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ABSTRACT

Theoretical models of G protein-coupled receptor (GPCR) concentration-response relationships often as-
sume an agonist producing a single functional response via a single active state of the receptor. These
models have largely been analysed assuming steady-state conditions. There is now much experimental
evidence to suggest that many GPCRs can exist in multiple receptor conformations and elicit numerous
functional responses, with ligands having the potential to activate different signalling pathways to vary-
ing extents-a concept referred to as biased agonism, functional selectivity or pluri-dimensional efficacy.
Moreover, recent experimental results indicate a clear possibility for time-dependent bias, whereby an
agonist’s bias with respect to different pathways may vary dynamically. Efforts towards understanding
the implications of temporal bias by characterising and quantifying ligand effects on multiple pathways
will clearly be aided by extending current equilibrium binding and biased activation models to include
G protein activation dynamics. Here, we present a new model of time-dependent biased agonism, based
on ordinary differential equations for multiple cubic ternary complex activation models with G protein
cycle dynamics. This model allows simulation and analysis of multi-pathway activation bias dynamics at
a single receptor for the first time, at the level of active G protein («grp), towards the analysis of dy-
namic functional responses. The model is generally applicable to systems with N¢ G proteins and N* ac-
tive receptor states. Numerical simulations for N® = N* = 2 reveal new insights into the effects of system
parameters (including cooperativities, and ligand and receptor concentrations) on bias dynamics, high-
lighting new phenomena including the dynamic inter-conversion of bias direction. Further, we fit this
model to ‘wet’ experimental data for two competing G proteins (G; and Gs) that become activated upon
stimulation of the adenosine A; receptor with adenosine derivative compounds. Finally, we show that our
model can qualitatively describe the temporal dynamics of this competing G protein activation.

© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

ceptor (GPCR), activating a single active state and coupling a single
G protein. Concepts like allosterism, inverse agonism, oligomeri-

Mathematical modelling and scientific computing are powerful
tools for the analysis of cell signalling in pharmacology. “Analyt-
ical pharmacology”, which has its roots in classical receptor the-
ory and largely focuses on equilibrium cell responses to drugs,
provides a vital theoretical basis which underpins drug classifi-
cation and prediction of drug mechanism of action (Kenakin and
Christopoulos, 2011). Much of the analysis has centred on assump-
tions of a single ligand binding a monomeric G protein-coupled re-
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sation and “biased signalling” are now widely accepted and have
enhanced receptor theory towards better understanding of drug-
receptor interactions and informed drug discovery (Kenakin and
Williams, 2014). GPCRs represent a target for perhaps up to half
of all current drugs (Woodroffe et al., 2009), and as such, develop-
ment of the theory for ligand-GPCR interactions and their conse-
quences is key.

Biased agonism is now a widely accepted phenomenon whereby
a ligand may activate multiple different pathways at the same re-
ceptor, via multiple active conformations (Kenakin, 2011; Onaran
et al, 2014; Rankovic et al, 2016; Urban et al, 2007). Other
terms for this phenomenon include functional selectivity and pluri-
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Fig. 1. Pluri-dimensional efficacy and biased agonism at a GPCR. (a) A classical view of signalling-two different receptors, each bound and activated (to a single active
conformation) by a specific ligand, and bound by a specific G protein. The activated G protein subunit a¢rp signals to a downstream pathway specific to the G protein. (b)
A two-active-state, two-G protein biased signalling schematic. The receptor has two active states, and the proportion of receptors in either active state, and the inactive
state, may be affected (biased) by a single ligand. Two different G proteins, specific to the active conformations, couple to the receptors and signal to two pathways. (c)

Pluri-dimensional efficacy - multi-active receptor with multiple G proteins, not necessarily each specific to a single receptor conformation. Here we have N*

= 4 active states

(represented by yellow, green, red and blue in the receptor block) and N® =5 G proteins. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

dimensional efficacy, while receptor promiscuity refers to the ability
of a receptor to couple different G proteins with different affini-
ties, via different active states. The possibility of multi-pathway ac-
tivation may lead to a breakdown in the common classifications of
ligands based on single active state theory (Kenakin, 2011), or er-
rors in the interpretation of data using simple models (Tucek et al.,
2002). Therefore, development of biased agonism theory has be-
come an important field of pharmacological research.

Biased signalling has implications for drug discovery, includ-
ing the prospect of clinical selectivity and the potential of reduced
side effects (Kenakin, 2015; Kenakin and Christopoulos, 2013; Stott
et al,, 2015). A schematic of biased agonism is shown in Fig. 1, in-
dicating possibility for a ligand to activate two (or more) G protein
pathways at the same receptor, one of which may be a “target”
therapeutic pathway, while the other may be an unwanted “side-
effect” pathway (panel (b)). To understand, quantify and exploit the
potential for biased agonism, theoretical models for such schemat-
ics are required.

A two-active-state model of ligand binding and receptor activa-
tion at equilibrium was presented in Leff et al. (1997). This equilib-
rium model addressed the limitations of single-active-state theory
which could not recapitulate different pathway potency and effi-
cacy patterns at the same receptor. It was found that theoretically,
an agonist may enrich one active receptor state at the expense of
another, and pathway-dependent efficacy was observed in simula-
tions. For an intact system, however, pathway-dependent potency
(with active receptor as the pathway readout) was not possible.
G protein coupling and activation were not explicitly modelled,
but their importance for future modelling was acknowledged. Later
equilibrium models included the binding of G proteins (Ehlert,
2008; Scaramellini and Leff, 2002), which give further scope for
pathway-dependent pharmacology. An alternative model for biased
agonism is given in Roche et al. (2013), where downstream effects
are modelled not explicitly via G protein binding, but by coupling
the operational model of agonism (Black and Leff, 1983) to active
receptor stimuli. This model does not include constitutive activ-
ity of the receptors. Further equilibrium modelling for promiscuous

coupling of receptors to multiple G proteins has been presented in
Kukkonen et al. (2001) and Tucek et al. (2002).

The direction and magnitude of a ligand’s bias towards one
pathway over another has largely been quantified using equilib-
rium assumptions and empirical models such as the operational
model (Gundry et al.,, 2017; Kenakin, 2014; Kenakin et al., 2012;
Rajagopal et al, 2011). A recent study (Herenbrink et al., 2016)
has highlighted the role of “kinetic context” in approaching such
calculations, whereby the apparent bias of a ligand towards any
given pathway may vary over time. Interpretation of experimental
readouts in terms of bias must therefore take into account the sig-
nalling dynamics and associated timescales of the measured path-
way. Thus, dynamic models of GPCR biased signalling are proposed
here to give new theoretical insights into the effects of biased ag-
onists.

In Chen et al. (2003), an ordinary differential equation (ODE)
model for the dynamics of biased signalling at GPCRs is pre-
sented. The steady-state behaviour of the model is analysed, with
particular attention paid to the effect of G protein concentra-
tion, where the model output is active G protein. The dynam-
ics in Chen et al. (2003) are not examined in detail, but exten-
sive analysis of GPCR signalling dynamics has been presented else-
where (Bridge et al., 2010; Woodroffe et al., 2010; 2009), for math-
ematical models which also allow G proteins binding to inactive
receptors, and constitutive receptor activity. In these models, the
active G protein « subunit bound to guanosine triphosphate (g7p)
is taken as a model readout which is representative of downstream
signalling pathway activity.

In this paper we develop a new mathematical model for the dy-
namics of biased agonism at GPCRs. The model allows an in-depth
theoretical analysis of time-dependent biased agonism at a GPCR
for the first time, and is novel in its generality and detail; any
number of active receptor states and G proteins may be consid-
ered, receptor states need not be specific to particular G proteins,
and the response is at the level of «grp, downstream of active re-
ceptor and towards a dynamic functional response. In Section 2,
we formulate a general ODE model for the dynamics of a recep-
tor which can activate multiple G protein-mediated pathways. The
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general model has receptor with N* active conformations and N¢
G proteins available for coupling, but our focus computationally
(driven by Leff et al., 1997) throughout is the case N* = N¢ = 2. In
Section 3, we present time course and concentration-response sim-
ulation results for our model, focusing on «¢rp dynamics. In partic-
ular, we highlight that our model has the propensity for agonist-
inverse agonist interconversion both with respect to time and con-
stitutive activity. A numerical analysis of the effects of multiple
cooperativity factors is performed. In Section 4, we propose an
heuristic method for quantifying dynamic bias, by way of bias fac-
tors, and show how these bias factors relate to our model param-
eters. It is shown that the bias rank order for a bank of ligands
may change dynamically. In Section 5, we show that our model
simulations fit well to new experimental data where biased ago-
nism at the adenosine A; receptor is suspected. We conclude in
Section 6 with a discussion of our main results, underlining our
contribution to the biased signalling literature.

2. Model formulation

Here we formulate an ODE model for the dynamics of signalling
for multi-active state GPCRs capable of binding multiple G pro-
teins, in response to a single ligand binding. The model allows for
a receptor which may have an inactive conformation R, or one of
N* active receptor conformations R¥, for j=1,..., N*. Also, a re-
ceptor may couple to one of N¢ G proteins G?, for 6 =1, ..., NG,
The model encompasses ligand binding, receptor activation, G pro-
tein binding and the G protein cycle, whereby the model output
is activated G protein «grp, which signals to second messengers,
and is therefore taken as an indicator of pathway response, as in
Woodroffe et al. (2010, 2009) and Bridge et al. (2010).

2.1. A three-state (two active states) model

While the model is formulated for general N6 and N*, we
largely focus throughout on the case N* = N¢ = 2. A schematic for
the transitions between 18 receptor states for this particular case is
shown in Fig. 2. R denotes inactive receptor, while R¥ (j = 1, 2) de-
notes the jth active state. Any species label including L represents
a complex including ligand-bound receptor, while any species in-
cluding G (6 =1,2) is a complex including receptor coupled to
the 6th G protein. Double arrows represent the reversible binding
and activation reactions between receptor states. As described in
previous GPCR signalling studies (eg. Bridge et al., 2010; Woodroffe
et al., 2010; Woodroffe et al., 2009), a R*G? or LR*G® complex may
dissociate and exchange GDP for GTP on the « subunit of the G
protein, leading to the signalling response agﬂ) and the G protein
cycle.

2.2. The (j, 8) receptor/G protein block

In order to formulate the ODE model for the schematic shown
in Fig. 2 (or, indeed, the general N*, NC-case), we consider the (j,
6) receptor/G protein block (where j=1,2 and 6 = 1, 2 for Fig. 2).
Each such block is seen to be a cubic ternary complex schema for
activation of receptor from inactive state R to active state R¥, with
coupling to G protein G’ (Woodroffe et al., 2009). In Fig. 3, the
equilibrium rate constants Ke and cooperativity factors u, v, ¢ are
labelled on each reversible reaction. For the individual kinetic rate
constants and factors, we use lower case k, and subscripts + and —
to denote the forward and backward reactions respectively. The de-
scriptions of the rate constants and cooperativity factors are given
in Table 1. The G protein cycle and o rp responses follow from dis-
sociation of R*G? and LR*GY according to the following reactions
(see Woodroffe et al., 2009):

. Kkif .
RIG! 5 R+ alpp+ ByY,

. 0 ci0 .
9 V-Kerps [ 0
LR*]G —> LR*] +aGTP+ﬁy 5 (]a)
Ky Keas
6 — 0 0 6 —— o
Aerp P cpps acpp + BY - G". (1b)
hyd— RA—

2.2.1. Governing equations

Suppose in general that a receptor has N* distinct active states,
and that each receptor may couple one of NC distinct G proteins.
Then applying mass action kinetics to our schematic and G protein
cycle reactions gives a system of n nonlinear ODEs for the species
concentrations, where

n =3+ 2N* + 6N¢ + 2N*NC. (2)

The first term here is given by species L, R and LR. The second term
is given by active non-coupled receptor states R¥, LR¥ and the third
term corresponds to G protein not coupled to active receptor (G,
RG, LRG, alyp. a8, By?). Finally, the number of active receptor/G
protein complexes, RYG? and LR¥G?, is 2N*NC, since we consider
j=1,...,N*and 6 =1,...,NC. If ligand concentration is consid-
ered constant, then we will not have an ODE for [L] (so omitting
Eq. (3b) below), and instead n = 2(1+ N* + 3N¢ 4+ N*N€).
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Fig. 2. A multi-cubic ternary complex model schematic for biased signalling with two active receptor states (R*!,R*2) and two G proteins (G',G?), giving 18 receptor species.
Double arrows represent reversible binding and activation reactions between the receptor states. The four complexes R*!G!, LR*'G', R*2G? and LR*2G? may dissociate, leading
to the G protein cycle and increased active G protein signalling units al,, and oZ,.
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Table 1

Equilibrium rate constants and cooperativity factors for the (j, &) block of the biased signalling schematic.

Label  Description of equilibrium constant

K Association of ligand L and receptor R.
K Binding of G protein G’ to receptor R.
Kl Activation of receptor R to give active state R9.
o Preference of G? for R¥ over R. Equally, the factor increase in propensity for R— R¥ activation when R is G?-bound.
v Preference of L for RGY over R. Equally, the preference of G’ for LR over R.
g Preference of L for R¥ over R. Equally, the factor increase in propensity for R— R¥ activation when R is L-bound.
UKL
j > *J Ted
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Fig. 3. The (j, 0) receptor/G protein block of the multi-cubic ternary complex
schematic, for ligand binding to, and activation of, receptor j, with coupling to G
protein 6. Equilibrium rate constants Ke and cooperativity factors u, v, ¢ are la-
belled on each reversible reaction.
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For the model “outputs”, or downstream responses of the sys-
tem to an input ligand concentration, we take the concentrations
[ag“,] for # =1,...,N¢ as we consider these as indicators of
downstream activity in signalling pathways as in Bridge (2009) and
Bridge et al. (2010). For our computational results, we will con-
sider the case with two G proteins and two active receptor states,
such that N* = N¢ =2, and our model has 18 receptor states and
8 non-receptor-bound G protein species (2 x (G + agrp + Qgpp +
By)). Taking ligand concentration constant (as in previous stud-
ies), the system (3) in this case consists of 26 ODEs.
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Fig. 4. The agn, response (M) against time (in seconds) of two competing pathways with ¢} = 1000 and £? = 200 after the addition of [L] = 10~7, 10~% and 10-> M.

Initial conditions for our simulations have [R];_g = Ry (the to-
tal receptor concentration), [G?];_g = Gfat (the total concentration

for each G protein), and all other species zero at t = 0.
3. Simulation results

Here we present numerical results (for “grp concentrations)
which illustrate the variety of dynamic behaviour which is possible
for a system of two active states and two-G proteins. These results
are intended to demonstrate potential dynamics rather than pro-
vide exhaustive or accurate predictions for any particular receptors
or ligands. For all simulations, we first compute the system with
[L]=0 for a long time (108 s) to allow the system to come to a
steady-state equilibrium before the addition of ligand, and all pa-
rameters except those explicitly stated are maintained at the val-
ues in Table A.1.

3.1. Time courses

We consider time courses for the two o grp responses of inter-
est. The signifcance of these computations is that two responses
(oeéﬂ,, oc%n,) are generated from a single ligand at a single receptor,
whereas previous GPCR dynamic models (eg. Bridge et al., 2010)
have considered a single a¢rp response from each receptor. Fur-
ther, the dynamic responses for the new model do not necessarily
follow the previously reported behaviour of ligands classed as ag-
onists, antagonists or inverse agonists for a single active state. An
agonist is a ligand which encourages receptor activation, an antag-
onist is neutral in its action, and an inverse agonist discourages
receptor activation. Within our model, therefore, an agonist for ac-
tive state RY has ¢/ > 1, an antagonist has ¢/ =1, and an inverse
agonist has ¢J < 1.

3.1.1. Ligand is an agonist for both pathways

By varying the values of ¢! and ¢2 , the preference of the lig-
and for a receptor in the active states 1 and 2 over the inactive
receptor state, we vary the efficacy with respect to the G protein
pathways 1 and 2 respectively. In Fig. 4, we show time courses

of the responses to a ligand which is an equilibrium agonist for
both pathways, for a range of concentrations. Three different lig-
and concentrations are used, and the ozgﬂ, responses for 6 = 1,2
are shown. The higher efficacy with respect R*! gives an increased
response, and we note the peak-plateau dynamics. With increased
ligand concentration, we see a higher ozgn, response for both path-
ways, both at peak and plateau (end-point). Further, the peak tim-
ing is reduced with increased ligand concentration, in keeping with
previous single active state studies (Bridge, 2009; Woodroffe et al.,
2009).

3.1.2. Ligand is agonist for one pathway and antagonist for the other

Neutral antagonists may be used as competitive ligands to en-
dogenous agonists. Mathematical modelling of agonist-antagonist
competition at a single active state GPCR has been considered in
Bridge et al. (2010). Within our two-active state model, we may
simulate the dynamics of a system for which a given ligand is an
agonist for one pathway but an antagonist for the other. In Fig. 5,
we show a¢rp and receptor time courses for this scenario, for a lig-
and which is an (equilibrium) agonist for pathway 1 (;“l = 1000,
¢1=1) and an (equilibrium) antagonist for pathway 2 (£2 =1,
£2 =1), over a range of ligand concentrations. We note the peak-
plateau ag;ﬂ, dynamics, and the nearly neutral effect on a%ﬂ, dy-
namics. However, closer inspection of [aéTP] reveals that the ligand
in fact has an inverse agonist effect on pathway 2. Since the ligand
is an agonist for pathway 1, its effect on overall receptor activation
is an increase in pathway 1 active states, given by

Rig = [R']+[LR*'] + [R'G'] + [LR*'G"], (4)

and a corresponding decrease in pathway 2 active states and free
inactive receptor states, given, respectively, by

RiZ = [R2] + [LR*] + [RG?] + [LRG?], (5)
and
Rinactive _ [R] 4 [LR] + [RG'] + [LRG'] + [RG?*] + [LRG?]. (6)

Upon ligand addition, there are, therefore, fewer receptors available
to activate pathway 2, giving a decrease in [aéﬂ,], and the inverse
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Fig. 5. The a;, response (M) against time (in seconds) for two pathways with ¢! = 1000 and ¢2 = 1 after the addition of [L] = 107, 10~%, 10-> M so that the ligand is an
agonist for pathway 1 and an antagonist for pathway 2. Receptor concentrations are given in the bottom panel. Here, ¢} = 1.

agonist effect of the “antagonist”. For [L] = 10~7 M, we also see
the undershoot agrp response previously reported for inverse ago-
nists (Bridge, 2009). We note that a true neutral antagonist effect
with constant [aé“,] would be seen if we considered pathway 2 as

an “isolated pathway” (see Leff et al., 1997) by setting k.., = 0.

3.1.3. Ligand is agonist for one pathway and inverse agonist for the
other

Having seen apparent inverse agonist activity in the biased sys-
tem for a ligand which would neutrally antagonise an isolated
pathway, we now turn attention to a ligand which is a true in-
verse agonist for one pathway in the biased system, and an ago-
nist for the other. In Fig. 6, we show «a¢rp time courses for this
scenario, for a ligand which is an (equilibrium) agonist for path-
way 1 (¢] =100, ¢! =1) and an (equilibrium) inverse agonist for
pathway 2 (£2 =0.01, £2 =1), over a range of ligand concentra-
tions. These simulations are for a system with increased R*2 con-
stitutive activity, to represent conditions under which inverse ag-
onism may be detectable. We note the peak-plateau O‘érp dynam-
ics, and drop-off in aéTP level. Further, we observe undershoot dy-
namics in the inversely agonised pathway, which may be seen in
a single-active state system (Bridge, 2009). An interesting feature
here is that while increasing ligand concentration decreases oﬂTP
peak time as before, this is accompanied by an increase in ag;p
trough time.

3.1.4. Time course surfaces

In order to summarise the effect that efficacy parameter ¢ has
on a system, in Fig. 7 we show time course surfaces for [L] =
10~> M, where we vary ¢! over a spectrum of efficacy ranging
from strong inverse agonist to strong agonist, while keeping all
other parameters fixed. We clearly see that the stronger L is an ag-
onist for pathway 1, the lesser its effect on pathway 2. When L is
an agonist for both pathways, the peak-plateau dynamic response
is clear for both ozgm, and ozén,, but increasing agonist strength for
pathway 1, the pathway 2 response drops off. Similarly, for a path-
way 2 antagonist, the aéTP dynamic response varies from appar-
ent antagonism to inverse agonism with increasing ¢!. Also, for a
pathway 2 inverse agonist, the magnitude of aéﬂ, inverse agonism
increases with ¢!.

3.1.5. Observed agonist effect is system-dependent - constitutive
activity and inter-conversion

A feature of the equilibrium three-state model in
Leff et al. (1997) is that a ligand’s effect on a pathway can
change qualitatively from agonist to inverse agonist, depending on
the system-specific level of constitutive activity in that pathway.
This so-called “inter-conversion” of ligand effect is demonstrated
at steady-state in Leff et al. (1997), with respect to active receptor
states. In Fig. 8, we show the effects of increasing the constitutive
activity in pathway 2 by decreasing kﬁctf. With low constitutive
activity (k2,_ = 100), the time courses for o}, are indistinguish-
able. As pathway 2 constitutive activity is increased, it is clear that
pathway 2 basal a¢rp increases at the expense of pathway 1 basal



LJ. Bridge et al./Journal of Theoretical Biology 442 (2018) 44-65

Il Il Il
0 100 200 300

I
400

t

Il Il Il
500 600 700 800

Fig. 6. The of;, response (M) against time (s) after the addition of a range of ligand concentrations, where the ligand is an agonist for pathway 1 and an inverse agonist for

pathway 2. Here, {1 =100, ¢2 =0.01, k2,_ = 10.

act— —

EEeee
e aaun e ST
JEernness R
VA WM
n‘--.‘-‘-_-."‘--_‘-‘-\

OO SO

—_— (o = R
2 S RS
= o T e s v v
O Beseeee
S 'i—_—:—

200

t lonCl

1
t log, o,

Fig. 7. Time course surfaces for Ctg”, response (M) dynamically changing for system with varying agonist efficacy parameter Q, acting under a ligand concentration of

10> M. Column (a): &2 = 1000; column (b): {2 = 1; column (c): &2 = 0.001.

ocrp, Similarly to the active receptor trend in Leff et al. (1997) and
Scaramellini and Leff (1998). The agonist effect on oeén, becomes
less pronounced with decreased k2, . as the G protein response
is largely effected via the basal activity, but the ligand remains a
pathway 2 agonist. In contrast, with high activation of pathway 2
(k2,_ = 1), the long-time o), response decreases with “agonist”
concentration, so that the ligand is now having an apparent

inverse agonist effect, despite its isolated pathway classification as
an agonist. It is also worth noting that for (kch = 10), we observe
non-monotonicity in the peak and plateau a};“, as functions of
[L]. Thus non-monotonic concentration-response curves may result
from multi-active state receptors with varying constitutive activity

levels.
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3.1.6. Observed agonist effect may be time-dependent: G protein cycle
and dynamic inter-conversion

With our new model, we are able to examine the ag”, dynam-
ics under variation of constitutive receptor activation. In the final
plot of Fig. 8, we see the phenomenon of dynamic inter-conversion
between agonist and inverse agonist action. The ligand is an ag-
onist for both pathways under equilibrium classification, but af-
ter initially displaying a typical agonist response, oté”, eventually
drops below basal levels in an apparent inverse agonist response.
The dynamic peak response to agonism occurs as in previous sim-
ulations (Woodroffe et al., 2009). The below basal long-time level
is a result of G protein cycle dynamics on active receptor equili-
bration. As aéTP is inactivated and G! reassociates, any new free
receptors resulting from LRG complex dissociation are pulled to-
wards a pathway 2 dominant equilibrium, and the receptor pool
for G! activation decreases below basal level.

3.2. Concentration-response relationships

3.2.1. Peak and plateau responses with varying ligand activation
efficacy and constitutive receptor activity

The ligand concentration-dependent features which summarise
the ag7p equilibrium and dynamic behaviour may be summarised
using conventional concentration-response curves. In Fig. 9, we
show concentration response curves for both pathways, where the
measured responses are the peak and plateau o rp levels. The non-
monotonicity first noted in Section 3.1.5 is clearly a possibility. For
a ligand which agonises both pathways, with high constitutive ac-
tivity in one pathway, the plateau response in the other pathway
is non-monotonic. The peak concentration-response curve is yet
more complex; it is also non-monotonic, with a biphasic structure.
We remark that biased agonism together with constitutive activity

t

in our new model for o grp response is a mechanism by which non-
monotonic concentration-response relationships can occur. Such
behaviour cannot be observed for three-state models (Leff et al.,
1997; Scaramellini and Leff, 1998) where the “readout” is a partic-
ular active receptor fraction.

Further demonstration of the dynamic and concentration-
dependent features of the system is given in Fig. 10, where we ob-
serve decreasing peak timing for both pathways where the ligand
is an agonist for both, but an increasing trough time at the path-
way for which the ligand is an inverse agonist.

3.2.2. Effect of total receptor number on concentration-response

The total concentration of receptor can considerably affect the
appearance of bias in a system (Rajagopal et al., 2011). In Fig. 11,
we investigate the effect of differing receptor expression by exam-
ining concentration-response curves for two pathways being ag-
onised by a ligand (L) with different efficacies (£! = 1000 and
g“f =100) at a range of receptor concentrations Ry (from 4.15
x10~11 M to 4.15 x 1078 M). As Ry is decreased, we observe both
a rightward shift of the curves (increased ECsg), together with a
drop in the maximal responses, for both the peak and plateau val-
ues of agpp.

Whilst overall efficacy depends partly on the preference of
the ligand for an active rather than inactive receptor (controlled
through variation of the ¢ parameters), it is important to note that
it can also depend on the preference of a ligand-bound receptor
for each of the G proteins (mediated by the v parameters). In the
case of a system in which the ligand-dependent parameters affect-
ing efficacy are chosen so as to counteract each other (;j = 2000,
£2 =100, vl =1, v2 = 25), we see that (Fig. 12) not only the mag-
nitude of the preference for one pathway, but even the direction
(in terms of which pathway experiences the higher response) can
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Fig. 10. Concentration-response curves (ot(";rP maximum and minimum timing against ligand concentration) where the ligand is an agonist for both pathways (¢] = 1000,
¢1=1,¢2=100, £2 =1, top row) and agonist for pathway 1 but an inverse agonist for pathway 2 (£} = 1000, {! =1, {2 =0.01, £2 = 1, bottom row). Constitutive activity
for pathway 2 is low (k2,_ = 1000, left column), medium (k%,_ = 10, middle column), and high (k2,_ = 1, left column). Here, {2 = 100.

be affected by a changing receptor concentration. In this case, peak the effects of varying two system parameters (Bornheimer et al.,
ogrp exhibits a change in direction, while plateau level does not. 2004; Bridge et al., 2010; Woodroffe et al., 2009). We now use this
method to show the sensitivity of simulated response (aéfp peak
and plateau) to variations in system parameters, in particular the

3.3. Response surfaces . . .
P I microaffinity coefficients ¢, v and u.

Parameter sensitivity and concentration-response relations may
be conveniently summarised using response surfaces which show
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3.3.1. Effect of ¢ - the possibility of biphasic relationships

In Fig. 13, we see the effect of varying ¢! and ¢? for a fixed
ligand concentration. The reciprocal effects on the two G protein
pathways mediated by the competing receptor states are clear. As
;‘l is increased, both peak and plateau a}m, increase, accompanied
by decreases in aén,. Furthermore, it is clear that biphasic relation-

ships are possible.

3.3.2. Effect of G protein non-specificity and receptor “cross-states”
Thus far in our computations, we have focussed on systems in
which the two G proteins are each specific to a particular active re-
ceptor conformation. By setting u!'1 =1, u22 =1, u!'2 =0, u%! =
0, we have simulated systems whereby G protein 1 can neither
activate a pre-coupled receptor towards R*2, nor bind to R*2, and

vice-versa. It is a novel aspect that our model allows receptor
“cross-states”, where there is not exclusive specificity of each G
protein for one particular active receptor state. We see in Fig. 14
the effects of non-exclusive specificity and accessibility of these
cross states on the ag7p responses. The general trend is that with
all cross states signalling (with ké?P =1,V0), increasing [y, gives
a decreased peak ozéﬂ, and slight increase in plateau ocgm,.

Our model allows for variation in specificity of not only the
G proteins for each receptor conformation, but also the propen-
sity for G protein cycling with respect to these active states, con-

trolled by ké?[, .- With cross states which do not signal (with
ké%, =0 for j # 6), increasing (1, now gives a decreased peak and

plateau aéﬂ, as the general trend, with non-monotonicity, which
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may be explained by considering the effects on basal conditions.
Further explanation and discussion of these effects is given in
Appendix B.

3.3.3. Effect of v, the preference of ligand for specific G
protein-coupled receptor

The microaffinity constant v? controls the preference of ligand
for RG? over R. The effect of varying v? is as expected, in that in-
creasing 1Y increases both peak and plateau ocgn, (see Fig. C.1 in
Appendix C).

4. Detecting and quantifying bias

A balanced agonist is one which signals with equal effi-
cacy to available downstream pathways, whereas a biased ag-
onist has different efficacies for signalling to different path-
ways (Rajagopal et al., 2011). There is a need to detect and quan-
tify the level of bias towards one pathway over another, con-
sidering that physiologically and clinically, certain pathways rep-
resent therapeutic targets while others are “side effect” path-
ways (Gundry et al., 2017). Here, we employ current quantification
methods for the level of ligand bias within our two-pathway sys-
tem.
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4.1. Bias factors and the operational model of agonism

The operational model of agonism (Black and Leff, 1983) pro-
vides a standardised and widely adopted method for estimating
ligand affinity and “operational efficacy” parameters from func-
tional response data in the form of hyperbolic concentration-
response curves. Briefly, for a single downstream readout E result-
ing from ligand concentration [A] at a receptor,

7[A]
Ko+ (t + DIA]’

where Epgx is the maximum response of the system, Kp is the
ligand’s equilibrium dissociation constant, and T is a measure
of ligand efficacy, in particular measuring the propensity of the
ligand and the system to yield a response. A modified form of
the model is sometimes used to account for nonzero basal re-
sponses (Shonberg et al., 2014), namely

T[A]
Kp + (t + D[A]

Further generalisation of this model is possible by introducing a
Hill coefficient to the signal transduction sub-model (Black and
Leff, 1983; Shonberg et al., 2014). Recently, the operational model
has been used to quantify the level of bias in systems exhibiting
multi-dimensional efficacy (ie. the activation of multiple pathways
at a single receptor). Bias is typically defined with respect to a ref-
erence ligand, and bias factors are computed using fitted values of
T (Rajagopal et al., 2011) or both 7 and Kp (Gundry et al., 2017,
Kenakin, 2014; Kenakin and Christopoulos, 2013). Here, we fol-
low the transduction coefficients method (Kenakin and Christopou-
los, 2013) by defining a transduction coefficient for a ligand A at a
given pathway as

T
T4 = logyg (E)l‘gﬁ\. (9)

The difference in transduction coefficients for two ligands A and B
is usually written in Alog notation, with

E([A]) :Emax (7)

E([A]) = basal + (Emgx — basal) (8)

A logw <L> = ATA,B = TA — TB
Kp / tiga—tign

~lo (l) “lo (l)
= %810 Kp / iiga &10 Kp / iigs

T Kp
—10g10<E Z T B)- (10)

The relative bias factor for a ligand A, relative to ligand B, for path-
way 1 over pathway 2, is usually defined by first calculating its
logarithm, written in A Alog notation as

th1-path2
7 \P? pa _ ATpath] _ ATpach
- A-B A-B

log,, biasy 2 = AAlog,, (@

ligA—ligB
T [pathl g path1 K path2 T |path2
=logy (= —=| = = . ()
KD A T IB T |a KD B
so that
1 T [pathl Kp path1 Kp path2 - path2
bias, 5 = — — — = (12)
Kpla Tlg Tla Kplg
4.2. Bias factor’s dependence on ¢ and v
path1 K path2

2_ 1 , is a standard mea-

The bias factor, bias} o

A T la
sure of a ligand’s bias for effecting a response in pathway 1 over
pathway 2. While this is defined in terms of the parameters t and
Kp which are fitted to the semi-mechanistic operational model,

rather than explicitly in terms of the parameters in our new ogp
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Fig. 15. Bias factor surface for fixed ligand 1 parameters, varying ligand 2 parame-
ters ¢2 and v2. Bias factor bias},f2 represents the bias for pathway 1 over pathway
2 signalling. Here, ki, = 10%, ki, = ki;, =0.05, and kj , =kp , =1075.

act+ act+

model, we expect correlations between the bias factor and ligand-
specific parameters in our model. In particular, when agpp is mea-
sured at equilibrium and taken as the response E, we expect, on
the whole, bias factor should increase with decreased ¢2 and 12,
which control a ligand’s effect on R*2 activation and G? coupling
to the receptor. In Fig. 15, we show the bias factor bias}(2 for a
bank of ligands generated by varying g“f and v?r, while keeping all
other parameters fixed. The correlation is clear. The overall trend is
the expected increase in bias; > with decreasing ¢2 and v2, while
the relationship is approximately a power law over much of the
parameter space shown.

4.3. Kinetic context and dynamic bias factors

It has recently been demonstrated that binding, activation
and signalling dynamics may significantly affect bias measure-
ments, and hence the classification of biased ligands, and that
“kinetic context” is an important consideration in the quantifi-
cation of bias (Herenbrink et al, 2016). Although bias calcula-
tions based on the operational model implicitly assume equilib-
rium conditions, this method is shown to be an effective and sim-
ple heuristic approach to investigating and quantifying dynamic
bias in Herenbrink et al. (2016). In Fig. 16, we show bias factor
time courses for a bank of ligands, generated by constructing a
concentration-response curve for each ligand at each time point,
then fitting each of these curves to the operational model (using
optimisation routines in MATLAB). Here, the bias factor is calcu-
lated with respect to the reference ligand (ligand 7), and we see

that the long-time bias factor bias}\:fef indeed increases with de-

creased ¢Z andfor v2Z. We also plot, in the right hand panel, an
alternative bias factor based on our model parameters, specifically

kiya V;l{ §A1
1-2 kia \ V353

alt-bias = ,
A-ref Kiirer ( VeerSrer
kL—‘ref Vrzef(,-zef

which should also indicate ligand bias. We note the excellent
agreement between the dynamic bias factors from operational
model fitting and our alternative bias factor. Dynamically, there is
the possibility of a change of order of bias factors, and this phe-
nomenon is even more marked for the bank of ligands shown
in Fig. 17. Clearly, the order of bias factors may change dynami-

(13)
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cally, so the classification of ligands requires consideration of ki-
netic context, as described in Herenbrink et al. (2016).

4.4. Bias dynamics beyond the operational model of agonism

The operational model of agonism is a semi-empirical model
used to provide summary measures of signalling efficacy, by im-
plicitly assuming equilibrium conditions; in itself, it cannot be
used to simulate biased signalling dynamics. Analysis of biased sig-
nalling using a dynamic model which does not rely on the opera-
tional model is therefore desirable (for example for fitting to time
course data). Our new mechanistic model clearly fulfills this re-
quirement, and will be further applied (beyond our scope here) to
define new dynamic bias factors which do not use the operational
model assumptions at all.

5. Fitting to a model of downstream functional antagonism via
biased signalling

Our model outputs thus far have been the «rp levels of the
two G proteins in the system, which represent responses down-
stream of ligand binding, and may correspond to a downstream
functional experimental readout. We now consider whether our
model can be used to explain, and fit to, experimental end point
data in a system where biased agonism is suspected.

=k2

act+

act+

5.1. Experimental method

The adenosine A; receptor (A{R) is well known for mediating
the protective effects of adenosine in the heart (Donato and Gelpi,
2003; Minamino, 2012). How these effects are brought about is
not fully understood, as the AR is able to couple to multiple sig-
nalling pathways (Baltos et al., 2016). This makes interpretation
of physiological effects difficult to attribute to an individual, sig-
nalling pathway. While the AR is a predominantly G;-coupled re-
ceptor, which inhibits the accumulation of the second messenger,
cyclic adenosine monophosphate (cAMP), it has been observed that
at higher agonist concentrations, the levels of cAMP begin to rise
again producing a non-monotonic response profile. This accumula-
tion of cAMP arises through the ability of the AR to switch its G
protein coupling and now promote activation of Gs (Baker and Hill,
2007; Cordeaux et al., 2004). The extent to which an individual ag-
onist either inhibits or stimulates cAMP production at the A;R may
vary.

To obtain data to enable fitting of our models, experiments
were performed using Chinese hamster ovary-K1 (CHO-K1) cells
stably expressing the A; receptor (these cells do not endoge-
nously express any of the four adenosine receptor subtypes, and
therefore provide a null background (Knight et al., 2016)), treated
with a range of concentrations of a single agonist each time, and
the effect on intracellular concentration of cAMP determined (see
Appendix D and Knight et al., 2016; Weston et al., 2015; Weston
et al., 2016 for details). In particular, the experiments were carried



58 LJ. Bridge et al./Journal of Theoretical Biology 442 (2018) 44-65

T T T T T T T
L . _ _ 1_ 1_ 1_ 1_ 2 _ 2 _ 2_. 2_ J
——ligand #1 k_=100000 k_=0.31 ¢!=510 ¢'=1 v'=0.011 v'=1 ¢®=30 {®=0.08 V=70 v’
- - -ligand #2 k_=100000 k_=0.31 ¢!=2000 ¢'=1 v!=1 v'=1 ¢®=5000 ¢®=1 v?=5000 v®=0.5
) i - i . i
e e ligand #3 k =100000 k_=0.31 ¢! =100 ¢'=1 v'=8 v'=1 ?=10000 ?=0.75 v?=100 v’=4 | 7

B . 1 1 1 1 2 2 2 2 1

: ——ligand #4 k_=100000 k_=0.31 ¢'=1000 ¢'=1 v'=1 v'=1 ®=1000 ¢®=1 v?=1000 v*-0.1 ]
S
”g '
% 10 =
© [y ]
] EY 3
© [ 1
el [ v 4
o Lo s i
1S Vv
Q v i
o Rl LemTTe~l T

L o e So et i

~_ . SO
- F T PP
~
. A Y
N ~
10° = -
- > 4
~

r R 1

- ~ 4

o Soo e B

[ ! ! ! ! ! ! ! i

0 100 200 300 400 500 600 700 800

Fig. 17. Bias factor dynamics for a bank of four ligands. Bias factor bias}(2 represents the bias for pathway 1 over pathway 2 signalling. Here, k;, = 10%, k!, = k%,, = 0.01,
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out for three different agonists individually, namely5’(N-ethyl car-
boxamido) adenosine (NECA), and two test compounds which bind
the AR, denoted here as Compound 6 (Cmpd6) and Compound 20
(Cmpd20) (Knight et al., 2016). The measured response was the ac-
cumulated cAMP concentration in the presence of the phosphodi-
esterase (PDE) inhibitor rolipram, which blocks cAMP degradation.

For each concentration of all agonists, two experiments were
performed. Firstly, intact (wild-type) cells were used, which al-
low for coupling and activation of both G; and Gs proteins to the
AR, thereby allowing activation of both the G; pathway which
inhibits cAMP production via an increased ogrp ; signal, and the
Gs pathway which stimulates cAMP production via an increased
acrp s signal. For these cells, the recorded response is the per-
centage inhibition of cAMP when compared with cells treated
with forskolin (which promotes maximal stimulation of cAMP pro-
duction Barritt, 1992). The second experimental condition is for
cells that have been treated with pertussis toxin (PTX), which
both inhibits binding of G; to its receptor and blocks its sig-
nal transduction, thereby locking «; in its inactive, GDP-bound
state (Mangmool and Kurose, 2011). For these cells, the recorded
response is the percentage stimulation of cAMP when compared
with forskolin-stimulated cells. Time courses of cAMP were not
recorded, and the signalling readout in each case is taken at the
endpoint of the experiment (¢t = 1800 s).

Further details of the experiments are given in Appendix D.

5.2. Experimental results

In Fig. 18, we show the experimental cAMP endpoint signals
in response to three ligands individually in turn (NECA, Cmpd6
and Cmpd20) for the two different experimental conditions. For
wild-type cells the log concentration response curves for the in-
hibition of cAMP show non-monotonic behaviour with a downturn
at higher concentrations, whereas the log concentration response
curves for the production of cCAMP in PTX-treated cells show, with

the exception of one data point for the NECA experiment, mono-
tonic behaviour. By blocking the inhibitory pathway, we largely
see “standard” monotonic behaviour, which suggests that the non-
monotonic wild-type response results from crosstalk between the
inhibitory and stimulatory pathways. Since in each case a single
ligand has been introduced and AR is the only receptor in the
cells, we hypothesise that this target receptor may exhibit biased
agonist effects, via two active conformations, one of which is spe-
cific to the G; protein and the other to the G; protein.

5.3. Modelling considerations

Since the data shown in Fig. 18 are hypothesised to result from
biased agonism with competition between two activated G protein
pathways, we now seek to fit our model to the data, in order to
add support to this hypothesis and understand the possible under-
lying mechanisms.

Within our modelling framework, we let G!' and G2 repre-
sent the Gs; and G; proteins respectively. We simulate the PTX
effect of blocking G; binding and activation by setting k% =
k&2, =k, =0.Since cAMP is produced in response to Gs ac-
tivation (Barritt, 1992; Leander and Friedman, 2014), for a simple,
minimal model of cAMP levels in PTX-treated cells, with blocked
cAMP degradation, we take the cAMP production rate proportional
to agrp s levels, so that % o« agrps, and hence the stimulation
signal is given by

t t
signal (£) = [0 Glagres](t) dt = /0 Glakp®]de,  (14)

where Cs is a constant.

For the wild-type cells in which both stimulatory and inhibitory
cAMP pathways are intact, we require a model for crosstalk be-
tween G; and G pathways. Here we use a simple “functional
antagonism” model for the competing effects of these pathways.
Functional antagonism refers to the response of a cell in which
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Fig. 18. Using the model of biased agonism with functional antagonism at level of «¢p to fit cCAMP readouts (signalg;,(1800) and signal;,i,(1800)) for three different ligands
(NECA, Cmpd6 and Cmpd20). Experimental data points are given (red squares with dashed lines for percentage cAMP inhibition for wild-type cells, blue circles with dashed
lines for percentage cAMP production in PTX-treated cells, each compared with forskolin-treated cells which give maximal cAMP response) for end point readouts over a
range of ligand concentrations. Solid curves are the fitted log concentration response curves for our model. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

signalling via one pathway is antagonised by signalling via an-
other pathway, and simple theoretical models have been presented
which are based on differences between pathway signals (Leff
et al., 1985; Mackay, 1981; Szabadi, 1977). Here, we use such a
model where agrp s and agrp ; are stimuli to the cAMP stimula-
tory and inhibitory pathways respectively, and the cAMP produc-
tion rate is simply a scaled difference between the two o gpp levels.
The inhibition signal is then given by

t
signaliypy, () = /0 Glagrpil(t) — Glogrps](t) dt

t

— [ Clepl©) - Glardrpl(0) . (15)
where C; is a constant, and Cs is the constant as in (14).
Since functionally opposite signalling can result in non-monotonic
concentration-response curves with downturns (PliSka, 1994; Sz-
abadi, 1977) such as those seen in the cAMP inhibition curves in
Fig. 18, our biased agonism model augmented by the simple func-
tional readout models (14) and (15) may be able to recapitulate the
experimental data, at least qualitatively. We proceed to employ pa-
rameter estimation methods to pursue a fit to the concentration-
response curves for each ligand.

5.4. Parameter estimation

We fit the experimental data to the model given by (3) with
N* = N¢ =2, together with (14) and (15), where simulations are
first run to a time of 10® s with [L] =0, to pre-equilibrate the
system before ligand addition. For each ligand, the experimental
data for the intact and PTX cells were fitted simultaneously, using
optimisation algorithms to minimise the squared error between
simulation and data points. The methods used were the trust re-
gion algorithm implemented in PottersWheel (Maiwald and Tim-
mer, 2008), followed by a genetic algorithm routine implemented
in MATLAB (Matlab, 2017). A subset of the kinetic parameters were
varied; for each reversible reaction, we fixed one rate constant
(typically for the reverse reaction), and allowed one rate constant
to float. Further, we consider systems where the active receptor
cross states are inaccessible, such that uif = ké?l, , =0 are fixed
for j#0, since these have been shown to largely have little effect.
Fitted parameters for the NECA data set were used as initial pa-
rameter guesses for Cmpd6 and Cmpd20, to speed up the overall

fitting for these compounds. For each ligand, the model can clearly
fit the data very well qualitatively. In Fig. 18, we see that the model
fit for the stimulation curve is monotonic, with maximal and basal
signals, and ECsq values in good agreement with the data. Further,
the fitted inhibition curve in each case is non-monotonic, with the
concentration which gives the peak value in good agreement with
the data. The basal, peak and plateau levels are in good agreement
with the data, and the model recapitulates the differences in peak
“spread” between the three ligands. Values for the fitted parame-
ters are given in Table E.1.

In Fig. 19, simulations from the fitted parameter sets for each
ligand show the facrp contributions to the overall measured sig-
nal for both cell types. In each case, the stimulatory responses for
the intact cells and the PTX cells are almost indistinguishable, and
while the individual fagrp curves are monotonic, the difference be-
tween them for the intact cells is not.

Having estimated parameters which fit the experimental data
(taken at a single time point t = 1800 s), we may now simulate
the underlying og7p dynamics up to this time point. In Fig. 20, we
show time courses for agrp; and agrp s levels, using the NECA-
fitted parameters. With the ligand being an agonist for both G pro-
tein pathways, the peak-plateau acrp dynamics are clear, and con-
sistent with the temporal characteristics observed in our earlier
numerical simulations. Peak values are monotonic with [L], with
alp peaking later than aZ;,. We conclude that our model reca-
pitulates, and fits to, experimental data well in the cases shown,
therefore adding support to the biased agonism conjecture for the
experiments discussed, and validating our model. Our functional
model for cAMP production is very simple, comprising a linear
combination of a¢rp; and agrp . It is reasonable to expect that
a more detailed model of cAMP signalling with more degrees of
freedom would result in an even better fit to the data.

6. Discussion

Biased agonism is now a widely accepted phenomenon for sig-
nalling via GPCRs (Kenakin and Christopoulos, 2013; Urban et al.,
2007), and exploiting this is a potential route to developing novel
therapeutics (Kenakin, 2015; Kenakin and Christopoulos, 2013).
Theoretical (mathematical) models are key tools towards under-
standing biased signalling, and have previously been presented
for equilibrium conditions (Leff et al., 1997; Scaramellini and Leff,
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2002). These models have enabled a foundation biased agonism
theory to be established, largely at the level of receptor activation.
For functional readouts downstream of the receptor, further detail
has been added at the level of G protein binding (Ehlert, 2008),
and simple empirical models for pathway signalling (Roche et al.,
2013). In this paper, we have developed a new model for biased
agonism which includes the detail of G protein activation via a cu-
bic ternary complex/G protein cycle model, with ogrp as a read-
out, and serving as an indicator/proxy of pathway activity. This
model is general in terms of the number of active receptor con-
formations and G proteins, and also that it is not specific to any
particular pathway; it can thus be used to model biased signalling
at any GPCR, and detailed further signalling components can be
added downstream of ag7p to model particular pathways as de-
sired. Potentially, our model could provide a foundation for simu-
lating single-ligand multi-pathway dynamics, such as recent exper-
imental work revealing dynamic biased signalling behaviour at the
dopamine D, receptor (Herenbrink et al., 2016).

An important advance in the present study is the analysis of
signalling dynamics as predicted by our model. The role of kinetic
context in the investigation of biased agonism has recently been
highlighted (Herenbrink et al., 2016) and, as such, a model and
method for analysing dynamics represents a timely contribution to
the literature. A number of dynamic features have been observed
here, including the apparent inverse agonist effect of an “antag-
onist”, dynamic inter-conversion of agonist effect, and the time-
dependence of bias factor order. Non-monotonic concentration-
response relationships for endpoint signals are possible from our
model, for both a single o grp readout within a two-pathway sys-
tem, and downstream crosstalk between two ogrp signals.

The current standard method for quantifying bias from experi-
mental data uses parameters fitted to the equilibrium operational
model of agonism (Black and Leff, 1983; Kenakin et al., 2012). Cal-
culating bias factors using this empirical model applied to time-
course data shows the dynamic nature of bias (Herenbrink et al.,
2016), and our model and computations have reproduced this phe-
nomenon. We propose that such analysis may provide important
new insights into, and quantitative characterisation of, experimen-
tal timecourse results. The use of the operational model appears
to be the current state-of-the-art in bias quantification, but it has
a number of limitations: It is empirical rather than mechanistic,
it does not consider dynamics, and it does not account for consti-
tutive activity (Stott et al., 2015). An alternative model which in-
cludes constitutive activity is given in Slack and Hall (2012), but
this equilibrium model has yet to be fully explored with respect to
biased signalling. While beyond the scope of our current work, a
valuable future investigation will focus on further formulation and
definition of dynamic bias factors, including constitutive activity.

We have shown our model to be capable of reproducing end-
point trends in experimental data for cAMP levels in response to
ligands at the A;R receptor, through multi-pathway (ccrp s and
acrp i) signalling with functionally opposite downstream signals.
This endpoint analysis has resulted in parameterisations of the
model which then predict the underlying ogrp dynamics, qual-
itatively consistent with our earlier agonist-induced simulations.
This validation of our model allows us to propose its use for fur-
ther study of downstream signalling, and fitting to time-course
data when it becomes available. For example, for any future dy-
namic cAMP experimental readouts, our simple functional mod-
els (14) and (15) can be used to fit to time-courses, with better fits
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Table A1
Parameter values for 2 G protein, 2 active receptor state model.
Label  Meaning Cell or ligand specific ~ Value Units Source
ks Ligand binding rate Ligand 9.40E+04 M-1 51 Bridge et al. (2010)
ki Ligand unbinding rate Ligand 3.10E-01 s1 "
(3 Receptor activation rate to R*! Cell 1.00E+00 s! "
(3 Receptor deactivation rate from R*! Cell 1.00E+03 s "
k2. Receptor activation rate to R*? Cell 1.00E+00 s
k2 Receptor deactivation rate from R*? Cell 1.00E+03 s! "
ket G protein 1 binding rate Cell 1.00E+08 M-1s1 7
ki G protein 1 unbinding rate Cell 1.00E-01 51
k%, G protein 2 binding rate Cell 1.00E+08 M1 g1
k% G protein 2 unbinding rate Cell 1.00E-01 s "
kira, G protein 1 reassociation rate Cell 7.00E+05 M1 571
kipa. G protein 1 dissociation rate Cell 1.30E-03 s
k&e,, G protein 2 reassociation rate Cell 7.00E+05 M1 571
ki, G protein 2 dissociation rate Cell 1.30E-03 s "
ki, Hydrolysis rate of Gayp Cell 1.00E-02 571 ”
ki Exchange rate of GTP for GDP at G, Cell 1.00E-04 s "
kg,  Hydrolysis rate of Gy, Cell 1.00E-02 57!
Kiya Exchange rate of GTP for GDP at G2 Cell 1.00E-04 s
kifp,  RG! dissociation rate Cell 1.00E+00 s7!
kifo,  R1G? dissociation rate Cell 1.00E+00 s7! ”
k&fp,  R2G! dissociation rate Cell 1.00E+00 s7!
k&f.,  R2G? dissociation rate Cell 1.00E+00 s ”
v Forward cooperativity factor for ligand binding a G’ bound receptor Ligand 1.00E+00 "
Vo Backward cooperativity factor for ligand binding a G’ bound receptor  Ligand 1.00E+00 "
{ Forward cooperativity factor for ligand-bound R’ activation Ligand 1.00E+03
¢! Backward cooperativity factor for ligand-bound R activation Ligand 1.00E+00 "
/ﬂf’ Forward cooperativity factor for G?-bound R’ activation Cell 1.00E+00 (j =6), 0 (j#6) "
;Lfg Backward cooperativity factor for G?-bound R’ activation Cell 1.00E+00 "
Riot Total receptor concentration Cell 4.15E-10 M ”
Gl Total G' concentration Cell 4.15E-10 M
G2y Total G? concentration Cell 4.15E-10 M "
Lot Total Ligand concentration Ligand 1.00E-07 M "

expected by letting a greater number of parameters float, or us-
ing a more detailed cAMP model (eg. Leander and Friedman, 2014).
The simulation and fitting in the current work also clearly shows
that single-ligand multi-pathway activation at a single receptor
provides a mechanism for non-monotonic concentration-response
relations either for agp itself or for downstream signals, by way
of functional antagonism. While functional signalling experiments
often results in monotonic concentration-response curves, rela-
tionships with downturns at high concentrations are not uncom-
mon (Calabrese and Baldwin, 2001; PliSka, 1994; Zhu et al., 2013),
and the current work provides a plausible mechanistic model for
understanding such results in systems where multi-pathway sig-
nalling via a single receptor is possible.

The mathematical work here represents a theoretical frame-
work for further study of the potential benefits of developing bi-
ased agonists as therapeutics. The multidimensionality of GPCR
signalling now constitutes a new paradigm in drug discovery, and
the potential benefits of new understanding of multi-pathway sig-
nalling lie in the development of “functionally selective” drugs
which preserve efficacy in target pathways, while minimising ac-
tivation of unwanted side-effect pathways at the same recep-
tor (Rankovic et al., 2016). Further mechanistic modelling encom-
passing G protein binding and activation, downstream signalling,
dynamics and complexity of the level we have studied here is ac-
knowledged as a potentially very valuable advance towards such
drug discovery goals (Stott et al., 2015; Urban et al., 2007).

Author contributions

LJB developed models, performed computations and analysis,
and wrote the manuscript. JM performed computations and analy-
sis, and wrote the manuscript. EF performed wet-lab experiments.

IW performed wet-lab experiments. GL developed models, anal-
ysed data and wrote the manuscript.

Acknowledgements

This study was supported by the BBSRC (to G.L., BB/M00015X/2;
to J.M., a Research Experience Placement award) and an MRC Doc-
toral Training Partnership (to LW. MR/J003964/1). Predictive mOd-
elling for hEalthcare through MathS (POEMS) network funding by
EPSRC supported LJB’s travel to Cambridge.

Appendix A. Parameter values

In Table A.1, we give a base parameter set for all computations.
Any variations from this parameter set are shown in figure titles
and captions.

Appendix B. Receptor cross states

In Fig. B.1, we show simulated time courses for a¢rp, under
variation of receptor cross state activation and accessibility. In the
top row, we allow activation of both G proteins by either active
state (by setting ké?,, =1V}, 0), and vary the propensity for G pro-
tein binding to the active states by varying ;L}r’z. With u_zﬂ =0.001
(so that there is very little R*2G!, top left plot), as MLZ increases,
basal aéﬂ, increases due to increased signalling via pre-coupled
R¥1G2. Also there is a slight increase in plateau aén). In this case,
the perhaps unexpected trend in the peak response, whereby peak
aérp does not increase with ,u};z, is due to the fact that for large
,ulz, the basal conditions are “near equilibrium”, and the peak
may increase or decrease with increased ,u,}r'z. The aéﬂ, equilib-
rium and dynamics are not significantly affected by changes in
w12, Performing the same simulations with u%' = 1000 (top right
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Fig. B1. Time courses for varying agonist accessibility of receptor cross states. Here, [L] = 107> M.

plot) ozGTP dynamics are again largely unaffected by the variation
in ,u+ , but this time the system is closer to equilibrium and aGTP
has a lower peak than for 2! =0.001 .

In the case where cross states are accessible in the G pro-
tein binding sense, but there is specificity with respect to g pro-
tein activation (so k op = kGTP =0), for increasing /LLZ, we now
have more of G2 trapped in a non-signalling complex R*1G2, giv-
ing reduced basal and equilibrium aéﬂ,. The basal and equilib-
rium levels are monotonic with /xlz but the peak levels are not.
For u2'=0.001, as pl? increases, more R*! is trapped in non-
signalling complexes, so there is less R*!G! available to signal, re-
sulting in a lower al;,. For u?! = 1000, we see the same trends,
but with lower aéTZP signals, since there is more non-signalling

R*2G1,
Appendix C. Effect of v

In Fig. C.1, we show that the effect of varying v? (the mi-
croaffinity constant v? that controls the preference of ligand for
RGY over R) is as expected; increasing v? increases both peak and
plateau o,

Appendix D. Further experimental detail for cAMP experiments

CHO-K1 cells, expressing the A;R were routinely grown in
Hams F-12 media (supplemented with 10% FBS), at 37 °C, in a hu-
midified atmosphere, containing 5% CO,. Where Gs assays were
performed, cells were pre-treated, for 16-18 h with 200 ng/ml
PTX. Upon day of assay, cells were harvested and brought to sin-
gle cells suspension using trypsin (containing 0.05 EDTA). Cells
were washed and resuspended in stimulation buffer (PBS contain-
ing 0.1% BSA and 25 pM rolipram). Cells were seeded onto 384-
well, white, optiplates and stimulated with either agonist alone,
or co-stimulated with agonist and 10 pM forskolin, for 30 min.

cAMP levels were then detected using a LANCE® cAMP detection
kit (PerkinElmer, Boston, MA), and plates read using a LB 940 mul-
timode microplate reader (Berthold technologies, Germany) (exci-
tation: 340 nm, emission: 665 nm).

Appendix E. Parameter estimates for cAMP experiments

In Table E.1, we show parameter estimates for the experimental
data shown in Fig. 18. Inspection of the values shows that ligand-
dependent parameter values vary over orders of magnitude across
the three experiments, while cell-only parameter value estimates
are all within an order of magnitude of each other, as expected.
Also, our estimates for the G protein totals are consistent with the
observation that in most membranes, the amount of G; protein ex-
ceeds the amount of Gs (Barritt, 1992).

Appendix F. Parameter estimates, units and scales

We remark here that, in keeping with (Bridge et al., 2010;
Woodroffe et al., 2010), we have reported concentrations in units
of molar (M), and performed computations using parameters in the
units shown in Table A.1. While working in these units requires
dimensional parameter values on widely different orders of mag-
nitude, we encounter no numerical difficulties related to roundoff
errors or catastrophic cancellation. An alternative choice of con-
centration units suggested by Table A.1 is nM, so that the recep-
tor and G protein concentrations, if scaled with their initial values,
would be O(1). In Table F1 we show the variable and parame-
ter values affected by this change of units, which gives a smaller
range of orders of magnitude in our parameter list. Re-computing
with the new concentration units, for both simulation and param-
eter estimation, gives the same dynamic results and fitting as with
the original parameter set (see, eg., Fig. F.1). In Table F1, we also
show sample parameter estimates for the experimental data using
NECA as the ligand. Rescaling all concentrations (changing units to
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Table E1
Parameter estimates for fitting biased agonism with
functional antagonism model to cAMP data (see
Fig. 18).

Parameter  Cmpd6

Cmpd20 NECA

nM rather than M), we reduce the range of orders of magnitude of
the parameters. Further, we have taken initial parameter estimates
from this rescaled set, and perturbed them, then re-run genetic al-
gorithms, and recover this rescaled set as our best fit (see Fig. F.2).
This indicates that the original fitting routine did not suffer any
numerical difficulties due to the range of orders of magnitude.

Beyond this simple change of units, careful scaling of both
the state and time variables by representative values would yield
a fully nondimensional system which would allow for identifi-
cation of relative magnitudes of dimensionless parameters which
control the dynamics, as in Woodroffe et al. (2010, 2009) and
Bridge et al. (2010). Such an approach is useful for (smaller) ODE
systems for which further analytical work may be tractable, but is
beyond our scope here.

Parameter values for 2 G protein, 2 active receptor state model, now measuring concentrations in nM.

Value (typical simulation)  Value (fitted for NECA)  Units

kpy 120E+04  749E+03  1.52E+04
1 447E+03  152E4+02  4.55E+03
2 2.70E+04  7.00E+03  2.54E+04
vl 5.82E-01 122E+01  5.82E-01
v2 6.00E+00  2.54E+02  8.36E+00
Kl 8.80E-01 144E+00  9.32E-01
k2., 6.47E-01 140E+00  5.94E-01
ki, 6.34E+08  5.69E+08  6.55E+08
k&, 2.89E+09  3.72E+09  2.36E+09
kiea, 755E+05  7.99E+05  7.63E+05
K&pas 410E+05  3.50E4+05  3.28E+05
k}]yd " 2.42E-03 4.40E-03 2.42E-03
kﬁyd " 3.20E-03 3.00E-03 3.30E-03
kips 1.90E-01  2.01E-01  175E-01
oy 187E-01  227E-01  1.87E-01
wuh! 1.28E+00  216E+00  1.28E+00
u*? 8.60E-01  8.50E-01  8.60E-01
Reot 4.15E-10 4.15E-10 4.15E-10
Gl 3.79E-10 4.80E-10 4.49E-10
G, 8.22E-10 7.20E-10 8.28E-10
G 430E+08  4.36E+08  3.24E+08
G 4.40E+08  5.30E+08  4.99E+08
Table F1
Label  Meaning
kv Ligand binding rate
k§+ G prote%n 1 b%nd?ng rate
k?Jr G protein 2 blndlng rate
Egm " g protefn 1 reassoqatfon rate
CRA+ protein 2 reassociation rate
Reot Total receptor concentration
Glo Total G' concentration
G2y Total G? concentration
Leot Total ligand concentration

9.40E-05
1.00E-01
1.00E-01
7.00E-04
7.00E-04
4.15E-1
4.15E-1
4.15E-1
1.00E+02

1.52E-05 nM-1 51
6.55E-01 nM-1 51
2.36E+00 nM-! s~!
7.63E-04 nM-1 51
3.28E-04 nM-! 5!
4.15E-01 nM
4.49E-01 nM
8.28E-01 nM
- nM
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Fig. F1. Agonist-agonist time courses, equivalent to Fig. 4, but using new rescaled parameter set. We see that the o¢rp concentrations are simply rescaled.
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Fig. F2. Parameter fitting for NECA experiment, using new rescaled parameter set.
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