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Abstract 

A Bayesian Network model has been developed that synthesizes findings from concurrent multi-

disciplinary research activities. The model describes the many factors that impact on the chances of 

a smallholder farmer adopting a proposed change to farming practices. The model, when applied to 

four different proposed technologies, generated insights into the factors that have the greatest 

influence on adoption rates. Behavioural motivations for change are highly dependent on farmers’ 

individual viewpoints and are also technology dependent. The model provides a boundary object 

that provides an opportunity to engage experts and other stakeholders in discussions about their 

assessment of the technology adoption process, and the opportunities, barriers and constraints 

faced by smallholder farmers when considering whether to adopt a technology. 

1. Introduction  

The Lao Peoples’ Democratic Republic (Lao PDR), situated in South-East Asia, has a population of 

approximately 7 million, with over two-thirds living in rural areas and engaging in farming activities 

(Central Intelligence Agency (CIA) 2017; Asia and Pacific Commission on Agricultural Statistics 

(APCAS) 2012). Currently, rural populations remain relatively poor, living on less than two dollars 

purchasing power parity (PPP) a day, with few basic services available (Belloni 2014; Australian 

Government 2017). Rural livelihoods have traditionally been largely underpinned by low-yield 

subsistence-oriented or semi-commercial rice production combined with small-scale livestock 

production (Alexander , Case et al. 2017; Alexander, Parry et al. 2018).   

Lao PDR is on a current trend of intensified production industrialization, market integration and 

trends in urbanization and population mobility (de Koninck 2004; Cook 2006; Humphrey 2006). Lao 

PDR is also highly dependent on agriculture, with approximately 70% of labour contributing to the 

agriculture sector (Ministry of Planning and Investment 2015). The government of Lao PDR has 

ambitious targets for increasing agricultural production and hopes to increase international exports 

(MAF 2015). The government has selected large plains in Southern provinces of Lao PDR as location 
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for intensifying rice production. It is thought that agricultural productivity could be boosted by 

changed farming practices and adoption of innovative farming practices. Adoption of changed 

farming practices, however, has often been more difficult to achieve and often at a much slower rate 

than hoped. 

The Lao Ministry of Agriculture and Forestry (MAF 2015) has implemented agricultural policies to 

promote a more market-oriented agricultural sector (MAF 2015). To build economic security and 

resilience, smallholder farmers need opportunities to improve productivity and generate income, 

supported by reliable access to markets and social and financial services. Yet poorly functioning 

value chains and poor market access, inadequate product quality, lack of infrastructure and 

extension, lack of supportive policies and the gendered nature of farming activities all tend to 

impede farmers’ efforts to improve farming systems and livelihoods (Alexander, Miller et al. 2010; 

Manivong 2014).   

The Australian Centre for International Agricultural Research (ACIAR) engages in rice-based systems 

research activities to increase farm productivity by introducing technologies designed to diversify 

production, reduce labour and increase efficiency (ACIAR 2014). Berkhout et al (2015) suggest that 

adoption of technical innovations is more likely if the use of inputs increases overall productivity for 

smallholder farmers without requiring excessive labour demands. The uptake (adoption) process of 

introduced technologies is subject to a very complex and highly contextual process. It is dependent 

on many factors such as personal, social, political, cultural and environmental and economic factors, 

as well as the characteristics of the introduced technology (Jobard 2010; Feder, Birner et al. 2011; 

Manivong, Cramb et al. 2014; Srisopaporn, Jourdain et al. 2015). In a review of adoption by 

Australian researchers, Parnell et al (2006) found that ‘adoption’ is mediated by a learning process 

where the farmer collects, integrates and evaluates new information in situations of uncertainty. At 

least for relatively simple innovations, a farmer’s increased probability of making a good decision 

that will advance his/her goals occurs through improved knowledge, practice and experiences. 
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Hence the adoption process is continuous, uncertain and repeatedly reviewed as new information is 

encountered and circumstances change (Rogers 2003). In addition, farmers learn and enhance their 

skills when applying the innovation in situ, with a range of responses to seasonal implementation, 

e.g., choices in timing, sequencing, intensity, scale. Stages of adoption by farmers have been 

described by Parnell et al (2006) to involve: (i) awareness of the problem or opportunity, (ii) non-trial 

evaluation, (iii) trial evaluation, (iv) adoption, (v) review and modification and (vi) non-adoption or 

dis-adoption. Adoption and dis-adoption may occur and arise with circumstance (Kiptot, Hebinck et 

al. 2007). 

This study focuses on the likelihood of technology adoption by smallholder farmers in Lao PDR, at 

different scales, with the aim to understand the complex web of factors that can hamper or 

stimulate the adoption of introduced technologies. In most cases, this process is difficult to observe, 

with tacit factors such as personality or cultural preferences playing an important role, or factors 

that relate to the ease of use/attributes of the technology that are perceived to be important to the 

farmer (Moglia, Cook et al. 2017). These issues are even more difficult to discern in a bilingual 

situation such as when researchers have to work with translators. Nonetheless, several theoretical 

perspectives are relevant to the enquiry of adoption of new technologies by smallholder farmers, 

including the theory of planned behaviour (Fishbein and Ajzen 1975; Ajzen 1991), the Consumat 

model of adoption behaviour (Janssen and Jager 1999; Jager, Janssen et al. 2000; Janssen and Jager 

2001; Janssen and Viek 2001; Jager, Janssen et al. 2002; Jager and Janssen 2003; Jager, Janssen et al. 

2014), and the theory of technological transitions (Geels 2002; Geels 2005; Geels and Schot 2007; 

Geels and Schot 2010).  
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2. Study context 

This research activity, the Bayesian Network (BN) development, is only one component of a larger 

study commissioned by the ACIAR1. The aim of the study was to better understand conditions 

influencing farmers’ decisions to adopt new technologies (Alexander, Larson et al. 2017). Other 

research activities involved a review of the literature (Alexander and Larson 2016), focus group 

discussions, interviews, farmer surveys (Greenhalgh, Moglia et al. 2017), Q methodology (Alexander, 

Larson et al. 2016; Alexander, Parry et al. 2018), and agent-based modelling activities (report yet to 

be published but may be released on the project website2). A mixed methods approach synthesizing 

qualitative and quantitative data was used. Geographically, villages in predominantly lowland rice-

growing agricultural systems in southern Lao PDR and with recent agricultural projects, 10 in 

Savannakhet Province and 10 in Champasak Province were purposively selected as research sites in 

southern Lao PDR. Rice production and livestock raising were the main sources of food and income, 

often supplemented by the production of crops, fruits, and vegetables as additional sources of 

income. Increasingly, farmer households sought wages and remittances through off-farm income 

opportunities such as seasonal migration. In the associated research activities, it was found that 

farmers were interested in increasing rice productivity through soil improvement (fertilizers) and/or 

new seed varieties. In terms of seed types, interviews revealed that farmers sought varieties that 

would yield palatable rice of high quality, were disease resistant, with good qualities of aroma, 

shape, and acceptable milling characteristics (Alexander, Parry et al. 2018). Farmers were also 

interested in technologies/practices that reduce labour requirements and improvement of livestock 

productivity. Direct seeding methods to save labour and/or time when transplanting rice generated 

a lot of interest (Clarke 2015). Vaccination of livestock to prevent disease was another technology 

that was considered important. As the Lao government is keen to increase the export of rice to 

                                                           
1 ASEM/2014/052 ‘Smallholder farmer decision-making and technology adoption in southern Lao PDR: 
opportunities and constraints’. 
2 Project publication repository: https://sites.google.com/view/acrtechnologyadoption/project-reports  

https://sites.google.com/view/acrtechnologyadoption/project-reports
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international markets, another innovation that was considered was growing ‘white rice’ for export 

primarily to China. Note that Lao people prefer to consume traditional varieties rather than ‘white 

rice’. Consequently, the technologies/practices explored through the BN model included; direct 

seeding methods, new seed varieties and fertilizers to improve rice production and opportunities for 

greater livestock production through vaccination (Table 1). 

Table 1: Changes in farming practices in Southern Lao PDR explored using the BN model 

Farming practice Description 

Direct seeding 

methods (DSM) 

Use of Direct Seeding Machines can significantly reduce the time required to plant 

ricefields.  

Difficulties using the equipment can occur as in some fields (small fields, uneven 

terrain, waterlogged soils etc.), greater weed intrusion can occur using this method 

and poor soils are not always mitigated through fertilizer application. Especially 

when inadequately applied. 

Improved fertilizers Improved fertilizers to help farmers improve soils. 

Growing white rice 

for international 

markets 

Use of white rice varieties sold at a significantly higher price on international 

markets, although not widely consumed in Laos. 

Vaccination of cattle Vaccination of livestock to protect against certain diseases (foot-and-mouth 

disease, haemorrhagic septicaemia. 

3. Comments on the Methodology 

This paper describes the development of a Bayesian Network to explore the likelihood of practice 

change amongst smallholder farmers in Laos. Whilst developed for this specific context, the model 

has generalizable properties that also have implications for modelling smallholder farmer adoption 

behaviour in other parts of the world. 

A Bayesian Network is a probabilistic directed acyclic graphical model (Pearl 1988; Pearl 2000; 

Neapolitan 2003). By definition, this terminology indicates that the model represents a set of factors 
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that influence an outcome in a probabilistic manner, where a network (a directed graph) describes 

the interconnected and probabilistic cause and effect relationships between a number of factors and 

the proposed outcome. For example, there could be probabilistic relationships between agricultural 

productivity and farming practices. These probabilistic cause and effect relationships are described 

using conditional probabilities where upstream probabilities are aggregated on the basis of Bayes’ 

Theorem. Bayes’ theorem describes the probability of an event, based on prior knowledge of 

conditions that might be related to the event, as described in Equation 1. 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)∙𝑃(𝐴)

𝑃(𝐵)
        (Equation 1) 

Here, A and B are events. P(A) and P(B) are the probabilities of observing A and B independently of 

each other. P(A|B) is the likelihood of event A, if B is true. P(B|A) is the likelihood of event B, if A is 

true. Systems of these types of equations can be set up and thereby defining a Bayesian Network. 

A noted limitation of the static Bayesian Network is that there can’t be any cyclic cause and effect 

relationships, i.e., no feedback loops between variables can exist. This limitation can be addressed 

by using a Dynamic Bayesian Network which describes how a set of factors change over time (Ong, 

Glasner et al. 2012). It is deemed that at this stage, a static Bayesian Network without 

representation of causal feedback loops, is a sufficiently adequate representation of the small-

holder farmer technology adoption processes. 

Whilst not inherent in the mathematical structure, Bayesian Networks are often used to embed 

judgments and beliefs of experts in a structured manner (Stewart-Koster, Dieu Anh et al. 2017) 

within a system of equations that represent probabilistic statements of logic, i.e. if X then the 

probability of Y is p. In fact, the mathematical framework, sometimes enhanced with subjective logic 

(Pope and Jøsang 2005; Moglia, Sharma et al. 2012), can be used to integrate multiple, even 

inconsistent, judgments and expert opinions into one coherent framework This allows for the 

capture of collective knowledge that makes assessments more robust (Moglia, Perez et al. 2012). In 
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fact, when embedded into a participatory process, Bayesian Networks can be used to support and 

promote the sharing of divergent values, interests and beliefs and to illuminate what is and what 

isn’t known, thus bringing about ontological conversations on complex issues (Henriksen, Rasmussen 

et al. 2007). Therefore, it is not strange that Bayesian Networks sometimes referred to as Bayesian 

Belief Networks are commonly applied in contexts where there is limited scientific data and where 

expert judgment is plentiful and accessible.  

Useful examples of the applicability of Bayesian Networks include: environmental management (Low 

Choy, Stewart-Koster et al. 2005; Henriksen, Rasmussen et al. 2007; Ticehurst, Newham et al. 2007; 

Stewart-Koster, Bunn et al. 2010), reliability engineering (Trucco, Cagno et al. 2008), software 

engineering (Fenton, Marsh et al. 2004) and project management (Khodakarami and Abdi 2014). In 

fact, Bayesian Networks have been used for knowledge integration tools and systems analysis in an 

agricultural context within a number of studies (Henderson and Burn 2004; Bashari, Smith et al. 

2008; Florin, van Ittersum et al. 2013; Stewart-Koster, Dieu Anh et al. 2017).  

In this paper, we apply Bayesian Networks using the philosophy that has been growing in traction 

which sees BNs as knowledge management tools within participatory processes and adaptive 

governance (Bromley, Jackson et al. 2005; Castelletti and Soncini-Sessa 2007; Farmani and Savic 

2008; Henriksen and Barlebo 2008; Haapasaari, Mäntyniemi et al. 2013; Düspohl and Döll 2016). 

These tools are often relatively basic in terms of computational complexity due to the common lack 

of objective data, but are instead seen as integrator tools for different types of information. 

4. Knowledge Contribution 

The paper’s contribution to knowledge is not the methodology per se, but the application of the 

methodology in a new context and the potential uses and insights that this supports. This is done in 

the spirit of applied science to develop practical applications based on known tools or knowledge. 
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The resultant model represents a boundary object which we think helps stakeholders and experts to 

have structured conversations (Star and Griesemer 1989), in this case about the complex issue of 

farmer technology adoption. We recognise that the model here, whilst a refinement on previous 

attempts at describing innovation adoption by farmers, it is likely to be one iteration in an ongoing 

learning process (Locke 2007).  

We also acknowledge that there are alternative models for describing technology adoption barriers 

and enablers amongst small-holder farmers; in particular the previously published ADOPT model 

(Kuehne, Llewellyn et al. 2011). The ADOPT model is an equation based model based on extensive 

research into the topic of technology adoption. The ADOPT model focuses on providing “predictions 

of a practice's likely rate and peak level of adoption as well as estimating the importance of various 

factors influencing adoption” (Kuehne et al., 2017, p.115) in the farming context. It considers four 

broad factors that influence the likely adoption of farming practices, i.e. population-specific 

influences on the ability to learn about the practice; learnability characteristics of the practice; 

relative advantage for the population; and relative advantage of the practice  

Does the model described in this paper provide knowledge contribution that the ADOPT model 

didn’t? We believe that the model described in this paper includes factors not included in the ADOPT 

model, has a different, yet to be proven, potential for being embedded into local practice, and 

importantly we believe that the model described in this paper is more transparent than the ADOPT 

model. The computational framework is different as is the empirical foundation. More importantly, 

we believe that diversity of approaches supports greater rates of innovation in this area. 

5. Developing the Bayesian Network 

Developing a Bayesian Network, in a purely computational sense, involves three steps (Neapolitan 

2003): 1) Identify the variables that impact on the likelihood of technology adoption. 2) Identify the 

relationships between these variables. 3) Populate the Conditional Probability Tables (CPTs) with 

numbers after discretisation of variables.  
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When sufficient and adequate data is available, it is possible to complete these steps by means of 

algorithms for structure and parameter learning (Pollino, Woodberry et al. 2007), but philosophically 

it is yet to be proven that this is an effective way of building social science theory compared to for 

example Inductive Theory Building (Locke 2007). When data is limited or completely unavailable, 

computational structure and parameter learning of Bayesian Networks is not possible but models 

can instead be developed based on knowledge elicitation from experts (Castelletti and Soncini-Sessa 

2007; Barton, Saloranta et al. 2008) or by using an existing theoretical basis for the model. When 

building a model based on elicited knowledge it is particularly important to deal with issues such as 

uncertainty and bias, subjectivity and representativeness of opinions (Krueger, Page et al. 2012). 

It is also, for the purpose of increasing the chances of usefulness, desirable to ensure that potential 

users to the extent feasible understand and agree with the assumptions underlying the model, 

which ultimately is a representation of the collective understanding of a complex problem.  

The purpose of the Bayesian Network model in this paper, is to enable ongoing social learning about 

the socio-technical innovation adoption processes amongst small-holder farmers, with a particular 

focus on the context of southern Laos; as well as to highlight differences in the representations of 

the innovation adoption process between different groups of stakeholders.  

The modelling approach is also built on the acknowledgment that the processes of innovation 

adoption are multi-faceted, complex and largely hidden from our view, yet we recognise the 

epistemic construction of knowledge and believe that individual’s representation of this process is 

based on their interactions with their physical and social environments, as per Dray et al (2006). 

Furthermore we acknowledge the importance of social learning in developing decision support 

systems, and how this can be mediated through boundary objects (such as conceptual models or 

BNs) in a participatory and iterative manner (Jakku and Thorburn 2010).  
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Taking into account limitations in terms of data availability and scope in terms of complexity of the 

socio-technical process of adoption, this study has embraced a Bayesian network modelling process, 

where the model in its various iterations is viewed as a boundary object to support social learning.  

The starting point is a review of theoretical models of technology adoption, in acknowledgment that 

a large body of research exists on this topic. To support social learning and acceptance of 

assumptions, this conceptual model has been adapted to the context of small-holder farmers in Laos 

via iterations of expert and stakeholder feedback. Finally, once a conceptual was agreed on, surveys 

of experts and small-holder farmers were undertaken to provide quantification of parameters. The 

quantification of parameters embraced a dialectic approach, aligned with the thinking espoused by  

Fischer (2003), which acknowledges how the perspective on the process is social constructed and is 

based on lived experience and perspective, rather than perfect understanding of technology 

adoption. Therefore, we explore different perspectives on technology adoption, amongst different 

groups of stakeholders. 

The process involves a series of steps (see Table 2) based on the following principles: 

 Theory building based on knowledge of innovation adoption which is available in literature. 

 Repeated rapid prototyping of a series of conceptual models used as boundary objects to 

support social learning  

 Through interaction with the conceptual models, opportunities for expert scrutiny of model 

assumptions, providing iterations of refinement towards a point of universal expert 

consensus on the adequacy of the conceptual model. 

 Surveys of different groups of stakeholders to enable a range of parameter estimates.  

Table 2: Research activities, functions and quality control 

Activity  Function Quality control 
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Review literature on innovation 

adoption and build initial 

conceptual model 

- Build on existing theories 

- Create conceptual model 

- Subsequent social learning 

and expert feedback 

Using a series of updated 

conceptual models as boundary 

objects to seek feedback from 

experts and stakeholders 

- Social learning 

- Adapting existing theory 

to the study context 

- Survey of experts to gauge 

their trust in the final 

conceptual model 

Surveys of small-holder farmers 

and stakeholders/experts 

- Parameterisation of final 

conceptual model 

- Sensitivity analysis 

- Dialectic exploration of 

different perspectives 

 

These steps are illustrated in Figure 1, demonstrating the process for developing the Bayesian 

Network: 

1. Theory as a starting point: use of insights and theory from literature to create an initial 

conceptual model.  

2. Convergence towards a perceptual model: Iterations between rapid prototyping and expert 

scrutiny of model assumptions. Eventually, these actions (usually) converge towards a 

Bayesian Network model that experts agree adequately describes the problem. However, 

this is primarily a perceptual model, the systematic structuring and qualitative 

understanding of the problem- for which CPTs need to be quantified by means of expert 

opinion.  

3. Quantification of probabilities: Probabilities are quantified using a survey of expert opinion. 

This allows for the translation of the perceptual model into a formal model where 

mathematical parameters have been quantified.   



 

13 
 

4. Application of model: The formal mathematical model is then translated into a procedural 

model within the Netica software system, i.e., the computer implementation of the formal 

model.  

The exploration of the model also involves sensitivity analysis to explore whether the model 

provides reasonable results, and to what extent different perspectives yield different results. 

Evaluation

Increasing refinement

Rapid prototyping

Theory and study 
insights

Expert scrutiny of 
model assumptions

Universally Agreed 
Perceptual Model

Survey of Expert 
Opinion

Formal Bayesian 
Network Model(s)

Procedural Bayesian 
Network Model(s)

Sensitivity and 
scenario analysis

Can represent aggregate 
views or individual views

 

Figure 1: Process adopted for developing the Bayesian Network 
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5.1 Theory as a starting point 

To initiate the model and develop an early prototype, factors and inter-relations between such 

factors are gleaned from the theory of technology adoption. In particular, we draw on the theory of 

planned behaviour, the Consumat model and the theory of technological transitions. 

The theory of planned behaviour stipulates that behaviour is influenced by the intention to 

undertake a particular behaviour, such as adopting a technology, which in turn is largely influenced 

by three key factors: 

1. A positive attitude towards the behaviour, on the basis of perceived benefits of undertaking 

the behaviour. This is referred to as the ‘attitude’. 

2. Whether an individual believes that ‘significant others’ would like them to carry out the 

behaviour. This is referred to as the subjective norm, a type of peer pressure. 

3. Whether the individual has the confidence to carry out the behaviour resulting in the desired 

outcomes. This is referred to as the ‘perceived behavioural control’ and relates to capacity 

and confidence. 

The Consumat model of technology adoption states that factors influencing adoption are based on 

fulfilling ‘existential needs’ relating to food, income, housing, etc.; as well as ‘social needs’ that 

relate to interactions among people, specifically belonging to a group and having a social status. 

Further, the Consumat model also considers that there is often a level of uncertainty and limited 

information when people make decisions and that in order to come to a decision in information-

limited situations, people develop strategies that depend on the level of uncertainty and the level of 

their ‘needs’ satisfaction. The Consumat model framework relies on the following notions: 

 Whilst people tend to seek to maximize ‘needs’ satisfaction, in both a social and existential 

way, when people are uncertain about outcomes of their decisions, as human cognition is 

inevitably limited, people develop heuristic rules on which they base their decisions.  
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 The types of heuristic rules that people adopt for making decisions are (depending on 

circumstances): to imitate, to inquire, to optimize or to repeat. Specifically, when people are 

satisfied but uncertain, they inquire. When they are satisfied and certain, they repeat. When 

they are unsatisfied but uncertain, they imitate, and when they are unsatisfied and certain, 

they optimize.  

The theory of technological transitions, however, focuses on the interaction between multiple scales 

throughout the process of innovation and wider adoption of the innovation. The three key scales 

represent the following transitions (Geels 2002; Geels 2005; Geels and Schot 2007; Geels and Schot 

2010): 

 Niche: In limited contexts, an innovation may provide solutions for limited and contextual 

problems. These technologies evolving in specific niches may also emerge as possible 

solutions to mainstream problems.  

 Regime: To support an innovation there is a requirement for links between actors and 

functions, for example, inter-linking of supply chains, regulation, and practices. Such regimes 

are important for optimal functioning and widespread adoption of an innovation. 

Technology regimes can be slow to develop.  

 Landscape: High-level drivers for change, such as economic pressures, cultural values, social 

trends or environmental values, tend to assist the transition.  

5.2 Convergence towards a perceptual model 

Bayesian Network models can be developed quickly in the Netica software system (by the Norsys 

software corporation, http://www.norsys.com/netica.html). This is an easy-to-use and intuitive 

software environment for quickly developing Bayesian Network models. As the Netica software 

system provides the capability for quickly drawing up conceptual diagrams, this is a useful tool for 

creating boundary objects with which to engage with experts. 

 

http://www.norsys.com/netica.html
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In fact, the rapid prototyping in Netica allows for the use interim conceptual models as boundary 

objects around which to structure interviews with experts. In particular, at this stage, it was 

important to embed the insights from the other components of the broader study, so other research 

team members were interviewed. These interviews were structured around, 1) explaining the 

assumptions of the model, i.e. the variables and linkages (i.e. nodes and arcs in the graphical 

conceptual model), 2) invite critique, i.e. ask whether the expert agrees with the assumptions of the 

model, 3) invite suggestions for updates, i.e. ask whether the expert if they would like to suggest 

any improvements to the model. In the experience of the senior author, this simple approach nearly 

always converges towards a model that experts can universally agree on.  

Workshop process: After several conversations and model refinements, the adapted model 

structure was explored at a workshop with experts and stakeholders in Laos as is further described 

in the project report describing the BN development (Moglia, Alexander et al. 2017). The meeting 

was organized by local government staff and was held in Savannakhet city, Laos, on 28th July 2016 in 

the Provincial Agricultural and Forestry Offices. In addition to the research team, there were 20 

participants in the workshop. There were 6 Provincial Agricultural and Forestry Officers, 5 District 

Agricultural and Forestry Office Managers, 4 District Agricultural and Forestry Office staff members, 

2 District Governors (DGs) and 3 rice mill owners (private enterprises). All participants had 

experience and interest in smallholder farmers’ adoption of technologies. The workshop consisted of 

two sessions: 

1. Training participants in probabilistic thinking and explaining the preliminary model to review 

and discuss. In this session, the process was to slowly build up the level of complexity by 

introducing probabilities, introduce BNs with a simple context-relevant example, introduce 

the components of the full model, and then to introduce the full BN model.  
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2. Reviewing and discussing the presented model,  in order to refine and improve. This was 

done in group sessions facilitated by the local team, where groups were chosen to represent 

particular perspectives. The model was reviewed and suggestions for changes and updates 

were used to modify the model.  

3. Subsequently, several questions were directed at the group as follows: 

a. What factor is most likely to make farmers not adopt a specific technology? Multiple 

technologies were reviewed in this manner.  

b. In relation to the adoption of a technology, what factors influence this factor? 

c. What can you do to improve the chances of this factor not hindering adoption? 

Refinement of model based on workshop input: This interview and subsequent workshop process 

helped identify a range of refinements of the model, as is described in the project report (Moglia, 

Alexander et al. 2017). For example, participants provided feedback that included discussions on 

how to embed the role of extension services as well as traders and access to market into the model 

(Moglia, Alexander et al. 2017). After adjusting the model based on workshop feedback, the 

perceptual model in Figure 2 was established. Note, in Figure 2, the squares represent factors and 

the arrows represent relationships between two factors, i.e., one factor influencing another. The 

tables within the boxes represent the discrete states of factors. The variables of the model and their 

discrete possible states are listed in Table 3. In this table, the factors of the model and their 

associated numbering are shown in column one, their description in column two, the discretisation 

in column three, and finally, the factors influencing this factor are shown in column four (numbers 

are as per column 1). 
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Workshop participants’ evaluation of the conceptual model: After spending about 2 hours in 1 

facilitated in discussion of the model in detail, as well as exploring potential improvements; as part 2 

of the electronic voting survey of workshop participants, a question was put to the participants to 3 

respond via electronic voting system (Lumi, http://www.lumiglobal.com/): “What is your impression 4 

of the diagram/model that you have explored in terms of its ability to describe what influences 5 

adoption by farmers?” In response, 95% of participants chose the option “The model requires some 6 

minor modifications in order to be appropriate” whilst 5% responded, “The model is perfect and 7 

covers everything that needs to be covered”. When asking the participants about the minor required 8 

modifications, they noted that this referred to what they had described in the previous facilitated 9 

session. .. 10 

http://www.lumiglobal.com/
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Figure 2: Finalized BN model 
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Traditionallist

33.3
33.3
33.3

TechnologyReputation

Good

Poor

75.0

25.0

AccessToTechnology

Yes

No

96.2

3.83

ExtensionSkills

High

Low

100.

   0

ExtensionRegularity

High

Low

100.

   0

Capacity

High
Medium
Low

50.0
30.0
20.0

TraderAgreement

Yes

No

90.0

10.0

TraderNegotiatingCapacity

Good

Poor

100.

   0

ExtensionEffectiveness

High

Medium

Low

100.

   0

   0

Technology

DirectSeedingMethods

BetterFertilizer

GrowingWhiteRice

VaccinateCattle

100.

   0

   0

   0

MarketAccessToTech

Present

NotPresent

91.0

9.00

Affordability

Yes
No

93.1
6.93
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Table 3: Model variables and their discrete states 

Factor Description, i.e. measuring the: Discrete states Influencing 

factors 

1. Adoption Adoption of technology. Yes; No 

 

N/A 

2. Intention to 

adopt 

The desire to adopt the technology. Yes; No 1 

3. Access to 

technology 

Ability to purchase or otherwise access the 

technology for adoption. 

Yes; No 1 

4. Social influence The tendency to be swayed by what other 

people do.  

Yes; No 2 

5. Perceived 

benefits 

Confidence that the technology will deliver 

benefits 

Yes; No 2 

6. Confidence Feeling that the adoption of the technology is 

something that the farmer can successfully do. 

Yes; No 2 

7. Attitude Perceived value vs the perceived cost of the 

technology, in a holistic sense. 

Positive; Negative 5 

8. Trust in 

outcomes 

Level of certainty that the technology can 

deliver promised benefits. 

Good; Poor 5 

9. Technical 

difficulty 

The difficulty of using the technology in a 

productive manner.  

High; Medium; Low 6 

10. Capacity Measuring the technical capacity of the farmer. High; Medium; Low 6 

11. Extension 

effectiveness 

The effectiveness of the extension workers in 

supporting farmers in the technology adoption 

process. 

High; Medium; Low 3, 10 

12. Market access 

to technology 

Level of commercial access to the technology 

from traders, or other means. 

Yes; No 3 
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13. Affordability Whether the farmer can afford the technology. Yes; No 3 

14. Investment 

required 

Funds required for purchasing and operating 

the technology. 

High; Medium; Low 13 

15. Financial 

resources 

Amount of funds available to the household. High; Medium; Low 13 

16. Extension 

skills 

Skills of the extension workers. High; Low 11 

17. Extension 

regularity 

The regularity of extension workers getting out 

into the villages. 

High; Low 11 

18. Uptake phase The phase of the adoption process, as per 

Rogers (2003) 

Innovators, early 

adopters, early 

majority, late 

majority, laggards. 

4 

19. Farming 

strategy 

Farmer strategy based on a typology 

(Alexander, Parry et al. 2018) 

Modernist; 

Traditionalist 

7, 12 

20. Technology 

reputation 

The reputation of the technology, i.e. stories 

about outcomes. 

Good; Poor 8 

21. Market access 

sales 

Whether farmers know they can sell their 

produce at a good price. 

Trusted; Poor 8 

22. Trader 

agreement 

Agreements with traders about access to the 

market. 

Yes; No 21 

23. Farmer 

cooperation 

Farmer cooperation in negotiations and 

ensuring the quality of their produce. 

Yes; No 22, 13 

24. Trader 

negotiating 

capacity 

Trader ability to reach a constructive 

agreement with farmers as individuals and/or 

cooperatives.  

Good; Poor 22 
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5.3 Quantification of probabilities 

The probabilities within the BN model were quantified based data from the Farmer Perception 

Survey with 427 participants in 10 villages in Savannakhet and 318 participants in 10 Champasak 

villages (Greenhalgh, Moglia et al. 2017) and data collected through a survey at a workshop (Moglia, 

Alexander et al. 2017). Both the household survey data and the workshop survey data was collected 

using the Lumi technology, a novel electronic voting system whereby participants, sitting together, 

used small handheld devices to indicate their response to survey questions projected onto a screen 

from a laptop computer.  

The methodology for data collection via Lumi is according to a pre-prepared script and survey design 

developed by experienced social scientists to ensure clear and unambiguous language in the 

questions, as well as pilot testing to promote appropriateness to the socio-cultural context. The 

survey questions were entered onto a PowerPoint presentation displayed in front of the gathered 

crowd, and due to the sometimes limited literacy in the participants, read out aloud by the 

facilitator. Questions from survey participants were allowed, but the facilitator was under strict 

instruction to avoid, if possible, the introduction of bias. For the household survey, villagers were 

gathered by the “village head” with good crowds participating in each village. Much thought was 

also given to the choice of villages to survey, as there is considerable differences between villages. 

Statistical analysis shows a good cross-section of the village, but with some tendency for over-

representation of women. For the workshop survey, a set of stakeholder perspectives were 

gathered, and so this was not a representative sample but a sample of important perspectives. 

Therefore, we explore the impact of these different perspectives in the sensitivity analysis of the BN 

model. 

Whilst recognising that workshop data relates to opinions from experts and stakeholders, workshop 

data contributed to specifying the following: (1) technology reputation for the four types of 

technologies studied; (2) attitudes towards various technologies for different farmer types; (3) the 
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technical difficulty of using the four target technologies; and (4) influences flowing into the intention 

to adopt.  The numbers for the model are available in the technical report for the BN model (Moglia, 

Alexander et al. 2017) which is publically available in various databases online.  

6. Turning the Bayesian Network model into information 

The BN model can be used to explore what-if scenarios as well as to understand ‘choke-points’ in the 

adoption process. In other words, it can be used to explore such questions as: What are the factors 

that hold farmers back from adopting a technology? What actions can be carried out in order to 

increase adoption rates? What influence does the farmer ‘type’ have on the chances of adoption? To 

illustrate this functionality, the model can be used to evaluate peak adoption levels by exploring the 

probability of technology adoption as a function of the uptake phase as shown in Figure 3. The 

uptake phases (factor 18 in Table 3) are aligned with adopter category(Rogers 2003): 1) No one (0%), 

2) Innovators (first 2.5%), 3) Early adopters (up to 16%), 4) Early majority (up to 50%), 5) Late 

majority (up to 84%), and 6) Laggards (up to 100%). This provides an estimate of the peak adoption 

level (i.e., the plateau level of the S-curve which is common in innovation diffusion theory as per 

Rogers, 2003). The peak adoption level is then estimated as the adoption rate in the later stages of 

the innovation diffusion curve, i.e., the probability of adoption at the Laggard uptake phase, as 

indicated in Table 4.  

Table 4: Peak adoption rates for assessed technologies 

Technology Peak adoption rate 
Discrepancy between adoption 

phases and estimated adoption rates 

Direct Seeding Machines 54% No 

Improved fertilizer 50% No 

Vaccinating cattle 37% Yes – likely plateau ~ 32% 

Growing white rice 24% Yes – likely plateau ~ 19% 
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Figure 3: Adoption likelihood in a given innovation diffusion stage 

 

The results in Table 4 represent the starting point of peak adoption rates in the baseline scenarios 

and without further efforts to increase adoption rates, and by applying the BN, it is quite plausible to 

identify the causes of lower than hoped for adoption rates:  

 White rice: The exploration of the BN for growing white rice illustrates that the key choke 

point is the perceived benefits (factor 5 in Table 3), weighted down by a low trust in 

outcomes (factor 8 in Table 3), which in turn is weighted down by access to market for sales 

of the produce (factor 21 in Table 3). The model reflects anecdotal evidence from experts, 

expressing major difficulties. The key antidote to this issue, according to the model, is to 

ensure that there is an agreement between farmers and traders to allow access to markets. 

However, even with this is present there is only a 60% chance of being sure of farmers’ 

access to markets to sell their produce. Thus, when such an agreement exists (90% 

probability), the peak adoption rate is still only 34%. This is a 42% improvement but still a 

relatively low overall adoption. Further inspection reveals that experts stated that growing 

white rice had a mixed reputation amongst farmers. For farmers to grow white rice at the 

scale they will require assurances of being able to sell the product, as well as requiring 

further promotion to farmers to improve the current and poor reputation of producing and 
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selling white rice. As Lao people don’t eat this variety of white rice, they cannot use it for 

home consumption should the markets fail. 

 Vaccination: When undertaking a similar analysis of the vaccination of cattle, the weakest 

point is Intention to Adopt (factor 2 in Table 3) due to relatively low rates of Confidence 

(factor 6 in Table 3, also due to this being a relatively difficult technology to administer 

correctly (factor 9 in Table 3) and the commonly inadequate capacity of the farmers (factor 

10 in Table 3) in this respect. Hence, when Extension Effectiveness (factor 11 in Table 3) is 

improved (one of the levers to mitigate low capacity) there are some immediate benefits in 

terms of higher intention to adopt (factor 2 in Table 3) and consequently a higher likelihood 

of adoption (factor 1 in Table 3).  

 Direct Seeding Machines: the analysis shows that the weak point is again the Intention to 

Adopt (factor 2 in Table 3) due to relatively lower Confidence (6 in Table 3), and relatively 

lower Trust in Outcomes (factor 8 in Table 3). Hence, the best way to improve the adoption 

of Direct Seeding Machines, according to the model, is to support and teach farmers how to 

use machines correctly, as well as tackling the poor reputation of these machines (unsuitable 

to small paddy location, breakdown and maintenance issues, difficult to access, need for 

adaptation, etc.). 

 Improved Fertiliser: the main issue is the often limited ability of the farmer to apply the 

technology correctly (Technical difficulty: factor 9 in Table 3), resulting in low Confidence in 

its application (factor 6 in Table 3). Thus, education of farmers appears to be the most 

effective way to improve Adoption of this technology (factor 1 in Table 3).  

These examples show that the model, when applied to four different technologies, will generate 

insights on the factors that have the greatest influence on adoption rates. This is achieved by 

integrating the aggregation of expert knowledge within a framework built on theory, and 

subsequently extending by means of computational tools, inferences beyond what is possible by 

human cognitive faculties. 
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Another interesting result is that when exploring the peak adoption rate as a function of Farmer 

Strategy, i.e. to see to what extent these adoption curves are influenced by the types of farmers. 

This is important as research has indicated that farmers’ motivations are highly dependent on 

farmers’ viewpoints (Alexander, Larson et al. 2016). The influence of farmers’ viewpoints is 

technology dependent, as shown in Table 5, where there is a significantly lower adoption rate for 

farmers with a traditionalist mindset. This effect was particularly pronounced for vaccinating cattle 

and the use of improved fertilizers, as additional production costs are incurred, perhaps without any 

perceived benefit. 

Table 5: Peak adoption rates as a function of farmer strategy 

Technology Modernist (Labour saving) Traditionalist (Traditional labour) 

Direct Seeding Machines 56% 50% 

Improved fertilizer 61% 38% 

Vaccinating cattle 45% 28% 

Growing white rice 27% 23% 

Note: For descriptions of the farmer attitudes, i.e., modernist vs. traditionalist, refer to the recent paper from 

the same study on farmer attitudes as explored by using Q methodology (Alexander, Parry et al. 2018). 

7. Sensitivity analysis and robustness of results 

To evaluate the sensitivity of the model outcome (i.e. the likelihood of adoption) to parameter 

values, we use Netica functionality for sensitivity analysis, which provides the output as per Table 6 

showing the factors that have the greatest influence on the likelihood of adoption. The mutual 

information measure is an indication of to what extent collecting information about variable X (say 

IntentionToAdopt) reduces the total uncertainty about variable Y (say Adoption). We can see, for 

example, that for white rice, the information about the IntentionToAdopt part of the Bayesian 

Network has a significantly greater impact on the likelihood to adopt than areas relating to 
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TrustInOutcomes or AccessToTechnology. The columns represent what percentage of the factors 

rely on mutual information for the difference practice change analyses.  

Table 6: Sensitivity analysis results, percent mutual information with adoption (likelihood) for different technologies 

 
White rice Vaccinating 

cattle 

Direct Seeding 

Methods 

Fertilizer 

Adoption 100.0 100.0 100.0 100.0 

IntentionToAdopt 77.5 55.6 68.8 62.5 

PerceivedBenefits 32.8 15.3 19.2 15.7 

TrustInOutcomes 20.9 6.4 10.1 3.4 

AccessToTechnology 10.3 23.1 13.8 17.9 

MarketAccessSales 6.8 0.0 4.1 0.0 

Attitude 6.4 7.9 7.9 11.7 

TechnologyReputation 5.7 3.9 6.4 2.2 

Affordability 4.7 12.7 5.7 8.8 

Confidence 3.2 7.2 9.8 9.6 

MarketAccessToTech 3.0 2.5 4.1 3.7 

SocialInfluence 2.9 1.5 1.6 1.5 

TraderAgreement 2.8 1.6 2.7 2.4 

TechnicalDifficulty 1.5 2.0 3.0 2.8 

FarmerStrategy 0.8 1.6 0.3 2.4 

FinancialResource 0.5 1.8 0.2 0.5 

Capacity 0.5 3.4 4.2 4.3 

InvestmentRequired 0.3 2.8 1.5 2.5 

ExtensionEffectiveness 0.04 0.3 0.2 0.2 

AccessToFinance 0.03 0.05 0.3 0.09 

ExtensionRegularity 0.01 0.1 0.05 0.07 

ExtensionSkills 0.001 0.01 0.006 0.008 
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We see in the Table 6 how the relative importance of factors varies depending on technology, and 

the table is in fact rather revealing about the types of factors which are particular barriers/enablers 

for the different practice-changes, although the table does not capture some of the non-linear 

effects (i.e. game changers like improved extension skills are not highlighted). 

Furthermore, we can also explore, based on survey data collected during the workshop on 

perceptions of reputation of practices, technical difficulty, required affordability and attitudes 

towards the practice amongst different types of farmers, amongst the different types of 

perspectives, as well as to explore what this means in terms of perceived likely adoption of practices. 

As an example, see Figure 4, providing an illustration of the impact of different perspectives on the 

estimated likelihood of adopting the practice of growing white rice. Based on the small sample in the 

workshop, Entrepreneurs (i.e. mill owners etc.) generally believe that the practice is less difficult and 

more affordable than the other groups; whilst provincial and district officers have a much more 

negative expectation regarding the farmers’ belief that the practice will achieve expected goals.  

 

 

Figure 4: Estimated (via BN) likelihood of adopting the practice of growing white rice, based on different group's perspectives 
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These sensitivity analyses shows that the model is highly dependent on perceptions of key issues, 

and on many of these important factors, accurate data is currently unavailable. This highlights one of 

the first and perhaps more important uses of the model, i.e. to identify key data gaps where better 

data needs to be collected.  

8. Discussion 

This paper has shown that it is possible, with relative ease by researchers, to develop a BN model to 

describe the many factors that impact on the chances of a smallholder farmer adopting a technology 

to change his/her farming practice. The BN model has been developed as a way to synthesize 

findings from concurrent multi-disciplinary research activities. The BN model also provided a 

boundary object for valued experts and other stakeholders to engage with and provide assessments 

of the perceived technology adoption process. The model has been successful in highlighting specific 

barriers to adoption of several technologies and to provide suggestions on how to reduce the impact 

of these barriers. Furthermore, the BN model can be used by researchers, policy makers and 

extension workers, to focus on specific linkages and dependencies within the technology adoption 

process. The BN model and data can and should be adaptively updated using surveys, thus 

incorporating learning amongst experts on an ongoing basis. This approach is particularly useful in 

promoting social learning, i.e. supporting the collective understanding of adoption issues amongst a 

range of stakeholders and more specifically to evaluate and modify barriers to adoption. The 

potential use of the BN model and survey approach by field practitioners involves the ability to: 

 Identify and discuss coordinated actions that may help increase adoption rates under 

different circumstances. Furthermore, these leverage points (i.e., actions that may help to 

increase adoption rates) are likely to be ‘owned’ by different stakeholders, so this approach 

assists in identifying potential strategies to be coordinated across multiple stakeholders, 

such as amongst traders, District Agricultural and Forestry Office Staff and Managers, rice 

millers, district governors, Provincial Agricultural and Forestry Officers (PAFO) and farmers. 
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 Evaluate the extent that different leverage points can improve the likelihood of technology 

uptake, and evaluate the most effective method to improve uptake. However, it should be 

noted that use of the model tends to illustrate that a coordinated and holistic plan is usually 

more effective than a more limited strategy, i.e. jointly triggering multiple leverage points 

tends to get better results than triggering single leverage points. 

 Finding the key issues that are relevant to different technologies. In the current model, for 

example, we find that according to the model: 

o Being able to sell produce at a good price is critical for getting farmers to grow white 

rice and this is dependent on agreements between farmers and traders. 

o Direct seeding methods are likely to find traction with farmers, given time, but the 

main vulnerability for this technology is the reputation of the technology, and there 

is the potential of the farmer abandoning the technology if farmers are not able to 

use the technology effectively. 

o A key factor in relation to the use of fertilizers is financial capacity and access to buy 

the product from traders. When the technology is affordable and available, it is likely 

to be used at a reasonable rate by farmers, although whether it is appropriately 

applied is questionable and may vary depending on circumstance. 

o Vaccination of cattle is restrained by a number of factors, including somewhat 

limited perceived benefits and limited access to the technology (Moglia, Alexander 

et al. 2017). 

To illustrate how the model can be used for sensitivity testing let us consider the introduction of an 

additional factor (suggested by the participants in the Savannakhet BN workshop), i.e., ‘improved 

extension’ as assessed in terms of the regularity of extension trips to villages, (factor 17 in Table 3) 

as well as improved skills of extension workers (factor 16). Systematically varying parameters and 

conditions in the model is important. For example, improving the variable- Extension Effectiveness 

(factor 11 in Table 3) – could be through increased funding for extension services from ‘limited 
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funding’ to ‘regular funding’ (i.e., giving extension workers the funding to allow more regular 

engagement with farmers). This action could double adoption rates in the ’early stages’ of uptake for 

direct seeding methods, cattle vaccination and use of fertilizers. As with any modelling, there are 

implicit assumptions, and this result is also based on an underlying assumption of changing how 

extension services operate, i.e., assumptions on the impact of increased funding on Extension 

Effectiveness. 

9. Strengths, limitations and enablers  

Strengths of the approach in this paper are: 

 The resultant BN model can be used to support stakeholders and experts in making 

collective assessments about adoption issues as well as to highlight differences in 

perceptions, hopefully prompting the collection of more robust data.  

 The framework is suitable for describing probabilistic cause and effect relationships. 

 The framework is good at incorporating a multitude of types of data into one coherent 

system of (probabilistic) logic. 

 It is straightforward to incorporate a multitude of relevant issues and factors, including 

additional (late-comer) factors into the assessment.  

 The approach highlights data gaps, and differences in perceptions, thereby making it 

apparent that further data is required. 

 The Netica software environment for developing Bayesian Networks is attractive because it 

allows for easy changes to the model by a competent technician.  

 The modelling capability can promote and support improved knowledge management and 

adaptive governance. 

Limitations and enablers of the BN approach described here are: 
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 The requirement for mathematical skills and knowledge of the application of probability 

theory. This limitation can be overcome by building capacity in a small number of people 

with specialist roles. Several members of the Lao research team have shown an interest in 

developing specialized mathematical skills for ongoing use of the method. 

 Stakeholders sometimes find it hard to conceptually grasp concepts like uncertainty and 

probabilities. This can be addressed through the use of metaphors, and by using examples 

such as those that involve rolling dice and/or gambling.  

 To overcome the difficulty of application, it should be possible, to adapt the BN model and 

simplify construction for Lao colleagues by resorting to Excel spreadsheet, or similar 

relatively basic software environments. 

 There could be role for a small number of experts who could support funding agencies, 

government departments, and other key agencies to use the modelling capability to 

undertake analysis to identify barriers and hurdles for individual technologies. 

 There is currently only limited high quality data, and further improvements could be made 

(i.e. improved parameter quantification and structure learning) if the approach was 

embedded into a broader knowledge management and adaptive governance system. 

10. Conclusions 

This paper reports on the development of a Bayesian Network model for exploring the relative 

likelihood of technology adoption in the context of rice-based agricultural systems in southern Laos. 

To develop the Bayesian Network Model prototype, we have used concurrent research data and 

theoretical insights. The finalized BN model has been used to explore ‘what-if ‘scenarios and to 

understand ‘choke-points’ in the adoption process, as well as the impact of different perceptions of 

technology features The process of technology uptake for several technologies have been assessed: 

the use of direct seeding machines, growing Chinese variety white rice, using fertilizer and 

vaccinating cattle; all technologies potentially available to smallholder farmers. Adoption rates have 



 

33 
 

been quantified, according to the farmers’ production viewpoint, with lower than expected adoption 

results explained in detail. Improvements to the modelling tools would primarily involve collecting 

more robust data, and developing the knowledge management practices which together with the 

modelling capability can support adaptive governance. 
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