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ABSTRACT
Considering the generation of musical tunings, it is reasonable
to expect that the many constructs contained in Functional pro-
gramming languages may provide useful tools for exploring both
conventional and new tunings. In this paper we present a number
of approaches for manipulating tunings using basic mathematics.
While this provides a simple foundation for describing tempera-
ment, it is fundamental enough to support a variety of approaches
and further, allows the unbounded description of arbitrary tunings.
It is expected that this notion will be useful in defining tunings, and
by extension scales, for Digital Musical Instruments. This breaks
down the physical barrier that has limited the likes of just intona-
tions from having practical applications in the performance setting.
It also enables composers to explore a variety of non traditional
temperaments rapidly, without having to manually tune each note.

1 INTRODUCTION
Western classical tradition settled on the compromise of twelve
tone equal temperament (12-TET) in the 19th Century and it has
since become an overriding, although necessary, standard for com-
position and musical instrument design [2]. Many instruments are
physically bound by an inability to tune or modulate to just in-
tonations in a practical setting and as such, use of this form of
harmony is constrained for most ensembles. The legacy of these
physical restrictions mean it is uncommon for extensive support
for alternative temperaments with discrete pitched instruments,
digital controllers or software instruments. As such, composers
typically meet many challenges in exploring this form of harmony
in a manner that is intuitive or supports rapid, iterative experimen-
tation. Furthermore, with 12-TET deeply ingrained in our notion
of harmony many theoretically acceptable harmonic relations no
longer have the same effective perceived quality in an alternative
temperament. Even violinists, with continuous, fine grained control
over pitch, struggle to effectively modulate between keys in just
intonation, partly because of the technical challenges involved but
also because the open strings of the instrument are tuned to a fixed
pitch and cannot easily be adjusted in a performance setting.

For the most part, the details of tuning and temperament remains
a hidden layer upon which western classical notation and theory
sits. Given the mathematical foundations on which alternative sys-
tems of temperament are built and the ease these calculations can
be performed on modern computational systems, we can expect
that there is a way to describe different tunings in a way that is
both clear and allows for accessible, creative exploration.

As the concept of a scale or tuning naturally fits the data structure
of a list, a functional language such as Haskell [8] provides an
excellent set of tools and concepts for implementing these ideas.
This paper aims to examine the potential ways for existing tunings
to be expressed and, beyond that, how functional programmingmay
present a foundation for exploring new tunings and by extension,
harmony. The results should allow scales to be created from a base
tuning and ultimately applied within digital instruments.

A Domain Specific Language (DSL), such as those described by
Hudak [6], provides a language for describing specialised programs,
simplified to the constraints of a single problem space. We can
presume a DSL that utilises the ideas from this paper would re-
semble the code fragment shown in figure 1, where a 4 by 4 grid
is created and mapped onto a generated 12TET diminished blues
scale. A related hardware controller could then be configured using
the output from this program.

grid = Button 4 < + > Button 4
referencePitch = 440
freq_12tet_dimBlues =
[ 2.0 ∗ ∗ (n / 12.0) ∗ referencePitch | n < − diminishedBlues]

applyToGrid grid freq_12tet_dimBlues

Figure 1: A DSL to map tempered scales to interfaces

With this interface, a composer may experiment with a generated
tuning in away that resembles traditional instruments, having spent
minimal time configuring individual note tunings.

This paper’s key contribution is to lay the foundations for a
reimagining of temperament in the context of digital instrument
design and domain specific languages. This paper is structured as
follows:

• Section 2 outlines the typical forms of temperament and
tuning systems.

• Section 3 discusses some of the current interactions with
arbitrarily tuned digital instruments and some better known
examples of alternative temperaments in relatively modern
composition.

• Section 4 presents the basis for mathematically generating
tunings.

• Section 5 provides a brief, practical example of how func-
tional language features can implement these concepts.

• Section 6 describes applications to which the concepts dis-
cussed in this paper could apply.

• Section 7 concludes, commenting on the future expansion
of this work.



2 TUNING AND TEMPERAMENT
A comprehensive description of tuning systems is beyond the scope
of this paper. We will introduce the most recognised types of tem-
perament here and further reading is recommended to consider the
subtle variations that exist within each.

There are a number of ways to describe the relationship be-
tween notes. Due to the ubiquity of twelve tone equal temperament
(12TET), the most common unit tends to be cents, a logarithmic unit
adopted and developed by Alexander J. Ellis for his work comparing
tunings from around the world [3]. This unit sees an octave within
12-TET divided into a geometric sequence of 12 divisions, each
equal to 100 cents, referred to as a semitone.The MIDI specifica-
tion, along with the majority of compatible synthesisers, adopt this
model where alternate temperaments are described as a deviation
(in cents) from 12TET. As this approach requires making adjust-
ments to each note, tuning becomes a time consuming exercise that
raises the potential for mistakes and often requires a preconceived
notion of what frequencies to select, stifling the ability to make
intuitive decisions about the tunings.

An alternative approach defines tunings as a ratio to the first
scale degree as shown in table 1.Whilst thismethod lacks the anchor
point of 12TET deviation, it gives a far more elegant representation
of the scale. Just intonations in particular are represented clearly
in this way due to their inherent use of natural numbers for ratios.

2.1 Equal Temperament
Equal temperament creates a perceptually consistent width interval
1 between each note. This creates a harmonic compromise with
partials from each note close enough to integer multiples to be per-
ceived as harmonic, without creating larger gaps that are perceived
as inharmonic2 at other points in the chromatic scale.

This tempering system works by dividing an interval range
(typically an octave) into equal divisions. In western traditional
theory this is typically twelve subdivisions following the formula:

12√2 = 2(1/12) ≈ 1.05946309436

It is possible to divide the octave into more than twelve notes
and this is the most typical choice for exploring microtonal mu-
sic in the 21st century. Again temperament, by its compromise
facilitates the use of the full scale and therefore key changes, for
physical instruments. The concept of tempering a scale is to pro-
vide this functionality. Interestingly, Hinrichsen has suggested that
equal temperaments would benefit from a wider interval width,
that would provide a more harmonic series (though sacrificing the
tuning of the octave itself) [5].

2.2 Just Intonation
Just intonation refers to tunings where the fundamental frequency
of each note is related as an integer ratio to some common reference
pitch. This concept creates a set of harmonics that align in an
audibly consonant way and is by strict definition, what is considered
‘in tune‘.

1Equal to 100 cents
2Referred to as wolf note - the limiting factor in key modulation when using just
tunings.

As this series of notes is built on integer ratios, this relationship
only holds for the current key3.

Just intonation is more accurately conceptualised as a collec-
tion of relationships rather than a single rigid tuning. There are
variations such as Pythagorean Tuning (table 1) and Five-limit tun-
ing, handling different scale degrees with different ratios, creating
subtly different qualities.

3 CURRENT INTERACTIONS WITH
INSTRUMENT TUNING

Currently there are a number of synths that support the ability to
create alternate tunings. Whilst there is support for altered tunings
within the MIDI standard (via SysEx message), it is the accessibility
and quality of digital instruments that present the best way to
overcome the physical tuning limitations of traditional instruments.

The major limitation in tuning arises from the limited ways to
derive, experiment and configure tunings rapidly enough to fulfil
the creative needs.

Tuning by deviation from 12TET has been used by the likes of
Terry Riley in "Songs For The Ten Voices Of The Two Prophets" [10]
to explore tuning in a more contemporary context, using Prophet 5
Synthesisers. Riley’s work stands as a fairly experimental piece that
goes to very deliberate efforts to explore the harmony not typically
associated with keyboard instruments. It is a great example of what
can be achieved but generally the process is demanding on the
composers comprehension and understanding of theory, beyond
that of western classical music theory or an intuition for harmonic
relationships and exploration.

Whilst more recently work has been done on modelling micro-
tonal tunings for 3D printed flutes[1], there appears little work that
allows for more fundamental tuning concepts for both description
of the tuning and the application to instruments.

Hayward [4] does present an interface to describe just into-
nations as a lattice. This demonstrates the use in visualising the
abstract relationships in just tunings and thereby demonstrates an
opportunity to creatively explore them. His paper does however
focus exclusively on just intonations and this presents as more of
an analysis tool than a tool which can be used directly for practical
applications.

There is also work that explores the opportunity for dynamic
tuning. For example, Milne presents an isomorphic controller that
facilitates tuning adjustments during performance[9]. Milne’s work
certainly allows for tonal exploration however the price for this
power is a technically challenging controller.

4 EXPRESSING TEMPERAMENT
Many functional languages have traits that are conductive to han-
dling lists. Haskell, thanks to higher order functions, has the abil-
ity to perform a number of generalised actions over lists such as;
mapping, zipping and filtering. These can allow a programmer to
quickly but also arbitrarily describe and interact with lists repre-
senting tunings. This is highly beneficial as results can be computed

3Even then, more than 12 notes are required, meaning enharmonic notes that are not
equivalent.
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Note G♭ D♭ A♭ E♭ B♭ F C G D A E B F#
Ratio 1024:729 256:243 128:81 32:27 16:9 4:3 1:1 3:2 9:8 27:16 81:64 243:128 729:512
Cents 588 90 792 294 996 498 0 702 204 906 408 1110 612

Table 1: Pythagorean tuning

and applied far faster than manually tuning per note, helping en-
courage the iterative workflow that is conductive for creative and
intuitive exploration.

Given the fact that there are a number of ways to describe a tun-
ing, a generic tool such as a programming language actually offers
the designer the opportunity to approach tuning an instrument
from a number of perspectives. Whereas for many instruments,
tuning is bound as a variation from 12TET, using Haskell, lists
can be generated and applied, through a series of expressions or
application of a set of helper functions, as proposed later.

4.1 Formula Expression
For generating equal temperaments, creating an expression that
divides the desired interval is a simple and effective method for
creating a tuning. Equal temperament takes the interval of an octave
and splits into twelve perceptually equal parts. This takes the form:

r = n√p

Where r is the ratio, p is the interval and n is the number of
divisions.

This relationship can be used to create an expression that gives
the frequency of a note given a scale degree d and a reference pitch
R:

2(d/n)R

To this extent, exploring equal tempered scales should be trivially
simple as variations of this formula. Typical microtonal music can
then be explored given any expression where n > 12.

4.2 Ratios and Lists
It is well recognised that ratios are a powerful tool for describing
tunings, a good example being Wright’s book on the mathematics
of music [12]. Whilst for equal temperament an expression is an
effective and simpleway of expressing a scale, due to the variation in
interval size, this is not so simple to work with for just intonations.

An alternative to formulaic expression is to describe a scale by its
intervallic spelling, that is a list where each interval that constructs
the scale is explicitly described as a ratio.

A = 1024/729, 256/243, 128/243...242/128, 729/512

If this list4 is evaluated what remains is a set of coefficients that
can be multiplied with a reference frequency R to calculate the
tuning.

f = RAn

4Pythagorean temperament described as a list.

This presents a very intuitive way of experimenting with very
strong harmonic tunings in a way that suits the human inclination
for seeing patterns.

4.3 12TET deviation
Whilst we consider deviation from 12TET to be a limiting method
for tuning, as this paper’s approach is general, it is easy to include
it, for both completeness and familiarity. Below n is equal to the
number of cents up from the reference pitch.

f = R(21/1200)n

5 PRACTICAL EXAMPLES
Given its light, mathematical syntax, these formula translate con-
veniently into functional languages such as Haskell. We present
several very simple implementations here based upon Haskell’s list
comprehensions, where given a list of the desired scale degrees, a
list of frequencies are returned. A list comprehension is a powerful
programming construct, found in languages such as NPL, Miranda,
and Haskell, that enables the concise and expressive construction of
lists[11]. Using a list comprehension we can replicate the formula
for generating an equal tempered scale of twelve chromatic notes
with the expression below. The named constants make it a simple
change in order to recreate the scale from a different reference
point, for example, to tune to the popular alternative A = 432Hz.

referencePitch = 432
freq_12tet =

[2.0 ∗ ∗ (n/12.0) ∗ referencePitch | n < − [0 .. 13]]

Below we generate a Pythagorean circle of fifths using a list
comprehension.

freq_PT = [referencePitch ∗ (3/2) ∗ ∗ n | n < − [0..12]]

To create a scale using intervallic expressionwe simply create the
list. This is then evaluated to be used in the list comprehension. The
resulting coefficients can then be used in a list comprehension.This
comprehension could actually be generalised as a function to apply
scale coefficients. Further, an auxiliary function is also presented
here that can be mapped over a scale to shift the scale up by an
octave.

octatveUp x = x ∗ 2
ratios_just = [1, 25/24, 9/8, 6/5, 5/4, 4/3, 45/32,

3/2, 8/5, 5/3, 9/5, 15/8, 2]
freq_just =

[ referencePitch ∗ (ratios_just !! (n − 1))
| n < − [1..12]]

freq_just2 = map octaveUp freq_just
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6 APPLICATIONS
6.1 Scale generation
Based on the presented examples, it is possible to interface with
a number of existing Haskell harmony libraries and frameworks
(such as Haskore [7]), taking the lists generated and using higher
order functions such as filter to select or remove notes according
to diatonic patterns found in those libraries. Alternatively the lists
found in these libraries could also be used in the list comprehension
itself to create predicate conditions or to select only values from the
list of diatonic notes, such that scale notes are the only frequencies
created.

6.2 Digital Instrument Tuning
Applying these concepts are intended as part of an ongoing work
however it would be simple to apply the output of the implementa-
tion proposed here to an OSC system or even for use with MIDI.
For example, the output could be formatted into a SysEx message
that can be sent to configure a MIDI device that supports the MIDI
standard’s tuning.

7 CONCLUSION
It’s notable to consider how little research has been carried out
in the area surrounding intonation and temperament this century
given that it provides the foundation upon which musical theory
sits. This is particularly truemore recently, when considering digital
musical instruments and how they support tuning. While there are
occasional examples touching on peripheral concepts, substantial
literature around the ideas of tuning and tempering were far more
popular through the 80’s and 90’s. This appeared to trail off in
popularity and seems to be rarely considered at a fundamental level
when designing new, expressive instruments.

Given the basic premises outlined here, it is hoped that these
ideas can be applied when considering the design of new digital
musical instruments, such that there is less limitation in the ex-
ploration of tonality. Exposing this level of functionality is highly
beneficial given the number of people engaging with digital instru-
ments and computers, especially as they are often less constrained
by notions of western classical theory. Composing and creating on
a intuitive level need not be bounded by the conventional theory
that has underpinned, but perhaps constrained 100 years of music.
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