
 

 

 

Abstract— This paper is aimed at creating an Automatic Java X-

Machine testing tool for software development. The nature of software 

development is changing. Thus, the type of software testing tools 

required is also changing. Software is growing increasingly complex 

and, in part due to commercial impetus for faster software releases with 

new features and value, increasingly in danger of containing faults. 

These faults can incur huge cost for software development 

organisations and users; Cambridge Judge Business School’s research 

estimated the cost of software bugs to the global economy is $312 

billion. Beyond the cost, faster software development methodologies 

and increasing expectations on developers to become testers is driving 

demand for faster, automated, and effective tools to prevent potential 

faults as early as possible in the software development lifecycle. Using 

X-Machine theory, this paper will explore a new tool to address 

software complexity, changing expectations on developers, faster 

development pressures and methodologies, with a view to reducing the 

huge cost of fixing software bugs. 

 

Keywords— Conformance Testing, Finite State Machine, 

Software Testing, X-Machine.   

I. INTRODUCTION 

INITE state machines (FSMs) can be used as mathematical 

representations of the expected states present in a system 

[1]. FSMs form the basis of development methodologies and 

system specifications [2], being represented by state diagrams 

and state transition tables. FSMs can be further extended to use 

memory, or data, to form X-Machines [1]. These concepts are 

evolving to enable software tests to be generated against a 

system specification which can help established the 

completeness, consistency, and correctness of an implemented 

system [3]. Given that software testing typically accounts for 

50% of the development budget [4], with $2.2 trillion spend on 

IT annually in 2010 [5], effective testing tools have huge 

potential to reduce risk and deliver stronger return on 

investment. Cost tends to be orders of magnitude greater later 

into the development process. Referencing NIST, a 2008 IBM 

Whitepaper found the cost of fixing integration errors can be 

10x the cost during design and architecture, and twice the cost 

of during implementation [6]. Morover, most errors tend to be 

found during the integration phase (see Fig. 1). Beyond 

financial gain, Wong et al. [7] notes that “software faults in 

safety-critical systems have significant ramifications.” The aim 

of this research is to develop a software testing framework 

based on X-Machine theory, which can be applied to Java 

classes to determine conformance to requirements, and address 
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the challenges facing current software testing methods and 

approaches. These requirements will be provided in the form of 

XML specifications detailing the expected transitions and states 

of the Java class being tested. The paper will provide an analysis 

the challenges that exist for existing testing tool, an overview 

of X-Machine theory, and review of the state of testing using 

X-Machine and Finite State Machine theory as it presently 

exists. The paper will then describe the proposed approach for 

applying X-Machine theory in a testing tool, and perform a 

critical review of this approach in the context of software 

testing.   

II. RELATED WORK 

Testing tools uncover errors with varying success and 

performance and face a range of continuing challenges 

including: 

 Incomplete error detection 

 Software complexity 

 Agile Testing 

 Automation trade-offs 

 Developer adoption 

 

The following sections will elaborate on these problems in the 

context of an X-Machine based conformance testing solution 

aimed at preventing errors beyond the software development 

phase. 
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Fig. 1 Typical Cumulative Distribution of Error Detection [8]. 



 

 

III. CURRENT SOFTWARE TESTING CHALLENGES 

A. Incomplete error detection 

    “In general, it is impractical, often impossible, to find all the 

errors in a program” [9]. For example, unit testing is effective 

at testing individual methods within a component, but 

Holcombe [10] notes their ineffectiveness for detecting 

integration-related errors.  

While not an exhaustive test method, NIST suggest 

falsification testing (also known as conformance testing) as an 

alternative to prove an implementation under test (IUT) 

contains errors [5]. The purpose of conformance testing is to 

determine whether an IUT is correct, complete, and consistent 

with its specification [11]. If unexpected outputs occur, given 

the specified test inputs; the IUT does not conform and an error 

is detected. This method does not guarantee full error coverage, 

but it has the benefit of significantly reducing the likelihood of 

present errors because the IUT conforms to its specification. 

This may prove valuable in preventing a greater number of 

integration-stage bugs. 

B. Software Complexity 

    Increasing software complexity is causing “more software 

bugs, which often lead to execution failures with huge losses”, 

particularly because fault localisation can be difficult [7]. Faults 

can be uncovered by traditional low-level test writing and 

recording, such as unit testing, which “works fine when there 

are a small number of tests…but it breaks down as the number 

of tests grow” [12]. Object-oriented systems are increasing in 

complexity and scale, making testing a more difficult, costly, 

and incomplete task. Therefore, a simpler solution is required 

to validate increasingly complex systems.  

C. Agile Testing 

    Market pressures have shifted the preferred software 

development lifecycle from rigid waterfall-style 

methodologies, which enforce staged testing to ensure 

conformance to specifications [13], to customer-centric agile 

methodologies which are flexible to changing specifications 

and emphasise finished products over rigid documentation and 

testing [14]. Agile software development has grown in 

popularity three-fold in the past decade [15].  

Although unit testing can help prevent errors during 

development, current integration testing examines “new 

functionality…once the implementation is done…From a lean 

perspective, preparing tests afterwards is wasteful.” [12]. 

Manual unit test writing can also prove costly. Future testing 

tools need to align with the agile development process. 

D. Automation trade-offs 

    Although automated testing has benefits, the trade-off is test 

customisability and result reliability. Tools such as DSD-

Crasher or Daikon are designed to automatically infer a 

system’s intended behaviour and functionality given that 

“Explicit specifications require significant human effort” [16]. 

An absolute-automatic approach, however, can result in an 

unforeseeable number of false positives which the tester cannot 

rule out. Ruling out these false positives also takes significant 

human effort. The option of “adapting testing is required to 

determine effectiveness of test data” [17]. A balance must be 

struck. “For testing to be efficient, it must be automated as 

much as possible”, but with the necessary tester customisation 

which delivers appropriate and reliable results [1]. 

E. Developer adoption 

    Developers are becoming more responsible for testing. 

Research underpinning the Agitator testing tool argued it is 

“difficult for developers to switch modes from development 

activities – mostly constructive and focused – to testing 

activities – mostly destructive and exploratory” [18]. Crispin 

and Gregory [14] identify four developer-related barriers to 

automated testing including developer overreliance on quality 

assurance teams to detect faults, the “hump of pain” in learning 

new tools and code, the fears of testers with weaker 

programming backgrounds, and habitual comfort in sticking 

with familiar manual regression testing. Usability, learnability, 

performance, and overall design must be seamless for developer 

adoption of new testing tools [18]. 

 

IV. FINITE STATE MACHINE & X-MACHINE 

BACKGROUND 

A. Finite State Machines (FSM) 

    FSMs are a popular, simple way of describing a wide range 

of systems, including hardware. They have the advantage of 

being based on simple, dynamic models of computation, are 

easily represented in diagrams and tables, and are relatively 

well-known – see working and faulty FSM representations in 

Fig. 2 and Fig. 3. 

    Chow’s FSM testing method was effective in testing control 

structure correctness, but for tests involving a “data-

manipulation aspect…other testing approaches must be used” 

[19]. FSM testing also assumes “that not only the specification, 

but also the implementation can be modelled as an FSM” [11]. 

Moreover, the FSM characterisation set (Chow’s W method, 

used to distinguish between two pairs of states in machines) 

only includes the model inputs; not the transition outputs or any 

values carried in memory. Outputs are observed, which does not 

necessarily validate a correct transition. Ultimately, this means 

FSMs face limitations such as modelling non-deterministic 

behaviour or data manipulation, object-orientation complexity 

where components may communicate or call values and 

methods mid-transition, or testing systems that cannot be 

modelled as FSMs. 

 

B.Stream X-Machines (SXM) 

   Laycock’s Stream X-Machines (also known as extended X-

Machines) were aimed at modelling data manipulation in 

memory [3]. SXM’s main advantage is the ability to almost 

completely model modern Turing machines in a “wide variety 

of situations in a unified manner and…[control] transformation 

and refinement of specifications” [2]. Furthermore, SXMs 

avoid the ‘state explosion’ problem in Statechart models, where 

the size of data variables radically exceeds the number of 

specified states, because the “states of the SXM equivalent of a 

state diagram coincide with the original states” [1]. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

C.Communicating X-Machines  

   Beyond simple SXM modelling, complex system “modelling 

of concurrency and communication is made possible by 

invoking net-like models or by using machine product 

constructions of a suitable type” [2]. Communicating X-

Machines have been proposed to model more complex systems, 

based upon a single CSXMS or a CSXMS composed of from 

several component CSXMSs which “give the software designer 

the freedom to choose the level of detail at which to apply the 

X-Machine model to any particular software system” [20]. The 

CSXMS enables the modelling of complex system behaviour 

such as “such as determinism, minimality and output 

distinguishability”. [20]. Balanescu et al.’s [20] port-based 

CSXMS was “not the only possible formulation”. While 

Barnard et al. [21] for example, implemented a port-based 

system, Simons et al. [22] developed an Object Machine which 

better “describes the state changes and responses of an object 

triggered by the reception of message request”, as in object-

oriented systems.  

 

 

V. OUR SOLUTION: AN SXM-BASED CONFORMANCE 

TESTING 

Our test draws Aguado and Cowling’s conformance test using 

SXMs to “determine whether an IUT conforms (is equivalent) 

to its specification [23]. 

 

This technique aims to find the same faults as in FSM testing, 

namely: 

 Missing states 
 Extra states 
 Missing Transitions 
 Extra Transitions 
 Mis-directed Transitions 
 Transitions with faulty-functions (input-output). 

 

“A significant advantage is that the same approach can be 

applied to each component of the systems if each [component] 

is specified as an SXM” [23]. Holcombe and Ipate’s [24] 

‘reductionist’ approach better suits agile development where 

systems are assembled from components. Their approach 

involves producing a test regime that completely reduces “the 

test problem for the system to one of looking at the test problem 

for the components or reduced parts” Holcombe [10]; as per the 

agile process. This enables greater system-level conformance 

testing throughout development to detect errors earlier in the 

process [10]. This approach should also help address the issue 

of increasing software complexity at a much more granular 

level of computational testing. 

Conformance testing should scale to deliver effective test 

results with larger and more complex systems, given “the larger 

and more varied the set of inputs is, the more confidence can be 

placed in an implementation whose testing generates no errors” 

[5]. Conformance testing of individual components, though 

“not a guarantee for interoperability, it is an essential step 

towards achieving interoperability” [5]. If every component’s 

functionality conforms to specifications, the fully integrated 

system is more likely to successfully conform to specifications. 

A CSXMS conformance tool would arguably be the next step 

for a fuller integration conformance test during development 

[20]. 

Attractiveness for developers, automation and customisability 

depends to a large extent on the implementation of the testing 

tool. However, X-Machine specification-based theory should 

enable a substantially automated conformance testing tool with 

flexibility to accommodate a wider variety of specified system 

designs and implementations. 

 

VI. METHOD  /  FRAMEWORK 

The first iteration of the testing framework involves testing for 

missing transitions, extra transitions, and misdirected 

transitions. By testing in these areas, the framework will be able 

to test for conformance to specifications, both in terms of 

adherence to system designs and functional expectations of a 

class. 

A. Specifications 

The expected behaviour of the system is captured by 

specifying the transitions expected in the system with any 

Fig. 2 A simple X-Machine [10] 

Fig. 3 A faulty version of an X machine with an extra state, a 

missing transition and faulty transition label [10] 



 

 

inputs required (i.e. the methods or functions of the class), 

along with the state the system will initially be in, and the state 

expected at system completion. States are defined by values 

set in class variables. 

This can be represented in a similar way to state transition 

tables used with FSMs, with some modification to represent 

the X-Machine, such as the addition of a column to represent 

the transition, and the name of the class variable with its value 

in each state. Table 1 shows an example table representing a 

traffic light system. 

 
Table 1 

EXAMPLE STATE TRANSITION TABLE FOR A TRAFFIC 

LIGHT SYSTEM 

Starting State Transition Finishing State 

color = green prepareToStop() color = amber 

color = amber stop() Color = red 

color = red prepareToGo() color = amber 

color = amber go() color = green 

 

 

B.Missing Transitions 

   To test for missing transitions, the expected transitions will 

be extracted from the specification, and compared to the 

methods or functions present in the class. Any transitions 

present in the specification, yet not present in the system, will 

be classed as missing. 

Using Table 1 as a specification, a system with methods called 

prepareToStop(), stop(), pepareToGo(), and go() will pass all 

the tests. However, a system missing the prepareToStop() 

method would be a partial failure, as it does not conform to the 

specification. A system with none of the transitions specified 

would be a total failure. 

C.Extra Transitions 

   Extra transitions will be methods or functions present in a 

system that are not present in the specification. Again, 

transitions are extracted from the specification and compared to 

the methods or functions present in the system. Any methods or 

functions that are not present in the specification will be classed 

as extra transitions. 

For the traffic light example, a class only containing the four 

methods in the specification will pass the test. However, if the 

class contains methods not specified in the transition, the test 

will fail as it does not conform to the specifications. 

D.Misdirected Transitions 

   Misdirected transitions are those which do not put the system 

in the expected state at the end of the transition. States are 

defined by class variables and their values. In the example 

specification in Table 1, the first state defined is color = green. 

This expects the system to have a class variable called “color”, 

which is given the value “green”. To run this test, the system is 

placed in the starting state for a transition. The transition is then  

 

 

run on the system, and the class variables tested to ensure they 

are as specified in the finishing state. This is repeated for all 

transitions in the specification. 

Using the traffic light example, for each transition test, the color 

variable is assigned the value specified in the starting state. 

After calling the method described by the transition, the color 

variable is interrogated to ensure the value is that specified in 

the finishing state. If the variable contains an incorrect value, 

the test is failed. 

 

VII. THE COMPLEX-MACHINE TOOL 

The CompleX-Machine Tool has been developed in Java to 

accept specifications and system files to test for missing 

transitions, extra transitions, and misdirected transitions. It 

utilizes JavaParser and Javassist to manage the parsing, 

interrogating, and running of the system files. 

A. Specifications 

    Specifications are parsed from an XML file which is then 

converted in a model as described in Fig. 4. An XML Schema 

representing a well-formed specification file can be found in 

Appendix 1. Tests are generated based on the specification. 

B.Missing Transitions 

    Missing transitions are identified by comparing a list of 

transitions from the specification to a list of methods extracted 

from the submitted system file, as parsed using JavaParser. Any 

transitions present in the specification but not present in the 

system are classed as failed tests. Transitions and methods are 

compared using the name of the transition or method, along 

with parameters required for the transition or method. For 

example, a specification requiring a transition called 

changeColor with a parameter of type String called color, will 

look for a method signature matching changeColor(String 

color). For the purposes of this test, return types, access 

modifiers, and throws declarations are ignored. 

C.Extra Transitions 

     Extra transitions are tested in a similar way to missing 

transitions, the difference being that that methods present in the 

system, yet not present in the specification, are classed as failed 

tests. 

D.Misdirected Transitions 

    To test misdirected transitions, the system file is instantiated 

using Javassist so that the methods can be called and the class 

variables interrogated.  

     Again, for the purposes of this tool, access modifiers are 

ignored. Once the class has been instantiated, for each 

transition, the class variables are set to those in the 

specification.  

     The method is called on the object, and the class variables 

tested for equality to those defined in the finishing state of the 

specification. If the class variables do no match those specified, 

the test is classed as failed. 

 

 

 

 



 

 

 

 

 

 

VIII. VALIDATION 

The tool has been validated for missing transitions, extra 

transitions, and misdirected transitions using test files 

representing a traffic light system, and a string manipulator. The 

XML specifications can be found in Appendix 2 and Appendix 

3 respectively. 

 

 

 

 

A. Missing Transitions 

    To ensure that the tool could identify transitions present in 

both the specification and system file, a java file was created 

containing all the transitions expected of the Traffic Light 

specification (see Fig. 5).  Upon running the test, the expected 

transitions were all present and all tests marked as passed. 

    Two more tests were performed, one with two missing 

transitions (see Fig. 6) and the other with no transitions in the 

system (see Fig. 7). The transitions that had been removed from 

the java file were classed as failed tests, while those that 

remained were passed. 

By running these tests, we have been able to show that the tool 

can recognise which transitions should be present in the system 

and identify those that are missing. 

B.Extra Transitions 

    The first part of this validation was similar to that of missing 

transitions. The file shown in Fig. 5 was again run against the 

traffic light specification to ensure that no transitions were 

marked as extra if they were present in the specification. This 

test was successful. From there, a further java file was created 

containing a method which was not defined in the specification 

(see Fig. 8). The tool identified the extraTransition() method as 

not being defined in the specification and correctly failed that 

test. The correct transitions all passed as expected. 

 

 

Fig. 4 System model representing the test specifications 

Fig. 5 Java file conforming to the traffic light 

specification 

Fig. 6 Java class with some methods missing compared to 

the traffic light specification 

Fig. 7 Java class with all methods missing compared to the traffic 

light specification 

Fig. 8 Java file containing a method not defined in the specification 



 

 

C.Misdirected Transitions 

    The initial test of misdirected transitions used the traffic 

light specification and the java file used in both the missing 

and extra transitions tests. As this is a correct representation 

according to the specification, the transition tests all passed 

as expected. In order to ensure that misdirected transitions 

could be identified correctly, the java files in Fig. 9 and Fig. 

10 were tested against the traffic light specification. The 

partially misdirected file successfully passed the two 

transitions which ended in the correct states, while failing 

those that did not. The file with completely incorrect 

transitions failed all the tests as expected. Further validation 

was performed using a file with a single method, as specified 

in Appendix 3. In this system, the finishing state is dependent 

on the starting state, rather than the transition called. The java 

file used for this test can be seen in Fig.11. The tool could call 

the method and identify that the final state was correct, based 

on the starting state. As such, the tool can test for functional 

conformance, as well as design conformance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IX. CONCLUSION 

The aim of this paper was to create a software testing tool using 

X-machine theory and address the challenges and limitations 

for current testing methods. Early research into testing using X-

Machine theory identified that testing for states and transitions 

was key. The CompleX-Machine uses X-Machine theory to test 

for extra transitions, missing transitions, and misdirected 

transitions. These tests have been validated with test cases using 

specific specification and system files where if passed are 

completing the transition tests correctly. Currently the system 

is not testing for states, however, this does not inhibit the 

application from displaying the benefits of testing using X-

Machine theory. Using conformance testing reduces the 

possibility of errors as it is conforming to the specification. In 

the future, the state testing feature would need to be added to 

the application to completely test a system following the basis 

of the X-Machine model. Tests would be like the transition 

tests, looking for missing states or extra states. Additionally, 

allowing users to use different types of specification inputs 

would make the application far more flexible. For example, 

allowing users to upload a FSM or X-Machine diagram as the 

specification input, users could then draw out what they are 

visualizing. 

 

Appendix 1 
<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema attributeFormDefault="unqualified" 

elementFormDefault="qualified" 

           xmlns:xs="http://www.w3.org/2001/XMLSchema"> 

  <xs:element name="specification"> 

    <xs:complexType> 

      <xs:element name="transitions"> 

        <xs:complexType> 

          <xs:element name="transition"> 

            <xs:complexType> 

              <xs:all> 

                <xs:element name="name" type="xs:string"/> 

                <xs:element name="startingState" maxOccurs="1" 

minOccurs="1"> 

                  <xs:complexType> 

                    <xs:group ref="state"/> 

                  </xs:complexType> 

Fig. 11 Java File with a single transition 

Fig. 9 Java file with some transitions misdirected 

Fig. 10 Java file with all transitions misdirected 



 

 

                </xs:element> 

                <xs:element name="finishingState" maxOccurs="1" 

minOccurs="1"> 

                  <xs:complexType> 

                    <xs:group ref="state"/> 

                  </xs:complexType> 

                </xs:element> 

                <xs:element name="parameters" maxOccurs="1" 

minOccurs="0"> 

                  <xs:complexType> 

                    <xs:element name="parameter"> 

                      <xs:complexType> 

                        <xs:element name="name" type="xs:string"/> 

                        <xs:element name="type" type="xs:string"/> 

                      </xs:complexType> 

                    </xs:element> 

                  </xs:complexType> 

                </xs:element> 

              </xs:all> 

            </xs:complexType> 

          </xs:element> 

        </xs:complexType> 

      </xs:element> 

    </xs:complexType> 

  </xs:element> 

 

  <xs:group name="state"> 

    <xs:all> 

      <xs:element name="name" type="xs:string"/> 

      <xs:element name="variables"> 

        <xs:complexType> 

          <xs:element name="variable"> 

            <xs:complexType> 

              <xs:element name="name" type="xs:string"/> 

              <xs:element name="type" type="xs:string"/> 

              <xs:element name="value" type="xs:string"/> 

            </xs:complexType> 

          </xs:element> 

        </xs:complexType> 

      </xs:element> 

      <xs:element name="startingState" type="xs:boolean"/> 

    </xs:all> 

  </xs:group> 

</xs:schema> 

 

X. APPENDIX 2 

<specification xsi:noNamespaceSchemaLocation="specification.xsd" 

            xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

   <transitions> 

      <transition> 

         <name>prepareToStop</name> 

         <startingState> 

            <name>green</name> 

            <variables> 

               <variable> 

                  <name>color</name> 

                  <type>java.lang.String</type> 

                  <value>green</value> 

               </variable> 

            </variables> 

            <startingState> 

               false 

            </startingState> 

         </startingState> 

         <finishingState> 

            <name>amber</name> 

            <variables> 

               <variable> 

                  <name>color</name> 

                  <type>java.lang.String</type> 

                  <value>amber</value> 

               </variable> 

            </variables> 

            <startingState> 

               false 

            </startingState> 

         </finishingState> 

      </transition> 

      <transition> 

         <name>stop</name> 

         <startingState> 

            <name>amber</name> 

            <variables> 

               <variable> 

                  <name>color</name> 

                  <type>java.lang.String</type> 

                  <value>amber</value> 

               </variable> 

            </variables> 

            <startingState> 

               false 

            </startingState> 

         </startingState> 

         <finishingState> 

            <name>red</name> 

            <variables> 

               <variable> 

                  <name>color</name> 

                  <type>java.lang.String</type> 

                  <value>red</value> 

               </variable> 

            </variables> 

            <startingState> 

               false 

            </startingState> 

         </finishingState> 

      </transition> 

      <transition> 

         <name>prepareToGo</name> 

         <startingState> 

            <name>red</name> 

            <variables> 

               <variable> 

                  <name>color</name> 

                  <type>java.lang.String</type> 

                  <value>red</value> 

               </variable> 

            </variables> 

            <startingState> 

               false 

            </startingState> 

         </startingState> 

         <finishingState> 

            <name>amber</name> 

            <variables> 

               <variable> 

                  <name>color</name> 

                  <type>java.lang.String</type> 

                  <value>amber</value> 

               </variable> 

            </variables> 



 

 

            <startingState> 

               false 

            </startingState> 

         </finishingState> 

      </transition> 

      <transition> 

         <name>go</name> 

         <startingState> 

            <name>amber</name> 

            <variables> 

               <variable> 

                  <name>color</name> 

                  <type>java.lang.String</type> 

                  <value>amber</value> 

               </variable> 

            </variables> 

            <startingState> 

               false 

            </startingState> 

         </startingState> 

         <finishingState> 

            <name>green</name> 

            <variables> 

               <variable> 

                  <name>color</name> 

                  <type>java.lang.String</type> 

                  <value>green</value> 

               </variable> 

            </variables> 

            <startingState> 

               false 

            </startingState> 

         </finishingState> 

      </transition> 

   </transitions> 

</specification> 

 

XI. APPENDIX 3 

<specification xsi:noNamespaceSchemaLocation="specification.xsd" 

            xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

   <transitions> 

      <transition> 

         <name>convert</name> 

         <startingState> 

            <name>odd</name> 

            <variables> 

               <variable> 

                  <name>value</name> 

                  <type>java.lang.String</type> 

                  <value>a</value> 

               </variable> 

            </variables> 

            <startingState> 

               false 

            </startingState> 

         </startingState> 

         <finishingState> 

            <name>even</name> 

            <variables> 

               <variable> 

                  <name>value</name> 

                  <type>java.lang.String</type> 

                  <value>aa</value> 

               </variable> 

            </variables> 

            <startingState> 

               false 

            </startingState> 

         </finishingState> 

      </transition> 

      <transition> 

         <name>convert</name> 

         <startingState> 

            <name>even</name> 

            <variables> 

               <variable> 

                  <name>value</name> 

                  <type>java.lang.String</type> 

                  <value>aa</value> 

               </variable> 

            </variables> 

            <startingState> 

               false 

            </startingState> 

         </startingState> 

         <finishingState> 

            <name>odd</name> 

            <variables> 

               <variable> 

                  <name>value</name> 

                  <type>java.lang.String</type> 

                  <value>a</value> 

               </variable> 

            </variables> 

            <startingState> 

               false 

            </startingState> 

         </finishingState> 

      </transition> 

   </transitions> 

</specificatio 
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