhanced image. It is well known that three
parameters must be set for the Canny edge detector: the size of
the Gaussian filter used to smooth the image in the first step of
the detector, σ, and the hysteresis thresholds used to extract the
edges, tl and th. A common size of the smoothing kernel can be
experimentally determined for both outdoor and indoor scenes
of railway platform environments. However, due to changes in
illumination conditions, it is not possible to get a common value
for the hysteresis thresholds without missing lines or adding
noise to the final result when these conditions change. Thus,
an auto-adaptive method to compute these thresholds should be
used.

Although there is no optimal solution —because there is not
a unique edge segmentation of the image; it depends on what
this segmentation is going to be used for in high-level computer
vision modules— several auto-adaptive methods have been pro-
posed to deal with this task. Most of them are based on the
Otsu method [53], which relies on the gradient magnitude of
the image and searches for the threshold, tO, that minimizes the
intra-class variance, or equivalently, ensures that the inter-class
variance is maximal. In this method, an image is defined as
I(x, y), and L being the number of distinct gray levels, ni be-
ing the number of pixels with gray level i, and N the number
of pixels of the image. In this image, the probability of a pixel
having the gray level i is defined in Eq.(1).

pi =
ni

N
(1)

If the image is divided into two classes, C0 and C1, by a
threshold in level k, C0 denotes pixels with levels [0, k] and
C1 pixels with levels [k + 1, L]. The optimal threshold, tO, the
cumulative probabilities P0(k) and P1(k) can be obtained using
Eq.(2) and Eq.(3), respectively. Also, the mean levels of C0
and C1, µ0 and µ1 can be computed using Eq.(4) and Eq.(5),
respectively.

P0(k) =

k∑
i=0

pi (2)

P1(k) =

L∑
i=k+1

pi (3)

µ0(k) =

k∑
i=0

i
pi

P0(k)
(4)

µ1(k) =

L∑
i=k+1

i
pi

P1(k)
(5)

Then the optimal threshold tO can be obtained as Eq.(6).

tO = arg max
1<k<L

(
(P0(k)(µ0(k))2 + (P1(k)(µ1(k))2

)
(6)

In some circumstances, for example when the histogram dis-
tribution of the image is unimodal, the threshold provided by
the Otsu method will be incorrect. Thus, some improvements
of the Otsu method have been proposed [54, 55, 56]. Many

image processing applications use tO as the high threshold for
the Canny edge detector. Because of the nature of the scenes,
unstructured indoor and outdoor environments will provide
bimodal or multimodal distributions. Thus, the threshold
provided by the Otsu method will be used as th in the pro-
posed approach. Then, we set the low hysteresis threshold as
tl = 0.5 · th (following the criterion of the high-to-low ratio
between 2:1 and 3:1 recommended by Canny [37]).

Once edges have been extracted, the main lines of the image
are detected by means of the standard Hough Transform. In
this stage, we promote only long lines of the enhanced image to
pass to the vanishing point detection stage. Thus, a threshold,
lt, is established for the voting scheme in the Hough Transform
to discard short segments. As mentioned above, the input of
the Hough Transform algorithm is a description of the edges
of the image. To set the length threshold used by the Hough
Transform we ran an edge and further line detection experiment
over different rail platform scenes with several values for lt. We
conclude lt = 100 provides a good estimator for the length and
high hysteresis threshold required for an accurate line detection
for image resolution values used in this paper.

4.2. Vanishing point computation

We compute vanishing points in the images acquired from
railway platform scenes using the image plane as the accumu-
lator space, as in [41] and in [9]. We chose this unbounded ac-
cumulator space since it preserves all geometrical information
from the original image and it does not require camera calib-
ration as opposed to the Gaussian sphere. Each main line of
the image is assigned to a vanishing point, or identified as an
outlier.

We introduce knowledge about the railway platform scenes
to reduce the computational complexity and unsuccessful de-
tection of vanishing points.

First, lines are clustered taking into account the dominant
directions according to their angle, as in [57]. In general, in
railway platform environments two main directions lie close to
the vertical and the horizontal direction. Second, most video
surveillance cameras in railway platforms are installed in a high
position and the z axis of the scene follows the direction of the
rail tracks; thus, a vanishing point is expected above the image
boundary —where lines from rail tracks and platform edges in
the 3D scene converge in the 2D image plane— (see Figure 1,
Figure 4(a) and Figure 5). Third, most of the time all vanishing
points corresponding to Manhattan directions in the scene are
located beyond the image boundaries. If a vanishing point is
located inside the image boundaries it probably comes from a
plane which is non-orthogonal with the Manhattan directions
of the scene. These points in rail platform scenes usually come
from stairways or escalators (see the image on the right of third
row in Figure 4(a)).

We compute all pairwise intersections of lines pointing to a
similar direction (each cluster) and mark each intersection as a
putative vanishing point. Since we only promote long lines in
the Hough Transform-based line detection stage, we consider
that all these lines can point toward a possible vanishing point.
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Then, we compute the vanishing point as the centroid of all in-
tersections by least squares using singular value decomposition
(SVD). We use a combinational approach to compute all the
pairwise line intersections since in rail platform environments
the number of principal lines is not very large and do do not
incur in a big performance penalty.

The most expensive task is computing the line intersections,
but this operation can be done using SVD on a GPU, so it is
highly parallelizable. If the combinational approach would not
meet the deadlines imposed by the high-level computer vision
modules of the surveillance system, line clustering could be
carried out using RANSAC, as in [58], and some intersections
would not be computed since minimal sets of lines could be
used to reach a consensus.

Although computing the vanishing point using the centroid
of all the line intersections does not provide the optimal solution
[24], its accuracy is high enough for most of the applications
when the edges of the image have been accurately extracted.
Also, it can be computed very fast. However, if the accuracy
obtained using this method would not meet the requirements of
the high-level computer vision modules, it could be refined us-
ing EM, or another iterative algorithm, or computing the max-
imum likelihood estimate (MLE) of the intersections.

Finally, when two lines in the same cluster, l1 (ρ1, θ1) and
l2 (ρ2, θ2) (ρ1 and ρ2 are the distance from the origin to the
closest point on the straight line 1 and 2 respectively and θ1
and θ2 are the angle between the x axis and the line connecting
the origin with that closest point), have the same angle, θ1=θ2,
the vanishing point is at infinity —that cannot be represented in
the image coordinate system. Thus, we compute this vanishing
point as the farthest point in the accumulator space, ∆max, with
parameters θ = θ1 = θ2 and ρ = 1

2 (ρ1 + ρ2), as proposed in [47].

5. Experimental results

This section presents a number of experimental results to
demonstrate the effectiveness of the proposed approach to ro-
bustly detect vanishing points from low-resolution images ac-
quired by video surveillance systems in rail platform environ-
ments. Firstly, the most representative video sequences ac-
quired from video surveillance systems are selected, both from
outdoor and indoor platform environments. The aim of this
selection is to look for different orientations of the rail tracks
in the scene, different locations of platform furniture, such
as shelters and benches, and different illumination conditions.
Secondly, the ground truth of several frames from each video
sequence is computed manually. And, finally, the vanishing
points of each frame are automatically computed using two ap-
proaches: that proposed in this paper and another method to
compare the obtained results to.

To the best of our knowledge there are no specific approaches
intended to compute vanishing points from rail platform envir-
onments —as reviewed above, most of the related work is fo-
cused on architectural environments. Thus, we choose the ap-
proach proposed by Tardif [43] which provides very good res-
ults in this type of environment and is based on a non-iterative

method using J-linkage to cluster the lines of the image accord-
ing to the vanishing point they pertain to. Although the method
proposed by Tardif does not enforce orthogonality of the van-
ishing points when generating the hypotheses and generally, its
only drawback compared to more recent methods is that it re-
quires a larger number of line segments to converge to the cor-
rect solution [59].

In these experiments, 18 video sequences acquired from 18
different rail platform environments were used; 10 from out-
door and 8 from indoor platforms. Five starting frames were
equidistantly selected from each clip to ensure that the ex-
periments are run over images with different lighting condi-
tions. Therefore, the dataset for the experiments consisted of
90 frames (40 indoor and 50 outdoor).

The ground truth for these experiments consisted of the van-
ishing points of each frame. The vanishing points were labeled
by people who did not develop the approach proposed in this
paper to avoid any bias due to prior knowledge of the vanishing
point computation. These people were trained on the usage of a
very basic piece of software to annotate in the image two main
lines pointing to each main direction of the scene, that is, to
identify two main lines that converge to each vanishing point.
Then, this software computed automatically the intersections of
these lines and labeled them as the ground truth for the image.
Figure 8 shows two examples of the manual annotation.

Once the ground truth had been determined, we computed the
vanishing points in the dataset using two automated approaches.
Firstly we ran the three-stage approach proposed in this paper.
An enhanced image is computed using several frames (n f ), as
described in Sect. 3, and then, the vanishing points from the en-
hanced image are computed as described in Sect. 4. Secondly,
we ran the approach proposed by Tardif, using the implementa-
tion1 provided by the author in [43], with the same input frames.

One of the key points of these experiments is classifying a
candidate vanishing point as a real vanishing point and com-
paring to the ground truth. Several approaches can be used.
Schmitt and Priese [47] propose a method based on a refer-
ence point in the image (e.g. a known feature or object of the
scene) and the computation of the angle formed by the two lines
connecting this reference point. If this angle is below a given
threshold the vanishing point is successfully determined; other-
wise, it is a miss. In this work we use the Euclidean distance to
determine when a vanishing point is successfully or unsuccess-
fully detected. A fixed threshold to determine whether the can-
didate point is correct is inappropriate because VPs far from the
image centre (especially when outside the image) do not need
to be as close to the ground truth to be deemed successfully
detected. For this reason, we use a relative threshold for each
candidate vanishing point. We compute the Euclidean distance
from the image center to the candidate vanishing point, doc, and
we consider the vanishing point successfully determined if the
Euclidean distance between the candidate vanishing point and
the ground truth, dcg, is shorter than the threshold td = 0.02 doc,
that is, it is less than 2% of doc.

1https://github.com/borist/cis400/tree/master/

VPdetectionTardif
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(a) (b)

Figure 8: Example of manual annotation of two main lines pointing to each main direction of the scene to further compute the ground truth of the frame: (a) indoor
platform scene; (b) outdoor platform scene (due to space limitation, only the vanishing point in the direction of the rail tracks is shown though all the lines annotated
and the coordinates of the three vanishing points are displayed).

The values for the parameters required by the approach pro-
posed in this work are determined empirically following a
factorial design experiment. The values used in the experiments
carried out in this work are shown in Table 1.

Using the aforementioned definition to classify candidate
vanishing points, the experimental results are shown in Table 2.
As can be seen, 11 out of a total of 18 vanishing points were
detected, resulting in a 61.1% hit rate (increased to 78.0%
for td = 0.05). Conversely, the approach proposed by Tardif
[43] provided 5 vanishing points, a 27.8% hit rate (increased
to 44.0% for td = 0.05). In our method, 6 out of 10 van-
ishing points were detected in outdoor platform environments
(60.0%), whereas 5 out of 8 were detected in indoor scenes
(62.5%). The approach proposed by Tardif could detect 2 and 3
(20.0% and 37.5%), respectively. Table 2 also shows results for
the proposed method without the image enhancement method:
although all VPs were detected, none of them were within the
required threshold. Finally, Table 3 shows the mean errors for
the various successfully and unsuccessfully detected VPs indic-
ating notable improvement over the previous research, provided
that the image enhancement is completed first. The mean error
represents the percentage error calculated as follow. For ex-
ample, if the detected VP is 10 pixels away from the ground
truth value, and the ground truth is 200 pixels from the image
centre, then the percentage error would be 10/200 = 5%. We
then have a percentage error for each image sequence and we
take the mean of these for each row of table 2.

The key factor for these differences is twofold. On one hand,
the auto-adaptive edge and line detection carried out in the ap-
proach proposed in this work provides a more accurate edge

map and more main lines can be accurately detected. In the
method proposed by Tardif some of the unsuccessfully detec-
ted or the undetected vanishing points came from frames where
a reasonable number of straight lines has not been generated
in the line detection stage. This also happens in other meth-
ods, such as that proposed by Schmitt and Priese [47], that do
not take into account the ever-changing illumination conditions
of the image. Since we propose the use of an adaptive edge
detection as a base to detect the main lines, these conditions
are taken into account, and thus, more vanishing points can be
successfully detected. On the other hand, our approach avoids
very short segments being passed to the vanishing point detec-
tion stage, while long lines are promoted. Some of the unsuc-
cessfully detected vanishing points in the approach of Tardif
came from short segments detected in the image. As mentioned
above, we solve this issue applying specific knowledge about
railway platform scenes. Moreover, for future work, the lines
could be weighted by their length or length squared.

A qualitative analysis of results shows relatively strong per-
formance against weather and time of day but poorer perform-
ance in the presence of non-Manhattan lines or were no strong
linear features are present in the image. Figure 9 shows a typical
example of a failure case, which suffers from both of these com-
plications. Such cases are especially challenging to our method
and are yet, unfortunately, relatively common in railway sta-
tions. Potential methods to overcome such limitations in future
work include combining information from multiple viewpoints
in a network of cameras and using the dynamical information
from passenger movement to differentiate inclined planes from
Manhattan features.
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Parameter Value Description
n f 6 Number of frames used in the multi-frame enhancing stage
t f 2 Time interval between input frames for the multi-frame enhancing stage (in seconds)
σ 1.5 Size of the Gaussian filter used for image smoothing
lt 100 Minimum length of the lines promoted in the Hough Transform-based line detection (in pixels)
td 0.02 Distance threshold to determine a VP from a candidate point

Table 1: Values given to the parameters required by the approach proposed in this work for the experiments carried out in this work.

Ground truth Proposed approach (LR) Proposed approach (HR) Tardif [43]
Vanishing points successfully detected 18 0 11 (61.1%) 5 (27.8%)

Outdoor scenes 10 0 6 (60.0%) 2 (20.0%)
Indoor scenes 8 0 5 (62.5%) 3 (37.5%)

Vanishing points unsuccessfully detected – 18 (100%) 5 (27.8%) 10 (55.6%)
Outdoor scenes – 10 (100%) 4 (40%) 8 (80.0%)
Indoor scenes – 8 (100%) 1 (12.5%) 2 (25.0%)

Undetected vanishing points – 0 2 (11.1%) 3 (16.7%)
Outdoor scenes – 0 0 0
Indoor scenes – 0 2 (25.0%) 3 (37.5%)

Table 2: Experimental results obtained from 18 different rail platform scenes for the proposed method using high-resolution images (HR – from super-resolution),
low resolution images (LR – using raw data only) and the method of Tardif.

Mean error (LR) Mean error (HR) Mean error Tardif [43]
Vanishing points successfully detected – 1.25 1.25

Outdoor scenes – 1.13 1.29
Indoor scenes – 1.37 1.20

Vanishing points unsuccessfully detected 93.13 5.08 20.87
Outdoor scenes 126.28 7.81 34.75
Indoor scenes 59.97 2.34 6.99

Table 3: Mean error obtained from 18 different rail platform scenes.

(a) (b)

Figure 9: Example case with no VPs detected.
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6. Conclusions

In this work, we propose a robust approach to accurately de-
tect the main lines and vanishing points in low-resolution im-
ages acquired by video surveillance systems in indoor and out-
door rail platform environments. The proposed approach con-
sists of three stages. Firstly, several frames acquired by the
video surveillance system are used to increase the resolving
power of the image through a multi-frame image enhancer. The
sequence of frames are registered using a frequency domain ap-
proach and an enhanced image is reconstructed by interpolating
the aligned, low-resolution images. Secondly, an adaptive edge
detection is performed, distortions of the image are corrected
and the main lines of the image are extracted. Finally, vanish-
ing points are detected taking into account specific knowledge
about rail platform scenes.

The experiments carried out in this work demonstrate the ef-
fectiveness of the proposed approach. The results were com-
pared with a method which provides very good results for de-
tecting vanishing points in Manhattan-like scenes. However,
that method (and related work), is specifically designed for
architectural environments, where high-end cameras equipped
with high-resolution sensors are typically used and images can
be acquired with good illumination conditions. By contrast,
this paper focused on a different environment where we applied
specific knowledge of railway station environments. To the best
of our knowledge, this is the first method to specialise on this
type of scene. While we do not claim that the proposed method
is superior to all other methods for generic scenes, the results
show that, for our target application, the method is better suited
than the existing state of the art.

The proposed technique will reduce time and cost of com-
missioning automated scene analysis systems that use fixed
cameras as it allows automatically detecting VPs without any
user intervention and can be used to calibrate video surveillance
cameras if metric measurements of the scene were required. It
can also be applied to moving cameras to determine their new
position and assist with automatic calibration.

Finally, it can also be used to aid high-level computer vision
modules of video surveillance systems to segment the scene —
including partially obscured objects— and perform a semantic
classification of the objects and main planes in railway plat-
forms, and thus, to identify locations that are or are not allowed
for people to walk or stand, for instance. These locations could
be notified to human security operators using augmented real-
ity based on the provided information. In addition, tracking the
position of the vanishing points can be used to determine the
movement of moving cameras (PTZ) or future robotic surveil-
lance devices that could freely move around a platform envir-
onment.
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