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Abstract— Planning and monitoring the manufacturing of
high quality one-of-a-kind products are challenging tasks. In
the implementation of an industrial system, the commissioning
phase is typically comprised of a programming phase and
an optimization phase. Most of the resources are commonly
invested in the optimization of the process. The time and
cost of the implementation can be reduced if the monitoring
system is not embedded in the industrial process, but kept
instead as a decoupled task. In this paper we present a
framework to simulate and execute the monitoring task of
an industrial process in Unity3D, without interfering with the
original system. The monitoring system is made of external
additional equipment and is decoupled from the industrial task.
The monitoring robot’s path is subject to multiple constraints
to track the original process without affecting its execution.
Moreover, the framework is flexible thanks to the Unity-ROS
communication so that the monitoring task can be carried on by
any ROS-compatible device. The monitoring system has been
applied to a robotic system for heavy, multi-pass TIG welding
of voluminous work-pieces. The results of the implementation
show that the constraints for monitoring were satisfactory in
the 3D environment and capable for real robot application.

I. INTRODUCTION
For complex industrial processes that produce high quality,

one-of-a-kind products, planning is one of the most time-
consuming phases. However, during the execution of the
process constant and accurate monitoring is necessary to
ensure that what has been planned, simulated and tested is
accurately reproduced on the real workpiece. The methods
of classical automation are therefore not suitable for this
kind of production. Processes are difficult to adapt, and the
complex commissioning phase prevents companies to react
to these market demands in time. Automation and industrial
robotics however allow to automate such complex processes
while maintaining a high level of flexibility. While there are
many different industrial applications that reflect this scheme,
[1], [2], [3], in this paper we will focus on the particular
processes of heavy grinding and welding as they have been
used as test cases for our implementation.

In the industry, for both rigid and flexible automation
solutions, the commissioning phase remains one of the most
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expensive parts of the process [4], [5]. During the commis-
sioning phase the optimization is the most time expensive
task, where the process is tuned and calibrated with respect
to all the controllable parameters. If the optimization phase
was too much time consuming, it would be hardly justified
for one-of-a-kind types of production since the investment
wouldn’t be supported by a high-volume production. This is
one of the reasons why it is not feasible to embed the mon-
itoring system in the industrial process itself. Moreover the
monitoring process is mainly used to optimize the industrial
system, and with an independent monitoring solution it can
be re-used on other applications once it fulfils its purpose.

The framework described in this paper aims at providing
the tools to simulate and test the monitoring strategy with
an industrial robot for heavy welding and grinding task, in
order to shorten the time of the optimization phase and make
the commissioning phase more efficient. Figure 1 shows the
current setup for the welding task in our lab.

It is also important to notice that the remote monitoring
system serves also as a means to provide external assistance
on systems which are fully operational. Therefore, after the
commissioning phase a system might benefit from external
monitoring to evaluate the product quality even though it was
not originally designed to include such a system.

Nonetheless, the framework and the results presented
in this work are not to be seen as constrained to heavy
welding and grinding processes. In fact, the monitoring
system described in this paper is independent of the robotic

Fig. 1. Lab set-up of the welding task. The welding robot is a NACHI
MC70. The actual monitoring robot is not shown in this set-up.



hardware and also independent of the industrial process being
monitored.

Moreover, the recent progress made in the fields of Aug-
mented Reality (AR) and Virtual Reality (VR) is reshaping
the future of human robot interactions ([6], [7], [8], [9]).

Multi-modal feedbacks can now be more easily combined
to communicate much more information about the real
system and also to provide more immersive experiences
when we interact with the digital environment [10]. In fact,
the gap that exists between the user’s actions in the digital
world and their effect on the real system is slowly but
steadily narrowing. Concretely, the intention to later integrate
in our framework multi-modal interactions for man-machine
communication is reflected in the choice of Unity [11] as
the component in charge of displaying the digital models and
interface with the user. Although not the only possible option,
the game engine Unity is supported by an active community
and a well grounded ecosystem, besides being among the
top choices for AR/VR development [11]. In Unity we
design the user interface and the monitoring process in a
3D environment before having the task performed by a real
robot. In contrast to a simulation software (e.g. Gazebo [12])
Unity3D is not conceived to accurately reproduce real world
scenarios in terms of dynamics and physics, but rather to
visualize models in a 3D environment and interact with
them just as it is the case in games development. The main
advantage thus is in the flexibility to design the user interface
and the user’s interactions with the virtual world.

The second core component is the well known Robot
Operating System (ROS), [13] which is used to directly
communicate with all the hardware components which are
not directly involved in the UI design, such as robots and
sensors. ROS allows the framework to interface with any
ROS-compatible robot without the need to change the control
strategy or the monitoring task.

In this paper we present a framework to simulate the
monitoring task of an industrial process in Unity3D. The
monitoring process is subject to multiple constraints in
order not to interfere with the industrial task. Moreover, we
discuss the flexibility of the framework that allows for easy
deployment of the monitoring task on a real robot.

II. RELATED WORK

Due to the flexibility we intend to give to our framework,
there are many different research contributions that need to
be acknowledged and approaches that have to be mentioned.

As previously stated, the industrial process of welding
treated in this paper should not pose a limitation in the
conclusions we want to draw. The framework is to be seen as
independent of the particular robotic task being treated here,
but we shall mention related work for similar processes in
order to provide better context to the need of a monitoring
system for the entire process.

In contrast to high-volume fully automated production
systems where monitoring is mainly used for quality control,
in smaller batches production systems there is often the need
for continuous monitoring. In [14] Pfeifer et al. describe the

advantages of an inspection system along a micro-assembly
line. Buschhaus et al. present in [15] monitoring of a robot-
based process for the metallization of three dimensional
molded interconnected devices. The monitoring is crucial
in this processes as it serves as in-line correction method
in order ensure high quality results. The implementation
of a monitoring task for a robot welding application is
a continuation of the concept presented in [16]. In their
work, Zimber et al. discuss how an autonomous industrial
manipulator (AIMM) can be used for monitoring an indus-
trial process. Ultimately, due to the increasing demand from
SMEs of remote support solutions for their industrial robotic
systems, a monitoring AIMM can significantly improve
remote maintenance and assistance. The separate solution
brings significant advantages, since it doesn’t interfere with
the industrial process. In fact, if additional sensors have to be
integrated in the industrial process they have to be included
in the design process and their presence can redefine the op-
timization process of the task itself. If additional equipment
or additional support tasks are not included in the design
process, it is possible that they cannot be integrated at all
without an immense investment of resources. The monitoring
robot can be programmed also after an industrial process
optimization phase and it doesn’t require modifications in
the original system. It serves as a less expensive, quicker-to-
integrate external equipment.

For what regards the ROS-Unity communication and its
advantages, there are several papers that explored the po-
tential of such connection and that in general investigated
the potential of Unity for designing Human Robot Interface
(HRI). The work of Bartneck et al. in [17] is one of the
first papers advocating the user friendliness of Unity for
the design of human robot interaction. One of the main
arguments of the paper is that programming robot behaviours
and interactions is easier in Unity due to the presence of a
set of tools for animations and visual programming used in
game development. However, in their work they decide not
to involve any middle-ware solution for robotic hardware and
implement all the communication logic and HRI within the
Unity environment. Other works ([18] [19]) that followed
explored further the possibility of using ROS as middle-
ware solution, while still managing the HRI in Unity or
similar software. The research works mentioned here are in
the field of telepresence and teleoperation where multi-modal
user interactions are essential. Nonetheless we mainly cite
such contributions to highlight the flexibility and modularity
allowed by the connection between Unity and ROS. In [20]
Codd-Downey et al. proposed an architecture Unity-ROS to
control a mobile robot in virtual reality.

Furthermore, Pan et al. [21] proposed an approach for
simulating a robotic welding task in Unity. As previously
mentioned, Unity is a game engine and not originally thought
as a simulation software and therefore lacking proper tools
to include the dynamics of the system and accurate hardware
parameters. As the authors point out, such system could be
beneficial for educational purposes and training.

From a slightly different perspective, we see the Unity



environment as where, besides the user interactions, some of
the higher level logic is processed and then communicated
to the hardware through ROS or other dedicated channels.
Concretely, by receiving real-time information about the
state of the system we can animate the 3D environment
accordingly and apply constraints on the monitoring robot’s
motion.

III. SYSTEM DESCRIPTION

The framework can be divided into two parts:
• The industrial process (i.e. the robotic welding task)
• The monitoring process
The system in charge of performing the welding task

is based on the work presented by Horvath et al. in [22]
and shown in Fig. 2. Furthermore, the welding process
data are communicated to ROS and thus made ”accessible”
to the monitoring process, which is based in Unity and
communicating with hardware through ROS.

The general architecture of the whole framework is shown
in Fig.3, where the connection ROS-Unity is the main bridge
between the different subparts of the system. The monitoring
process is directly linked to Unity as it is designed and
implemented with the game engine. It is also worth mention-
ing that the monitoring task is linked to multi-modal man-
machine communication to reflect the HMI design process
that takes place in Unity. In fact, it is possible to integrate dif-
ferent types of feedbacks (tactile, audio, visual) into the same
digital environment without the need of additional software.
The monitoring task should be only partly automated, in the
sense that the user should have the freedom to adjust the view
to his/her needs without having to worry not to interfere with
the welding process currently ongoing. In this context, multi-
modal feedbacks can increase the user’s comfort when he/she
takes control over the monitoring robot. Furthermore, the
connection with multi-modal communication also reflects our
intent to eventually interface the system with VR/AR equip-
ment to investigate immersive telepresence applications.

Fig. 2. The set-up of our lab with a welding process (orange dashed line)
and the associated monitoring task with way points.

Fig. 3. Layout of the framework presented.

The 3D environment use for the simulation is created by
importing the CAD models of the robot and the workpiece
involved in the welding process. Such models are then placed
in Unity along with the 3D model of the robot used for the
monitoring task, as it is shown in Fig.4.

The welding application provides the data about the weld-
ing path, which can be displayed into Unity and visual-
ized together with the workpiece. The reference frames of
the welding robot, the torch and the workpiece are also
communicated by the welding application to Unity through
ROS. Once the welding path is available in Unity, the
monitoring program calculates the path for the observation
taking into account the torch orientation and the welding
robot configuration in order to avoid collisions with the
system.

The default monitoring strategy consists of simply fol-
lowing the welding process while keeping the welding torch
and the part of the workpiece being machined inside the
camera’s field of view. However, sometimes this strategy is
not the most desired one by the user, which should be then
allowed to tweak and adjust the camera position if necessary.
Therefore the Unity scene allows for user commands that
modify the camera position and orientation while tracking
the ongoing process.

It is then possible to observe in the 3D environment the
welding robot moving according to the real-time joint values
provided by the industrial process, furthermore the user can
see through the camera view of the simulated monitoring
robot and observe how the process while it’s performed. The
details of the actual implementation of the framework and the
monitoring scene in Unity will be discussed in the following
section.



IV. IMPLEMENTATION

This section treats the implementation of some sub-parts
of the system, mainly regarding the communication between
all elements. The last part of this section describes how the
animation/control of the 3D model is carried out in Unity.

A. ROS

In the implementation of the system, the communication
between Unity, ROS and the welding process is based on the
following elements:

• C# Rosbridge for Unity-ROS. This script establishes the
connection and allows for invoking Ros services

• Rosbbridge script for Welding process and ROS. This
script allows the welding system software to publish
data onto topics.

• Ros topics of the welding process. Currently the data
published are welding path positions, workpiece refer-
ence frame and robot reference frame

Regarding this specific welding process the industrial
system doesn’t allow for external control commands, mean-
ing that Unity can only fetch the real-time information to
synchronize the monitoring task but cannot interfere with
the ongoing welding operation.

B. Joint Reading

It is thus important for the monitoring robot to receive at
runtime the welding robot configuration, that is its joint val-
ues. The welding robot used in our system is a NACHI MC-
50, while the robot model used for simulating the monitoring
is a NACHI MZ-04 and each robot has 6 DOF. Although
the welding robot is ROS-compatible, in our implementation
we exploit a different communication channel to receive
the robot’s encoder values at runtime. In fact, we use a
Rasperry-Pi connected to the robot to read the encoder values
through UDP communication. The implementation details of
such device are not the subject of this paper, but for the
sake of clarity Unity receives precise encoder values of the
welding robot through UDP communication. Even though the

Fig. 4. The Unity environment and the 3D visualization of a welding path.
The 3D model of the object has been hidden to better visualize the path. In
the detail it is shown the monitoring robot with the visualization of the IK
solver constraints.

device allows for joint control, as previously mentioned this
capability is disabled for Unity since the monitoring process
is not allowed to control the welding task. The encoder values
received in Unity are then converted into joint angles ([rad])
with double float precision. The conversion is defined by the
formula:

θi = Θoffset
i + (Enci − Encoffseti )/πi (1)

where i is the joint index, Enci is the encoder value of
joint i received through UDP connection and the parameters
Θoffset

i , Encoffseti and πi are constants obtained from the
robot controller beforehand. The update frequency of the
encoder values has a limit of 5ms (both for writing and
reading), which limits the Unity maximum frame rate to
200 fps. However, such a limit is more than enough for real
time application and does not constitutes a bottle neck in our
system.

In the 3D simulation we display the robotic cell thanks
to the CAD models obtained from the industrial process.
The digital welding robot is synchronized with the joint
values coming from the real robot. We assume that the
monitoring robot is equipped with a camera mounted on the
end effector and we use the end effector’s reference frame
for the camera’s orientation.

C. Animation in the 3D Environment

When the welding starts, the monitoring robot starts track-
ing the welding torch by keeping it in the camera’s field of
view. The robot is animated via a c# IK solver based on the
work presented in [23] and made available as a Unity-plugin.

In addition to the field-of-view constraint, the monitoring
robot needs to take into account the following constraints:

• The distance from the torch must not be lower than a
certain threshold;

• Avoid collision with the welding robot;
• Keep the welding torch in the centre of the camera;
Each frame, the encoder values received from the

Raspberry-Pi are converted into radians and used to update
the position of the 3D model. Then, the monitoring algorithm
enforces the constraints on the 3D model of the MZ-04 and
then compares the newly calculated joint values with the ones
of the previous frame. If there is a difference between the
two frames it proceeds by performing the inverse conversion
to obtain the corresponding encoder values that the actual
robot should reach. Finally, the new encoder values are sent
through UDP to the Raspberry-Pi connected to the MZ-04.
This process is summarized in Algorithm 1.

In Algorithm 1, ndof is the number of joints of the
monitoring robot. Moreover, it is worth observing how Step
6 of the algorithm implies that the IK-solver modifies the
pose of the 3D model, according to the objectives that are
active in that frame.

V. RESULTS AND DISCUSSION
The system has been evaluated in a simulation conducted

entirely in Unity. The model of the welding robot was pro-
grammed to move along a test path (see green line in figure



Algorithm 1 Joint conversion and update in Unity
Input: MZ-04 Encoder Values
Output: Unity-generated Encoder Values

Encoder Reading and Conversion
1: for i = 1 to ndof do
2: Obtain θi
3: Convert θi from radians to degrees
4: Update the 3D model of the i-th joint
5: end for
6: Enforce the IK-solver constraints
7: for i = 1 to ndof do
8: Obtain the new θi in degrees
9: Convert θi from degrees to radians

10: Obtain ENCi with the inverse conversion
11: Store ENCi in the array ENCnew

12: end for
13: return ENCnew

4, and three main objectives were set on the model of the
monitoring robot: welding torch had to remain in focus (look-
at constraint); maximum distance between the welding torch
and the monitoring robot’s end effector; collision avoidance
with the welding robot. Every run consisted of the welding
robot performing the path once (back and forth), while we
observed the behaviour of the monitoring robot.

During the monitoring simulation the robot’s configuration
could occasionally fluctuate due to the multiple objective
optimization. In fact, since the optimization algorithm is
based on GA, the robot might move from its current config-
uration to one with a higher fitness. However, a monitoring
simulation is considered successful when the main objectives
presented in section IV are satisfied. This means that two
successful simulations may have slightly different monitoring
paths, but they both accomplish collision avoidance while
keeping track of the welding torch and the workpiece. Given
a specific instance of the objective, we are not interested in
the global optimum within the given search space, but rather
a sub-optimal solution in a limited time frame (since the
search is computed at run-time).

The main reason why we considered different solutions
acceptable is due to our intention to include also commands
given by the user to control the monitoring view. Therefore,
since in the future the monitoring path will be modified at
runtime by the user’s actions, the system must allow for some
flexibility in the robot configurations.

In the welding task considered in this paper we did not
incur situations were one or more of the objectives could not
be satisfied. However, it is important to consider such cases
to prevent unexpected behaviours from the monitoring robot.
In fact, when not all objectives can be satisfied the robot
might jump between configuration that optimize different
objective that however share similar weights. In order to
prevent these fluctuations, we decided to implement an agent
in charge of supervising the IK solver at runtime. Concretely,
in the event of configurations which do not fulfil one or

more constraints this agent will add a special constraint to
the optimization function of the IK solver.

The additional objective is called ”displacement objective”
and its sole purpose is to punish all new configurations
found which are ”distant” from the current one in terms of
joint space. It is important to observe that the agent is also
ensuring that the objective are satisfied with the same priority
with which they have been listed in the previous section. This
is achieved by changing the weights at runtime in a fashion
that consistently reflects the aforementioned order.

Thus, with the assumption that the priorities are kept
intact, the displacement objective ensures that robot is not
”jumping” to a new configuration which is significantly
different from the current one, even if the overall fitness of
the solution would improve.

The experiments in simulation show that the monitoring
robot is capable of tracking the welding torch without spe-
cific knowledge of the welding path (the trajectory was only
known by the welding robot model). In the bigger frame-
work, it helps proving that such a model-based approach is
suitable for remote monitoring of an industrial task.

In this work, the monitoring task has been implemented
entirely in simulation, checking that the constraints were
satisfied in the 3D environment. However, it is possible to
implement the very same simulation on a real robot and this
will be part of our future works. The intention is to exploit
the UDP communication that has been used to synchronize
the system with the industrial process, and use it this time
for joint control of the monitoring robot. In this context we
will conduct tests to assess the capability of the system to
decrease the time for troubleshooting compared to a situation
where monitoring was absent.

VI. CONCLUSION AND FUTURE WORK
In this paper we presented a framework for robotic moni-

toring of an industrial process. The key achievements of this
work are the following:

• Remote monitoring system for an industrial robotic
process.

• Flexibility of the system due to ROS-Unity communi-
cation. The monitoring can be executed with any ROS-
compatible hardware.

• Non-invasiveness of the remote monitoring. The param-
eters of the industrial process remain unmodified and
the monitoring equipment can be introduced without
compromising the welding task.

• Compact solution to set up a monitoring strategy. The
monitoring robot is controlled in the same framework
that provides the camera view.

The framework has been used for the planning and evalu-
ation of the monitoring strategy on the welding application.
One of the objective is to move toward a shorter set up
time thanks to the decoupling from the original process.
We are currently running tests in our lab in order to collect
more data. The system provides a more flexible compared
to an embedded monitoring solution that would have to be
designed taking into consideration the welding path and the



welding equipment, and that couldn’t be re-used on different
installations.

Finally, we aim at extending our framework for multi-
modal man-machine communication (4MC) and VR/AR
devices for remote monitoring.
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