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Visual Features based Boosted Classification of Weeds for Real-1 

Time Selective Herbicide Sprayer Systems  2 

 3 

Abstract 4 

Recent years have shown enthusiastic research interest in weed classification for selective 5 

herbicide sprayer systems which are helpful in eradicating unwanted plants such as weeds from 6 

fields, minimizing the side effects of chemicals on the environment and crops. Two commonly 7 

found weeds are monocots (thin leaf) and dicots (broad leaf), requiring separate chemical 8 

herbicides for eradication. Researchers have used various computer vision-assisted techniques 9 

for eradication for these weeds. However, the changing and un-predictive lighting conditions in 10 

fields make the process of weed detection and identification very challenging.  Therefore, in this 11 

paper, we present an efficient weed classification framework for real-time selective herbicide 12 

sprayer systems, exploiting boosted visual features of images, containing weeds. The proposed 13 

method effectively represents the image using local shape and texture features which are 14 

extracted during the leaf growth stage using an efficient method, preserving the discrimination 15 

between various weed species. Such effective representation allows accurate recognition at early 16 

growth stages. Furthermore, the various illumination problems prior to feature extraction are 17 

minimized using an adaptive segmentation algorithm. AdaBoost with Naïve Bayes as a base 18 

classifier discriminates the two weed species. The proposed method achieves an overall accuracy 19 

98.40%, with true positive rate of 0.983 and false positive rate of 0.0121 for the original dataset 20 

and achieved 94.72% accuracy with the expanded dataset. The execution time of the proposed 21 

method is about 35 millisecond per image, which is less than state-of-the-art methods. 22 
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1. Introduction 28 

Elimination of unnecessary plants such as weeds from fields is one of the tedious jobs for 29 

farmers on a regular basis. Weeds in fields result in various issues such as competing for water, 30 
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nutrients, light, and space; reducing crop yields; and affecting the surrounding environment [1]. 31 

To eradicate these weeds from fields, chemical herbicides [2] can be effectively used. Herbicides 32 

must be applied in a way to successfully eliminate weeds, avoiding their unwanted effects on 33 

remaining crops and environment [3, 4]. In a recent study, Laursen et al. [4] presented an 34 

algorithm to segment and quantify weeds in Maize crops in order to reduce herbicide usage. 35 

Their study revealed that the selective application of herbicides reduces its usage by 65%. Weeds 36 

may grow in patches or individually, however, applying herbicides equally on all parts of the 37 

field is not an efficient way. In this case, the sprayer system should apply spray selectively on the 38 

concerned regions of the fields only [5]. Computer vision-directed approaches are helpful in this 39 

regard to develop smart sprayer systems which can selectively spray herbicides on weeds in the 40 

fields. Numerous methods [6-10] have been developed for weed classification but they lack 41 

classification accuracy and are not robust to varying field conditions. Hence, the superlative set 42 

of features and classification approach is yet to be discovered [1, 11]. 43 

 44 

The intelligent sprayer systems such as those equipped with visual sensors along with a 45 

mechanical sprayer, capture images from the field which are then processed for detecting the 46 

existence of weeds [12-15]. The detected weeds are then classified into monocots and dicots and 47 

lastly suitable signals are sent to the sprayer system for applying herbicides to the detected weed 48 

patches. Visual features such as texture, color, and shape are typically extracted from the 49 

captured images. Texture based features have been extensively applied for weed classification 50 

[16]. Previous methods of weed classification utilized features such as leaf shape and plant 51 

structure [6, 17]. Later on, some color and texture based methods [6] were also proposed. 52 

Nevertheless, majority of the techniques fail to balance the efficiency and effectiveness of weed 53 

classification in terms of processing speed and accuracy. Therefore, the goal is to develop a fast 54 

technique which is suitable for real time weed classification, avoiding unnecessary computations, 55 

and providing accurate classification under varying field environments. 56 

 57 

To achieve such a system, researchers from the last decade have presented various weed 58 

classification techniques [1, 18]. Ahmad et al. [19] utilized simple statistical features for weeds 59 

classification, achieving a low accuracy as the technique utilized too naïve features. To improve 60 

the accuracy, Siddiqi et al. [20] explored edge link detector, achieving an accuracy of 93% on a 61 
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small dataset. The authors in [8] utilized wavelets by extracting highest 200 coefficients and 62 

integrated them with the k-nearest neighbor classifier (K-NN) for classification, achieving an 63 

accuracy of 95%. This work was further improved by employing multi-level wavelet 64 

decomposition (MWD) based classification by extracting highest coefficients of the wavelet 65 

decomposed images, representing weeds. However, the method fails to work effectively under 66 

varying field conditions [21]. Faisal et al. [16] incorporated local binary patterns along with 67 

template matching and support vector machine (SVM) classifiers for weed classification. But, 68 

their technique demands for extra computation due to its feature invariance property. Their 69 

technique achieved 89% accuracy in case of template matching and 98% with radial basis 70 

function (RBF) kernel based SVM classifier. However, due to exploring expensive texture 71 

descriptors for making the method geometric transform invariance, the computational 72 

complexity increased, hence making it less suitable for real-time applications.  73 

 74 

In an attempt to reduce complexity, image morphology features along with neural network 75 

classifier (ANN) have also been used for classification of weed images, taken from outdoor 76 

fields. Illumination invariant segmentation procedure helped in achieving an overall accuracy of 77 

95.1% with ANN classifier [10]. Seven hue moments and six shape features were extracted from 78 

weed images to classify them into monocots and dicots with an accuracy of 85% [6]. The images 79 

used during the experiments contained very little weeds. It was not difficult to analyze the 80 

individual leaves. However, in many cases, high infestations of weed are found throughout the 81 

fields and analyzing individual leaves become impractical. Therefore, in high weed infestations 82 

these methods would fail to perform. A similar study was conducted in [9], employing seven hue 83 

moments for weed classification. This method also failed to cope with high weed densities. 84 

Giselsson et al. [22] utilized close contour shape features to distinguish between two classes of 85 

plant seedling. They achieved 97.5% accuracy with Legendre Polynomial feature set while 86 

classifying nighshade and cornflower. Siddiqi et.al [23] explored a new wavelets family for 87 

features extraction from weeds images which were later on minimized based on step-wise linear 88 

discriminant analysis, making them linearly separable. Classification was performed by SVM 89 

achieving an accuracy of 98.1% with symlet wavelet features. To increase the accuracy, a 90 

mixture of features were used by authors in [24], including co-occurrence matrix, Haralick 91 

features, shape analysis, and histogram features, classifying weeds from captured field images 92 
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while achieving an average accuracy of 97.6% for both types of weeds. However, these methods 93 

were evaluated on noise-free, blur-free images, and without taking into consideration the 94 

illumination changes being faced in the field. Furthermore, their method was computationally 95 

expensive, requiring 0.35 s for classifying an image.  96 

 97 

The aforementioned methods exploited various features and classifiers for weed classification. 98 

However, none of the methods produce satisfactory results when coping with intense field 99 

conditions such as illumination variations, motion blur, and noise. Some of the methods achieved 100 

high accuracies but with huge computational complexity, making them unsuitable for real-time 101 

applications [16, 20]. Other techniques were computationally efficient but lack acceptable 102 

accuracy, decreasing its applicability in various areas of interest [8]. Furthermore, some of the 103 

existing methods fail to cope with various lighting conditions which further limit their accuracy 104 

[1]. Therefore, it is very important to exploit a method for weed classification, maintaining the 105 

balance between accuracy and efficiency. 106 

 107 

In this paper, we propose a fusion based weed classification framework for overcoming the 108 

problems of existing methods in terms of classification accuracy, resiliency against various 109 

lighting conditions, and efficiency. The major contributions of this research work are as follows. 110 

i. An efficient fusion based framework is proposed for effective weed classification, 111 

maintaining a balance between classification accuracy and efficiency, hence making it 112 

more suitable for real-time applications such as selective herbicide sprayer systems. 113 

ii. The proposed framework utilizes boosted visual features, incorporating both shape and 114 

texture information and are extracted using an efficient method, preserving the 115 

discrimination between various weed species and crops, hence results in satisfactory 116 

performance. 117 

iii. The proposed framework uses an adaptive segmentation algorithm prior to feature 118 

extraction, minimizing the various illumination, noise, and motion blurring problems, 119 

hence making it more suitable for weed classification. 120 

iv. A hybrid classifier AdaBoost ensemble of Naïve Bayes [25, 26] was used for 121 

classification, increasing the accuracy of current state-of-the-art weed classification 122 

methods. 123 
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 124 

The rest of this paper is structured as follows. Section 2 explains the detail of the proposed weed 125 

classification system. Section 3 explores experimental results and discussion. Section 4 126 

concludes the paper and suggests future research directions. 127 

 128 

2. Materials and Methods 129 

In this section, we describe the detail of the proposed weed classification system. The proposed 130 

system comprises of two main phases: an offline training phase and a real-time classification 131 

phase. During the training phase, the main objective is the construction of a robust classifier 132 

model, having the capability to efficiently distinguish between two weed species in the presence 133 

of noise, illumination variation, and motion blurring. This objective is achieved by incorporating 134 

three steps in the proposed system. Firstly, an adaptive segmentation algorithm is used to handle 135 

the undesirable effects of noise, motion blur, and illumination during image acquisition. 136 

Secondly, visual features are extracted, incorporating both texture and shape, hence effectively 137 

drawing the boundaries between the two weed species. Finally, the AdaBoost along with Naïve 138 

Bayes classifier is used to train the classifier, resulting in the required classifier. During the 139 

testing phase, the same features are extracted from captured images and the appropriate label is 140 

then assigned to it based on which the sprayer system applies the appropriate herbicide to weed 141 

patches. The major steps of the proposed system are depicted in Fig. 1.   142 

 143 

 144 
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 145 

Fig. 1: The proposed weed classification system 146 

 147 

2.1 Image Segmentation 148 

Images captured from outdoor fields vary greatly in the illumination levels due to the varying 149 

lighting and weather conditions causing illumination variations, and shadows which affects the 150 

segmentation process. Several interesting studies have been carried out to deal with illumination 151 

variations [6] and vegetation segmentation in the presence of shadows [27]. In this paper, we 152 

attempt to devise an overall computationally efficient framework which can effectively deal with 153 

such circumstances. All the phases of the proposed framework has been designed in such a way 154 

that the subsequent module can effectively deal with any imperfections in the previous stage. For 155 

instance, the feature extraction process can tolerate with slight noise and motion blur which may 156 

cause slightly improper segmentation. Low quality sensors often introduce noise and motion blur 157 

during the image acquisition process. In order to achieve efficient segmentation, care must be 158 

taken to cope with these challenges. In addition to these issues, real-time systems need fast 159 

segmentation algorithms. Keeping in view all these constraints, a computationally efficient and 160 

adaptive segmentation procedure has been devised which dynamically computes threshold values 161 

for each image to segment the green components from the rest of the image. The purpose of 162 
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segmentation process is to eliminate background objects like ground and noise which may cause 163 

mis-classifications, prior to feature extraction. For an input image, IRMN, a background 164 

elimination function is given in equation 1 as follows. 165 

 166 
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   (1) 167 

Herein, IR, IG, and IB represent red, green, and blue planes of the input image I, respectively. S 168 

shows the resultant output image produced by this phase. It encompasses either zeros indicating 169 

background pixels or grayscale values for the detected weeds, calculated based on standard 170 

color-to-gray conversion formula. For selection of optimal threshold value T0 for each image in 171 

order to minimize the effect of illumination caused by environmental conditions, several 172 

experiments were conducted. It was found that the optimal value can be computed for each 173 

image dynamically using the mean intensity value of the image being observed as follows. 174 

 175 
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      (2) 176 

 177 

Where M and N are the dimensions of image (i.e. number of rows and columns), and  is an 178 

intensity gain factor used to control the threshold in different field and noise conditions. 179 

Applying simple noise reduction filters like mean and median filters help in keeping sustainable 180 

performance in case of noisy images. As a post- thresholding step, trivial objects may be 181 

removed from the segmented images using morphological opening with a small 3x3 disk shaped 182 

structuring element. 183 

 184 

Minimizing the effects of the various image degradations is essential because incorrect 185 

segmentation leads to low performance [28, 29]. In addition to this, real-time systems require 186 

computationally in-expensive procedures. Therefore, segmentation algorithms consisting of 187 

simple steps with sufficient accuracy are most desirable. Initial work conducted in this regard 188 

either ignored illumination variation [8, 23, 30] or used computationally expensive procedures 189 

for segmentation [16, 31], which affects the overall framework adversely 190 

 191 
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 192 

2.2 Features Extraction 193 

By observing both types of weeds from the captured images, it can be easily noticed that both 194 

species have the same color but different texture and leaf shapes. Therefore, both of these 195 

characteristics need to be quantified in a manner that will support the classification phase later in 196 

the process. Extraction of the texture and shape features is described in the following sub-197 

sections. 198 

 199 

A. Extraction of Edge Orientation Features 200 

From the spatial layout of a variety of weeds including Southern Sandbur, Large Crabgrass, 201 

Curly Dock, Dallis grass, Nutsedge, Ground Ivy, and Spotted Spurge, etc., it was observed that 202 

both grass and broad leaf weeds have different edge distributions across the entire image 203 

especially during the stage when their leaves have somewhat grown in shape. Since, the edge 204 

orientation features can be effectively computed based on the leaves, the proposed method can 205 

be applied well before the flowering stage. This observation lead us to believe that capturing this 206 

characteristic will help in discriminative representation of the weeds. For this purpose, the edge 207 

orientation histogram (EOH) [32] feature was extracted from the images with slight 208 

modifications. Instead of blindly selecting the default 4 x 4 grid setup for computation of the 209 

EOH, we decided to experiment with different settings. Experiments were conducted to 210 

determine optimal number of grids for a certain height at which the images were captured in the 211 

field. Further details of the experiment are provided in section 3. The EOH feature represents 212 

texture by accumulating the number of edges having different orientations in the sub-images into 213 

a histogram. Edges of different orientations are detected using the Sobel filters [33] specified in 214 

Fig. 2. These filters detect horizontal, vertical, and diagonal (45 and 135) edges. The prominent 215 

edges are preserved, whereas the remaining of them are removed based on a simple threshold 216 

function, where the threshold value was chosen in a way to improve discriminative capability of 217 

the feature vector being computed. It is achieved by eliminating trivial edges from images of 218 

both weed types, because their presence affected the overall recognition performance. In this 219 

case, a fixed threshold value of 85 was chosen. Each bin in the EOH histogram correspond to the 220 

number of edges of a particular orientation in a particular sub-image. In this case, 4 × 4 sub-221 

images resulted into 4 × 4 × 4 = 64 bin histogram per image as a texture feature.  222 
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  223 

 224 

Fig. 2: Four filters for detection of (a) horizontal (b) vertical (c) diagonal at 45 and (d) diagonal 225 

at 135 degrees edges. 226 

 227 

Broad weed leaves are circular in nature forming clusters of leaves across the fields. They 228 

produce almost equal number of edge pixels along all orientations. In contrast to this, grass weed 229 

leaves are longer producing comparatively longer edges at certain orientations. The EOH 230 

effectively captures these characteristics forming different histograms for the two weed species. 231 

The EOH histogram is computed by concatenating all the local orientation histograms as follows. 232 

1

b

i
i

EOH Bin


U       (3) 233 

Where EOH is the edge orientation histogram with b bins, each of which is calculated using 234 

equation 4 as follows. 235 

o{ | }jBin j j S j E   
    (4) 236 

 237 

Where  nSSSS ,........, 21  and Eo  {0, 45, 90, 135}, Binj is the jth bin value which represents 238 

the number of edge pixels belonging to a particular edge-type and a particular sub-image S. It 239 

was also observed that textural features alone cannot adequately model both weeds. Therefore, 240 

local shape features are also used along texture to allow accurate classification. For allowing the 241 

fusion of the two features, the EOH is normalized to the range [0, 1] using the equation 5 as 242 

follows. 243 

 244 
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n
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 247 

 248 

Fig. 3: Segmentation results. (a) Segmented grass weed images and their EOH (b) Broadleaf 249 

weed segmented images with their EOH. 250 

 251 

In Fig. 3(a), it can be noticed from the segmented images containing grass weeds, that there 252 

exists more edges at certain orientations due to the lengthy nature of the leaves. This 253 

characteristic of the grass weeds is reflected in the EOH having higher values at certain 254 

orientations and lower values at other orientations. In contrast to this, the EOH of corresponding 255 

broad weed images in Fig. 3(b) shows relatively lower variation in the number of edges at 256 

different orientations. This uniformity in edge distributions at all orientations signify the 257 

roundness of broad leaves. Hence, the EOH descriptor effectively captures distinctive features of 258 

the two weed species.  259 

In order to exhibit the discriminative characteristics of the EOH descriptor for the two weed 260 

species, Fig. 4 shows the mean feature vectors for both classes along with standard deviation of 261 

each feature. It can be seen that there exist significant variations in most of the features which 262 

eventually assist the classification stage in making accurate predictions.  263 

 264 

 265 

 266 

 267 

 268 

 269 
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 270 

Fig. 4. Mean feature vectors (EOH) of both weed types with standard deviations 271 

 272 

B. Shape Matrix Histogram (SMH) 273 

In addition to texture, local shape features of the weeds are also captured using a grid based local 274 

feature extraction approach [34, 35]. Since the weed leaves in these images are mostly 275 

overlapped, it becomes difficult to isolate them and analyze their shapes individually. Global 276 

shape analysis also becomes ineffective due to the high degree of overlap in both weed types. 277 

Therefore, local shape features are extracted by dividing the entire image into d × d sub-images. 278 

The shape of leaves in each grid cell is analyzed. In order to capture the thickness/roundness or 279 

thinness of the leaves, local coverage feature is computed for all cells in the image. Broad leaves 280 

tend to produce more cells with higher coverage values than thinner leaves, allowing us to 281 

capture structure of the objects contained in the image. The layout of leaves in grid cells is 282 

illustrated in Fig. 5. It can be seen from close observation, that the area covered by broad leaf is 283 

large, hence, there exists larger number of grid cells that are almost fully covered by leaves. This 284 

characteristic is also used for discrimination between the two weed species.  285 

 286 
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 287 

Fig. 5. Leaf structure inside grid cells. (a) A sample of broad leaves (b) A sample of thinner 288 

leaves. 289 

 290 

The coverage feature for each cell is computed using equation 6 as follows. 291 

 292 

s
c

c

A
R

A
        (6) 293 

Herein, Rc represents coverage value of cell c, As shows the area of the leaf inside cell c, and Ac 294 

is the grid cell area. In broad weed image, there will be higher cell count with larger Rc 295 

compared to grass weed image. Similarly, there will be higher cell count with smaller Rc values 296 

in grass weed images. These Rc values obtained from the grid cells form a shape matrix 297 

SMRdd. For reducing the feature dimension and capturing the essence of this matrix, a 298 

histogram is populated by quantizing the values in SM into 10 bins. The quantization strategy is 299 

depicted in equation 7 as given. 300 

 301 

 ( 10 ), {1,2,3,...10}i
i c

i

SMH R i i          (7) 302 

The SMH feature for grass and broadleaf weed types is shown in Fig. 6. From the shape matrix 303 

(middle), it can be seen that the number of grid cells having higher Rc values in broad weed 304 

image is much higher than the others. Grid cells with higher Rc values are represented in red 305 

color, whereas lower Rc values are shown in blue color. The dark blue portion of the image 306 

(a) (b)
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represents the background. Cells in light blue color indicate narrower structures (grass leaves), 307 

whereas cells in red color indicate bigger structures (broadleaf leaves). The SMH (right) clearly 308 

shows different histograms for both weed species. The SMH of grass weed shows relatively 309 

uniform distribution of quantized Rc values in the shape matrix. There is little difference in the 310 

distribution of higher Rc values and the rest. In contrast to this, the SMH of broad weed image 311 

shows a huge difference in the number of cells with Rc values > 0.9 and the rest. The SMH 312 

feature analyzes weed images locally and represents local structures in a compact way. It can be 313 

seen from both images that there exists sufficient discrimination in the SMH of both species, 314 

which allows their classification with higher accuracy. 315 

 316 

 317 

Fig. 6. Weeds and their corresponding shape matrix histograms. (a) grass weed image, its shape 318 

matrix, and shape matrix histogram (b). Broad weed image, its shape matrix, and shape matrix 319 

histogram 320 

 321 

In addition to this, the shape matrix can also be used to localize the two weed types in a single 322 

image. Broad and grass weed leaves can be easily detected by analyzing their SMs. Grid regions 323 

with dense clusters of higher Rc values represent broad weeds, whereas grid cells with lower Rc 324 

values indicate grass weeds. Mean feature vectors of both weed classes are illustrated in Fig 7 to 325 

provide an insight on the discriminative ability of feature vectors. Finally, the 64-bin EOH and 326 

10-bin SMH features are combined to form a single 74 dimensional feature vector. The 327 

normalized values of both these features are concatenated to form a signature for representing 328 

weeds as follows.  329 

(a) (b)
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( , )Sig EOH SFHU       (8) 330 

Fig. 7 shows the comparison of SMH for both weed types. The mean feature vectors for broad 331 

leaf weed and grass clearly shows that there exist variations at almost all the feature values 332 

except feature 7. This class-wise discrimination provides a solid foundation upon which the 333 

classification stage can make confident and accurate predictions.  334 

 335 

Fig. 7: Mean feature vectors (SMH) of both weed types with standard deviations 336 

 337 

3. Experimental Results and Discussion 338 

In this section, we illustrate the complete experimental setup for the proposed framework and 339 

evaluate its performance from different viewpoints. The proposed framework is implemented 340 

using MATLAB R2014a on a PC running Windows 7 professional with 8 GB RAM and 3.40 341 

GHz Core i5 processor.  342 

 343 

3.1 Dataset 344 

We have used a dataset of 500 images (250 images of each weed type) for evaluation of the 345 

proposed framework. The images included in the dataset were acquired from outdoor fields 346 

under varying lighting and environmental conditions in resolution 320 x 240 from fields in the 347 

Khyber Pakhtunkhwa province, Pakistan. In order to comprehensively evaluate performance of 348 

the system in varying field conditions, images were captured during different times of the day 349 

and under different weather conditions. Furthermore, attempts were made to induce motion blur 350 
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during the image capturing process. To further test the robustness of our method, five different 351 

levels of noise was introduced in images by adding zero mean Gaussian noise having variance 352 

0.01 to 0.05. This helped in building a much diverse dataset that will allow comprehensive 353 

evaluation of the proposed scheme. These synthesized images containing noise were added to 354 

both training and test sets. All the experiments were conducted using 10 folds cross validation 355 

where 90% of the data was used for training and the remaining 10% was used for testing in each 356 

fold.  357 

 358 

Average classification accuracy was used to measure the performance of the proposed scheme. It 359 

is the ratio of correctly classified samples to the total number of samples in the dataset. Ideally, 360 

higher accuracies are desired under all circumstances. It shows the overall strength of the 361 

algorithm in performing the intended tasks.  362 

 363 

100
CorrectlyClassifiedNum

Accuracy
TotalNum

      (9) 364 

 365 

Various experiments were conducted to test the performance of all the three modules in the 366 

proposed framework. The details of experiments and their results are provided in the subsequent 367 

sections. 368 

 369 

3.2 Performance Evaluation of the Proposed Adaptive Segmentation Algorithm 370 

Image segmentation is the first phase in the framework and undoubtedly the most important one 371 

because the performance of the subsequent modules heavily depend upon it. Accurate and robust 372 

segmentation procedure is the key to a successful machine vision system. In the present scenario, 373 

there were several challenges during the segmentation phase to cope with. Keeping in view these 374 

challenges, the performance of the proposed algorithm was evaluated using three different 375 

experiments. The details are given in the subsequent sections (section A, section B, and section 376 

C). 377 

   378 

A. Effect of Illumination on Segmentation 379 
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For this test, images captured during variable environmental conditions were used. Illumination 380 

variation often produces undesirable segmentation results, affecting the features extraction 381 

process, which eventually lead to misclassifications. The adaptive nature of the proposed 382 

algorithm allowed it to handle illumination variations quite effectively. Some of the images 383 

along with the output of segmentation phase are provided in Fig. 8. The adaptive selection of the 384 

threshold value enables it to cope with varying lighting conditions in the fields, thereby 385 

producing similar output despite illumination variation. For low illumination, the classification 386 

performance dropped 1.5% and for higher illumination it dropped just under 1%.  387 

 388 

 389 

Fig. 8. Results of the proposed adaptive segmentation method under variable illumination. (a) 390 

Six images with varying illumination. (b) Corresponding segmented images produced by the 391 

proposed adaptive segmentation scheme 392 

 393 

B. Effect of Motion Blur on Segmentation 394 

Image capturing during motion produces blurriness in images which affects performance of the 395 

segmentation algorithm and overall classification, thereby making it necessary to investigate the 396 

effect of image blur. Hence, experiments were designed to evaluate performance of the proposed 397 

framework on blur images. Images were captured by modifying the speed of the camera to 398 

induce varying amounts of blur in them, so that its effect on performance could be evaluated. 399 

The segmentation algorithm, effectiveness and invariance of the extracted features, and the 400 

classifier, all contribute towards accuracy in such circumstances. Fig. 9 shows some visual 401 

results of the segmented blur images. It can be seen that with the varying degree of blur, the 402 

segmentation algorithm successfully removes the background. This is also evident from the 403 

classification results in Table 1, that there is only slight drop in performance when the degree of 404 

blur gets very high. With low blur, the performance drops by about 1%, whereas with high blur, 405 
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a drop of 7.5% was noticed. Since, the field camera motion is slow, chances of high blur are low. 406 

Hence, performance hit with blurriness in real circumstances will be minimal. 407 

 408 

Fig. 9: Results of the proposed adaptive segmentation algorithm under motion blurring. (a) 409 

Segmentation of grass weed blur image. (b) Segmentation of broadleaf weed blur image. 410 

  411 

Table 1: Effect of image blur on performance using the proposed framework 412 

Motion Blur Strength Classification 

Performance (%) 

Low 97.42 

Medium 96.50 

High 91.16 

 413 

C. Effect of Noise on Performance 414 

Varying field conditions, low illumination, and low quality imaging sensors introduce 415 

noise in images. Noise causes significant performance drops in segmentation algorithms 416 

(a)

(b)
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[36]. In this case, gaussian noise of varying intensities was introduced in images prior to 417 

image segmentation to evaluate performance of proposed scheme. The classification 418 

performance without noise and with varying noise levels is given in Table 2. It was 419 

observed that noise causes a drop of 6-10% in accuracy when no removal attempt is made 420 

prior to image segmentation. However, this drop in accuracy was reduced to 2-5% when 421 

the noisy image was fitlered with a small mean filter. In the absence of noise, application 422 

of mean filter does affect performance slightly due to the blurring introduced. In Fig. 10, it 423 

can be seen that the noise has caused imperfect segmentation. However, these 424 

imperfections don’t cause much trouble in the features extraction process due to the very 425 

nature of the feature being used. The presence of noise will affect the amount of edges 426 

produced by the edge detection filters, but most of the trivial edges caused by low intensity 427 

noise will be removed during the thresholding process. Furthermore, during the SMH 428 

feature extraction, the tiny dots in the background and the small holes in the foregrouond 429 

caused by noisy segmentations will not affect the feature dramatically. The classifier will 430 

still be able to classify them correctly, as is evident from the results in Table 2.  431 

 432 

 433 
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Fig. 10. Effect of noise on image segmentation (no filtering) 434 

 435 

 436 

Table 2: Effect of noise on performance using the proposed framework 437 

  Performance 

Noise 

Levels 

Sigma 

(variance) 

Without mean 

filtering (%) 

With mean 

filtering (%) 

No noise - 98.40 98.29 

1 0.01 91.32 96.23 

2 0.02 90.95 95.1 

3 0.03 89.42 94.56 

4 0.04 88.00 93.42 

5 0.05 87.61 92.85 

 438 

3.3 Performance of Extracted Features 439 

Optimal parameter selection is the key to optimal performance. Several experiments were carried 440 

out for determining the optimal set of parameter values for the proposed features extraction 441 

scheme. The shape features largely depend upon the grid cell size for local leaf structure 442 

estimation and the typical leaf sizes. Since, the leaf size depends upon the height of camera, it is 443 

important to derive a relation between camera heights and cell sizes. In order to allow sufficient 444 

discrimination between the two weed species, several grid sizes were investigated with images 445 

captured at varying heights. A performance drop was observed when cell size was set too small 446 

or too large, mainly because it failed to represent the two leaf structures discriminatively. For an 447 

image captured at a height of 1, 2, and 3 meters above ground, accuracies with varying cell sizes 448 

are given in Fig. 11. Cell sizes are shown in percentage of image sizes and can be computed 449 

using (10 and 11). For the current dataset containing image resolution of 320 x 240, setting the 450 

cell size to 2% of the image for images captured from a height of 2 m yields the best results. 451 

However, images captured at other heights have different optimal cell sizes. 452 

_
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455 
Fig. 11. Classification accuracies for varying cell sizes. 456 

 457 

3.4 Classification Performance 458 

Supervised learning has shown promising results in so many computer vision applications. 459 

Highly focused work is in progress for building new ways of building powerful models that 460 

achieve higher accuracies in solving complex problems. In addition to individual classifiers, 461 

ensembles of classifiers are also build to cope with highly complicated classification tasks. One 462 

such algorithm for generating ensemble of classifiers is AdaBoost [37]. It builds a combination 463 

of so-called weak classifiers through a strong learning algorithm i.e. AdaBoost. It has exhibited 464 

considerable improvements in comparison to individual classifiers. 465 

 466 

The AdaBoost algorithm inputs labeled dataset (X, Y) = {(x1, y1),…(xn, yn)} where xn RN is 467 

the N-dimensional feature vector used to classify the particular weed image, and yn  {-1, +1} 468 

represents the classification labels for both weeds. It then calls the weak classifier or base learner 469 

iteratively. At every iteration, a weight is assigned and modified for each training sample xi such 470 

that the weights of incorrectly classified samples gets enlarged forcing the weak learner to focus 471 
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on the difficult patterns in the training dataset. The base learner is only required to find a 472 

hypothesis ht : X  Y for distribution Dt. The goodness of a hypothesis h is measured by its 473 

error  at each iteration t as follows. 474 

 475 

: ( )

[ ( ) ] ( )
t i i

t t i i t
i h x y

P h x y D i


        (12) 476 

 477 

Upon calculation of ht, AdaBoost selects a parameter t=(1/2)ln(1-t)/t that is the weight of ht 478 

signifying its importance. It is important to note that t gets large when t gets smaller. The final 479 

hypothesis consists of a weighted majority vote of T weak hypotheses where t specifies the 480 

weights given to ht. Thus, for each instance xi, ht outputs a prediction ht(xi)  R whose sign is the 481 

output label. 482 

^

1

( ) sgn ( )
T

t t
t

y f x h x


 
   

 
     (13) 483 

In our case, several weak learners were tested with AdaBoost including Naïve Bayes [38], 484 

BayesNet [39], simple logistic regression [40], decision tree [41], and random tree [42]. Among 485 

these base classifiers, AdaBoost performed best with Naïve Bayes, reporting an overall accuracy 486 

of 98.16% for both weed types. Classification accuracies of 97.17%, 94.65%, and 98.16% were 487 

reported by AdaBoost + Naïve Bayes for EOH, SMH and EOH + SMH, respectively. The 488 

performance with the other configurations is provided in Fig. 12.  489 

 490 



22 

 

 491 
Fig. 12: Classification accuracies of the proposed framework with different classifiers. 492 

 493 

3.5 Computation time analysis 494 

In real-time computer vision systems, it is necessary to consider the execution time of data 495 

processing algorithms as it is the key to their applicability in real-time scenarios. In this section, 496 

we present the time taken by the various processing components of the proposed scheme. It can 497 

be seen from the Table 3, that the most computational expensive module is the EOH feature 498 

extraction because of the slightly heavy computations involved in computing local edge 499 

orientation histograms. SMH feature extraction module runs slightly faster than the EOH 500 

algorithm and requires on average 10 ms for each image. The prediction process requires about 501 

4.5 ms and the segmentation process takes just under 2 ms. Overall, the whole scheme require 502 

35.2 ms which make it suitable for real-time systems, since, it is capable of processing 28.4 503 

frames per second.  504 

 505 

Table 3: Execution time of various phases in the proposed method 506 

Processing Module Execution Time (per image) 

Segmentation 1.7 ms 

EOH Feature Extraction 19 ms 

SMH Feature Extraction 10 ms 

Classification 4.5 ms 

Overall 35.2 ms (28.4 fps) 
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 507 

3.6 Comparison with other Methods 508 

The proposed method was compared with seven other state-of-the-art methods, developed in the 509 

last 5 years. These methods use wavelet features, spatial analysis, local binary patterns, principal 510 

component analysis, and fusion based methods to discriminate grass from broad leaf weeds. The 511 

accuracies of all these methods with the dataset used, and their computation times are depicted in 512 

Table 4. All these methods performed exceptionally well with their datasets achieving above 513 

90% classification accuracies. However, when we evaluated these methods on our expanded 514 

dataset which included images with varying illumination, motion blur, and slight noise, their 515 

performance dropped significantly. For instance, 22%, and 24% drops were noticed in the 516 

performance of combined strategy [9] and shape + fuzzy method [6] with our expanded dataset, 517 

because they evaluated their algorithms on very low weed infested areas. This is the highest 518 

performance drop among all the methods being compared. Similarly, significant drops in 519 

classification performance were noticed in the methods [8], [21], and [16], when these methods 520 

were evaluated using our dataset. The methods [24] and [23] used a combination of features to 521 

perform classification and hence were found to be relatively robust than the other methods. 522 

However, the method [24] carry a heavy computational cost due to the ensemble of two neural 523 

networks and combination of several computationally expensive features, which makes it 524 

unsuitable for real-time weed classification. In summary, it can be seen that the proposed method 525 

compares favorably, achieving 98.4% accuracy on the original dataset and 94.72% on the 526 

expanded datasets. Our method shows improved performance over the rest of the methods due to 527 

its robustness to illumination variation, motion blur, and noise. Table 4 lists comparison in terms 528 

of classification performance and computation time for the proposed method and other 529 

approaches. The computation times have been derived by running the algorithm on the same 530 

hardware platform.  531 

 532 

Table 4: Classification accuracies with different classifiers. 533 

Method Classification Accuracy 

(original dataset) 

Classification Accuracy 

(expanded dataset) 

Computation 

Time  

Combined Strategy [9] 92.63 71.45 135.0 ms 

Shape + Fuzzy [6] 92.94 74.22 430.0 ms 
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Wavelet + KNN [8] 94.35 81.17 40.0 ms 

MWD [21] 95.00 84.28 47.5 ms 

Mixture Features [24] 97.66 91.66 350 ms 

LBP + SVM [16] 98.00 85.14 45.4 ms 

SWLDA + SVM [23] 98.10 92.87 40.5 ms 

EOH + SMH + AdaBoost  98.40 94.72 35.2 ms 

 534 

 535 

4. Conclusion and Future Research Directions 536 

In this paper, the problem of weed classification was addressed by employing EOH and SMH 537 

features along with AdaBoost classifier for real-time herbicide sprayer systems. An adaptive and 538 

light-weight image segmentation algorithm was devised to eliminate background from the 539 

captured image. Special care was taken to account for changes in lighting conditions in the field, 540 

motion blur, and noise during the segmentation and feature extraction phase. It was observed that 541 

broad and grass weed images vary greatly in their shapes, causing different edge patterns and 542 

local shape structure across the entire image. In order to capture these discriminating 543 

characteristics, both texture and local shape features are extracted from the segmented weed 544 

images. A feature vector consisting of 74 values was constructed for each training image. 545 

AdaBoost algorithm was used to build an ensemble of Naïve Bayes classifier for weed 546 

classification. Experimental results reveal that the proposed scheme was able to classify weeds 547 

with high accuracies even in the presence of illumination variation, motion blur, and noise. An 548 

improvement of 4.7% was observed when compared with other state-of-the-art methods.  549 

In our approach, the proposed shape features depend on the plant height as well as overlapping 550 

of leaves. Hence, it is necessary to optimally select the grid size corresponding to the height of 551 

the plants in the field. In future, we plan to use more powerful and robust hand-crafted features 552 

as well as feature engineering schemes to perform a fine-grained classification of many weed 553 

types and crops.  554 

 555 
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