

Abstract— This paper is aimed at creating an Automatic Java X-

Machine testing tool for software development. The nature of software

development is changing. Thus, the type of software testing tools

required is also changing. Software is growing increasingly complex

and, in part due to commercial impetus for faster software releases with

new features and value, increasingly in danger of containing faults.

These faults can incur huge cost for software development

organisations and users; Cambridge Judge Business School’s research

estimated the cost of software bugs to the global economy is $312

billion. Beyond the cost, faster software development methodologies

and increasing expectations on developers to become testers is driving

demand for faster, automated, and effective tools to prevent potential

faults as early as possible in the software development lifecycle. Using

X-Machine theory, this paper will explore a new tool to address

software complexity, changing expectations on developers, faster

development pressures and methodologies, with a view to reducing the

huge cost of fixing software bugs.

Keywords— Conformance Testing, Finite State Machine,

Software Testing, X-Machine.

I. INTRODUCTION

INITE state machines (FSMs) can be used as mathematical

representations of the expected states present in a system

[1]. FSMs form the basis of development methodologies and

system specifications [2], being represented by state diagrams

and state transition tables. FSMs can be further extended to use

memory, or data, to form X-Machines [1]. These concepts are

evolving to enable software tests to be generated against a

system specification which can help established the

completeness, consistency, and correctness of an implemented

system [3]. Given that software testing typically accounts for

50% of the development budget [4], with $2.2 trillion spend on

IT annually in 2010 [5], effective testing tools have huge

potential to reduce risk and deliver stronger return on

investment. Cost tends to be orders of magnitude greater later

into the development process. Referencing NIST, a 2008 IBM

Whitepaper found the cost of fixing integration errors can be

10x the cost during design and architecture, and twice the cost

of during implementation [6]. Morover, most errors tend to be

found during the integration phase (see Fig. 1). Beyond

financial gain, Wong et al. [7] notes that “software faults in

safety-critical systems have significant ramifications.” The aim

of this research is to develop a software testing framework

based on X-Machine theory, which can be applied to Java

classes to determine conformance to requirements, and address

EKA.Ogunshile is a Senior Lecturer in Computer Science and Head of V&

V Research Unit of the Software Engineering Research Group (SERG) at the

University of the West of England (UWE), Bristol, UK, BS16 1QY.

the challenges facing current software testing methods and

approaches. These requirements will be provided in the form of

XML specifications detailing the expected transitions and states

of the Java class being tested. The paper will provide an analysis

the challenges that exist for existing testing tool, an overview

of X-Machine theory, and review of the state of testing using

X-Machine and Finite State Machine theory as it presently

exists. The paper will then describe the proposed approach for

applying X-Machine theory in a testing tool, and perform a

critical review of this approach in the context of software

testing.

II. RELATED WORK

Testing tools uncover errors with varying success and

performance and face a range of continuing challenges

including:

 Incomplete error detection

 Software complexity

 Agile Testing

 Automation trade-offs

 Developer adoption

The following sections will elaborate on these problems in the

context of an X-Machine based conformance testing solution

aimed at preventing errors beyond the software development

phase.

EKA.Ogunshile

CompleX-Machine: An Automated Testing Tool

Using X-Machine Theory

F

Fig. 1 Typical Cumulative Distribution of Error Detection [8].

III. CURRENT SOFTWARE TESTING CHALLENGES

A. Incomplete error detection

 “In general, it is impractical, often impossible, to find all the

errors in a program” [9]. For example, unit testing is effective

at testing individual methods within a component, but

Holcombe [10] notes their ineffectiveness for detecting

integration-related errors.

While not an exhaustive test method, NIST suggest

falsification testing (also known as conformance testing) as an

alternative to prove an implementation under test (IUT)

contains errors [5]. The purpose of conformance testing is to

determine whether an IUT is correct, complete, and consistent

with its specification [11]. If unexpected outputs occur, given

the specified test inputs; the IUT does not conform and an error

is detected. This method does not guarantee full error coverage,

but it has the benefit of significantly reducing the likelihood of

present errors because the IUT conforms to its specification.

This may prove valuable in preventing a greater number of

integration-stage bugs.

B. Software Complexity

 Increasing software complexity is causing “more software

bugs, which often lead to execution failures with huge losses”,

particularly because fault localisation can be difficult [7]. Faults

can be uncovered by traditional low-level test writing and

recording, such as unit testing, which “works fine when there

are a small number of tests…but it breaks down as the number

of tests grow” [12]. Object-oriented systems are increasing in

complexity and scale, making testing a more difficult, costly,

and incomplete task. Therefore, a simpler solution is required

to validate increasingly complex systems.

C. Agile Testing

 Market pressures have shifted the preferred software

development lifecycle from rigid waterfall-style

methodologies, which enforce staged testing to ensure

conformance to specifications [13], to customer-centric agile

methodologies which are flexible to changing specifications

and emphasise finished products over rigid documentation and

testing [14]. Agile software development has grown in

popularity three-fold in the past decade [15].

Although unit testing can help prevent errors during

development, current integration testing examines “new

functionality…once the implementation is done…From a lean

perspective, preparing tests afterwards is wasteful.” [12].

Manual unit test writing can also prove costly. Future testing

tools need to align with the agile development process.

D. Automation trade-offs

 Although automated testing has benefits, the trade-off is test

customisability and result reliability. Tools such as DSD-

Crasher or Daikon are designed to automatically infer a

system’s intended behaviour and functionality given that

“Explicit specifications require significant human effort” [16].

An absolute-automatic approach, however, can result in an

unforeseeable number of false positives which the tester cannot

rule out. Ruling out these false positives also takes significant

human effort. The option of “adapting testing is required to

determine effectiveness of test data” [17]. A balance must be

struck. “For testing to be efficient, it must be automated as

much as possible”, but with the necessary tester customisation

which delivers appropriate and reliable results [1].

E. Developer adoption

 Developers are becoming more responsible for testing.

Research underpinning the Agitator testing tool argued it is

“difficult for developers to switch modes from development

activities – mostly constructive and focused – to testing

activities – mostly destructive and exploratory” [18]. Crispin

and Gregory [14] identify four developer-related barriers to

automated testing including developer overreliance on quality

assurance teams to detect faults, the “hump of pain” in learning

new tools and code, the fears of testers with weaker

programming backgrounds, and habitual comfort in sticking

with familiar manual regression testing. Usability, learnability,

performance, and overall design must be seamless for developer

adoption of new testing tools [18].

IV. FINITE STATE MACHINE & X-MACHINE

BACKGROUND

A. Finite State Machines (FSM)

 FSMs are a popular, simple way of describing a wide range

of systems, including hardware. They have the advantage of

being based on simple, dynamic models of computation, are

easily represented in diagrams and tables, and are relatively

well-known – see working and faulty FSM representations in

Fig. 2 and Fig. 3.

 Chow’s FSM testing method was effective in testing control

structure correctness, but for tests involving a “data-

manipulation aspect…other testing approaches must be used”

[19]. FSM testing also assumes “that not only the specification,

but also the implementation can be modelled as an FSM” [11].

Moreover, the FSM characterisation set (Chow’s W method,

used to distinguish between two pairs of states in machines)

only includes the model inputs; not the transition outputs or any

values carried in memory. Outputs are observed, which does not

necessarily validate a correct transition. Ultimately, this means

FSMs face limitations such as modelling non-deterministic

behaviour or data manipulation, object-orientation complexity

where components may communicate or call values and

methods mid-transition, or testing systems that cannot be

modelled as FSMs.

B.Stream X-Machines (SXM)

 Laycock’s Stream X-Machines (also known as extended X-

Machines) were aimed at modelling data manipulation in

memory [3]. SXM’s main advantage is the ability to almost

completely model modern Turing machines in a “wide variety

of situations in a unified manner and…[control] transformation

and refinement of specifications” [2]. Furthermore, SXMs

avoid the ‘state explosion’ problem in Statechart models, where

the size of data variables radically exceeds the number of

specified states, because the “states of the SXM equivalent of a

state diagram coincide with the original states” [1].

C.Communicating X-Machines

 Beyond simple SXM modelling, complex system “modelling

of concurrency and communication is made possible by

invoking net-like models or by using machine product

constructions of a suitable type” [2]. Communicating X-

Machines have been proposed to model more complex systems,

based upon a single CSXMS or a CSXMS composed of from

several component CSXMSs which “give the software designer

the freedom to choose the level of detail at which to apply the

X-Machine model to any particular software system” [20]. The

CSXMS enables the modelling of complex system behaviour

such as “such as determinism, minimality and output

distinguishability”. [20]. Balanescu et al.’s [20] port-based

CSXMS was “not the only possible formulation”. While

Barnard et al. [21] for example, implemented a port-based

system, Simons et al. [22] developed an Object Machine which

better “describes the state changes and responses of an object

triggered by the reception of message request”, as in object-

oriented systems.

V. OUR SOLUTION: AN SXM-BASED CONFORMANCE

TESTING

Our test draws Aguado and Cowling’s conformance test using

SXMs to “determine whether an IUT conforms (is equivalent)

to its specification [23].

This technique aims to find the same faults as in FSM testing,

namely:

 Missing states
 Extra states
 Missing Transitions
 Extra Transitions
 Mis-directed Transitions
 Transitions with faulty-functions (input-output).

“A significant advantage is that the same approach can be

applied to each component of the systems if each [component]

is specified as an SXM” [23]. Holcombe and Ipate’s [24]

‘reductionist’ approach better suits agile development where

systems are assembled from components. Their approach

involves producing a test regime that completely reduces “the

test problem for the system to one of looking at the test problem

for the components or reduced parts” Holcombe [10]; as per the

agile process. This enables greater system-level conformance

testing throughout development to detect errors earlier in the

process [10]. This approach should also help address the issue

of increasing software complexity at a much more granular

level of computational testing.

Conformance testing should scale to deliver effective test

results with larger and more complex systems, given “the larger

and more varied the set of inputs is, the more confidence can be

placed in an implementation whose testing generates no errors”

[5]. Conformance testing of individual components, though

“not a guarantee for interoperability, it is an essential step

towards achieving interoperability” [5]. If every component’s

functionality conforms to specifications, the fully integrated

system is more likely to successfully conform to specifications.

A CSXMS conformance tool would arguably be the next step

for a fuller integration conformance test during development

[20].

Attractiveness for developers, automation and customisability

depends to a large extent on the implementation of the testing

tool. However, X-Machine specification-based theory should

enable a substantially automated conformance testing tool with

flexibility to accommodate a wider variety of specified system

designs and implementations.

VI. METHOD / FRAMEWORK

The first iteration of the testing framework involves testing for

missing transitions, extra transitions, and misdirected

transitions. By testing in these areas, the framework will be able

to test for conformance to specifications, both in terms of

adherence to system designs and functional expectations of a

class.

A. Specifications

The expected behaviour of the system is captured by

specifying the transitions expected in the system with any

Fig. 2 A simple X-Machine [10]

Fig. 3 A faulty version of an X machine with an extra state, a

missing transition and faulty transition label [10]

inputs required (i.e. the methods or functions of the class),

along with the state the system will initially be in, and the state

expected at system completion. States are defined by values

set in class variables.

This can be represented in a similar way to state transition

tables used with FSMs, with some modification to represent

the X-Machine, such as the addition of a column to represent

the transition, and the name of the class variable with its value

in each state. Table 1 shows an example table representing a

traffic light system.

Table 1

EXAMPLE STATE TRANSITION TABLE FOR A TRAFFIC

LIGHT SYSTEM

Starting State Transition Finishing State

color = green prepareToStop() color = amber

color = amber stop() Color = red

color = red prepareToGo() color = amber

color = amber go() color = green

B.Missing Transitions

 To test for missing transitions, the expected transitions will

be extracted from the specification, and compared to the

methods or functions present in the class. Any transitions

present in the specification, yet not present in the system, will

be classed as missing.

Using Table 1 as a specification, a system with methods called

prepareToStop(), stop(), pepareToGo(), and go() will pass all

the tests. However, a system missing the prepareToStop()

method would be a partial failure, as it does not conform to the

specification. A system with none of the transitions specified

would be a total failure.

C.Extra Transitions

 Extra transitions will be methods or functions present in a

system that are not present in the specification. Again,

transitions are extracted from the specification and compared to

the methods or functions present in the system. Any methods or

functions that are not present in the specification will be classed

as extra transitions.

For the traffic light example, a class only containing the four

methods in the specification will pass the test. However, if the

class contains methods not specified in the transition, the test

will fail as it does not conform to the specifications.

D.Misdirected Transitions

 Misdirected transitions are those which do not put the system

in the expected state at the end of the transition. States are

defined by class variables and their values. In the example

specification in Table 1, the first state defined is color = green.

This expects the system to have a class variable called “color”,

which is given the value “green”. To run this test, the system is

placed in the starting state for a transition. The transition is then

run on the system, and the class variables tested to ensure they

are as specified in the finishing state. This is repeated for all

transitions in the specification.

Using the traffic light example, for each transition test, the color

variable is assigned the value specified in the starting state.

After calling the method described by the transition, the color

variable is interrogated to ensure the value is that specified in

the finishing state. If the variable contains an incorrect value,

the test is failed.

VII. THE COMPLEX-MACHINE TOOL

The CompleX-Machine Tool has been developed in Java to

accept specifications and system files to test for missing

transitions, extra transitions, and misdirected transitions. It

utilizes JavaParser and Javassist to manage the parsing,

interrogating, and running of the system files.

A. Specifications

 Specifications are parsed from an XML file which is then

converted in a model as described in Fig. 4. An XML Schema

representing a well-formed specification file can be found in

Appendix 1. Tests are generated based on the specification.

B.Missing Transitions

 Missing transitions are identified by comparing a list of

transitions from the specification to a list of methods extracted

from the submitted system file, as parsed using JavaParser. Any

transitions present in the specification but not present in the

system are classed as failed tests. Transitions and methods are

compared using the name of the transition or method, along

with parameters required for the transition or method. For

example, a specification requiring a transition called

changeColor with a parameter of type String called color, will

look for a method signature matching changeColor(String

color). For the purposes of this test, return types, access

modifiers, and throws declarations are ignored.

C.Extra Transitions

 Extra transitions are tested in a similar way to missing

transitions, the difference being that that methods present in the

system, yet not present in the specification, are classed as failed

tests.

D.Misdirected Transitions

 To test misdirected transitions, the system file is instantiated

using Javassist so that the methods can be called and the class

variables interrogated.

 Again, for the purposes of this tool, access modifiers are

ignored. Once the class has been instantiated, for each

transition, the class variables are set to those in the

specification.

 The method is called on the object, and the class variables

tested for equality to those defined in the finishing state of the

specification. If the class variables do no match those specified,

the test is classed as failed.

VIII. VALIDATION

The tool has been validated for missing transitions, extra

transitions, and misdirected transitions using test files

representing a traffic light system, and a string manipulator. The

XML specifications can be found in Appendix 2 and Appendix

3 respectively.

A. Missing Transitions

 To ensure that the tool could identify transitions present in

both the specification and system file, a java file was created

containing all the transitions expected of the Traffic Light

specification (see Fig. 5). Upon running the test, the expected

transitions were all present and all tests marked as passed.

 Two more tests were performed, one with two missing

transitions (see Fig. 6) and the other with no transitions in the

system (see Fig. 7). The transitions that had been removed from

the java file were classed as failed tests, while those that

remained were passed.

By running these tests, we have been able to show that the tool

can recognise which transitions should be present in the system

and identify those that are missing.

B.Extra Transitions

 The first part of this validation was similar to that of missing

transitions. The file shown in Fig. 5 was again run against the

traffic light specification to ensure that no transitions were

marked as extra if they were present in the specification. This

test was successful. From there, a further java file was created

containing a method which was not defined in the specification

(see Fig. 8). The tool identified the extraTransition() method as

not being defined in the specification and correctly failed that

test. The correct transitions all passed as expected.

Fig. 4 System model representing the test specifications

Fig. 5 Java file conforming to the traffic light

specification

Fig. 6 Java class with some methods missing compared to

the traffic light specification

Fig. 7 Java class with all methods missing compared to the traffic

light specification

Fig. 8 Java file containing a method not defined in the specification

C.Misdirected Transitions

 The initial test of misdirected transitions used the traffic

light specification and the java file used in both the missing

and extra transitions tests. As this is a correct representation

according to the specification, the transition tests all passed

as expected. In order to ensure that misdirected transitions

could be identified correctly, the java files in Fig. 9 and Fig.

10 were tested against the traffic light specification. The

partially misdirected file successfully passed the two

transitions which ended in the correct states, while failing

those that did not. The file with completely incorrect

transitions failed all the tests as expected. Further validation

was performed using a file with a single method, as specified

in Appendix 3. In this system, the finishing state is dependent

on the starting state, rather than the transition called. The java

file used for this test can be seen in Fig.11. The tool could call

the method and identify that the final state was correct, based

on the starting state. As such, the tool can test for functional

conformance, as well as design conformance.

IX. CONCLUSION

The aim of this paper was to create a software testing tool using

X-machine theory and address the challenges and limitations

for current testing methods. Early research into testing using X-

Machine theory identified that testing for states and transitions

was key. The CompleX-Machine uses X-Machine theory to test

for extra transitions, missing transitions, and misdirected

transitions. These tests have been validated with test cases using

specific specification and system files where if passed are

completing the transition tests correctly. Currently the system

is not testing for states, however, this does not inhibit the

application from displaying the benefits of testing using X-

Machine theory. Using conformance testing reduces the

possibility of errors as it is conforming to the specification. In

the future, the state testing feature would need to be added to

the application to completely test a system following the basis

of the X-Machine model. Tests would be like the transition

tests, looking for missing states or extra states. Additionally,

allowing users to use different types of specification inputs

would make the application far more flexible. For example,

allowing users to upload a FSM or X-Machine diagram as the

specification input, users could then draw out what they are

visualizing.

Appendix 1
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema attributeFormDefault="unqualified"

elementFormDefault="qualified"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="specification">

 <xs:complexType>

 <xs:element name="transitions">

 <xs:complexType>

 <xs:element name="transition">

 <xs:complexType>

 <xs:all>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="startingState" maxOccurs="1"

minOccurs="1">

 <xs:complexType>

 <xs:group ref="state"/>

 </xs:complexType>

Fig. 11 Java File with a single transition

Fig. 9 Java file with some transitions misdirected

Fig. 10 Java file with all transitions misdirected

 </xs:element>

 <xs:element name="finishingState" maxOccurs="1"

minOccurs="1">

 <xs:complexType>

 <xs:group ref="state"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="parameters" maxOccurs="1"

minOccurs="0">

 <xs:complexType>

 <xs:element name="parameter">

 <xs:complexType>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="type" type="xs:string"/>

 </xs:complexType>

 </xs:element>

 </xs:complexType>

 </xs:element>

 </xs:all>

 </xs:complexType>

 </xs:element>

 </xs:complexType>

 </xs:element>

 </xs:complexType>

 </xs:element>

 <xs:group name="state">

 <xs:all>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="variables">

 <xs:complexType>

 <xs:element name="variable">

 <xs:complexType>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="type" type="xs:string"/>

 <xs:element name="value" type="xs:string"/>

 </xs:complexType>

 </xs:element>

 </xs:complexType>

 </xs:element>

 <xs:element name="startingState" type="xs:boolean"/>

 </xs:all>

 </xs:group>

</xs:schema>

X. APPENDIX 2

<specification xsi:noNamespaceSchemaLocation="specification.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <transitions>

 <transition>

 <name>prepareToStop</name>

 <startingState>

 <name>green</name>

 <variables>

 <variable>

 <name>color</name>

 <type>java.lang.String</type>

 <value>green</value>

 </variable>

 </variables>

 <startingState>

 false

 </startingState>

 </startingState>

 <finishingState>

 <name>amber</name>

 <variables>

 <variable>

 <name>color</name>

 <type>java.lang.String</type>

 <value>amber</value>

 </variable>

 </variables>

 <startingState>

 false

 </startingState>

 </finishingState>

 </transition>

 <transition>

 <name>stop</name>

 <startingState>

 <name>amber</name>

 <variables>

 <variable>

 <name>color</name>

 <type>java.lang.String</type>

 <value>amber</value>

 </variable>

 </variables>

 <startingState>

 false

 </startingState>

 </startingState>

 <finishingState>

 <name>red</name>

 <variables>

 <variable>

 <name>color</name>

 <type>java.lang.String</type>

 <value>red</value>

 </variable>

 </variables>

 <startingState>

 false

 </startingState>

 </finishingState>

 </transition>

 <transition>

 <name>prepareToGo</name>

 <startingState>

 <name>red</name>

 <variables>

 <variable>

 <name>color</name>

 <type>java.lang.String</type>

 <value>red</value>

 </variable>

 </variables>

 <startingState>

 false

 </startingState>

 </startingState>

 <finishingState>

 <name>amber</name>

 <variables>

 <variable>

 <name>color</name>

 <type>java.lang.String</type>

 <value>amber</value>

 </variable>

 </variables>

 <startingState>

 false

 </startingState>

 </finishingState>

 </transition>

 <transition>

 <name>go</name>

 <startingState>

 <name>amber</name>

 <variables>

 <variable>

 <name>color</name>

 <type>java.lang.String</type>

 <value>amber</value>

 </variable>

 </variables>

 <startingState>

 false

 </startingState>

 </startingState>

 <finishingState>

 <name>green</name>

 <variables>

 <variable>

 <name>color</name>

 <type>java.lang.String</type>

 <value>green</value>

 </variable>

 </variables>

 <startingState>

 false

 </startingState>

 </finishingState>

 </transition>

 </transitions>

</specification>

XI. APPENDIX 3

<specification xsi:noNamespaceSchemaLocation="specification.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <transitions>

 <transition>

 <name>convert</name>

 <startingState>

 <name>odd</name>

 <variables>

 <variable>

 <name>value</name>

 <type>java.lang.String</type>

 <value>a</value>

 </variable>

 </variables>

 <startingState>

 false

 </startingState>

 </startingState>

 <finishingState>

 <name>even</name>

 <variables>

 <variable>

 <name>value</name>

 <type>java.lang.String</type>

 <value>aa</value>

 </variable>

 </variables>

 <startingState>

 false

 </startingState>

 </finishingState>

 </transition>

 <transition>

 <name>convert</name>

 <startingState>

 <name>even</name>

 <variables>

 <variable>

 <name>value</name>

 <type>java.lang.String</type>

 <value>aa</value>

 </variable>

 </variables>

 <startingState>

 false

 </startingState>

 </startingState>

 <finishingState>

 <name>odd</name>

 <variables>

 <variable>

 <name>value</name>

 <type>java.lang.String</type>

 <value>a</value>

 </variable>

 </variables>

 <startingState>

 false

 </startingState>

 </finishingState>

 </transition>

 </transitions>

</specificatio

REFERENCES

[1] F. Ipate, "Class testing from state diagrams using stream X-machine based

methods", in 18th Australian Software Engineering Conference 2007

(ASWEC’07), Melbourne, 2007, pp. 245-254.
[2] M. Holcombe, "X-machines as a basis for dynamic system

specification", Software Engineering Journal, vol. 3, no. 2, p. 69, 1988.

[3] G. Laycock, "The Theory and Practice of Specification Based Software
Testing", Ph.D, University of Sheffield, 1993.

[4] H. Tahbildar, P. Borbora and K. G.P, "Teaching Automated Test Data

Generation Tools for C, C++ , and Java Programs", International Journal of
Computer Science and Information Technology, vol. 5, no. 1, pp. 181-195,

2013.

[5] "What is this thing called Conformance?", NIST, 2010. [Online]. Available:
https://www.nist.gov/itl/ssd/information-systems-group/what-thing-called-

conformance. [Accessed: 19- Apr- 2017].

[6] Minimizing code defects to improve software quality and lower development
costs, 1st ed. New York: IBM Corporation, 2017.

[7] W. Wong, R. Gao, Y. Li, R. Abreu and F. Wotawa, "A Survey on Software

Fault Localization", IEEE Transactions on Software Engineering, vol. 42, no.
8, pp. 707-740, 2016.

[8] The Economic Impacts of Inadequate Infrastructure for Software Testing,

1st ed. National Institute of Standards and Technology, 2002.
[9] G. Myers, The Art of Software Testing, 1st ed. New Jersey: John Wiley and

Sons, Inc., 2004, p.9.
[10] M. Holcombe, "Testing, testing, testing!", in Correct Systems – Building

Business Process Solutions, 1st ed., M. Holcombe and F. Ipate, Ed. London:

Springer-Verlag, 1998, pp. 61-92.
[11] K. EI-Fakih, N. Yevtushenko and G. Bochmann, "FSM-based incremental

conformance testing methods", IEEE Transactions on Software Engineering,

vol. 30, no. 7, pp. 425-436, 2004.

[12] R. Mugridge, R. Utting and D. Streader, "Evolving Web-Based Test

Automation into Agile Business Specifications", Future Internet, vol. 3, no. 4,

pp. 159-174, 2011.
[13] A. Ahmed, "Software Requirements Management", in Software Project

Management: A Process-Driven Approach, 1st ed., A. Amed, Ed. Florida:

Taylor and Francis Group, 2017, pp. 145-157.
[14] L. Crispin and J. Gregory, "Automation", in Agile Testing: A Practical

Guide for Testers and Agile Teams, 1st ed., L. Crispin and J. Gregory, Ed.

Boston: Pearson Education, 2009, pp. 255-271.
[15] VersionOne Inc, "10th Annual State of Agile Report", VersionOne Inc,

2016.

[16] C. Csallner, Y. Smaragdakis, and T. Xie, “DSD-Crasher: A hybrid analysis
tool for bug finding”, ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 17, no. 2, pp. 245-254, 2006.

[17] H. Tahbildar and B. Kalita, "Automated Software Test Data Generation:
Direction of Research", International Journal of Computer Science &

Engineering Survey, vol. 2, no. 1, pp. 99-120, 2011.

[18] M. Boshernitsan, M. Doong and A. Savoia, "From Daikon to Agitator:
Lessons and challenges in building a commercial tool for developer testing",

in Fifth International Symposium on Software Testing and Analysis, Portland,

2006.
[19] T. Chow, "Testing Software Design Modeled by Finite-State

Machines", IEEE Transactions on Software Engineering, vol. -4, no. 3, pp.

178-187, 1978.
[20] Balanescu, T., Cowling, A. J., Georgescu, H., Gheorghe, M., Holcombe,

M. and Vertan, C, “Communicating stream X-Machines systems are no more

than X-Machines”, in Journal of Universal Computer Science, vol. 5, no. 9, pp.
494-507, 1999.

[21] J. Barnard, J. Whitworth, and M. Woodward, “Communicating X-

Machines”, in Information and Software Technology, vol. 38, no. 6, pp. 401-
407, 1996

[22] A. Simons, K. Bogdanov and M. Holcombe, "Complete functional testing

using Object Machines", University of Sheffield, Sheffield, 2017.
[23] J. Aguado and A.J. Cowling, “Foundations of the x-machine theory for

testing”, University of Sheffield, Sheiffeild, 2017

[24] M. Holcombe, P. Thomas and R. Paul, Correct Systems, 1st ed. London:
Springer London, 1998, pp. 61-92.

EKA.Ogunshile received the BEng(Hons),
MSc(Eng), and Ph.D. degrees in Computer

Science from the University of Sheffield, UK,

in 2003, 2005, and 2011, respectively.

Currently he is a Senior Lecturer in Computer

Science at the University of the West of
England, Bristol, UK. His research lies broadly

in Software Engineering, Model-Driven

Engineering, Object-oriented Programming,
Verification & Testing and Cloud Computing.

