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Abstract 6 

The ascomycete fungus Microdochium nivale is a major pathogen of many species of the 7 

gramineae. Control measures rely heavily on chemical fungicides, making alternative means 8 

of disease reduction desirable. Phosphite (PO3
3-,) has proven efficacy in reducing susceptibility 9 

of different species of gramineae to oomycetes, and has adverse effects on the in vitro growth 10 

of numerous other pathogens. The effect of phosphorous acid (H3PO3), phosphoric acid 11 

(H3PO4), dihydrogen potassium phosphite (KH2PO3), dihydrogen potassium phosphate 12 

(KH2PO4), and potassium hydroxide (KOH) on the in vitro mycelial growth and development 13 

of M. nivale was determined. Radial growth on amended Potato Dextrose Agar (PDA) was 14 

used to calculate mean daily growth and percent inhibition. PO3
3- had a significant inhibitory 15 

effect on mycelial growth with EC50 values ranging between 35.9 and 40.99 μg/ml-1, whilst 16 

PO4
3- and KOH had no significant inhibitory effect. Microscopic examination of mycelia 17 

showed morphological deformities in hyphae growing on PO3
3- amended PDA, whilst hyphal 18 

growth was normal on PO4
3- and KOH amended PDA. Conidial germination of M. nivale was 19 

significantly reduced following immersion in solutions of 50, 100 and 250 μg/ml of PO3
3-, 20 

PO4
3- and KOH at same concentrations induced no inhibitory affect. These results show that 21 

PO3
3- is a significant inhibitor of the growth of M. nivale and may have the potential to be used 22 

as a chemical control agent in the field. 23 
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Microdochium nivale (teleomorph Monographella nivalis (Schafnitt)) is an ascomycete 26 

pathogen and causal agent for many disease complexes in numerous graminaceous species 27 

(Smiley et al., 1992; Tronsmo et al., 2001).  Microdochium nivale  produces conidia in large 28 

numbers which are readily dispersed by wind and rain splash and, along with soil borne 29 

mycelium, are the main source of inoculum (Tronsmo et al., 2001). In turfgrasses, M. nivale is 30 

regarded as the most damaging pathogen of temperate climates, infecting and causing disease 31 

in most cool season species, causing pink snow mould and microdochium patch (Vargas, 32 

2005). Chemical protectants represent the foremost tool used to control this pathogen  (Smiley 33 

et al., 1992; Yang et al., 2011) and while the efficacy and safety of these plant protection 34 

products is not disputed, development of alternative means of reducing susceptibility is 35 

desirable. Phosphite is an attractive alternative to established turfgrass plant protectants for a 36 

number of reasons, to date there has been no issues regarding resistance, it is highly mobile 37 

within the plant, its ability to induce plant defence responses and its reported enhancement of 38 

turfgrass quality. While phosphite is registered as a fungicide in some legislations, in many it 39 

is regarded as a biostimulant. However it is the alternative mode of action in suppressing 40 

numerous plant pathogens that is of interest here. 41 

Phosphite (PO3
3-) is a reduced form of phosphorus (P) derived from the alkali metal salts of 42 

phosphorous acid (H3PO3) (Guest and Grant, 1991). The pH of phosphorous acid is modified 43 

to prevent phytotoxicity, commonly by combining with potassium hydroxide (KOH), forming 44 

potassium dihydrogen phosphite (KH2PO3) or dipotassium hydrogen phosphite (K2HPO3). 45 

Phosphite is chemically similar to phosphate (PO4
3-), but the different tetrahedral molecular 46 

structure of phosphite ensures that enzymes, which react with phosphate to catalyse 47 

metabolic processes, do not bind to phosphite in the same manner ensuring that phosphite 48 

does not supply a metabolically usable form of P  (Mcdonald et al., 2001). Phosphite,  49 

however,  has significant properties as an inhibitor of plant pathogens (Fenn and Coffey, 50 
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1984). The  mode of suppression remains a subject of debate (Abbasi and Lazarovits, 2006) 51 

with research showing it as acting both directly on the pathogen and indirectly by stimulating 52 

host defences (Guest and Grant, 1991). 53 

The use of in vitro studies is an established method to assess a compound’s ability either to 54 

reduce or inhibit the growth of, or to kill plant pathogenic organisms (Mann, 2002; Glynn et 55 

al., 2008; Hofgaard et al., 2010). When compiling a disease protection programme an 56 

important factor is determining whether a compound is fungicidal or fungistatic. It is possible 57 

that at sufficient concentrations, fungistatic compounds will prevent fungal growth and 58 

sporulation fully but, upon removal, the effects are reversed and growth will re-commence. 59 

This would have a significant bearing on the application rate and interval. 60 

Most studies on phosphite mediated inhibition of plant pathogens have been on its effects on 61 

oomycetes. Suppression of Pythium by phosphite under field conditions was reported by 62 

Sanders (1983), but when no in vitro inhibition was demonstrated it was concluded that 63 

control resulted from enhanced host defences. However, Fenn and Coffey (1984, 1987) 64 

demonstrated that phosphite inhibited four Pythium spp. and Phytophthora cinnamomi in 65 

vitro. Phytophthora  cinnamomi exhibited sensitivity to phosphite with EC50 values (Effective 66 

Concentration which reduces growth by 50% of control growth) ranging from 4 to 148 μg ml-67 

1 (Wilkinson et al., 2001). In a later study Pythium spp. were inhibited  with EC50 values 68 

between 38.7 and 220.8 μg/ml-1 (Cook et al., 2009). This direct mode of inhibition seems to 69 

involve disruption of the pathogen’s metabolism. For example, a study with three 70 

Phytophthora species showed that phosphite interfered with phosphate metabolism in 71 

pathogen cells by causing an accumulation of polyphosphate and pyrophosphate, diverting 72 

ATP from other metabolic pathways, resulting in reduced growth (Niere et al., 1994). Other 73 

studies determined that phosphite inhibited enzymes of the glycolytic and phosphogluconate 74 
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pathways, disrupting phosphorus metabolism in P. palmivora by competing with phosphate 75 

as an allosteric regulator on several enzymes (Stehmann and Grant, 2000).  76 

Less has been published on the in vitro effects of phosphite on fungal pathogens. Reuveni et 77 

al. (2003) showed inhibition of Alternaria alternata mycelial growth and conidial 78 

germination, while Burpee (2005) reported suppression of in vitro growth of Colletotrichum 79 

cereale (Colletotrichum graminicola). Mills et al. (2004) demonstrated that H2PO3 not only 80 

reduced mycelial growth but caused complete inhibition of sporulation of A. alternata, 81 

Botrytis cinerea and Fusarium solani. Growth of F. culmorum and F. graminearum was 82 

reduced on KH2PO3 amended PDA (Hofgaard et al., 2010). The same study included the 83 

effects of phosphite on Microdochium majus, and found that mycelial growth was reduced by 84 

more than 90% at the lowest KH2PO3 concentration used (10 μg ml−1), with full inhibition at 85 

concentrations of 100 μg ml−1 (Hofgaard et al., 2010)(Hofgaard et al., 2010)(Hofgaard et al., 86 

2010). However, there has been no published data on the in vitro effect phosphite may have 87 

on M. nivale. 88 

Data from turfgrass field trials conducted to evaluate M. nivale suppression by KH2PO3, 89 

determined that phosphite significantly (p < 0.05) suppressed disease symptom expression  90 

(Dempsey et al., 2012).  The success of these trials led to this current research to discover 91 

possible modes of suppression. The aims of this research, therefore, were to determine the 92 

effect phosphite may have on the in vitro mycelial growth and conidial germination of M. 93 

nivale, and to determine if phosphite has fungistatic or fungicidal properties.  94 

Materials and methods  95 

Microdochium nivale mycelial and conidial inoculum  96 

Four isolates of M. nivale were assessed. Two isolates were obtained from infected Poa annua 97 

golf greens on Irish golf courses, the remainder from the Sports Turf Research Institute, 98 

Bingley, UK. The isolates were confirmed as M. nivale by Crops Research, Oak Park, Teagasc, 99 
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Carlow, using molecular biology techniques as described by Glynn et al. (2005). Conidiation 100 

was induced by incubating mycelia in darkness for 48 hours and then exposing to UV light 101 

(Jewell and Hsiang, 2013). Conidia were then collected by flooding the plate with sterile 102 

distilled water (SDW) and scraping with a sterile rod, immediately before use in experiments. 103 

PDA amendments, H3PO3, H3PO4, KH2PO3, KH2PO4 and KOH  104 

Phosphorous acid (H3PO3) and phosphoric acid (H3PO4), were obtained from 1 M  reagent 105 

grade solutions (supplied by Lennox Laboratory Supplies, Dublin). Dihydrogen potassium 106 

phosphite (KH2PO3) and dihydrogen potassium phosphate (KH2PO4)  amendments were 107 

prepared by titrating 1 M solution phosphorus and phosphoric acids with 6 M reagent-grade 108 

potassium hydroxide (KOH) to pH 6.5. KOH amendments were prepared from 6 M 109 

potassium hydroxide, and all amendments were serial diluted to required concentrations. 110 

Unamended PDA, containing no additional chemicals, were used as controls. All 111 

experimental compounds were filter sterilised and added to autoclaved Potato Dextrose Agar 112 

(PDA, 19 g/l, Himedia Potato Dextrose Agar, Sparks Laboratory Supplies, Dublin), after 113 

cooling to 50o C to ensure no oxidation of phosphite to phosphate (Komorek and Shearer, 114 

1997). 115 

Measurement of mycelial growth on solid media 116 

Experiments were a randomised complete design with six replications. Measurement of 117 

mycelial growth of M. nivale isolates, incubated on PDA amended with 0 (unamended 118 

control), 10, 50, 100 and 250 μg/ml of H3PO3, H2PO4, KH2PO3, KH2PO4 and KOH were used 119 

to calculate mean daily growth (MDG), percent relative growth (PRG), percent inhibition and 120 

colony diameters. Agar plugs, 5 mm in diameter, were cut from margins of actively-growing 121 

colonies of M. nivale, and transferred to the centre of plates of amended PDA then incubated 122 

in darkness in a growth chamber maintained at 18° +/- 20 C.  Mycelial growth rate was 123 

determined by measuring the colony radius at four points on each plate, from the edge of the 124 
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initial inoculum to the extreme outer margin area of fungal mycelial development and growth 125 

rates (mm day−1) calculated. Radial growth measurements were taken 1, 2, 3, 4, 5, 6, 7, 8, 9, 126 

and 10 days post inoculation (dpi). Mean values of each of the six replicates were used to 127 

calculate MDG and PRG on amended compared to unamended control PDA. PRG was 128 

calculated as (radial growth on amended PDA/radial growth on unamended control PDA) × 129 

100, and was used to calculate percent inhibition (calculated as 100-PRG = percent 130 

inhibition). The effective concentrations that reduced mycelial growth by 50% (EC50) and 131 

90% (EC90) were determined by probit transforming the PRG and regressing against the 132 

Log10 of amendment concentrations. This experiment was repeated three times with similar 133 

results obtained each time. 134 

Determination of fungistatic properties of phosphite 135 

Experiments were a randomised complete design with six replications. Mycelial plugs, 136 

prepared as before, were placed into 10 mL SDW containing 0 (control), 10, 50, 100 and 250 137 

μg/ml of H3PO3, H2PO4, KH2PO3, KH2PO4 and KOH (n=6), and incubated in darkness in a 138 

growth chamber maintained at 18° +/- 20 C for 10 days. The plugs were retrieved, rinsed twice 139 

in SDW and transferred onto fresh unamended PDA and grown in darkness at 18° +/- 20 C 140 

(n=6) for 10 dpi.   Growth responses were measured and the presence or absence of growth 141 

determined if the concentrations were fungicidal or fungistatic. Colony diameters, as 142 

determined above on solid media, were also used to assess the fungistacity of phosphite over 143 

10 dpi. This experiment was repeated twice with similar results each time. 144 

Microscopic analysis of the effect of phosphite on hyphal morphology  145 

Microdochium nivale hyphal morphology was examined by bright field and fluorescence 146 

microscopy using a Bresser epifluorescence microscope. Mycelia, sampled from the outer 147 

margins of actively growing colonies, growing on PDA amended with 0 (unamended control), 148 

10, 50, 100 and 250 μg/ml of H3PO3, H2PO4, KH2PO3, KH2PO4 and KOH were examined. The 149 
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fluorescent dye, Calcofluor White, was used to visualise hyphae as in Dubas et al. (2010). 150 

Images were captured using a Canon D1100 camera and processed by Adobe Photoshop 151 

version 5.0 LE (Adobe Systems, Inc., San Jose, CA). 152 

Effects of phosphite on conidial germination  153 

Experiments were a randomised complete design with six replications. Microdochium nivale 154 

conidial suspensions were filtered through sterile cheesecloth, to remove mycelium,  and 50 μl 155 

aliquots were transferred to 1.5 ml tubes and mixed with 1 ml solutions of 0 (control), 10, 50, 156 

100 and 250 μg/ml concentrations of H3PO3, H2PO4, KH2PO3, KH2PO4 and KOH.  Aliquots 157 

(50 μl) of the mixtures were pipetted onto depressions in cavity microscope slides and 158 

immediately placed on moist tissue paper in 9 cm Petri dishes and sealed (n=6). Following 159 

incubation in darkness in a growth chamber maintained at 18° +/- 20 C for 48 h, the samples 160 

were agitated using an orbital shaker for 1 h  then 20 μl pipetted onto fresh slides. The number 161 

of germinating conidia was counted and percent germination calculated (conidia 162 

germinated/total conidia x 100). Conidia were considered to be germinated when the germ 163 

tube extended to at least twice the length of the conidium (Mills et al., 2004). This experiment 164 

was repeated twice with similar results each time. 165 

Data analysis 166 

Data were analysed using the statistical programme SPSS Statistics 21. Anova assessed for 167 

significant differences among the four isolates of M. nivale used. Data were assessed prior to 168 

analyses to ensure they met the requirements for the relevant statistical methods used. Residual 169 

analyses were performed to test for the assumptions of the two-way Anova, outliers assessed 170 

by inspection of boxplots, normality assessed using Shapiro-Wilk's normality test and 171 

homogeneity of variances was assessed by Levene's test. Two-way Anova, assessed significant 172 

effects and interactions on MDG, percent inhibition, the fungicidal or fungistatic properties of 173 

phosphite, colony diameters and on the percent germination of conidia. Where there were 174 
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significant effects or interactions, one-way Anova, followed by Tukey HSD post hoc tests, at 175 

a significance level of p = 0.05, were used to determine and separate statistical differences. For 176 

calculation of EC50 and EC90 values, probit analysis was used to transform percent inhibition 177 

from sigmoid to linear data and then regress against the Log10 of amendment concentrations. 178 

One-way Anova was then assessed for significant differences among compounds. Where 179 

required, data were suitably transformed prior to analyses and back-transformed for 180 

presentation of charts. 181 

Results 182 

Effects of phosphite on in vitro mycelial growth of M. nivale on solid media 183 

Measurement of mycelial growth of M. nivale isolates grown on amended PDA were carried 184 

out from 1 to 10 dpi. Anova determined no significant (p > 0.05) differences in responses 185 

among the four isolates used and therefore the data were pooled to produce mean daily growth 186 

rates (MDG). Percent relative growth (PRG) rates of M. nivale grown on amended PDA were 187 

used to determine the percent inhibition. The analyses determined a significant (p < 0.05) 188 

difference in growth inhibition among compounds and rates of concentrations used, (Fig.1). 189 

Both H3PO3 and KH2PO3 caused significant inhibition of mycelial growth compared to all other 190 

compounds. EC50 and EC90 values, calculated at 5 dpi, were 40.99 and 80.90 μg/ml for the 191 

H3PO3 and 35.95 and 77.68 μg/ml for the KH2PO3, respectively. In contrast, there was no 192 

significant (p > 0.05) growth inhibition with H3PO4, KH2PO4 and KOH amendments. 193 

Statistical analysis determined the KH2PO3 PRG growth values were significantly (p < 0.05) 194 

lower than the H3PO3. Mycelial growth of M. nivale was suppressed by PO3
3- presence when 195 

compared to plates amended with H3PO4, KH2PO4 and KOH (Fig. 2). 196 

Fungistatic properties of phosphite 197 

Colony diameters of the M. nivale isolates, which had been immersed in a range of compound 198 

concentrations for 10 days, were grown on and recorded at 5 (Fig. 3) and 10 dpi. Mean colony 199 
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diameters with concentrations of 0 (control) and 10 μg/ml had no significant (p > 0.05) effect. 200 

While there were significant (p < 0.05) differences in growth determined following immersion 201 

in the 50, 100, 250 and 500 μg/ml concentrations, with some suppression of growth, there was 202 

no complete inhibition. Further evidence of the fungistatic rather than fungicidal properties of 203 

phosphite was determined by measurement of colony diameters growing on H3PO3 and 204 

KH2PO3 amended PDA at 10 dpi. Evidence that phosphite reduces rather than fully inhibits 205 

growth can be seen in Fig 4, which show that colonies continued to grow to the end of the 10 206 

dpi experimental period. 207 

Effects of phosphite on hyphal morphology 208 

Microdochium nivale hyphae, viewed using brightfield microscopy at 100x magnification in 209 

unamended control PDA (Fig. 5 A) showed normal morphology, as evidenced by the smooth 210 

hyphal outlines. Hyphae grown on H3PO4 (Fig. 5 B) and KOH (Fig. 5 C) amended PDA, 211 

appeared similar to those on unamended controls.  M. nivale hyphae grown on  H3PO3 at 212 

concentrations of 75 and 100 μg/ml amended PDA, displayed an altered hyphal morphology 213 

(Figs 5 D and 5 E). In the presence of phosphite, M. nivale hyphae appeared swollen, short-214 

branched and stunted, compared to hyphae grown on PO4
3- and KOH amended plates. 215 

 216 

Effects of phosphite on conidial germination 217 

Microdochium nivale conidia in amended solutions were incubated in darkness and conidial 218 

germination assessed. Conidia in all the 0 μg/ ml-1 unamended controls did not achieve 100% 219 

germination, with the highest rate of 85.6% determined in one of the sets of 6 replicates. 220 

Whilst there were only minor differences in germination rates in the 10 μg/ ml-1 221 

concentrations of all compounds, at the 50, 100 and 250 μg/ml concentrations, germination 222 

rates in the H3PO3 and KH2PO3 amended plates were significantly (p < 0.05) less than with 223 

all other compounds (Fig. 6). 224 
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Discussion  225 

The majority of research with phosphite for controlling plant pathogens has been with 226 

oomycetes (Coffey and Bower, 1984; Smillie et al., 1989; Cook et al., 2005; Garbelotto et al., 227 

2008). In contrast,  relatively few studies have focused on phosphite suppressing the in vitro 228 

growth of ascomycetes (Reuveni et al., 2003; Burpee, 2005). Numerous assessments of M. 229 

nivale mycelial growth on amended PDA were conducted, and bright field and fluorescence 230 

microscopy was used to assess effects on individual hyphae and conidial structures. These 231 

studies have shown that phosphite reduces mycelial growth, interferes with morphological 232 

development and reduces spore germination. Whilst the effects of phosphite on M. majus were 233 

investigated by Hofgaard et al. (2010), the present study is the first to provide equivalent data 234 

for M. nivale, the more significant pathogen of turf grasses. Significant growth suppression 235 

of M. nivale was shown in the presence of phosphite with no statistical (p > 0.05) difference 236 

between the four M. nivale isolates, despite being sourced from different geographical 237 

locations. Replication of these studies using a wider pathogen population would be of value 238 

as it would verify the findings here that all isolates are affected to similar levels. 239 

Phosphite significantly suppressed in vitro mycelial growth of M. nivale. This inhibitory 240 

effect was also reflected in the disruption of hyphal morphology and the reduction in percent 241 

conidial germination. This sensitivity of M. nivale to phosphite was further evident from EC50 242 

and EC90 values of 40.99 and 80.90 μg/ml for the H3PO3 and 35.95 and 77.68 μg/ml  for the 243 

KH2PO3, respectively,  at 5 dpi.  244 

While both H3PO3 and KH2PO3 inhibited growth, the EC values highlight significant (p < 0.05) 245 

differences between these compounds. The differences in EC values could be attributed to 246 

combinations of compounds used,  where there were significant (p < 0.05) differences between 247 

the inhibitory effects of both compounds at all concentrations used, with the exception of the 248 

250 μg/ml. Bucking and Heyser (1999) stated that the presence of K facilitates the uptake of 249 



Suppression of M. nivale by phosphite 

11 
 

 

mobile polyphosphate into fungal cells, maintaining that it helps retain the charge balance and 250 

pH of the fungal cell and is the counter ion to the transport of polyphosphates into the vacuole. 251 

Darakis et al. (1997) concluded the presence of K facilitated phosphite uptake into 252 

Phytophthora capsici hyphae. If mycelial growth suppression is used as an indicator of 253 

increased phosphite assimilation, then this enhanced assimilation of phosphite in the presence 254 

of K may have occurred, as statistically KH2PO3 produced significantly (p < 0.05) greatly 255 

inhibition compared to H3PO3. Compared to phosphite amendments, concentrations of H3PO4, 256 

KH2PO4 and KOH induced no similar significant inhibitory effects. The inhibitory effects of 257 

phosphate, at concentrations of 50 μg/ml and above, while significantly (p < 0.05) less than 258 

that of phosphite, were not unexpected. Reuveni et al. (1996) studying the infection of 259 

cucumber (Cucumis sativus L.) by the ascomycete pathogen Sphaerotheca fuliginea 260 

(Schlecht.:Fr.), demonstrated that disease symptoms were suppressed by a foliar spray 261 

treatment of KH2PO4. Howard (2001) confirmed that phosphate had fungicidal properties 262 

against a number of fungal species in vitro.  263 

The effect of KOH on mycelial growth inhibition is an area of particular interest. Levels of K, 264 

currently recommended for management of cool-season amenity turfgrasses, appeared to 265 

increase susceptibility to M. nivale, when compared to lower K inputs (Soldat and Koch, 2016). 266 

As phosphite is most commonly pH adjusted with KOH, the results here (Fig. 1) showed that 267 

KOH concentrations of 100 and 250 μg/ml significantly inhibited mycelial growth compared 268 

to similar concentrations of H3PO4 and KH2PO4. This inhibitory effect possibly due to the 269 

increased pH of KOH amendments. 270 

To date, there have been no published data specifically on the growth suppression of M. nivale, 271 

by phosphite in vitro. The results here, however, reflect the findings of Cook et al.  (2009), 272 

who carried out a series of in vitro studies using KH2PO3 and KH2PO4 amended growth 273 
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medium, inoculated with the oomycete pathogen Pythium aphanidermatum. Whilst KH2PO3 274 

inhibited growth of mycelia, KH2PO4 had no effect on growth, comparable to the results found 275 

here with M. nivale suppression. The closest related research to the present study was by 276 

Hofgaard et al. (2010), who examined the in vitro mycelial growth of M. majus on PDA 277 

amended with a range of concentrations of a foliar fertiliser containing 731 g/l of a 50% 278 

KH2PO3 solution. At 10 μg/ml, mycelial growth was reduced by more than 90% and at 279 

concentrations above 50 μg/ml, growth was inhibited fully. Their results appear to show 280 

phosphite as having significantly lower EC50 values than those reported here, either perhaps 281 

because M. majus is more susceptible to phosphite than M. nivale, or possibly due to 282 

differences in experimental methods. 283 

The mode of action by which phosphite inhibits mycelial growth has been the subject of a 284 

number of studies. Most conclude that inhibition involves disruption of phosphorus 285 

metabolism and inhibition of enzymes involved in the glycolytic and phosphogluconate 286 

pathways (Grant et al., 1990; Niere et al., 1994; Stehmann, 2000; Mcdonald et al., 2001). 287 

Barchietto et al. (1992) demonstrated that phosphite interacts with phosphate for the catalytic 288 

site of phosphorylating enzymes, and concluded that in Phytophthora spp. the activity of 289 

phosphite produced a physiological state similar to that produced as a result of P limitation. 290 

The disruption to hyphal morphology in M. nivale may be due to P deficiency in the presence 291 

of phosphite. This malformation of hyphae induced by phosphite/phosphate antagonism was 292 

also seen by Wong (2006), who studied the effect of phosphite on the hyphal morphology of 293 

Phytophthora spp. In the presence of phosphite, hyphae were stunted and swollen, again in a 294 

manner similar to those of M. nivale. This P deficiency view is supported by the findings of 295 

Niere et al. (1994), who concluded that phosphite inhibition in Phytophthora spp. was due to 296 

interference with phosphate metabolism, as the presence of phosphite led to increases in both 297 
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pyrophosphate and polyphosphate. They concluded that increased accumulation of phosphite 298 

interfered with phosphate metabolism and diverted ATP from other pathways of metabolism, 299 

resulting in decreased mycelial growth rates. Furthermore, they suggest that accumulation of 300 

pyrophosphate and polyphosphate also alters the ion balance concentrations of potassium, 301 

magnesium, calcium and iron, influencing the activity of enzymes catalysing essential steps 302 

in metabolism. 303 

An important aspect of this study was to determine if phosphite acted as a fungicide and killed 304 

the pathogen or was fungistatic, reducing or slowing hyphal growth. Evidence of the 305 

fungistatic properties of phosphite were clearly demonstrated when, after being immersed in 306 

a range of phosphite concentrations for 10 days, M. nivale recommenced growth after transfer 307 

to un-amended PDA, without displaying any major malformation and in a manner similar to 308 

the samples immersed in phosphate and KOH. Complimenting these data, and supporting the 309 

fungistatic rather than fungicidal properties of phosphite, are that when plated on phosphite 310 

amended PDA, M. nivale growth, while significantly reduced, was not fully suppressed, but 311 

continued to grow at a reduced rate over 10 dpi. 312 

The ability of oomycetes and fungi to tolerate the presence of phosphite and maintain a 313 

suppressed growth rate can be explained by Dunstan et al. (1990), who found that P. palmivora 314 

was able to remove phosphite from its mycelium. Similarly, Smillie et al. (1989) found that 315 

phosphite accumulated in P. palmivora during the first 5 days of growth, but showed a 316 

subsequent decrease in cellular phosphite. Results of a metabolite profile study of 317 

Phytophthora spp. by Grant et al. (1990) led them to conclude that phosphite accumulation in 318 

mycelium was transient, as within 9 days phosphite had completely disappeared from the 319 

mycelium. This supports the findings in this present study, were we found full suppression of 320 

growth 5 dpi in PDA amended with phosphite at 250 μg/ml. However, from 6 to 10 dpi growth 321 

in the 250 μg/ml amendments commenced and increased toward the end of the 10 dpi period. 322 
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This area merits further research as to the means by which this occurs. It may be that as 323 

phosphite is assimilated by the fungus phosphite to phosphate ratio in the media is altered and 324 

as Smillie et al. (1989) concluded phosphate significantly influences the take up of phosphite 325 

This determination of phosphite as a fungistat rather than a fungicide has significant relevance 326 

to disease control programmes and to the marketing of phosphite products. Depending on the 327 

active ingredient and its biochemical mode of action, a fungicide can be applied either as a 328 

preventative measure or as a curative to control disease infection. With a fungistatic compound, 329 

which slows the growth rather than kills the pathogen, the control programme usually requires 330 

treatment as a preventative measure, therefore requiring continuous sequential applications. 331 

The sequential application programme would ensure the phosphite was always present in 332 

planta, in order to continually suppress pathogen growth.  333 

Conidial production is vital in the spread of inoculum, therefore any reduction would have a 334 

significant impact on disease spread and incidence. The results here show that the inclusion 335 

of phosphite in the propagating solution led to a significant reduction in conidial germination. 336 

This inhibition of spore germination by phosphite has been well documented in oomycetes, 337 

but less so in ascomycetes (Reuveni et al., 2003; Mills et al., 2004). Wong (2006) for 338 

example, showed that phosphite retarded spore germination in Phytophthora spp., and also 339 

provided evidence that phosphite caused distortion and lysis of the spores. Although 340 

phosphite inhibited spore germination in M. nivale, no conidial distortion or lysis was 341 

observed. While there are no published data on the effect phosphite has on M. nivale conidial 342 

germination, Hofgaard et al. (2010) demonstrated that increased phosphite concentrations 343 

correlated directly with delayed sporulation of M. majus on detached wheat leaves. Based on 344 

in vitro and detached leaf experiments, they concluded phosphite can suppress fungal 345 

reproduction and slow pathogenic growth, allowing a host plant’s defence system time to 346 

react, reducing the severity of infection. 347 
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This study has produced significant and novel data which is relevant to methods of turfgrass 348 

disease prevention and control. The main conclusions are that phosphite suppressed M. nivale 349 

mycelial growth, disrupted hyphal morphology and reduced conidial germination. Both hyphae 350 

and conidia are infective propagules, providing inoculum for the diseases caused by M. nivale. 351 

It is clearly demonstrated here that the incorporation of phosphite into growth media 352 

significantly suppresses the growth and development of these infective propagules in vitro and 353 

therefore supports the findings of Dempsey et al. (2012) where it was demonstrated that 354 

phosphite significantly reduced M. nivale infection in the field.  Further work in this area should 355 

assess the possible effect on turfgrass phosphate metabolism in the presence of phosphite and 356 

determine any effects on turfgrass growth. 357 

References 358 

Abbasi, P. A. and Lazarovits, G. (2006). Seed treatment with phosphonate (AG3) suppresses pythium damping-359 
off of cucumber seedlings. Plant Disease 90(4): 459-464.  360 
Barchietto, T., Saindrenan, P. and Bompeix, G. (1992). Physiological responses of Phytophthora citrophthora to 361 
a subinhibitory concentration of phosphonate. Pesticide Biochemistry and Physiology 42(2): 151-166.  362 
Bücking, H. and Heyser, W. (1999). Elemental composition and function of polyphosphates in ectomycorrhizal 363 
fungi — an X-ray microanalytical study. Mycological Research 103(1): 31-39.  364 
Burpee, L. L. (2005). Sensitivity of Colletotrichium graminicola to phosphonate fungicides. International 365 
Turfgrass Society Research Journal 10: 163-169.  366 
Coffey, M. D. and Bower, L. A. (1984). In vitro variability among isolates of eight Phytophthora species in 367 
response to phosphorous acid. Phytopathology 74: 738-742.  368 
Cook, J., Landschoot, P. J. and Schlossberg, M. J. (2005). Evaluation of phosphonate fungicides for control of 369 
anthracnose basal rot and putting green quality: 1-14.  370 
Cook, P. J., Landschoot, P. J. and Schlossberg, M. J. (2009). Inhibition of Pythium spp. and suppression of 371 
pythium blight of turfgrasses with phosphonate Fungicides. Plant Disease 93(8): 809-814.  372 
Darakis, G. A., Bourbos, V. A. and Skoudridakis, M. T. (1997). Phosphonate transport in Phytophthora capsici. 373 
Plant Pathology 46(5): 762-772.  374 
Dempsey, J. J., Wilson, I. D., Spencer-Phillips, P. T. N., et al. (2012). Suppression of Microdochium nivale by 375 
potassium phosphite in cool-season turfgrasses. Acta Agriculturae Scandinavica, Section B - Plant Soil Science 376 
62(Supplement 1): 70-78.  377 
Dubas, E., Golebiowska, G., Zur, I., et al. (2010). Microdochium nivale (Fr., Samuels & Hallett): cytological 378 
analysis of the infection process in triticale (×Triticosecale Wittm.). Acta Physiologiae Plantarum.  379 
Dunstan, R. H., Smillie, R. H. and Grant, B. R. (1990). The effects of sub-toxic levels of phosphonate on the 380 
metabolism and potential virulence factors of Phytophthora palmivora. Physiological and Molecular Plant 381 
Pathology 36(3): 205-220.  382 
Fenn, M. and Coffey, M. D. (1987). Phosphonate Fungicides for control of diseases caused by Phytophthora. 383 
California Avocado Society 1987 Yearbook 71: 241-249.  384 
Fenn, M. E. and Coffey, M. D. (1984). Studies on the in vitro and in vivo antifungal activity of  Fosetyl-Al and 385 
phosphorus acid. Phytopathology 74(5): 606-611.  386 
Garbelotto, M., Harnik, T. Y. and Schmidt, D. J. (2008). Efficacy of phosphonic acid, metalaxyl-M and copper 387 
hydroxide against Phytophthora ramorum in vitro and in planta. Plant Pathology 58(1): 1-9.  388 
Glynn, N. (2005). Phylogenetic analysis of EF-1 alpha gene sequences from isolates of Microdochium nivale 389 
leads to elevation of varieties majus and nivale to species status. Mycological Research 109(8): 872-880.  390 



Suppression of M. nivale by phosphite 

16 
 

 

Glynn, N. C., Hare, M. C. and Edwards, S. G. (2008). Fungicide seed treatment efficacy against Microdochium 391 
nivale and M. majus in vitro and in vivo. Pest Management Science 64(8): 793-799.  392 
Grant, B., Dunstan, R., Griffith, J., et al. (1990). The Mechanism of phosphonic (phosphorous) acid action in 393 
Phytophthora. Australasian Plant Pathology 19(4): 115-121.  394 
Guest, D. and Grant, B. (1991). The complex action of phosphonates as antifungal agents. Biological Reviews 395 
66(2): 159-187.  396 
Hofgaard, I. S., Ergon, Å., Henriksen, B., et al. (2010). The effect of potential resistance inducers on 397 
development of Microdochium majus and Fusarium culmorum in winter wheat. European Journal of Plant 398 
Pathology 128(2): 269-281.  399 
Howard, K. (2001). The effect of the fungicide phosphite on ectomycorrhizal fungi. Scool of Biological Sciences 400 
and Biotechnology, Murdoch.  401 
Jewell, L. and Hsiang, T. (2013). Differences in the timing and mechanisms of the infection processes of 402 
Microdochium nivale and Microdochium majus  on wheat (Triticum aestivum) and Kentucky bluegrass (Poa 403 
pretensis). International Turfgrass Society Research Journal 12: 111-118.  404 
Komorek, B. M. and Shearer, B. L., Eds. (1997). Application technologies and phosphonate movement in the 405 
host. Control of Phytophthora and Diplodina canker in Western Australia.  406 
Mann, R. (2002). In vitro fungicide sensitivity of Microdochium nivale  isolates from the UK. Journal of 407 
Turfgrass and Sports Surface Science 78(25-30). 408 
McDonald, A., Grant, B. and Plaxton, W. (2001). Phosphite (phosphorous acid): its relevance in the 409 
environment and agriculture and influence on plant phosphate starvation response. Journal of Plant Nutrition 410 
24(10): 1505-1519.  411 
Mills, A. A. S., Platt, H. W. and Hurta, R. A. R. (2004). Effect of salt compounds on mycelial growth, 412 
sporulation and spore germination of various potato pathogens. Postharvest Biology and Technology 34(3): 341-413 
350.  414 
Niere, J., Deangelis, G. and Grant, B. (1994). The effect of phosphonate on the acid-soluble phosphorus 415 
components in the genus Phytophthora. Microbiology 140(7): 1661-1670.  416 
Reuveni, M., Agapov, V. and Reuveni, R. (1996). Controlling powdery mildew caused by Sphaerotheca 417 
fuliginea in cucumber by foliar sprays of phosphate and potassium salts. Crop Protection 15: 49-53.  418 
Reuveni, M., Sheglov, D. and Cohen, Y. (2003). Control of moldy-core decay in apple fruits by β-Aminobutyric 419 
acids and potassium phosphites. Plant Disease 87(8): 933-936. 420 
Sanders, P. L. (1983). Control of Pythium spp. and pythium blight of turfgrass with Fosetyl Aluminum. Plant 421 
Disease 67(12): 1382-1383.  422 
Smiley, R., Dernoeden, P. and Clarke, B. (1992). Compendium of Turfgrass Diseases.2nd Ed St Paul, APS 423 
Press.  424 
Smillie, R., B. R. Grant and Guest, D. (1989). The mode of action of phosphite: evidence for both direct and 425 
indirect modes of action on three Phytophthora spp. in plants. Phytopathology 79(9): 921-926.  426 
Soldat, D. and Koch, P. (2016) Potassium fertilization increases microdochium patch incidence and severity on 427 
creeping bentgrass. Crop Science Society of America, Phoenix, Arizona.  428 
Stehmann, C. (2000). Inhibition of enzymes of the glycolytic pathway and hexose monophosphate bypass by 429 

phosphonate. Pesticide Biochemistry and Physiology 67(1): 13-24. 430 
Tronsmo, A. M., Hsiang, T., Okuyama, H., et al. (2001). Low temperature diseases caused by Microdochium 431 
nivale. Low temperature plant microbe interactions under snow. D. A. G. N. Iriki, A.M. Tronsmo, N. 432 
Matsumoto, M. Yoshida and a. A. Nishimune. Sapporo, Japan., Hokkaido National Agricultural Experiment 433 
Station.  434 
Vargas, J. (2005). Management of Turfgrass Diseases New Jersey, Wiley and Sons.  435 
Wilkinson, C. J., Shearer, B. L., Jackson, T. J., et al. (2001). Variation in sensitivity of Western Australian 436 
isolates of Phytophthora cinnamomi to phosphite in vitro. Plant Pathology 50(1): 83-89.  437 
Wong, M.-H. (2006). Phosphite induces morphological and molecular changes in Phytophthora. School of 438 
Biological Sciences and Biotechnology. Perth, Australia, Murdoch   439 
Yang, C., Hamel, C., Vujanovic, V., et al. (2011). Fungicide: modes of action and possible impact on nontarget 440 
microorganisms. ISRN Ecology 2011: 1-8.  441 
 442 

Figure legends 443 

Figure 1 Inhibition of Microdochium nivale mycelial growth on phosphorous acid (H3PO3), phosphoric 444 
acid (H3PO4), dihydrogen potassium phosphite (KH2PO3), dihydrogen potassium phosphate (KH2PO4), 445 
and potassium hydroxide (KOH) amended PDA.  446 
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Inhibition of M. nivale mycelial growth on PDA amended with a: 10 μg/ml; b: 50 μg/ml; c: 100 μg/ml; d: 250 447 
μg/ml of H3PO3, H2PO4, KH2PO3, KH2PO4 and KOH, presented as % inhibition of growth on unamended PDA. 448 
Growth rates calculated from pooled data of each of the four M. nivale isolates, n=6, by measuring the colony 449 
radii at four points on each plate, 4 dpi.  Bars are 95% confidence intervals. Letters indicate significant 450 
differences among compounds, as determined by Tukey HSD at p = 0.05.  451 
 452 
Figure 2 Microdochium nivale colonies on amended PDA at 5 days post inoculation.  453 
A: unamended control; B: phosphorous acid (H3PO3),  100 μg/ml; C: phosphoric acid (H3PO4), 100 μg/ml; D: 454 
dihydrogen potassium phosphite (KH2PO3), 100 μg/ml; E: dihydrogen potassium phosphate (KH2PO4), 100 455 
μg/ml F: potassium hydroxide (KOH), 100 μg/ml.

 456 
 457 
Figure 3 Effect of immersion of Microdochium nivale mycelium in solutions of phosphorous acid (H3PO3), 458 
phosphoric acid (H3PO4), dihydrogen potassium phosphite (KH2PO3), dihydrogen potassium phosphate 459 
(KH2PO4), and potassium hydroxide (KOH). 460 
Microdochium nivale colony diameters (mm) 5 days after transfer to unamended PDA, following immersion for 461 
10 days in a: 50 μg/ml; b: 100 μg/ml; c: 250 μg/ml; d: 500 μg/ml solutions of H3PO3, H2PO4, KH2PO3, KH2PO4 462 
and KOH. Data are mean values, n=6, pooled from four M. nivale isolates. Bars are 95% confidence intervals. 463 
Letters indicate significant differences between colony diameters at each compound concentration used, as 464 
determined by Tukey HSD at p = 0.05. 465 

 466 

Figure 4 Radial growth of Microdochium nivale mycelium 10 days post inoculation on phosphorous acid 467 
(H3PO3) and dihydrogen potassium phosphite (KH2PO3) amended PDA.  468 
Microdochium nivale colony diameters in mm, 10 days post inoculation, growing on PDA amended with 0 469 
(control), 10, 50 100 and 250 μg/ml of H3PO3 and KH2PO3.Colony diameters were determined by measuring the 470 
radii at four points on each plate. Bars are 95% confidence intervals. Letters indicate significant differences 471 
between compounds at each amendment concentration, as determined by Tukey HSD at p = 0.05. 472 
 473 

Figure 5 Brightfield micrographs of Microdochium nivale hyphal growth in amended PDA.  474 
a: unamended control; b: phosphoric acid (H3PO4), 100 μg/ml; c: potassium hydroxide (KOH), 100 μg/ml; d: 475 
phosphorous acid (H3PO3), 75 μg/ml; e: phosphorous acid (H3PO3), 100 μg/ml.  476 

 477 

Figure 6 Effect of phosphite on germination of Microdochium nivale conidia.  478 
Germination of M. nivale conidia following immersion in solutions of a: 10 μg/ml; b: 50 μg/ml; c: 100 μg/ml; d: 479 
250 μg/ml μg/ml concentrations of phosphorous acid (H3PO3), phosphoric acid (H3PO4), dihydrogen potassium 480 
phosphite (KH2PO3), dihydrogen potassium phosphate (KH2PO4), and potassium hydroxide (KOH) after 481 
incubation at 18° +/- 20 C for 48 h. Data were arcsine transformed prior to analysis and back-transformed for this 482 
graph. Bars are 95% confidence intervals. Letters indicate significant differences between compounds as 483 
determined by Tukey HSD at p = 0.05. 484 
 485 
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Figure 1 Inhibition of Microdochium nivale mycelial growth on phosphorous acid (H3PO3), 
phosphoric acid (H3PO4), dihydrogen potassium phosphite (KH2PO3), dihydrogen potassium 
phosphate (KH2PO4), and potassium hydroxide (KOH) amended PDA.  
Inhibition of M. nivale mycelial growth on PDA amended with a: 10 μg/ml; b: 50 μg/ml; c: 100 μg/ml; 
d: 250 μg/ml of H3PO3, H2PO4, KH2PO3, KH2PO4 and KOH, presented as % inhibition of growth on 
unamended PDA. Growth rates calculated from pooled data of each of the four M. nivale isolates, n=6, 
by measuring the colony radii at four points on each plate, 4 dpi.  Bars are 95% confidence intervals. 
Letters indicate significant differences among compounds, as determined by Tukey HSD at p = 0.05. 



 

Figure 2 Microdochium nivale colonies on amended PDA at 5 days post inoculation.  

A: unamended control; B: phosphorous acid (H3PO3), 100 μg/ml; C: phosphoric acid (H3PO4), 100 μg/ml; D: 

dihydrogen potassium phosphite (KH2PO3), 100 μg/ml; E: dihydrogen potassium phosphate (KH2PO4), 100 

μg/ml F: potassium hydroxide (KOH), 100 μg/ml. 
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Figure 3 Effect of immersion of Microdochium nivale mycelium in solutions of phosphorous acid (H3PO3), phosphoric 
acid (H3PO4), dihydrogen potassium phosphite (KH2PO3), dihydrogen potassium phosphate (KH2PO4), and 
potassium hydroxide (KOH). 
Microdochium nivale colony diameters (mm) 5 days after transfer to unamended PDA, following immersion for 10 days in 

a: 50 μg/ml; b: 100 μg/ml; c: 250 μg/ml; d: 500 μg/ml solutions of H3PO3, H2PO4, KH2PO3, KH2PO4 and KOH. Data are mean values, 

n=6, pooled from four M. nivale isolates. Bars are 95% confidence intervals. Letters indicate significant differences between 

colony diameters as determined by Tukey HSD at p = 0.05. 
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Figure 4 Radial growth of Microdochium nivale mycelium 10 days post inoculation on phosphorous acid 
(H3PO3) and dihydrogen potassium phosphite (KH2PO3) amended PDA.  

Microdochium nivale colony diameters in mm, 10 days post inoculation, growing on PDA amended with 0 (control), 

10, 50 100 and 250 μg/ml of H3PO3 and KH2PO3.Colony diameters were determined by measuring the radii at four 

points on each plate. Bars are 95% confidence intervals. Letters indicate significant differences between compounds 

at each amendment concentration, as determined by Tukey HSD at p = 0.05. 

 



 

Figure 5 Brightfield micrographs of Microdochium nivale hyphal growth in amended PDA.  

a: unamended control; b: phosphoric acid (H3PO4), 100 μg/ml; c: potassium hydroxide (KOH), 100 μg/ml; d: 

phosphorous acid (H3PO3), 75 μg/ml; e: phosphorous acid (H3PO3), 100 μg/ml.  
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Figure 6 Effect of phosphite on germination of Microdochium nivale conidia.  

Germination of M. nivale conidia following immersion in solutions of a: 10 μg/ml; b: 50 μg/ml; c: 100 μg/ml; d: 250 μg/ml 

μg/ml concentrations of phosphorous acid (H3PO3), phosphoric acid (H3PO4), dihydrogen potassium phosphite (KH2PO3), 

dihydrogen potassium phosphate (KH2PO4), and potassium hydroxide (KOH) after incubation at 18° +/- 20 C for 48 h. Data 

were arcsine transformed prior to analysis and back-transformed for this graph. Bars are 95% confidence intervals. Letters 

indicate significant differences between compounds as determined by Tukey HSD at p = 0.05. 
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