
 
 

Parametric and non-parametric tests for the comparison of two samples which both include paired and 

unpaired observations. 

    

Introduction 

 

Basic teaching of statistics usually assumes a perfect world with completely independent samples or 

completely dependent samples, examples include Swinscow (2002) and OpenStax (2013). Real world 

study designs and associated analyses are often far from these simplistic ideals. There are occasions 

where there are a combination of paired observations and independent observations within a sample. 

These scenarios are referred to as ‘partially overlapping samples’ (Martinez-Camblor et.al., 2012, 

Derrick et.al., 2015; Derrick et.al., 2017). Other terminology for the described scenario is ‘partially 

paired data’ (Samawi & Vogel, 2011; Guo & Yuan, 2017). However, this terminology can be 

misconstrued as referring to pairs that are not directly matched (Derrick et.al., 2015). An example 

scenario is a design which includes both paired observations and unpaired observations, due to limited 

resource of paired samples. When a resource is scarce, researchers may only be able to obtain a 

limited number of paired observations, but would want to avoid wastage and also make use of the 

independent observations. In a clinical trial assessing the performance of kidneys following 

transplantation, one group incorporates a new technique that reconditions the kidney prior to the 

transplant, and one group is the control group of standard cold storage (Hosgood et.al., 2017). When 

the kidneys arrive at the transplanting centre in pairs, one is randomly allocated to each of the two 

groups. When a single kidney arrives at the transplanting centre, this is randomly allocated to one of 

the two groups in a 1:1 ratio.  

 

A commonly encountered partially overlapping samples problem is a paired samples design which 

inadvertently contains independent observations (Martinez-Camblor et.al., 2012; Guo & Yuan, 2017). 

In these circumstances the reason for the missing data should be considered carefully. Solutions 

proposed within the current paper do not detract from extensive literature on missing data and 

solutions herein are assessed under the assumption of data missing completely at random (MCAR).  

 

A naive approach often taken when confronted with scenarios similar to the above is to discard 

observations and perform a basic parametric test (Guo & Yuan, 2017). Naive parametric methods for 

the analysis of partially overlapping samples used as standard include; i) Discard the unpaired 

observations and perform the paired samples t-test, 1T ; ii) Discard the paired observations and 



 
 

perform the independent samples t-test assuming equal variances, 2T ; iii) Discard the paired 

observations and perform the independent samples t-test not assuming equal variances, 3T . 

  

When the omission of the paired observations or independent observations does not result in a small 

sample size, traditional methods may maintain adequate power (Derrick et.al., 2015). However, the 

discarding of observations is particularly problematic when the available sample size is small 

(Derrick, Toher and White, 2017). Other naive approaches include treating all the observations as 

unpaired, or randomly pairing data (Guo & Yuan, 2017). These approaches fail to maintain the 

structure of the original data and introduce bias (Derrick et.al., 2017). 

 

Amro and Pauly (2017) define three categories of solution to the partially overlapping samples 

problem that use all available data and do not rely on resampling methods. The categories are; tests 

based on maximum likelihood estimators, weighted combination tests, and tests based on a simple 

mean difference. Early literature on the partially overlapping samples framework focused on 

maximum likelihood estimators when data are missing by accident. Guo and Yuan (2017) reviewed 

parametric solutions under the condition of normality, and recommend the Lin and Strivers (1974) 

maximum likelihood approach when the normality assumption is met. However, Amro and Pauly 

(2017) demonstrate that this maximum likelihood estimator approach has an inflated Type I error rate 

under normality and non-normality. Furthermore, maximum likelihood proposals are complex 

mathematical procedures, which would be a barrier to some analysts in a practical setting. Thus these 

are not considered further in this paper. 

 

A weighted combination based approach is to obtain the p-values for 1T  and 2T  as defined above, 

then combine them using the weighted z-test (Stouffer et.al., 1949), or the generalised Fisher test 

proposed by Lancaster (1961). When used to combine p-values from independent tests, the latter 

method is more powerful (Chen, 2011). Procedures specifically attempting to act as a weighting 

between the paired samples t-test and the independent samples t-test under normality were proposed 

by Bhoj, (1978). Uddin and Hasan (2017) optimised the weighting constants used by Bhoj (1978) so 

that the combined variance of the two elements minimized.  Further weighted combination tests are 

proposed by Kim et.al. (2005), Samawi and Vogel (2011), and Martinez-Camblor et.al. (2012). All of 

these weighting based approaches have issues with respect to the interpretation of the results. The 

mathematical formulation of the statistics does not have a numerator that is equivalent to the 

difference in the two means. Neither do these proposals have a denominator that represents the 



 
 

standard error of the difference in two sample means, therefore confidence intervals for mean 

differences are not easily formed. Thus these are not considered further in this paper. 

  

Looney and Jones (2003) put forward a parametric solution using all of the available data that does 

not rely on a complex weighting structure and is regarded as a simple mean difference estimator. 

However, several issues with the test have been identified and their solution is not Type I error robust 

under normality (Mehrotra, 2004; Derrick et.al., 2017). A correction to the test by Looney and Jones 

(2003) is provided by Uddin and Hasan (2017), however the test statistic is a minor adjustment, and 

also makes reference to the z-distribution. 

  

For the partially overlapping two group situation, two parametric solutions that are Type I error robust 

under the assumptions of normality and MCAR are given by Derrick et.al. (2017). These solutions are 

simple mean difference estimators and act as an interpolation between, firstly 1T  and 2T , or secondly 

between 1T  and 3T . These solutions are referred to as the partially overlapping samples t-tests. The 

authors noted that their parametric partially overlapping samples t-tests can be readily developed to 

obtain non-parametric alternatives. 

  

Naive non-parametric tests for the analysis of partially overlapping samples include; i) Discard the 

paired observations and perform the Mann-Whitney-Wilcoxon test, MW; ii) Discard the unpaired 

observations and perform the Wilcoxon Signed Rank test, W. 

  

In a comparison of samples from two identical non-normal distributions, non-parametric tests are 

often more Type I error robust than their parametric equivalents (Zimmerman, 2004). For skewed 

distributions with equal variances, the MW test is the most powerful Type I error robust test when 

compared against 2T  and 3T  (Fagerland & Sandvik, 2009a). 

 

These traditional non-parametric tests provide low power when the discarding of observations result 

in a small sample size. For very small samples MW will only detect differences when a very large 

effect size is present (Fay & Proschan, 2010). The normality assumption is often hard to ascertain for 

small samples, thus non-parametric solutions that take into account all of the available data would be 

beneficial. 



 
 

  

In textbooks by Mendenhall, Beaver and Beaver (2008) and Howell (2012), the null hypothesis of the 

MW test is reported as the distributions are equal. Fagerland and Sandvik (2009b) assert that the null 

hypothesis is more correctly reported as  Prob(X > Y) = 0.5. For a comparison of two distributions, it 

is possible that the latter null hypothesis is true, but for the samples to be from distributions of 

different shape. When the distributions are equal other than in central location, the MW test can be 

considered as a comparison of central location (Skovlund & Fenstad, 2001). The MW test is not 

recommended as a test for location shift when variances are not equal (Zimmerman 1987; Penfield, 

1994; Moser & Stevens, 1989). Ultimately, the MW test can detect differences in the shape of the two 

sample distributions, or their medians, or their means (Hart, 2001). 

  

When there are three or more groups with both paired observations and independent observations, a 

possible non-parametric approach is the Skillings-Mack test (Skillings & Mack, 1981). This test is 

equivalent to the Freidman test when data are balanced (Chatfield & Mander, 2009). For an 

unbalanced design the Skillings-Mack test requires that any block with only one observation is 

removed. The Skillings-Mack test therefore cannot be used in the two group situation. This gives 

further motivation for the development of appropriate tests for the two sample scenario. 

 

In this paper, non-parametric solutions to the partially overlapping samples problem are considered, 

under normality and non-normality. This comparison includes a recent parametric solution proposed 

by Derrick et.al. (2017) for comparative purposes. The parametric solutions by Derrick et.al. (2017) 

and newly proposed non-parametric solution are defined, and methodology for comparing the Type I 

error robustness and power of the solutions is given. Results of the simulations for Normal and non-

normal distributions are then considered followed by a practical example incorporating the techniques 

explored. 

 

 

Solutions to the partially overlapping samples problem 

 

Parametric test statistics for the comparison of equal means in the presence of partially overlapping 

samples are taken from Derrick et.al. (2017). Proposed non-parametric solutions derived using the 



 
 

ranks of the actual values within the partially overlapping samples t-test procedure are then 

introduced. 

 

Parametric solutions 

 

Without loss of generality let 1X mean of Sample 1, 2X  mean of Sample 2, an  number of 

unpaired observations exclusive to Sample 1, bn  number of unpaired observations exclusive to 

Sample 2, cn  number of pairs, 1n  number of observations in Sample 1 (i.e. 1n an + cn ), 

2n  number of observations in Sample 2 (i.e. 2n bn  + cn ), 2

1S  variance of Sample 1, 2

2S  

variance of Sample 2, r  = Pearson’s correlation coefficient for the cn  observations. All variances 

above are calculated using Bessel’s correction as per Kenney & Keeping (1951). 

The parametric partially overlapping samples test statistic, new1T , is an interpolation between the 

paired samples t-test, 1T , and the independent samples t-test assuming equal variances, 2T , defined 

as:  
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For normally distributed data, the independent samples t-test is sensitive to deviations from the equal 

variances assumption. If equal variances cannot be assumed then Welch’s test is a Type I error robust 

alternative under normality (Ruxton, 2006; Derrick, Toher & White, 2016). It follows that new1T  is 

also sensitive to deviations from the equal variances assumption (Derrick et.al., 2017). The partially 

overlapping samples test statistic when the comparison is not constrained to equal variances, new2T , is 

an interpolation between the paired samples t-test, 1T ,  and Welch’s test, 3T , defined as: 
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The test statistic new2T  is referenced against the t-distribution with degrees of freedom:  
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These solutions are easily performed using the R package ‘Partiallyoverllaping’ (Derrick, 2017) as 

introduced and explained by Derrick, Toher & White (2017) 

 

Non-parametric solutions 

 

For the proposed non-parametric solutions, all observations are pooled into one data set and assigned 

rank values in ascending order. This is equivalent to an RT-1 (Conover & Iman, 1981) ranking 

procedure. The rank values are substituted into the elements of the calculation for new1T  and new2T  in 

place of the observed values. Tied ranks are each given the median of the tied ranks. This gives the 

test statistics 1RNKT  and 2RNKT  respectively. The degrees of freedom are 1  and 2  respectively, 

calculated using the pooled rank values. The calculation of r uses an RT-2 (Conover & Iman, 1981) 

ranking procedure, so that r represents Spearman’s rank correlation coefficient between the paired 

observations. For the two sample situation, the means, variances, skewness and kurtosis maintain 

similar characteristics for a distribution transformed to ranks, as are observed in the original 

distribution (Zimmerman, 2011). 

 

 

Simulation methodology 

 

The robustness of existing test statistics and proposed test statistics for two samples containing both 

independent observations and paired observations is assessed using simulation. Monte-Carlo studies 

are long established techniques for identifying appropriate test statistics in a given scenario (Serlin, 



 
 

2000). Firstly, Type I error robustness is assessed using liberal robustness criteria (Bradley, 1978). 

Power is only calculated for Type I error robust statistics, so that fair power comparisons can be made 

(Zimmerman, 1987; Penfield, 1994). 

 

The values an , bn , cn ,  , 
2

1  and 
2

2  are defined as part of a factorial design as given in Table 1. 

Normal deviates for an  and bn  observations are calculated using methodology outlined by Box and 

Muller (1958). Similarly, two sets of cn  observations are generated, and are converted to correlated 

Normal variates using methodology outlined by Kenney and Keeping (1951).  

 

Each of the test statistics given in Table 1 are assessed firstly under the standard Normal distribution. 

For the comparison of test statistics under non-normality, random numbers are generated by 

transformation of bivariate standard Normal deviates, N (Forbes et.al., 2011). For a moderately 

skewed distribution, Gumbel deviates, G, are generated using the transformation G =  log( log U), 

where U is the cumulative distribution function of N. To demonstrate the robustness of the test 

statistics for a more extreme skewed distribution, bivariate Normal deviates, N, are transformed into 

Lognormal deviates, L, using the transformation L = exponential (N).  

 

In this Monte-Carlo study, the nominal Type I error rate is nominalα 0.05. For each of the scenarios in 

Table 1, two sided tests are performed and the null hypothesis rejection rate is recorded as the 

proportion of the 10 000 replicates where the null hypothesis is rejected. 

  

The alternative hypothesis is generated by adding 0.5 to the 2n  observations so that  12  0.5. 

The difference applied is arbitrary for the purposes of comparing which test statistics are more 

powerful relative to each other for otherwise equivalent simulation parameters. 

 

The above transformations outlined ensure that the distributions compared are of the same shape, and 

only differ in terms of central location. Additional analyses are then performed when the samples are 

drawn from the Normal distribution with unequal variances, and when samples are drawn from 

distributions with differing functional form, for example one sample taken from a Normal distribution 

and one sample taken from a Lognormal distribution. For assessing the Type I error robustness under 



 
 

normality with unequal variances, the 1n  observations are multiplied by 1  and the 2n  observations 

multiplied by 2 . Standardising is performed when comparing samples from two distributions with 

differing functional form. 

 

Table 1. Summary of the simulation design. 

Parameter Values 

an  5, 10, 30, 50, 100, 500 

bn  5, 10, 30, 50, 100, 500 

cn  5, 10, 30, 50, 100, 500 

  -0.75, -0.50, -0.25, 0.00, 0.25, 0.50, 0.75 

),( 2

2

2

1   (1,1) , (1,4) , (4,1) 

),( 21   (0,0) , (0,0.5) 

Distributions Normal, Lognormal, Gumbel. 

Test 

statistics 

1T   Paired Samples t-test (discard unpaired observations) 

2T  Equal variances assumed Independent samples t-test (discard paired observations) 

3T  Welch’s unequal variances independent samples t-test (discard paired observations) 

MW Mann-Whitney test (discard paired observations) 

W Wilcoxon test (discard unpaired observations) 

new1T  Partially overlapping samples t-test, equal variances assumed 

new2T  Partially overlapping samples t-test, equal variances not assumed 

RNK1T  Non-parametric partially overlapping samples t-test, equal variances assumed 

RNK2T  Non-parametric partially overlapping samples t-test, equal variances not assumed 

Iterations 10,000 

nominalα  0.05 

Language  R version 3.1.3 

 

 

 

  



 
 

Results 

 

In general, Type I errors are more serious than Type II errors (Wells & Hintze, 2007). The results 

therefore give Type I error rates for all of the test statistics considered, followed by power only for 

test statistics that control Type I error. The scenario where samples are drawn from the same 

distribution is firstly considered. This is followed by the scenario where samples are drawn from the 

Normal distribution with unequal variances, and finally the scenario when the samples are drawn from 

distinctly differing distributions.  

 

Samples taken from distributions of the same shape 

 

Null hypothesis rejection rates are obtained for each of the parameter combinations where 21    

and 
2

2

2

1   . Sampling from identical distributions with equal underlying population variances 

ensure that a difference in central location is directly assessed. For each parameter combination, the 

null hypothesis rejection rate represents the Type I error rate of the test. The Type I error rates for 

each of the distributions are given in Figure 1. Reference lines are added to represent Bradley’s liberal 

Type I error robustness criteria.  



 
 

 
 
Figure 1. Type I error rates for when both samples are taken from the standard Normal distribution. 

 

 

Figure 1 shows that when two samples are drawn from a Normal distribution with equal variances, 

traditional test statistics that discard data, 1T , 2T , 3T , MW, W, MW, remain within Bradley’s liberal 

Type I error robustness criteria. This coincides with findings by Fradette et.al., (2003).  

Figure 1 also shows that the statistics new1T  and new2T  are Type I error robust under normality and 

equal variances. For normally distributed data, the proposed non-parametric statistics, RNK1T  and 

RNK2T , have similar Type I error robustness to new1T  and new2T .  

 

Figure 1 suggests that the test statistics under consideration are not sensitive to relatively minor 

deviations from the Normal distribution. However, there is some minor inflation of Type I error rates. 

However, it can be seen that only the following test statistics maintain Bradley’s liberal criteria when 



 
 

both samples are drawn from a Lognormal distribution; 2T , MW, W, new1T , RNK1T , and RNK2T . The 

paired samples t-test, 1T , is slightly conservative relative to the other tests statistics.  

 

The degree of skewness for the Lognormal distribution in this paper is larger than the degree of 

skewness considered by Fagerland and Sandvik (2009a). Figure 3 shows that the MW test remains 

Type I error robustness for the more extreme degree of skewness in this paper. However, test statistics 

using separate variances, 3T  and new2T , frequently exceed the upper limit of Bradley’s liberal Type I 

error robustness criteria.  

 

To demonstrate the performance of the test under extreme scenarios, Table 2 shows Type I error rates 

under the Lognormal distribution for small sample size combinations and combinations where max {

an , bn , cn } - min{ an , bn , cn } is large. 

 

Table 2. Type I error rates for selected sample size combinations under the Lognormal distribution, 

 0.5.   

an  bn  cn  
1T  2T  3T  W MW new1T  new2T  RNK1T  RNK2T  

5 5 5 .029 .027 .020 .056 .062 .044 .018 .051 .042 

10 5 5 .024 .042 .047 .046 .059 .046 .028 .044 .041 

10 10 5 .022 .038 .033 .050 .064 .032 .020 .049 .046 

10 10 10 .027 .040 .038 .051 .042 .045 .032 .048 .048 

5 5 10 .030 .030 .020 .057 .049 .044 .013 .043 .042 

30 5 5 .031 .058 .120 .048 .067 .046 .080 .047 .052 

30 10 5 .026 .056 .070 .049 .067 .038 .060 .045 .045 

50 5 5 .022 .053 .135 .052 .059 .055 .098 .040 .043 

100 5 5 .019 .055 .176 .048 .061 .038 .130 .043 .065 

500 5 5 .022 .044 .173 .047 .063 .042 .150 .049 .053 

5 5 30 .032 .036 .025 .050 .053 .053 .036 .053 .051 

5 10 30 .047 .044 .048 .040 .053 .072 .052 .050 .051 

5 5 50 .049 .025 .016 .053 .048 .057 .046 .040 .039 

5 5 100 .050 .028 .017 .053 .046 .056 .043 .056 .056 

5 5 500 .062 .033 .018 .053 .056 .066 .059 .055 .055 

 

The range of the sample sizes in this simulation design is large, Table 2 shows that the inflation in the 

Type I error rate of 3T  and new2T  increases as max { an , bn , cn } - min{ an , bn , cn } increases. In 

the scenario of partially overlapping samples, a large overall sample size does not necessarily result in 



 
 

a robust test. Simply increasing the number of independent observations does not compensate for a 

small number of paired observations, and vice-versa.   

 

Under the alternative hypothesis, when  12  0.5, the null hypothesis rejection rate represents the 

power of the test. For test statistics that do not clearly violate Bradley’s liberal robustness criteria, the 

power of the test statistics for each of the distributions is given in Table 3.  

 

Table 3. Power when  12  0.5. Calculated at  0.05, two sided, averaged over all values of 

cn . N = Normal, L = Lognormal, G = Gumbel. For test statistics using only independent 

observations, the value for  0 is displayed. NR is displayed if not Type I error robust. 

    
1T  2T  3T  W MW new1T  new2T  

 

RNK1T

 

 

RNK2T

 

N 

ba nn 

 

> 0 .695 

 .567 .565 

.693 

.563 

.865 .864 .856 .855 

0 .558 .556 .819 .819 .811 .811 

< 0 .481 .474 .779 .779 .772 .771 

ba nn 

 

> 0 .695 

 .455 .433 

.692 

.438 

.839 .832 .829 .824 

0 .559 .553 .806 .798 .795 .790 

< 0 .482 .476 .774 .767 .763 .760 

G 

ba nn 

 

> 0 .611 

.472 .470 

.630 

.510 

.783 .782 

.718 

.678 

.815 .814 

0 .464 .483 .720 .761 .760 

< 0 .398 .407 .678 .719 .719 

ba nn 

 

> 0 .612 

.345 .340 

.629 

.380 

.740 .735 

.689 

.651 

.779 .776 

0 .466 .481 .693 .740 .736 

< 0 .398 .410 .655 .702 .699 

L 

ba nn 

 

> 0 .455 

.340 NR 

.727 

.533 

.596 NR 

NR 

NR 

.893 .891 

0 .334 .729 .535 .857 .856 

< 0 .297 .693 .506 .826 .826 

ba nn 

 

> 0 .453 

 .194 NR 

.562 

.518 

.514 NR 

NR 

NR 

.874 .873 

0 .336 .430 .467 .851 .850 

< 0 .296 .423 .438 .825 .826 

 

When population variances are equal, Table 3 shows that test statistics not assuming equal variances, 

new2T  and RNK2T , perform similarly to their counterparts where equal variances are assumed new1T  and 

RNK1T  respectively. 

 

From Table 3 it can be seen that for normally distributed data, traditional parametric methods, 1T , 2T  

and 3T , are more powerful than their non-parametric counterparts, W and MW. Similarly when the 



 
 

normality assumption is true, the parametric statistics new1T  and new2T  are marginally more powerful 

than their non-parametric counterparts RNK1T  and RNK2T , but not to any meaningful extent. Figure 2 

shows the power for each parameter combination within the simulation design for new1T and RNK1T . 

 

Figure 2. Power for each parameter combination, for new1T  and RNK1T . 

 

For the non-normal distributions in this simulation, non-parametric methods are more powerful than 

their parametric counterparts when both samples are taken from the same distribution. For increasing 

degrees of skewness, the proposed non-parametric test statistic, RNK1T , exhibits an increasing power 

advantage over its parametric counterpart, new1T . 

 

From Table 3 it is evident that for all of the test statistics making use of some paired element, a 

negative correlation between two samples is problematic. A large positive correlation gives more 



 
 

powerful results. This is true for each of the distributions in the simulation design. For selected tests 

making use of the paired data, Figure 3 shows the power for each parameter combination within the 

simulation design. 

Figure 3. Power of selected test statistics making use of paired data, for two N(0,1) samples. 

 

Figure 3 illustrates that as the correlation between the paired observations increases, the power of the 

tests statistics making use of paired information increases. For the Normal distribution and the 

Gumbel distribution, when the correlation coefficient is negative or small, the power advantage when 

using all of the available data is large. For the Gumbel distribution, new1T  is only slightly less 

powerful than RNK1T , however for the Lognormal distribution there is a clear power advantage of 

RNK1T  over new1T . This suggests that the proposed RNK1T  is particularly useful for comparing two 

samples from a distribution with a clear deviation from normality, and a negative or small correlation 

between the two groups. 

  



 
 

Samples taken from the Normal distributions with unequal variance 

 

Null hypothesis rejection rates are obtained for each of the parameter combinations where 21    

and 
2

2

2

1   . When the observations are sampled from two Normal distributions with equal means 

and unequal variances, the null hypothesis rejection rate represents the Type I error rate of the test. 

Type I error rates for each of the test statistics across the simulation design are given in Figure 4. 

 

Figure 4.  Type I error rates for samples from the Normal distribution with 2

1 1, 2

2 4. 

 

Figure 4 shows that Type I error robustness is maintained under normality for new2T . Thus new2T  is the 

only test statistic making use of all available data to be Type I error robust under normality for both 

equal and unequal variances. 

  



 
 

For normally distributed data and unequal population variances, the test statistics not assuming equal 

variances are more Type I error robust than the statistics that do assume equal variances. 

Nevertheless, for RNK2T  the number of times the null hypothesis is rejected is in excess of acceptable 

levels. Closer inspection of our results shows these statistics are not robust when the number of paired 

observations is large relative to the total number of independent observations. This effect is 

exacerbated when   is large and positive. To a lesser extent, the rejection rates for RNK2T  are inflated 

when the total number of independent observations are very large relative to the number of paired 

observations. 

  

Samples taken from distributions of unequal shape 

 

To consider the behaviour of the test statistics when the two samples are drawn from distinctly 

different distributions (standardised to ensure equal means), Figure 5 shows the null hypothesis 

rejection rates when observations for Sample 1 are taken from the standard Normal distribution, and 

observations for Sample 2 are taken from the Lognormal distribution.  

 



 
 

 

Figure 5. Sample 1 values taken from the standard Normal distribution, Sample 2 observations are 

taken from a standardised Lognormal distribution. 

 

Under the simulation design, standardising of the population ensures that the mean for both 

distributions is the same, but the shapes of the distributions are different. The null hypothesis rejection 

rate only represents the Type I error rate if the null hypothesis is strictly that there is no difference in 

means. Figure 5 shows that the parametric tests are not sensitive to the different shapes of the 

distributions and remain valid for testing the hypothesis of equal means. Conversely, the null 

hypothesis rejection rate is well in excess of 5% for the non-parametric test statistics. The non-

parametric statistics are sensitive to differences in the shape of the distribution, thus could be used to 

assess whether the distributions are equal. The null hypothesis rejection rates represent power under 

the latter form of the null hypothesis.  

 

  



 
 

Example 

 

The following is a classic example by Rempala and Looney (2006), used by Guo and Yuan (2017) 

and Amro and Pauly (2017) to illustrate the partially overlapping samples problem. The outcome 

variable is the Karnofsky performance status scale, which measures functional status of a patient. The 

data is recorded on the last day of life and on the second to the last day. For the parametric tests, the 

null hypothesis that the mean Karnofsky score is the same on the last two days of life is tested. For the 

non-parametric tests, the null hypothesis that the distribution of the Karnofsky score is the same on 

the last two days is tested. Assuming the distributions differ only in central location, both the 

parametric and nonparametric tests are assessing the same research question. 

  

For a total of 60 patients, 9 were recorded on both days, 28 were recorded only on the second to the 

last day, and 23 were recorded only on the last day. The test statistic and p-value for each of the 

approaches considered are given in Table 4, based on the data below: 

 

Patients with scores on both days: 

(20, 10), (30, 20), (25, 10), (20, 20), (25, 20), (10, 10), (15, 15), (20, 20), (30, 30) 

Patients with scores only on the second to the last day: 

10,20,25,30,20,30,15,20,30,15,15,20,10,25,30,20,20,30,25,30,20,20,10,25,20,10,20,20 

Patients with scores only on the last day: 

15,25,30,20,10,20,10,30,10,10,10,25,15,20,20,20,20,10,10,10,20,30,10 

 

Table 4. Results from Rempala and Looney example 

Method 1T  2T  3T  MW W new1T  new2T  1RNKT  2RNKT  

Test 

statistic 
1.818 1.800 2.286 412.5 10 2.522 2.507 2.534 2.521 

p-value 0.075 0.079 0.052 0.078 0.098 0.015 0.016 0.014 0.015 

 

 

Table 4 shows that the parametric partially overlapping samples t-tests provide evidence at the 5% 

significance level to suggest that there is a difference in the mean Karnofsky scores between the last 

two days of life. Similarly the non-parametric partially overlapping samples t-tests provide evidence 



 
 

at the 5% significance level to suggest that there is a difference in the distribution of the Karnofsky 

scores between the last two days of life. 

 

Conclusion 

 

There are many scenarios which gives rise to partially overlapping samples. Traditional methods of 

analyses which discard data are less than desirable. The partially overlapping samples t-tests by 

Derrick et.al., (2017) offer robust parametric solutions, assuming that MCAR is true, using all of the 

available data. 

 

Under normality, parametric solutions new1T  and new2T  are Type I error robust and have greater power 

than other tests statistics considered in this paper. When the normality assumption is true, new1T  is 

recommended for equal variances, and new2T  is recommended for unequal variances. For the non-

normal distributions considered here, new1T  is Type I error robust when comparing two samples taken 

from the same distribution, whereas new2T  is not fully Type I error robust. 

 

Non-parametric approaches developed in this paper, RNK1T  and RNK2T  are Type I error robust when 

comparing two samples taken from the same distribution with equal means and equal variances. When 

observations for two groups are sampled from the same non-normal distribution, there is a power 

advantage of using the non-parametric approaches RNK1T  and RNK2T . 

  

When comparing samples from two distinctly different distributions, the correct form of the null 

hypothesis for the non-parametric methods is open to interpretation. If performing parametric tests, 

the null hypothesis of equal means is valid. Results show that as with traditional non-parametric tests, 

the proposed non-parametric test statistics are sensitive to differences in location, but are 

simultaneously sensitive to differences in the shape of the distribution. If the sampling distributions 

are not known to be identical, the proposed non-parametric tests are not appropriate when the primary 

goal is to assess for differences in location. If the research question is whether the distributions are 

equal, RNK1T  and RNK2T  offer valid and more powerful alternatives to their parametric counterparts 



 
 

new1T  and new2T  respectively, as well as more powerful alternatives to standard non-parametric 

methods which discard data.  
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