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Abstract 

The aim of this study was to investigate the applicability of Acoustic Emission (AE) 

technique to evaluate delamination growth in glass/epoxy composite laminates under 

quasi-static and fatigue loading. To this aim, Double Cantilever Beam (DCB) specimens 

were subjected to mode I quasi-static and fatigue loading conditions and the generated 

AE signals were recorded through the tests. In quasi-static loading, correlations between 

AE energy with released strain energy and crack growth were established. Then, using 

the obtained relation the delamination growth curve was predicted by AE method. In 

next section, delamination propagation under fatigue loading condition was predicted 

using the established relation between the cumulative AE energy and fatigue crack 

growth. The predicted crack growth was in a good agreement with the visually recorded 

data during the tests. The results indicated that the proposed AE-based method has good 

applicability to evaluate the crack growth during quasi-static and fatigue loading 

conditions and can be applied in real composite structures to measure the crack length. 
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1. Introduction  

Fiber Reinforced Plastic composites (FRP) have many advantages such as high 

specific strength, specific stiffness, etc. [1-4]. However, these materials suffer from 

different damage mechanisms, such as matrix cracking, fiber breakage, fiber/matrix 

debonding and delamination [5-8]. The principal mode of failure in laminated 

composites is the separation along the interfaces of the layers, viz, delamination [9-14]. 

This failure results in dramatic reduction of residual strength and stiffness of the 

structure. Delamination occurs under different loading conditions, i.e. mode I, mode II 

and mode III. However, mode I delamination is the most common mode of failure 

occurred in the structures. This is due to lower energy that is required for the initiation 

of mode I delamination [15-17] 

Due to complexity of laminated composites, prediction of fatigue behavior in these 

materials is not straight forward [18]. Accurate measurement of fatigue crack growth 

has become a challenging issue in fracture mechanics analyses. Fatigue crack growth 

monitoring is a difficult and time-consuming test [19]. In addition, work gets harder 

when the crack is embedded within the structure and could not be seen visually. 

Acoustic Emission (AE) is a naturally occurring phenomenon, which is the result of 

transient elastic wave propagation caused by a sudden release of energy inside the 

material [20]. There are various sources of AE events in composite materials such as 

matrix cracking, fiber/matrix debonding, fiber breakage, etc. [21-23]. Recently, AE has 

been utilized as an applicable technique to detect in-situ information from the damages 

that occur in laminated composites [5, 24-27]. 
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Some studies have used AE method to investigate the delamination behavior under 

quasi-static loading condition [28-32]. Fotouhi and Ahmadi [33] investigate initiation of 

delamination in laminated composites under mixed-mode loading condition using AE 

method. Arumugam et al. [34] investigated damage mechanisms in glass/epoxy 

composite specimens under mode I delamination using AE and Fast Fourier Transform 

(FFT) analysis. Saeedifar et al. [35] determined interlaminar fracture toughness of glass/ 

epoxy composites under mode I, II and mixed-mode I&II loading using AE and Finite 

Element (FE) methods. The literature review shows that most AE based studies were 

focused on delamination initiation and there is a lack in the investigation of 

delamination propagation behavior using AE method. 

Due to the complexity of the fatigue phenomenon in composite materials, little 

work has been done on the behavior of delamination in laminated composites under 

cyclic loading using AE method. Silversides et al. [36] studied delamination initiation in 

carbon/epoxy specimens under mixed-mode cyclic loading conditions. Romhany et al. 

[37] offered an algorithm to predict delamination crack growth in carbon/epoxy 

specimens subjected to cyclic loading. Romhany’s method has two disadvantages: a) to 

predict the fatigue crack growth at least two AE sensors must be utilized, and b) the 

accurate AE wave propagation speeds in the specimens must first be calculated. 

The aim of this paper is to investigate the delamination propagation in glass/epoxy 

composites under mode I quasi-static and fatigue loading conditions. The article is 

composed of two sections. In first section, the delamination behavior under quasi-static 

loading condition is investigated using mechanical and AE data. Then correlations 

between AE energy, released strain energy and crack growth are established and quasi-

static delamination growth was predicted using AE method. In second section, the 
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delamination crack growth under fatigue loading is predicted using the AE method. The 

advantages of the proposed method to predict delamination growth are: predicting 

delamination growth using only one AE sensor without needing to determine AE wave 

propagation speed in the specimens. In addition, no AE signals filtering is needed in this 

method. Consistency of the predicted and visually recorded values for the delamination 

crack growth, illustrates that AE method is more suitable than the conventional methods 

for detection of delamination crack growth in the laminated composites under quasi-

static and fatigue loading conditions. 

2 Experimental Procedures 

2.1 Materials and specimens preparation 

The experimental work was carried out on the epoxy resin reinforced by the E-glass 

unidirectional and woven fibers with the density of 1.17 g/cm3, 390 g/m2 and 300 g/m2, 

respectively. The laminates were prepared by hand lay-up. The starter crack was formed 

by inserting a Teflon film with a thickness of 20 μm at mid-plane during molding as an 

initial crack for the delamination. The laminated composite test specimens consist of a 

rectangular shape and uniform thickness consists of 14 plies. Characteristics of the 

specimens used for this study are illustrated in Fig. 1. For ease of working, the 

unidirectional specimen [0]16 is named U and the woven specimen [(0-90)]8 is named 

W. 
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Fig. 1. The specimens geometry and dimensions.  

2.2 Test procedure  

2.2.1 Quasi-static and cyclic loadings 

First, the specimens were examined under quasi-static loading condition according 

to ASTM D5528 standard [38]. A properly calibrated tensile test machine (HIWA) in 

the range of 0.5 to 500 mm/min was used in a displacement control mode. The 

delamination tests were carried out at room temperature and at a constant displacement 

rate of 3 mm/min. The load and displacement were continuously recorded by the 

machine and the crack length was recorded using a digital video camera (SONY HDR-

XR150) with 25X optical zoom and 300X digital zoom. The fatigue loading tests were 

performed by a properly calibrated tensile test machine (Dartec) according to ASTM 

D6115 [39]. Based on ASTM D6115 recommendation the tests were performed under 

displacement control mod with loading frequency 3 Hz. For ease of working, the quasi-

static and fatigue loading specimens are illustrated by ‘S’ and ‘F’ subscripts, 

respectively. The test apparatus is shown in Fig. 2. 



6 

 

 
Fig. 2. The experimental setup for quasi-static and fatigue tests. 

2.2.2 AE device 

AE events were recorded using Acoustic Emission software AEWin and a data 

acquisition system Physical Acoustics Corporation (PAC) PCI-2 with a maximum 

sampling rate of 40 MHz. PICO which is a broadband, resonant-type, single-crystal 

piezoelectric transducer from PAC, was used as the AE sensor. The sensor has a 

resonance frequency of 513.28 kHz and an optimum operating range of 100–750 kHz. 

In order to provide good acoustic coupling between the specimen and the sensor, the 

surface of the sensor was covered with grease. The signal was detected by the sensor 

and enhanced by a 2/4/6-AST preamplifier. The gain selector of the preamplifier was 

set to 37 dB. The test sampling rate was 1 MHz with 16 bits of resolution between 10 

and 100 dB.  
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3 Results and discussion 

3.1 Quasi-static loading 

3.1.1 Mechanical results 

Double Cantilever Beam (DCB) specimens were subjected to mode I quasi-static 

loading according to ASTM D5528 standard [38]. Fig. 3 shows the load- displacement 

and crack growth-displacement diagrams for specimens US1 and WS1. As can be seen, 

the crack growth in specimen WS1 is more stable than specimen US1. This instabilities 

and rise and fall behaviors in crack growth and load diagrams are called pop-in 

phenomenon [40]. The big pop-ins in specimen US1 are caused by fiber bridging 

phenomenon [38, 41-42]. Fiber bridging phenomenon described as the stretching of 

some fibers between upper and lower layers of the crack plane. This phenomenon 

occurred at the behind of the crack tip and resulted to the additional resistance against 

the crack growth [41-42]. When the stress in these fibers reaches to the fibers strength, 

the fibers are broken and crack abruptly propagates for a few millimeters. By bridging 

the new fibers, the crack is arrested again. Some small pop-ins in specimen WS1 are due 

to change in the delamination propagation plane that is a common phenomenon in non-

unidirectional laminated composites (see Fig. 4).  
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Fig. 3. Load-displacement and crack growth-displacement diagrams for 

specimens US1 and WS1. 
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Fig. 4. Fiber bridging and crack plane changing in specimen a) US1, and b) 

WS1. 

3.1.2 AE results 

Major damage mechanisms in laminated composites are matrix cracking, fiber 

breakage, and delamination []. In order to estimate delamination growth using AE 

method, first, the AE signals of delamination must be specified and discriminated from 

other damage mechanisms. To this aim, tensile tests of pure resin and fiber bundle were 

conducted. The pure resin tensile test was performed on a tensile test sample made of 

epoxy resin and the fiber breakage test was conducted in a tension test on bundle of 

about 1000 filaments. The AE signals were recorded by the AE sensors that are 

mounted on the surface of resin and fiber samples (see Fig. 5). According to literature 

review, best parameters for damage clustering in composite materials using AE method 
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is peak frequency. It is due to this fact that the peak frequency of a signals does not 

affected by attenuation. The AE signals of fiber bundle and pure resin tests were 

analyzed using Fast Furrier Transform (FFT). The frequency range of matrix damage 

and fiber damage are shown in Fig. 6. As can be seen, frequency range of matrix and 

fiber damages are [0-150 kHz] and [400-500 kHz], respectively. 

 

Fig. 5 shows frequency distribution of the recoded AE signals during the loading of 

specimen US1. 



11 

 

 

 

Fig. 5 shows load-displacement and cumulative AE energy-displacement curves for 

specimens US1 and WS1. In load-displacement diagrams, several pop-ins are observable 

which are related to the sudden crack growths and each pop-in is accompanied by a 

well-defined acoustic energy jump. By applying the load to the specimen as long as the 

crack is arrested, the strain energy is stored in the specimen. When the stored strain 

energy reaches to the critical value, the crack propagates and the stored strain energy is 

released (see Fig. 6). According to Fig. 6, released strain energy at each pop-in (
Δ

dU ), 

can be calculated by Eq. 1 [43]: 

dPΔ
2

1
dU

Δ
  (1) 

where  and dP are displacement and load drop, respectively. 

A part of this released energy transmitted within the specimen in the form of stress 

waves [40], which the AE sensors recorded these waves as AE signals. Thus, the energy 
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of recorded AE signals (
AEE ) is some proportion of the available elastic energy ( U ), 

i.e. []: 

AEEU  ~  (2) 

 
Fig. 5. Load-displacement and cumulative AE energy curves for specimens US1 

and WS1. 
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Fig. 6. Changing the strain energy due to infinitesimal crack growth under 

displacement control mode (a and da are crack length and infinitesimal crack 

growth, respectively). 

Using Eq. 1, released strain energy at each pop-in was calculated. The 

corresponding AE energy jump at each pop-in was also calculated using the AE data 

recorded by the AE sensors. The obtained values of released strain energy (dU) and 

corresponded AE energy jump (dEAE) at each pop-in are represented in Tables 1 and 2.  

Table 1. The values of released strain energy (dU) and AE energy jump (dEAE) 

at each pop-in for specimen US1. 
Pop-in 

number 

Δ 

(mm) 

P1 

(N) 

P2 

(N) 

dP 

 (N) 

EAE-1 

(×10-14 J) 

EAE-2 

(×10-14 J) 

dEAE 

 (×10-14 J) 

dU 

(×10-3 J) 

1 3.46 54.03 49.32 4.71 0.34 0.66 0.32 8.15 

2 5.87 63.67 49.33 14.34 1.45 2.22 0.77 42.09 

3 7.63 54.09 36.13 17.96 3.36 4.48 1.12 68.52 

4 9.37 42.08 37.37 4.71 5.16 5.63 0.47 22.07 

5 11.10 42.12 36.14 5.98 6.37 6.86 0.49 33.19 

6 14.80 42.13 36.15 5.98 7.79 8.28 0.49 44.25 

P1: the initial load at each pop-in, P2: the final load at each pop-in, dP=P1-P2, EAE-1: the initial cumulative 

AE energy at each pop-in, EAE-2: the final cumulative AE energy at each pop-in, dEAE=EAE-2-EAE-1. 

 

 

 



14 

 

Table 2. The values of released strain energy (dU) and AE energy jump (dEAE) 

at each pop-in for specimen WS1. 
Pop-in 

number 

Δ 

(mm) 

P1 

(N) 

P2 

(N) 

dP 

(N) 

EAE-1 

 (×10-14 J) 

EAE-2 

(×10-14 J) 

dEAE 

(×10-14 J) 

dU 

(×10-3 J) 

1 8.40 60.02 56.52 3.50 4.14 5.27 1.13 14.70 

2 9.42 56.47 48.14 8.33 6.27 8.52 2.25 39.23 

3 11.10 51.70 49.36 2.34 9.39 10.00 0.61 12.99 

4 13.10 48.14 45.76 2.38 13.10 14.30 1.20 15.59 

5 15.90 48.04 42.31 5.73 14.70 16.80 2.10 45.56 

6 17.60 43.31 42.21 1.10 17.30 18.20 0.90 9.68 

7 19.20 43.32 39.71 3.61 18.60 20.40 1.80 34.66 

8 27.80 43.37 31.87 11.5 26.30 30.90 4.60 159.85 

9 30.30 36.16 33.83 2.33 32.00 33.80 1.80 35.30 

10 31.40 33.72 29.00 4.72 34.80 37.00 2.20 74.10 

11 35.10 28.95 27.68 1.27 39.00 40.60 1.60 22.28 

12 37.40 28.84 25.50 3.34 41.90 44.20 2.30 62.46 

13 41.70 27.78 25.50 2.28 45.60 47.90 2.30 47.54 
P1: the initial load at each pop-in, P2: the final load at each pop-in, dP=P1-P2, EAE-1: the initial cumulative 

AE energy at each pop-in, EAE-2: the final cumulative AE energy at each pop-in, dEAE=EAE-2-EAE-1. 

 

Fig. 7 illustrates the correlation between AE energy jump and released strain energy 

at the pop-ins. As can be seen, a linear relationship established between the AE energy 

jump and released strain energy. Thus, amount of AE energy induced by crack growth, 

is a function of released strain energy of the specimen. 
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Fig. 7. Correlation between AE energy jump and strain energy drop at the 

pop-ins for specimens US1 and WS1. 

Strain energy release rate in mode I (GI) for DCB specimen is calculated as follow 

[]: 
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where B is specimen width, P is load, a is initial crack length, E is young modulus, 

U is released strain energy, and h is a half thickness of the specimen. Thus, the elastic 

released strain energy U  due to growth of delamination as much as a  is calculated as 

follows: 

da
EBh
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  (4) 
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Combining Eqs. 2 and 6 leads to 

 332 )( aaaPEAE    (7) 

Using ))(( 2233 yxyxyxyx   substitution, Eq. 7 modified as follow: 

   aaaaaPaaaPEAE  2232332 33)(   (8) 

Finally, Eq. 8 can be simplified as follow: 

  aaaEAE

23  (9) 

Fig. 8 shows the relation between cumulative crack growth and cumulative AE 

energy for specimens US1 and WS1. Due to high value of R-square for the fittings (i.e. 

0.97778 and 0.99644 for specimens US1 and WS1, respectively.), it is concluded that the 

3-order polynomial of Eq. 9 expresses the relation between AEE  and a  very well.  



17 

 

 
Fig. 8. Correlation between visual crack growth and cumulative AE energy for 

specimens US1 and WS1. 
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The real root of Eq. 9 at a specific cumulative AE energy determines the value of 

crack growth.  Fig. 9 shows the delamination crack growth estimated by cumulative AE 

energy versus visually recorded experimental data. As it is obvious, excellent agreement 

exists between the results. In order to qualify the performance of the proposed method 

in different loading condition, two other specimens were tested with 1 mm/min loading 

rate. Fig. 10 shows the predicted delamination propagation curve versus the visually 

recorded curve for these specimens. As can be seen, by changing the loading condition, 

AE still can predict delamination propagation precisely. 
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Fig. 9. Prediction of crack growth using AE method for specimens US1 and 

WS1. 

 

 
Fig. 10. Prediction of crack growth using AE method for specimens US2 and 

WS2. 

Table 3 represents the average and maximum differences between the predicted 

delamination crack growth by AE method and the visually detected crack growth. The 

results show that the proposed AE method has a good performance to predict quasi-

static delamination crack growth. 

Table 3. The maximum and average error of the AE crack growth prediction. 
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Specimens 
Loading rate 

(mm/min) 

Maximum error 

(mm) 

Average error 

(mm) 

US1 3 2.57 1.15 

WS1 3 1.81 0.89 

US2 1 3.01 1.16 

WS2 1 1.80 0.73 

 

3.2 Fatigue loading 

The samples similar to quasi-static specimens were subjected to the fatigue loading. 

The tests are performed according to ASTM D6115 standard [39] under displacement 

control mode. The specifications of the fatigue loading tests are represented in Table 4.  

Table 4. The specifications of the cyclic loading tests. 

max

minR



  

max  

(mm) 
min  

(mm)   Ic

Imax

2

avcr

2

max

G

G

δ

δ
  Load frequency 

(Hz) 
Specimens 

0.4 3 1.2 0.8 3 UF1 

0.4 6 2.4 0.8 3 WF1 

0.4 2.3 0.9 0.5 3 UF2 

0.4 5 2 0.5 3 WF2 

minδ : minimum displacement for cyclic loading, 
maxδ : maximum displacement for cyclic loading, crδ : 

displacement corresponding to crack initiation for quasi-static loading, ImaxG : fracture energy release 

rate corresponded to 
maxδ for cyclic loading, IcG : interlaminar fracture toughness calculated from quasi-

static mode I loading. 

 

Fatigue crack growth curves for specimens UF1 and WF1 are illustrated in Fig. 11. 

As can be seen, the fatigue crack growth in woven specimen (WF1) is more stable than 

unidirectional specimen (UF1). Similar to the quasi-static loading, instability of fatigue 

crack growth in specimen UF1 refers to the fiber bridging phenomenon.  
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Fig. 11. The fatigue crack growth for specimens UF1 and WF1. 

3.3 Prediction of fatigue crack growth using AE 

Cumulative AE energy of specimens UF1 and WF1 are illustrated in Fig. 12. By 

comparing Figs. 11 and 12, it is obvious that the cumulative AE energy curve has 

similar trend to the fatigue crack growth curve. Thus, similar to the relation between 

delamination growth and cumulative AE energy in quasi-static loading, there is linear 

relation between cumulative fatigue crack growth and cumulative AE energy. 
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Fig. 12. Cumulative AE energy curve of specimens UF1 and WF1. 

Fig. 13 shows the linear relationship between the cumulative fatigue crack growth 

and cumulative AE energy for specimens UF1 and WF1. 
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Fig. 13. Correlation between fatigue crack growth and cumulative AE energy 

for specimens UF1 and WF1. 

Fig. 14 illustrates the predicted fatigue crack growth and visually recorded crack 

growth for specimens UF1 and WF1. The results show that this method could predict the 

fatigue crack growth precisely.  
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Fig. 14. Predicted and visually detected delamination fatigue crack growth for 

specimens UF1 and WF1. 

In order to qualify the performance of the proposed method for different fatigue 

loading conditions, the specimens UF2 and WF2 were tested under lower stress levels 

(
 

5.0Im

2

2
max 





Ic

ax

avcr
G

G
). The predicted fatigue crack growth curve for these specimens 

are illustrated in Fig. 15. 
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Fig. 15. Predicted and visually detected delamination fatigue crack growth for 

specimens UF2 and WF2. 

Table 5 represents the average and maximum differences between the predicted 

fatigue crack growth by AE method and the visually detected fatigue crack growth. The 

results show that the proposed AE method has an excellent performance to predict 

fatigue delamination crack growth. 

Table 5. The maximum and average error of the AE fatigue crack growth 

prediction. 

Specimens 
Ic

axIm

G

G
 Maximum error (mm) Average error (mm) 
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UF1 0.8 0.14 0.07 

WF1 0.8 0.31 0.15 

UF2 0.5 0.12 0.08 

WF2 0.5 0.20 0.14 

 

4 Conclusion 

The aim of this study was to investigate the delamination propagation in 

glass/epoxy composites under mode I quasi-static and fatigue loading conditions. The 

results are represented in two sections. In first section, correlations among AE energy 

with released strain energy and crack growth are established and quasi-static 

delamination growth was predicted using AE method. In second section, the 

delamination crack growth under fatigue loading is predicted using the proposed AE 

method. The proposed AE method has some advantages such as predicting delamination 

growth using only one AE sensor without needing to determine AE wave propagation 

velocity in the specimens and without need to filtering some AE recorded signals. 

Finally, the obtained results show that the proposed AE method has good applicability 

to predict the delamination propagation in laminated composite structures. 
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Fig. 10. Prediction of crack growth using AE method for specimens US2 and WS2. 
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Table 2. The values of released strain energy (dU) and AE energy jump (dEAE) at each pop-in for specimen 

WS1. 

Table 3. The maximum and average error of the AE crack growth prediction. 

Table 4. The specifications of the cyclic loading tests. 

Table 5. The maximum and average error of the AE fatigue crack growth prediction. 
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