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a b s t r a c t 

Theoretical models of G protein-coupled receptor (GPCR) concentration-response relationships often as- 

sume an agonist producing a single functional response via a single active state of the receptor. These 

models have largely been analysed assuming steady-state conditions. There is now much experimental 

evidence to suggest that many GPCRs can exist in multiple receptor conformations and elicit numerous 

functional responses, with ligands having the potential to activate different signalling pathways to vary- 

ing extents–a concept referred to as biased agonism, functional selectivity or pluri-dimensional efficacy. 

Moreover, recent experimental results indicate a clear possibility for time-dependent bias, whereby an 

agonist’s bias with respect to different pathways may vary dynamically. Effort s towards understanding 

the implications of temporal bias by characterising and quantifying ligand effects on multiple pathways 

will clearly be aided by extending current equilibrium binding and biased activation models to include 

G protein activation dynamics. Here, we present a new model of time-dependent biased agonism, based 

on ordinary differential equations for multiple cubic ternary complex activation models with G protein 

cycle dynamics. This model allows simulation and analysis of multi-pathway activation bias dynamics at 

a single receptor for the first time, at the level of active G protein ( αGTP ), towards the analysis of dy- 

namic functional responses. The model is generally applicable to systems with N 

G G proteins and N 

∗ ac- 

tive receptor states. Numerical simulations for N 

G = N 

∗ = 2 reveal new insights into the effects of system 

parameters (including cooperativities, and ligand and receptor concentrations) on bias dynamics, high- 

lighting new phenomena including the dynamic inter-conversion of bias direction. Further, we fit this 

model to ‘wet’ experimental data for two competing G proteins ( G i and G s ) that become activated upon 

stimulation of the adenosine A 1 receptor with adenosine derivative compounds. Finally, we show that our 

model can qualitatively describe the temporal dynamics of this competing G protein activation. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Mathematical modelling and scientific computing are powerful

tools for the analysis of cell signalling in pharmacology. “Analyt-

ical pharmacology”, which has its roots in classical receptor the-

ory and largely focuses on equilibrium cell responses to drugs,

provides a vital theoretical basis which underpins drug classifi-

cation and prediction of drug mechanism of action ( Kenakin and

Christopoulos, 2011 ). Much of the analysis has centred on assump-

tions of a single ligand binding a monomeric G protein-coupled re-
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eptor (GPCR), activating a single active state and coupling a single

 protein. Concepts like allosterism, inverse agonism, oligomeri-

ation and “biased signalling” are now widely accepted and have

nhanced receptor theory towards better understanding of drug-

eceptor interactions and informed drug discovery ( Kenakin and

illiams, 2014 ). GPCRs represent a target for perhaps up to half

f all current drugs ( Woodroffe et al., 2009 ), and as such, develop-

ent of the theory for ligand-GPCR interactions and their conse-

uences is key. 

Biased agonism is now a widely accepted phenomenon whereby

 ligand may activate multiple different pathways at the same re-

eptor, via multiple active conformations ( Kenakin, 2011; Onaran

t al., 2014; Rankovic et al., 2016; Urban et al., 2007 ). Other

erms for this phenomenon include functional selectivity and pluri-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Pluri-dimensional efficacy and biased agonism at a GPCR. (a) A classical view of signalling–two different receptors, each bound and activated (to a single active 

conformation) by a specific ligand, and bound by a specific G protein. The activated G protein subunit αGTP signals to a downstream pathway specific to the G protein. (b) 

A two-active-state, two-G protein biased signalling schematic. The receptor has two active states, and the proportion of receptors in either active state, and the inactive 

state, may be affected (biased) by a single ligand. Two different G proteins, specific to the active conformations, couple to the receptors and signal to two pathways. (c) 

Pluri-dimensional efficacy - multi-active receptor with multiple G proteins, not necessarily each specific to a single receptor conformation. Here we have N ∗ = 4 active states 

(represented by yellow, green, red and blue in the receptor block) and N G = 5 G proteins. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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imensional efficacy , while receptor promiscuity refers to the ability

f a receptor to couple different G proteins with different affini-

ies, via different active states. The possibility of multi-pathway ac-

ivation may lead to a breakdown in the common classifications of

igands based on single active state theory ( Kenakin, 2011 ), or er-

ors in the interpretation of data using simple models ( Tu ̌cek et al.,

002 ). Therefore, development of biased agonism theory has be-

ome an important field of pharmacological research. 

Biased signalling has implications for drug discovery, includ-

ng the prospect of clinical selectivity and the potential of reduced

ide effects ( Kenakin, 2015; Kenakin and Christopoulos, 2013; Stott

t al., 2015 ). A schematic of biased agonism is shown in Fig. 1 , in-

icating possibility for a ligand to activate two (or more) G protein

athways at the same receptor, one of which may be a “target”

herapeutic pathway, while the other may be an unwanted “side-

ffect” pathway (panel (b)). To understand, quantify and exploit the 

otential for biased agonism, theoretical models for such schemat-

cs are required. 

A two-active-state model of ligand binding and receptor activa-

ion at equilibrium was presented in Leff et al. (1997) . This equilib-

ium model addressed the limitations of single-active-state theory

hich could not recapitulate different pathway potency and effi-

acy patterns at the same receptor. It was found that theoretically,

n agonist may enrich one active receptor state at the expense of

nother, and pathway-dependent efficacy was observed in simula-

ions. For an intact system, however, pathway-dependent potency

with active receptor as the pathway readout) was not possible.

 protein coupling and activation were not explicitly modelled,

ut their importance for future modelling was acknowledged. Later

quilibrium models included the binding of G proteins ( Ehlert,

0 08; Scaramellini and Leff, 20 02 ), which give further scope for

athway-dependent pharmacology. An alternative model for biased

gonism is given in Roche et al. (2013) , where downstream effects

re modelled not explicitly via G protein binding, but by coupling

he operational model of agonism ( Black and Leff, 1983 ) to active

eceptor stimuli. This model does not include constitutive activ-

ty of the receptors. Further equilibrium modelling for promiscuous
t  
oupling of receptors to multiple G proteins has been presented in

ukkonen et al. (2001) and Tu ̌cek et al. (2002) . 

The direction and magnitude of a ligand’s bias towards one

athway over another has largely been quantified using equilib-

ium assumptions and empirical models such as the operational

odel ( Gundry et al., 2017; Kenakin, 2014; Kenakin et al., 2012;

ajagopal et al., 2011 ). A recent study ( Herenbrink et al., 2016 )

as highlighted the role of “kinetic context” in approaching such

alculations, whereby the apparent bias of a ligand towards any

iven pathway may vary over time. Interpretation of experimental

eadouts in terms of bias must therefore take into account the sig-

alling dynamics and associated timescales of the measured path-

ay. Thus, dynamic models of GPCR biased signalling are proposed

ere to give new theoretical insights into the effects of biased ag-

nists. 

In Chen et al. (2003) , an ordinary differential equation (ODE)

odel for the dynamics of biased signalling at GPCRs is pre-

ented. The steady-state behaviour of the model is analysed, with

articular attention paid to the effect of G protein concentra-

ion, where the model output is active G protein. The dynam-

cs in Chen et al. (2003) are not examined in detail, but exten-

ive analysis of GPCR signalling dynamics has been presented else-

here ( Bridge et al., 2010; Woodroffe et al., 2010; 2009 ), for math-

matical models which also allow G proteins binding to inactive

eceptors, and constitutive receptor activity. In these models, the

ctive G protein α subunit bound to guanosine triphosphate ( αGTP )

s taken as a model readout which is representative of downstream

ignalling pathway activity. 

In this paper we develop a new mathematical model for the dy-

amics of biased agonism at GPCRs. The model allows an in-depth

heoretical analysis of time-dependent biased agonism at a GPCR

or the first time, and is novel in its generality and detail; any

umber of active receptor states and G proteins may be consid-

red, receptor states need not be specific to particular G proteins,

nd the response is at the level of αGTP , downstream of active re-

eptor and towards a dynamic functional response. In Section 2 ,

e formulate a general ODE model for the dynamics of a recep-

or which can activate multiple G protein-mediated pathways. The
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general model has receptor with N 

∗ active conformations and N 

G 

G proteins available for coupling, but our focus computationally

(driven by Leff et al., 1997 ) throughout is the case N 

∗ = N 

G = 2 . In

Section 3 , we present time course and concentration-response sim-

ulation results for our model, focusing on αGTP dynamics. In partic-

ular, we highlight that our model has the propensity for agonist-

inverse agonist interconversion both with respect to time and con-

stitutive activity. A numerical analysis of the effects of multiple

cooperativity factors is performed. In Section 4 , we propose an

heuristic method for quantifying dynamic bias, by way of bias fac-

tors, and show how these bias factors relate to our model param-

eters. It is shown that the bias rank order for a bank of ligands

may change dynamically. In Section 5 , we show that our model

simulations fit well to new experimental data where biased ago-

nism at the adenosine A 1 receptor is suspected. We conclude in

Section 6 with a discussion of our main results, underlining our

contribution to the biased signalling literature. 

2. Model formulation 

Here we formulate an ODE model for the dynamics of signalling

for multi-active state GPCRs capable of binding multiple G pro-

teins, in response to a single ligand binding. The model allows for

a receptor which may have an inactive conformation R , or one of

N 

∗ active receptor conformations R ∗j , for j = 1 , . . . , N 

∗. Also, a re-

ceptor may couple to one of N 

G G proteins G 

θ , for θ = 1 , . . . , N 

G .

The model encompasses ligand binding, receptor activation, G pro-

tein binding and the G protein cycle, whereby the model output

is activated G protein αGTP , which signals to second messengers,

and is therefore taken as an indicator of pathway response, as in

Woodroffe et al. (2010, 2009) and Bridge et al. (2010) . 

2.1. A three-state (two active states) model 

While the model is formulated for general N 

G and N 

∗, we

largely focus throughout on the case N 

∗ = N 

G = 2 . A schematic for

the transitions between 18 receptor states for this particular case is

shown in Fig. 2 . R denotes inactive receptor, while R ∗j ( j = 1 , 2 ) de-

notes the j th active state. Any species label including L represents

a complex including ligand-bound receptor, while any species in-

cluding G 

θ ( θ = 1 , 2 ) is a complex including receptor coupled to

the θ th G protein. Double arrows represent the reversible binding

and activation reactions between receptor states. As described in

previous GPCR signalling studies (eg. Bridge et al., 2010; Woodroffe

et al., 2010; Woodroffe et al., 2009 ), a R ∗G 

θ or LR ∗G 

θ complex may

dissociate and exchange GDP for GTP on the α subunit of the G

protein, leading to the signalling response αθ
GT P 

and the G protein

cycle. 

2.2. The ( j, θ ) receptor/G protein block 

In order to formulate the ODE model for the schematic shown

in Fig. 2 (or, indeed, the general N 

∗, N 

G -case), we consider the ( j,

θ ) receptor/G protein block (where j = 1 , 2 and θ = 1 , 2 for Fig. 2 ).

Each such block is seen to be a cubic ternary complex schema for

activation of receptor from inactive state R to active state R ∗j , with

coupling to G protein G 

θ ( Woodroffe et al., 2009 ). In Fig. 3 , the

equilibrium rate constants K • and cooperativity factors μ, ν , ζ are

labelled on each reversible reaction. For the individual kinetic rate

constants and factors, we use lower case k , and subscripts + and −
to denote the forward and backward reactions respectively. The de-

scriptions of the rate constants and cooperativity factors are given

in Table 1 . The G protein cycle and αGTP responses follow from dis-

sociation of R ∗G 

θ and LR ∗G 

θ according to the following reactions

(see Woodroffe et al., 2009 ): 
 

∗ j G 

θ
k j,θ

GTP+ −→ R 

∗ j + αθ
GT P + βγ θ , 

R 

∗ j G 

θ
νθ

−k j,θ
GTP+ −→ LR 

∗ j + αθ
GT P + βγ θ , (1a)

θ
GT P 

k hyd+ −−⇀ 

↽ −−
k hyd−

αθ
GDP , αθ

GDP + βγ θ

k RA + −−⇀ 

↽ −−
k RA −

G 

θ . (1b)

.2.1. Governing equations 

Suppose in general that a receptor has N 

∗ distinct active states,

nd that each receptor may couple one of N 

G distinct G proteins.

hen applying mass action kinetics to our schematic and G protein

ycle reactions gives a system of n nonlinear ODEs for the species

oncentrations, where 

 = 3 + 2 N 

∗ + 6 N 

G + 2 N 

∗N 

G . (2)

he first term here is given by species L, R and LR . The second term

s given by active non-coupled receptor states R ∗j , LR ∗j and the third

erm corresponds to G protein not coupled to active receptor ( G,

G, LRG , αθ
GT P 

, αθ
GDP 

, βγ θ ). Finally, the number of active receptor/G

rotein complexes, R ∗j G 

θ and LR ∗j G 

θ , is 2 N 

∗N 

G , since we consider

j = 1 , . . . , N 

∗ and θ = 1 , . . . , N 

G . If ligand concentration is consid-

red constant, then we will not have an ODE for [ L ] (so omitting

q. (3b) below), and instead n = 2 
(
1 + N 

∗ + 3 N 

G + N 

∗N 

G 
)
. 

d[ R ] 

dt 
= k L −[ LR ] − k L + [ L ][ R ] + 

N ∗∑ 

j=1 

(
k j act−[ R 

∗ j ] − k j act+ [ R ] 

)

+ 

N G ∑ 

θ=1 

(
k θG −[ RG 

θ ] − k θG + [ R ][ G 

θ ] 

)
, (3a)

d[ L ] 

dt 
= k L −[ LR ] − k L + [ L ][ R ] + 

N ∗∑ 

j=1 

(
ζ j 

−k L −[ LR 

∗ j ] − ζ j 
+ k L + [ L ][ R 

∗ j ] 

)

+ 

N G ∑ 

θ=1 

(
νθ

−k L −[ LRG 

θ ] − νθ
+ k L + [ L ][ RG 

θ ] 

)

+ 

N G ∑ 

θ=1 

N ∗∑ 

j=1 

(
ζ j 

−νθ
−k L −[ LR 

∗ j G 

θ ] − ζ j 
+ ν

θ
+ k L + [ L ][ R 

∗ j G 

θ ] 

)
, 

(3b)

d[ LR ] 

dt 
= k L + [ L ][ R ] − k L −[ LR ] + 

N ∗∑ 

j=1 

(
ζ j 

−k j act−[ LR 

∗ j ] − ζ j 
+ k 

j 
act+ [ LR ] 

)

+ 

N G ∑ 

θ=1 

(
νθ

−k θG −[ LRG 

θ ] − νθ
+ k 

θ
G + [ LR ][ G 

θ ] 

)
, (3c)

d[ R 

∗ j ] 

dt 
= k j act+ [ R ] − k j act−[ R 

∗ j ] + ζ j 
−k L −[ LR 

∗ j ] − ζ j 
+ k L + [ L ][ R 

∗ j ] 

+ 

N G ∑ 

θ=1 

(
μ j,θ

− k θG −[ R 

∗ j G 

θ ] − μ j,θ
+ k θG + [ R 

∗ j ][ G 

θ ] 

)

+ 

N G ∑ 

θ=1 

(
k j,θ

GT P+ [ R 

∗ j G 

θ ] 

)
, for j = 1 , . . . , N 

∗ (3d)

d[ LR 

∗ j ] 

dt 
= ζ j 

+ k 
j 
act+ [ LR ] − ζ j 

−k j act−[ LR 

∗ j ] + ζ j 
+ k L + [ L ][ R 

∗ j ] − ζ j 
−k L −[ LR 

∗ j

+ 

N G ∑ 

θ=1 

(
μ j,θ

− νθ
−k θG −[ LR 

∗ j G 

θ ] − μ j,θ
+ ν

θ
+ k 

θ
G + [ LR 

∗ j ][ G 

θ ] 

)

+ 

N G ∑ 

θ=1 

(
νθ

−k j,θ
GT P+ [ LR 

∗ j G 

θ ] 

)
, for j = 1 , . . . , N 

∗ (3e)
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Fig. 2. A multi-cubic ternary complex model schematic for biased signalling with two active receptor states ( R ∗1 , R ∗2 ) and two G proteins ( G 1 , G 2 ), giving 18 receptor species. 

Double arrows represent reversible binding and activation reactions between the receptor states. The four complexes R ∗1 G 1 , LR ∗1 G 1 , R ∗2 G 2 and LR ∗2 G 2 may dissociate, leading 

to the G protein cycle and increased active G protein signalling units α1 
GTP and α2 

GTP . 
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Table 1 

Equilibrium rate constants and cooperativity factors for the ( j, θ ) block of the biased signalling schematic. 

Label Description of equilibrium constant 

K L Association of ligand L and receptor R . 

K θ
G 

Binding of G protein G θ to receptor R . 

K j act Activation of receptor R to give active state R ∗j . 

μj, θ Preference of G θ for R ∗j over R . Equally, the factor increase in propensity for R → R ∗j activation when R is G θ -bound. 

νθ Preference of L for RG θ over R . Equally, the preference of G θ for LR over R . 

ζ j Preference of L for R ∗j over R . Equally, the factor increase in propensity for R → R ∗j activation when R is L -bound. 

Fig. 3. The ( j, θ ) receptor/G protein block of the multi-cubic ternary complex 

schematic, for ligand binding to, and activation of, receptor j , with coupling to G 

protein θ . Equilibrium rate constants K • and cooperativity factors μ, ν , ζ are la- 

belled on each reversible reaction. 

 

 

 

 

 

 

 

 

 

t  

[  

d  

B  

s  

s  

8  

β  

i

d[ RG 

θ ] 

dt 
= k θG + [ R ][ G 

θ ] − k θG −[ RG 

θ ] + νθ
−k L −[ LRG 

θ ] − νθ
+ k L + [ L ][ RG 

θ ] 

+ 

N ∗∑ 

j=1 

(
μ j,θ

− k j act−[ R 

∗ j G 

θ ] − μ j,θ
+ k j act+ [ RG 

θ ] 

)
, 

for θ = 1 , . . . , N 

G , (3f)

d[ LRG 

θ ] 

dt 
= νθ

+ k 
θ
G + [ LR ][ G 

θ ] − νθ
−k θG −[ LRG 

θ ] 

+ νθ
+ k L + [ L ][ RG 

θ ] − νθ
−k L −[ LRG 

θ ] 

+ 

N ∗∑ 

j=1 

(
μ j,θ

− ζ j 
−k j act−[ LR 

∗ j G 

θ ] − μ j,θ
+ ζ

j 
+ k 

j 
act+ [ LRG 

θ ] 

)
, 

for θ = 1 , . . . , N 

G , (3g)

d[ R 

∗ j G 

θ ] 

dt 
= μ j,θ

+ k θG + [ R 

∗ j ][ G 

θ ] − μ j,θ
− k θG −[ R 

∗ j G 

θ ] 

+ ζ j 
−νθ

−k L −[ LR 

∗ j G 

θ ] − ζ j 
+ ν

θ
+ k L + [ L ][ R 

∗ j G 

θ ] 

+ μ j,θ
+ k j act+ [ RG 

θ ] − μ j,θ
− k j act−[ R 

∗ j G 

θ ] 

− k j,θ
GT P+ [ R 

∗ j G 

θ ] 

for j = 1 , . . . , N 

∗ and θ = 1 , . . . , N 

G , (3h)
d[ LR 

∗ j G 

θ ] 

dt 
= μ j,θ

+ ν
θ
+ k 

θ
G + [ LR 

∗ j ][ G 

θ ] − μ j,θ
− νθ

−k θG −[ LR 

∗ j G 

θ ] 

+ ζ j 
+ ν

θ
+ k L + [ L ][ R 

∗ j G 

θ ] − ζ j 
−νθ

−k L −[ LR 

∗ j G 

θ ] 

+ μ j,θ
+ ζ

j 
+ k 

j 
act+ [ LRG 

θ ] − μ j,θ
− ζ j 

−k j act−[ LR 

∗ j G 

θ ] 

− νθ
−k j,θ

GT P+ [ LR 

∗ j G 

θ ] 

for j = 1 , . . . , N 

∗ and θ = 1 , . . . , N 

G , (3i)

d[ G 

θ ] 

dt 
= k θG −[ RG 

θ ] − k θG + [ R ][ G 

θ ] + νθ
−k θG −[ LRG 

θ ] − νθ
+ k 

θ
G + [ LR ][ G 

θ ] 

+ k θGRA + [ α
θ
GDP ][ βγ θ ] − k θGRA −[ G 

θ ] 

+ 

N ∗∑ 

j=1 

(
μ j,θ

− k θG −[ R 

∗ j G 

θ ] − μ j,θ
+ k θG + [ R 

∗ j ][ G 

θ ] 

)

+ 

N ∗∑ 

j=1 

(
μ j,θ

− νθ
−k θG −[ LR 

∗ j G 

θ ] − μ j,θ
+ ν

θ
+ k 

θ
G + [ LR 

∗ j ][ G 

θ ] 

)
, 

for θ = 1 , . . . , N 

G , (3j)

d[ αθ
GDP 

] 

dt 
= k θhyd+ [ α

θ
GT P ] − k θhyd−[ αθ

GDP ] + k θGRA −[ G 

θ ] 

− k θGRA + [ α
θ
GDP ][ βγ θ ] , 

for θ = 1 , . . . , N 

G , (3k)

d[ βγ θ ] 

dt 
= k θGRA −[ G 

θ ] − k θGRA + [ α
θ
GDP ][ βγ θ ] 

+ 

N ∗∑ 

j=1 

(
k j,θ

GT P+ [ R 

∗ j G 

θ ] + νθ
−k j,θ

GT P+ [ LR 

∗ j G 

θ ] 

)
, 

for θ = 1 , . . . , N 

G , (3l)

d[ αθ
GT P 

] 

dt 
= k θhyd−[ αθ

GDP ] − k θhyd+ [ α
θ
GT P ] 

+ 

N ∗∑ 

j=1 

(
k j,θ

GT P+ [ R 

∗ j G 

θ ] + νθ
−k j,θ

GT P+ [ LR 

∗ j G 

θ ] 

)
, 

for θ = 1 , . . . , N 

G . (3m)

For the model “outputs”, or downstream responses of the sys-

em to an input ligand concentration, we take the concentrations

 αθ
GT P 

] for θ = 1 , . . . , N 

G , as we consider these as indicators of

ownstream activity in signalling pathways as in Bridge (2009) and

ridge et al. (2010) . For our computational results, we will con-

ider the case with two G proteins and two active receptor states,

uch that N 

∗ = N 

G = 2 , and our model has 18 receptor states and

 non-receptor-bound G protein species ( 2 × (G + αGT P + αGDP +
γ ) ). Taking ligand concentration constant (as in previous stud-

es), the system (3) in this case consists of 26 ODEs. 
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Fig. 4. The αθ
GTP 

response (M) against time (in seconds) of two competing pathways with ζ 1 
+ = 10 0 0 and ζ 2 

+ = 200 after the addition of [ L ] = 10 −7 , 10 −6 and 10 −5 M. 
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Initial conditions for our simulations have [ R ] t=0 = R tot (the to-

al receptor concentration), [ G 

θ ] t=0 = G 

θ
tot (the total concentration

or each G protein), and all other species zero at t = 0 . 

. Simulation results 

Here we present numerical results (for αθ
GT P 

concentrations)

hich illustrate the variety of dynamic behaviour which is possible

or a system of two active states and two-G proteins. These results

re intended to demonstrate potential dynamics rather than pro-

ide exhaustive or accurate predictions for any particular receptors

r ligands. For all simulations, we first compute the system with

 L ] = 0 for a long time (10 8 s) to allow the system to come to a

teady-state equilibrium before the addition of ligand, and all pa-

ameters except those explicitly stated are maintained at the val-

es in Table A.1 . 

.1. Time courses 

We consider time courses for the two αGTP responses of inter-

st. The signifcance of these computations is that two responses

(α1 
GT P , α

2 
GT P ) are generated from a single ligand at a single receptor,

hereas previous GPCR dynamic models (eg. Bridge et al., 2010 )

ave considered a single αGTP response from each receptor. Fur-

her, the dynamic responses for the new model do not necessarily

ollow the previously reported behaviour of ligands classed as ag-

nists, antagonists or inverse agonists for a single active state. An

gonist is a ligand which encourages receptor activation, an antag-

nist is neutral in its action, and an inverse agonist discourages

eceptor activation. Within our model, therefore, an agonist for ac-

ive state R ∗j has ζ j > 1, an antagonist has ζ j = 1 , and an inverse

gonist has ζ j < 1. 

.1.1. Ligand is an agonist for both pathways 

By varying the values of ζ 1 and ζ 2 , the preference of the lig-

nd for a receptor in the active states 1 and 2 over the inactive

eceptor state, we vary the efficacy with respect to the G protein

athways 1 and 2 respectively. In Fig. 4 , we show time courses
f the responses to a ligand which is an equilibrium agonist for

oth pathways, for a range of concentrations. Three different lig-

nd concentrations are used, and the αθ
GT P 

responses for θ = 1 , 2

re shown. The higher efficacy with respect R ∗1 gives an increased

esponse, and we note the peak-plateau dynamics. With increased

igand concentration, we see a higher αθ
GT P 

response for both path-

ays, both at peak and plateau (end-point). Further, the peak tim-

ng is reduced with increased ligand concentration, in keeping with

revious single active state studies ( Bridge, 2009; Woodroffe et al.,

009 ). 

.1.2. Ligand is agonist for one pathway and antagonist for the other 

Neutral antagonists may be used as competitive ligands to en-

ogenous agonists. Mathematical modelling of agonist-antagonist

ompetition at a single active state GPCR has been considered in

ridge et al. (2010) . Within our two-active state model, we may

imulate the dynamics of a system for which a given ligand is an

gonist for one pathway but an antagonist for the other. In Fig. 5 ,

e show αGTP and receptor time courses for this scenario, for a lig-

nd which is an (equilibrium) agonist for pathway 1 ( ζ 1 + = 10 0 0 ,
1 − = 1 ) and an (equilibrium) antagonist for pathway 2 ( ζ 2 + = 1 ,
2 − = 1 ), over a range of ligand concentrations. We note the peak-

lateau α1 
GT P 

dynamics, and the nearly neutral effect on α2 
GT P 

dy-

amics. However, closer inspection of [ α2 
GT P ] reveals that the ligand

n fact has an inverse agonist effect on pathway 2. Since the ligand

s an agonist for pathway 1, its effect on overall receptor activation

s an increase in pathway 1 active states, given by 

 

∗1 
tot = [ R 

∗1 ] + [ LR 

∗1 ] + [ R 

∗1 G 

1 ] + [ LR 

∗1 G 

1 ] , (4)

nd a corresponding decrease in pathway 2 active states and free

nactive receptor states, given, respectively, by 

 

∗2 
tot = [ R 

∗2 ] + [ LR 

∗2 ] + [ R 

∗2 G 

2 ] + [ LR 

∗2 G 

2 ] , (5)

nd 

 

inactive 
tot = [ R ] + [ LR ] + [ RG 

1 ] + [ LRG 

1 ] + [ RG 

2 ] + [ LRG 

2 ] . (6)

pon ligand addition, there are, therefore, fewer receptors available

o activate pathway 2, giving a decrease in [ α2 ] , and the inverse

GT P 
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Fig. 5. The αθ
GTP 

response (M) against time (in seconds) for two pathways with ζ 1 
+ = 10 0 0 and ζ 2 

+ = 1 after the addition of [ L ] = 10 −7 , 10 −6 , 10 −5 M so that the ligand is an 

agonist for pathway 1 and an antagonist for pathway 2. Receptor concentrations are given in the bottom panel. Here, ζ 1 
+ = 1 . 
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agonist effect of the “antagonist”. For [ L ] = 10 −7 M, we also see

the undershoot αGTP response previously reported for inverse ago-

nists ( Bridge, 2009 ). We note that a true neutral antagonist effect

with constant [ α2 
GT P 

] would be seen if we considered pathway 2 as

an “isolated pathway” (see Leff et al., 1997 ) by setting k 1 act+ = 0 . 

3.1.3. Ligand is agonist for one pathway and inverse agonist for the 

other 

Having seen apparent inverse agonist activity in the biased sys-

tem for a ligand which would neutrally antagonise an isolated

pathway, we now turn attention to a ligand which is a true in-

verse agonist for one pathway in the biased system, and an ago-

nist for the other. In Fig. 6 , we show αGTP time courses for this

scenario, for a ligand which is an (equilibrium) agonist for path-

way 1 ( ζ 1 + = 100 , ζ 1 − = 1 ) and an (equilibrium) inverse agonist for

pathway 2 ( ζ 2 + = 0 . 01 , ζ 2 − = 1 ), over a range of ligand concentra-

tions. These simulations are for a system with increased R ∗2 con-

stitutive activity, to represent conditions under which inverse ag-

onism may be detectable. We note the peak-plateau α1 
GT P 

dynam-

ics, and drop-off in α2 
GT P 

level. Further, we observe undershoot dy-

namics in the inversely agonised pathway, which may be seen in

a single-active state system ( Bridge, 2009 ). An interesting feature

here is that while increasing ligand concentration decreases α1 
GT P 

peak time as before, this is accompanied by an increase in α2 
GT P 

trough time. 
.1.4. Time course surfaces 

In order to summarise the effect that efficacy parameter ζ has

n a system, in Fig. 7 we show time course surfaces for [ L ] =
0 −5 M, where we vary ζ 1 + over a spectrum of efficacy ranging

rom strong inverse agonist to strong agonist, while keeping all

ther parameters fixed. We clearly see that the stronger L is an ag-

nist for pathway 1, the lesser its effect on pathway 2. When L is

n agonist for both pathways, the peak-plateau dynamic response

s clear for both α1 
GT P and α2 

GT P , but increasing agonist strength for

athway 1, the pathway 2 response drops off. Similarly, for a path-

ay 2 antagonist, the α2 
GT P 

dynamic response varies from appar-

nt antagonism to inverse agonism with increasing ζ 1 + . Also, for a

athway 2 inverse agonist, the magnitude of α2 
GT P 

inverse agonism

ncreases with ζ 1 + . 

.1.5. Observed agonist effect is system-dependent - constitutive 

ctivity and inter-conversion 

A feature of the equilibrium three-state model in

eff et al. (1997) is that a ligand’s effect on a pathway can

hange qualitatively from agonist to inverse agonist, depending on

he system-specific level of constitutive activity in that pathway.

his so-called “inter-conversion” of ligand effect is demonstrated

t steady-state in Leff et al. (1997) , with respect to active receptor

tates. In Fig. 8 , we show the effects of increasing the constitutive

ctivity in pathway 2 by decreasing k 2 act−. With low constitutive

ctivity ( k 2 act− = 100 ), the time courses for α1 , 2 
GT P 

are indistinguish-

ble. As pathway 2 constitutive activity is increased, it is clear that

athway 2 basal α increases at the expense of pathway 1 basal
GTP 
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Fig. 6. The αθ
GTP 

response (M) against time (s) after the addition of a range of ligand concentrations, where the ligand is an agonist for pathway 1 and an inverse agonist for 

pathway 2. Here, ζ 1 
+ = 100 , ζ 2 

+ = 0 . 01 , k 2 act− = 10 . 

Fig. 7. Time course surfaces for αθ
GTP 

response (M) dynamically changing for system with varying agonist efficacy parameter ζ 1 
+ , acting under a ligand concentration of 

10 −5 M. Column (a): ζ 2 
+ = 10 0 0 ; column (b): ζ 2 

+ = 1 ; column (c): ζ 2 
+ = 0 . 001 . 

α  

S  

l  

i  

p  

(

c  

i  

a  

n  

[  

f  

l

GTP , similarly to the active receptor trend in Leff et al. (1997) and

caramellini and Leff (1998) . The agonist effect on α2 
GT P 

becomes

ess pronounced with decreased k 2 act−, as the G protein response

s largely effected via the basal activity, but the ligand remains a

athway 2 agonist. In contrast, with high activation of pathway 2

 k 2 act− = 1 ), the long-time α1 
GT P response decreases with “agonist”

oncentration, so that the ligand is now having an apparent
nverse agonist effect, despite its isolated pathway classification as

n agonist. It is also worth noting that for ( k 2 act− = 10 ), we observe

on-monotonicity in the peak and plateau α1 
GT P as functions of

 L ]. Thus non-monotonic concentration-response curves may result

rom multi-active state receptors with varying constitutive activity

evels. 
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Fig. 8. Time courses for αθ
GTP 

response (M) dynamically changing for systems with differing constitutive receptor activation level in pathway 2, varying k 2 act− . Here, ζ 1 
+ = ζ 2 

+ = 

100 , k 1 act− = 100 , k 2 act− = 100 . 
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3.1.6. Observed agonist effect may be time-dependent: G protein cycle

and dynamic inter-conversion 

With our new model, we are able to examine the αθ
GT P 

dynam-

ics under variation of constitutive receptor activation. In the final

plot of Fig. 8 , we see the phenomenon of dynamic inter-conversion

between agonist and inverse agonist action. The ligand is an ag-

onist for both pathways under equilibrium classification, but af-

ter initially displaying a typical agonist response, α1 
GT P 

eventually

drops below basal levels in an apparent inverse agonist response.

The dynamic peak response to agonism occurs as in previous sim-

ulations ( Woodroffe et al., 2009 ). The below basal long-time level

is a result of G protein cycle dynamics on active receptor equili-

bration. As α1 
GT P is inactivated and G 

1 reassociates, any new free

receptors resulting from LRG complex dissociation are pulled to-

wards a pathway 2 dominant equilibrium, and the receptor pool

for G 

1 activation decreases below basal level. 

3.2. Concentration-response relationships 

3.2.1. Peak and plateau responses with varying ligand activation 

efficacy and constitutive receptor activity 

The ligand concentration-dependent features which summarise

the αGTP equilibrium and dynamic behaviour may be summarised

using conventional concentration-response curves. In Fig. 9 , we

show concentration response curves for both pathways, where the

measured responses are the peak and plateau αGTP levels. The non-

monotonicity first noted in Section 3.1.5 is clearly a possibility. For

a ligand which agonises both pathways, with high constitutive ac-

tivity in one pathway, the plateau response in the other pathway

is non-monotonic. The peak concentration-response curve is yet

more complex; it is also non-monotonic, with a biphasic structure.

We remark that biased agonism together with constitutive activity
n our new model for αGTP response is a mechanism by which non-

onotonic concentration-response relationships can occur. Such

ehaviour cannot be observed for three-state models ( Leff et al.,

997; Scaramellini and Leff, 1998 ) where the “readout” is a partic-

lar active receptor fraction. 

Further demonstration of the dynamic and concentration-

ependent features of the system is given in Fig. 10 , where we ob-

erve decreasing peak timing for both pathways where the ligand

s an agonist for both, but an increasing trough time at the path-

ay for which the ligand is an inverse agonist. 

.2.2. Effect of total receptor number on concentration-response 

The total concentration of receptor can considerably affect the

ppearance of bias in a system ( Rajagopal et al., 2011 ). In Fig. 11 ,

e investigate the effect of differing receptor expression by exam-

ning concentration-response curves for two pathways being ag-

nised by a ligand ( L 1 ) with different efficacies ( ζ 1 + = 10 0 0 and
2 + = 100) at a range of receptor concentrations R tot (from 4.15

10 −11 M to 4 . 15 × 10 −8 M). As R tot is decreased, we observe both

 rightward shift of the curves (increased EC 50 ), together with a

rop in the maximal responses, for both the peak and plateau val-

es of αGTP . 

Whilst overall efficacy depends partly on the preference of

he ligand for an active rather than inactive receptor (controlled

hrough variation of the ζ parameters), it is important to note that

t can also depend on the preference of a ligand-bound receptor

or each of the G proteins (mediated by the ν parameters). In the

ase of a system in which the ligand-dependent parameters affect-

ng efficacy are chosen so as to counteract each other ( ζ 1 + = 20 0 0 ,
2 + = 100 , ν1 + = 1 , ν2 + = 25 ), we see that ( Fig. 12 ) not only the mag-

itude of the preference for one pathway, but even the direction

in terms of which pathway experiences the higher response) can
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Fig. 9. Concentration-response curves ( αθ
GTP 

concentration against ligand concentration) where the ligand is an agonist for both pathways ( ζ 1 
+ = 10 0 0 , ζ 1 

− = 1 , ζ 2 
+ = 100 , 

ζ 2 
− = 1 , top row) and agonist for pathway 1 but an inverse agonist for pathway 2 ( ζ 1 

+ = 10 0 0 , ζ 1 
− = 1 , ζ 2 

+ = 0 . 01 , ζ 2 
− = 1 , bottom row). Constitutive activity for pathway 2 is 

low ( k 2 act− = 10 0 0 , left column), medium ( k 2 act− = 10 , middle column), and high ( k 2 act− = 1 , left column). Here, ζ 2 
+ = 100 . 

Fig. 10. Concentration-response curves ( αθ
GTP 

maximum and minimum timing against ligand concentration) where the ligand is an agonist for both pathways ( ζ 1 
+ = 10 0 0 , 

ζ 1 
− = 1 , ζ 2 

+ = 100 , ζ 2 
− = 1 , top row) and agonist for pathway 1 but an inverse agonist for pathway 2 ( ζ 1 

+ = 10 0 0 , ζ 1 
− = 1 , ζ 2 

+ = 0 . 01 , ζ 2 
− = 1 , bottom row). Constitutive activity 

for pathway 2 is low ( k 2 act− = 10 0 0 , left column), medium ( k 2 act− = 10 , middle column), and high ( k 2 act− = 1 , left column). Here, ζ 2 
+ = 100 . 
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e affected by a changing receptor concentration. In this case, peak

GTP exhibits a change in direction, while plateau level does not. 

.3. Response surfaces 

Parameter sensitivity and concentration-response relations may

e conveniently summarised using response surfaces which show
he effects of varying two system parameters ( Bornheimer et al.,

004; Bridge et al., 2010; Woodroffe et al., 2009 ). We now use this

ethod to show the sensitivity of simulated response ( α1 , 2 
GT P 

peak

nd plateau) to variations in system parameters, in particular the

icroaffinity coefficients ζ , ν and μ. 
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Fig. 11. Concentration-response curves for peak and plateau αGTP for two pathways being agonised by L 1 , a ligand with different efficacies for the two pathways ( ζ 1 
+ = 10 0 0 

and ζ 2 
+ = 100 ), under varying receptor concentrations. 

Fig. 12. Concentration-response curves for two pathways being agonised by L 2 , a ligand with parameters ζ 1 
+ = 20 0 0 , ζ 2 

+ = 10 0 , ν1 
+ = 1 , ν2 

+ = 25 , vary under changing receptor 

concentrations. 
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3.3.1. Effect of ζ - the possibility of biphasic relationships 

In Fig. 13 , we see the effect of varying ζ 1 + and ζ 2 + for a fixed

ligand concentration. The reciprocal effects on the two G protein

pathways mediated by the competing receptor states are clear. As

ζ 1 + is increased, both peak and plateau α1 
GT P 

increase, accompanied

by decreases in α2 
GT P . Furthermore, it is clear that biphasic relation-

ships are possible. 

3.3.2. Effect of G protein non-specificity and receptor “cross-states”

Thus far in our computations, we have focussed on systems in

which the two G proteins are each specific to a particular active re-

ceptor conformation. By setting μ1 , 1 = 1 , μ2 , 2 = 1 , μ1 , 2 = 0 , μ2 , 1 =
0 , we have simulated systems whereby G protein 1 can neither

activate a pre-coupled receptor towards R ∗2 , nor bind to R ∗2 , and
ice-versa. It is a novel aspect that our model allows receptor

cross-states”, where there is not exclusive specificity of each G

rotein for one particular active receptor state. We see in Fig. 14

he effects of non-exclusive specificity and accessibility of these

ross states on the αGTP responses. The general trend is that with

ll cross states signalling (with k 
j,θ
GT P 

= 1 , ∀ θ ), increasing μ21 gives

 decreased peak α1 
GT P 

and slight increase in plateau α1 
GT P 

. 

Our model allows for variation in specificity of not only the

 proteins for each receptor conformation, but also the propen-

ity for G protein cycling with respect to these active states, con-

rolled by k 
j,θ
GT P+ . With cross states which do not signal (with

 

j,θ
GT P 

= 0 for j � = θ ), increasing μ12 now gives a decreased peak and

lateau α2 
GT P 

as the general trend, with non-monotonicity, which
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Fig. 13. Response surfaces for varying ligand efficacy, for fixed ligand concentration [ L ] = 10 −5 M. Parameters ζ 1 
+ and ζ 2 

+ are varied through the spectrum of efficacy for each 

receptor active state. 

Fig. 14. Response surfaces for varying ligand accessibility of receptor cross states for fixed ligand concentration [ L ] = 10 −5 M. 
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tem. 
ay be explained by considering the effects on basal conditions.

urther explanation and discussion of these effects is given in

ppendix B . 

.3.3. Effect of ν , the preference of ligand for specific G 

rotein-coupled receptor 

The microaffinity constant νθ controls the preference of ligand

or RG 

θ over R . The effect of varying νθ is as expected, in that in-

reasing νθ increases both peak and plateau αθ
GT P 

(see Fig. C.1 in

ppendix C ). 
. Detecting and quantifying bias 

A balanced agonist is one which signals with equal effi-

acy to available downstream pathways, whereas a biased ag-

nist has different efficacies for signalling to different path-

ays ( Rajagopal et al., 2011 ). There is a need to detect and quan-

ify the level of bias towards one pathway over another, con-

idering that physiologically and clinically, certain pathways rep-

esent therapeutic targets while others are “side effect” path-

ays ( Gundry et al., 2017 ). Here, we employ current quantification

ethods for the level of ligand bias within our two-pathway sys-
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Fig. 15. Bias factor surface for fixed ligand 1 parameters, varying ligand 2 parame- 

ters ζ 2 and ν2 . Bias factor bias 
1 −2 
A represents the bias for pathway 1 over pathway 

2 signalling. Here, k L + = 10 5 , k 1 act+ = k 2 act+ = 0 . 05 , and k 1 
hyd− = k 2 

hyd− = 10 −8 . 
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4.1. Bias factors and the operational model of agonism 

The operational model of agonism ( Black and Leff, 1983 ) pro-

vides a standardised and widely adopted method for estimating

ligand affinity and “operational efficacy” parameters from func-

tional response data in the form of hyperbolic concentration-

response curves. Briefly, for a single downstream readout E result-

ing from ligand concentration [ A ] at a receptor, 

E([ A ]) = E max 
τ [ A ] 

K D + (τ + 1)[ A ] 
, (7)

where E max is the maximum response of the system, K D is the

ligand’s equilibrium dissociation constant, and τ is a measure

of ligand efficacy, in particular measuring the propensity of the

ligand and the system to yield a response. A modified form of

the model is sometimes used to account for nonzero basal re-

sponses ( Shonberg et al., 2014 ), namely 

E([ A ]) = basal + (E max − basal ) 
τ [ A ] 

K D + (τ + 1)[ A ] 
. (8)

Further generalisation of this model is possible by introducing a

Hill coefficient to the signal transduction sub-model ( Black and

Leff, 1983; Shonberg et al., 2014 ). Recently, the operational model

has been used to quantify the level of bias in systems exhibiting

multi-dimensional efficacy (ie. the activation of multiple pathways

at a single receptor). Bias is typically defined with respect to a ref-

erence ligand, and bias factors are computed using fitted values of

τ ( Rajagopal et al., 2011 ) or both τ and K D ( Gundry et al., 2017;

Kenakin, 2014; Kenakin and Christopoulos, 2013 ). Here, we fol-

low the transduction coefficients method ( Kenakin and Christopou-

los, 2013 ) by defining a transduction coefficient for a ligand A at a

given pathway as 

T A = log 10 

(
τ

K D 

)
lig A 

. (9)

The difference in transduction coefficients for two ligands A and B

is usually written in �log notation, with 

� log 10 

(
τ

K D 

)
lig A −lig B 

= �T A −B = T A − T B 

= log 10 

(
τ

K D 

)
lig A 

− log 10 

(
τ

K D 

)
lig B 

= log 10 

(
τ

K D 

∣∣∣
A 

K D 

τ

∣∣∣
B 

)
. (10)

The relative bias factor for a ligand A , relative to ligand B , for path-

way 1 over pathway 2, is usually defined by first calculating its

logarithm, written in ��log notation as 

log 10 bias 
1 −2 
A −B = �� log 10 

(
τ

K D 

)path 1 −path 2 

lig A −lig B 

= �T 

path 1 
A −B 

− �T 

path 2 
A −B 

= log 10 

(
τ

K D 

∣∣∣path 1 

A 

K D 

τ

∣∣∣path 1 

B 

K D 

τ

∣∣∣path 2 

A 

τ

K D 

∣∣∣path 2 

B 

)
, (11)

so that 

bias 
1 −2 
A −B = 

τ

K D 

∣∣∣path 1 

A 

K D 

τ

∣∣∣path 1 

B 

K D 

τ

∣∣∣path 2 

A 

τ

K D 

∣∣∣path 2 

B 

. (12)

4.2. Bias factor’s dependence on ζ and ν

The bias factor, bias 1 −2 
A = 

τ
K D 

∣∣∣path 1 

A 

K D 
τ

∣∣∣path 2 

A 
, is a standard mea-

sure of a ligand’s bias for effecting a response in pathway 1 over

pathway 2. While this is defined in terms of the parameters τ and

K D which are fitted to the semi-mechanistic operational model,

rather than explicitly in terms of the parameters in our new α
GTP 
odel, we expect correlations between the bias factor and ligand-

pecific parameters in our model. In particular, when αGTP is mea-

ured at equilibrium and taken as the response E , we expect, on

he whole, bias factor should increase with decreased ζ 2 and ν2 ,

hich control a ligand’s effect on R ∗2 activation and G 

2 coupling

o the receptor. In Fig. 15 , we show the bias factor bias 1 −2 
A for a

ank of ligands generated by varying ζ 2 + and ν2 + , while keeping all

ther parameters fixed. The correlation is clear. The overall trend is

he expected increase in bias 1 −2 
A with decreasing ζ 2 + and ν2 + , while

he relationship is approximately a power law over much of the

arameter space shown. 

.3. Kinetic context and dynamic bias factors 

It has recently been demonstrated that binding, activation

nd signalling dynamics may significantly affect bias measure-

ents, and hence the classification of biased ligands, and that

kinetic context” is an important consideration in the quantifi-

ation of bias ( Herenbrink et al., 2016 ). Although bias calcula-

ions based on the operational model implicitly assume equilib-

ium conditions, this method is shown to be an effective and sim-

le heuristic approach to investigating and quantifying dynamic

ias in Herenbrink et al. (2016) . In Fig. 16 , we show bias factor

ime courses for a bank of ligands, generated by constructing a

oncentration-response curve for each ligand at each time point,

hen fitting each of these curves to the operational model (using

ptimisation routines in MATLAB). Here, the bias factor is calcu-

ated with respect to the reference ligand (ligand 7), and we see

hat the long-time bias factor bias 1 −2 
A −re f indeed increases with de-

reased ζ 2 + and/or ν2 + . We also plot, in the right hand panel, an

lternative bias factor based on our model parameters, specifically

lt-bias 
1 −2 
A −re f = 

k L + ,A 
k L −,A 

(
ν1 

A 
ζ 1 

A 

ν2 
A 
ζ 2 

A 

)
k L + ,re f 

k L −,re f 

(
ν1 

re f 
ζ 1 

re f 

ν2 
re f 

ζ 2 
re f 

) , (13)

hich should also indicate ligand bias. We note the excellent

greement between the dynamic bias factors from operational

odel fitting and our alternative bias factor. Dynamically, there is

he possibility of a change of order of bias factors, and this phe-

omenon is even more marked for the bank of ligands shown

n Fig. 17 . Clearly, the order of bias factors may change dynami-
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Fig. 16. Bias factor dynamics for a bank of nine ligands. The operational model bias factor bias 
1 −2 
A represents the bias for pathway 1 over pathway 2 signalling is shown for 

each time point, and the alternative bias factor is shown in the right hand panel. Reference ligand is ligand 7, a strong agonist for pathway 1. Here, k L + = 10 5 , k 1 act+ = k 2 act+ = 

0 . 05 , k 1 
hyd− = k 2 

hyd− = 10 −8 and k 1 RA − = k 2 RA − = 1 . 3 × 10 −4 . 
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ally, so the classification of ligands requires consideration of ki-

etic context, as described in Herenbrink et al. (2016) . 

.4. Bias dynamics beyond the operational model of agonism 

The operational model of agonism is a semi-empirical model

sed to provide summary measures of signalling efficacy, by im-

licitly assuming equilibrium conditions; in itself, it cannot be

sed to simulate biased signalling dynamics. Analysis of biased sig-

alling using a dynamic model which does not rely on the opera-

ional model is therefore desirable (for example for fitting to time

ourse data). Our new mechanistic model clearly fulfills this re-

uirement, and will be further applied (beyond our scope here) to

efine new dynamic bias factors which do not use the operational

odel assumptions at all. 

. Fitting to a model of downstream functional antagonism via 

iased signalling 

Our model outputs thus far have been the αGTP levels of the

wo G proteins in the system, which represent responses down-

tream of ligand binding, and may correspond to a downstream

unctional experimental readout. We now consider whether our

odel can be used to explain, and fit to, experimental end point

ata in a system where biased agonism is suspected. 
.1. Experimental method 

The adenosine A 1 receptor (A 1 R) is well known for mediating

he protective effects of adenosine in the heart ( Donato and Gelpi,

003; Minamino, 2012 ). How these effects are brought about is

ot fully understood, as the A 1 R is able to couple to multiple sig-

alling pathways ( Baltos et al., 2016 ). This makes interpretation

f physiological effects difficult to attribute to an individual, sig-

alling pathway. While the A 1 R is a predominantly G i -coupled re-

eptor, which inhibits the accumulation of the second messenger,

yclic adenosine monophosphate (cAMP), it has been observed that

t higher agonist concentrations, the levels of cAMP begin to rise

gain producing a non-monotonic response profile. This accumula-

ion of cAMP arises through the ability of the A 1 R to switch its G

rotein coupling and now promote activation of G s ( Baker and Hill,

007; Cordeaux et al., 2004 ). The extent to which an individual ag-

nist either inhibits or stimulates cAMP production at the A 1 R may

ary. 

To obtain data to enable fitting of our models, experiments

ere performed using Chinese hamster ovary-K1 (CHO-K1) cells

tably expressing the A 1 receptor (these cells do not endoge-

ously express any of the four adenosine receptor subtypes, and

herefore provide a null background ( Knight et al., 2016 )), treated

ith a range of concentrations of a single agonist each time, and

he effect on intracellular concentration of cAMP determined (see

ppendix D and Knight et al., 2016; Weston et al., 2015; Weston

t al., 2016 for details). In particular, the experiments were carried
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Fig. 17. Bias factor dynamics for a bank of four ligands. Bias factor bias 
1 −2 
A represents the bias for pathway 1 over pathway 2 signalling. Here, k L + = 10 5 , k 1 act+ = k 2 act+ = 0 . 01 , 

k 1 
hyd− = k 2 

hyd− = 10 −8 and k 1 RA − = k 2 RA − = 1 . 3 × 10 −4 . 
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F  
out for three different agonists individually, namely5’(N-ethyl car-

boxamido) adenosine (NECA), and two test compounds which bind

the A 1 R, denoted here as Compound 6 (Cmpd6) and Compound 20

(Cmpd20) ( Knight et al., 2016 ). The measured response was the ac-

cumulated cAMP concentration in the presence of the phosphodi-

esterase (PDE) inhibitor rolipram, which blocks cAMP degradation. 

For each concentration of all agonists, two experiments were

performed. Firstly, intact (wild-type) cells were used, which al-

low for coupling and activation of both G i and G s proteins to the

A 1 R, thereby allowing activation of both the G i pathway which

inhibits cAMP production via an increased αGTP, i signal, and the

G s pathway which stimulates cAMP production via an increased

αGTP, s signal. For these cells, the recorded response is the per-

centage inhibition of cAMP when compared with cells treated

with forskolin (which promotes maximal stimulation of cAMP pro-

duction Barritt, 1992 ). The second experimental condition is for

cells that have been treated with pertussis toxin (PTX), which

both inhibits binding of G i to its receptor and blocks its sig-

nal transduction, thereby locking αi in its inactive, GDP-bound

state ( Mangmool and Kurose, 2011 ). For these cells, the recorded

response is the percentage stimulation of cAMP when compared

with forskolin-stimulated cells. Time courses of cAMP were not

recorded, and the signalling readout in each case is taken at the

endpoint of the experiment ( t = 1800 s). 

Further details of the experiments are given in Appendix D . 

5.2. Experimental results 

In Fig. 18 , we show the experimental cAMP endpoint signals

in response to three ligands individually in turn (NECA, Cmpd6

and Cmpd20) for the two different experimental conditions. For

wild-type cells the log concentration response curves for the in-

hibition of cAMP show non-monotonic behaviour with a downturn

at higher concentrations, whereas the log concentration response

curves for the production of cAMP in PTX-treated cells show, with
he exception of one data point for the NECA experiment, mono-

onic behaviour. By blocking the inhibitory pathway, we largely

ee “standard” monotonic behaviour, which suggests that the non-

onotonic wild-type response results from crosstalk between the

nhibitory and stimulatory pathways. Since in each case a single

igand has been introduced and A 1 R is the only receptor in the

ells, we hypothesise that this target receptor may exhibit biased

gonist effects, via two active conformations, one of which is spe-

ific to the G i protein and the other to the G s protein. 

.3. Modelling considerations 

Since the data shown in Fig. 18 are hypothesised to result from

iased agonism with competition between two activated G protein

athways, we now seek to fit our model to the data, in order to

dd support to this hypothesis and understand the possible under-

ying mechanisms. 

Within our modelling framework, we let G 

1 and G 

2 repre-

ent the G s and G i proteins respectively. We simulate the PTX

ffect of blocking G i binding and activation by setting k 2 G + =
 

22 
GT P+ = k 2 

GRA − = 0 . Since cAMP is produced in response to G s ac-

ivation ( Barritt, 1992; Leander and Friedman, 2014 ), for a simple,

inimal model of cAMP levels in PTX-treated cells, with blocked

AMP degradation, we take the cAMP production rate proportional

o αGTP, s levels, so that d[ cAMP] 
dt 

∝ αGT P,s , and hence the stimulation

ignal is given by 

ignal stim 

(t) = 

∫ t 

0 

C s [ αGT P,s ](t) dt = 

∫ t 

0 

C s [ α
1 
GT P (t)] dt, (14)

here C s is a constant. 

For the wild-type cells in which both stimulatory and inhibitory

AMP pathways are intact, we require a model for crosstalk be-

ween G i and G s pathways. Here we use a simple “functional

ntagonism” model for the competing effects of these pathways.

unctional antagonism refers to the response of a cell in which
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Fig. 18. Using the model of biased agonism with functional antagonism at level of αGTP to fit cAMP readouts (signal stim (1800) and signal inhib (1800)) for three different ligands 

(NECA, Cmpd6 and Cmpd20). Experimental data points are given (red squares with dashed lines for percentage cAMP inhibition for wild-type cells, blue circles with dashed 

lines for percentage cAMP production in PTX-treated cells, each compared with forskolin-treated cells which give maximal cAMP response) for end point readouts over a 

range of ligand concentrations. Solid curves are the fitted log concentration response curves for our model. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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ignalling via one pathway is antagonised by signalling via an-

ther pathway, and simple theoretical models have been presented

hich are based on differences between pathway signals ( Leff

t al., 1985; Mackay, 1981; Szabadi, 1977 ). Here, we use such a

odel where αGTP, s and αGTP, i are stimuli to the cAMP stimula-

ory and inhibitory pathways respectively, and the cAMP produc-

ion rate is simply a scaled difference between the two αGTP levels.

he inhibition signal is then given by 

ignal inhib (t) = 

∫ t 

0 

C i [ αGT P,i ](t) − C s [ αGT P,s ](t) dt 

= 

∫ t 

0 

C i [ α
2 
GT P ](t) − C s [ α

1 
GT P ](t ) dt , (15) 

here C i is a constant, and C s is the constant as in (14) .

ince functionally opposite signalling can result in non-monotonic

oncentration-response curves with downturns ( PliSka, 1994; Sz-

badi, 1977 ) such as those seen in the cAMP inhibition curves in

ig. 18 , our biased agonism model augmented by the simple func-

ional readout models (14) and (15) may be able to recapitulate the

xperimental data, at least qualitatively. We proceed to employ pa-

ameter estimation methods to pursue a fit to the concentration-

esponse curves for each ligand. 

.4. Parameter estimation 

We fit the experimental data to the model given by (3) with

 

∗ = N 

G = 2 , together with (14) and (15) , where simulations are

rst run to a time of 10 8 s with [ L ] = 0 , to pre-equilibrate the

ystem before ligand addition. For each ligand, the experimental

ata for the intact and PTX cells were fitted simultaneously, using

ptimisation algorithms to minimise the squared error between

imulation and data points. The methods used were the trust re-

ion algorithm implemented in PottersWheel ( Maiwald and Tim-

er, 2008 ), followed by a genetic algorithm routine implemented

n MATLAB (Matlab, 2017) . A subset of the kinetic parameters were

aried; for each reversible reaction, we fixed one rate constant

typically for the reverse reaction), and allowed one rate constant

o float. Further, we consider systems where the active receptor

ross states are inaccessible, such that μ j,θ = k 
j,θ
GT P+ = 0 are fixed

or j � = θ , since these have been shown to largely have little effect.

itted parameters for the NECA data set were used as initial pa-

ameter guesses for Cmpd6 and Cmpd20, to speed up the overall
tting for these compounds. For each ligand, the model can clearly

t the data very well qualitatively. In Fig. 18 , we see that the model

t for the stimulation curve is monotonic, with maximal and basal

ignals, and EC 50 values in good agreement with the data. Further,

he fitted inhibition curve in each case is non-monotonic, with the

oncentration which gives the peak value in good agreement with

he data. The basal, peak and plateau levels are in good agreement

ith the data, and the model recapitulates the differences in peak

spread” between the three ligands. Values for the fitted parame-

ers are given in Table E.1 . 

In Fig. 19 , simulations from the fitted parameter sets for each

igand show the ∫ αGTP contributions to the overall measured sig-

al for both cell types. In each case, the stimulatory responses for

he intact cells and the PTX cells are almost indistinguishable, and

hile the individual ∫ αGTP curves are monotonic, the difference be-

ween them for the intact cells is not. 

Having estimated parameters which fit the experimental data

taken at a single time point t = 1800 s), we may now simulate

he underlying αGTP dynamics up to this time point. In Fig. 20 , we

how time courses for αGTP, i and αGTP, s levels, using the NECA-

tted parameters. With the ligand being an agonist for both G pro-

ein pathways, the peak-plateau αGTP dynamics are clear, and con-

istent with the temporal characteristics observed in our earlier

umerical simulations. Peak values are monotonic with [ L ], with
1 
GT P 

peaking later than α2 
GT P 

. We conclude that our model reca-

itulates, and fits to, experimental data well in the cases shown,

herefore adding support to the biased agonism conjecture for the

xperiments discussed, and validating our model. Our functional

odel for cAMP production is very simple, comprising a linear

ombination of αGTP, i and αGTP, s . It is reasonable to expect that

 more detailed model of cAMP signalling with more degrees of

reedom would result in an even better fit to the data. 

. Discussion 

Biased agonism is now a widely accepted phenomenon for sig-

alling via GPCRs ( Kenakin and Christopoulos, 2013; Urban et al.,

007 ), and exploiting this is a potential route to developing novel

herapeutics ( Kenakin, 2015; Kenakin and Christopoulos, 2013 ).

heoretical (mathematical) models are key tools towards under-

tanding biased signalling, and have previously been presented

or equilibrium conditions ( Leff et al., 1997; Scaramellini and Leff,



60 L.J. Bridge et al. / Journal of Theoretical Biology 442 (2018) 44–65 

Fig. 19. Log concentration response curves for 
∫ 

α1 
GTP dt and 

∫ 
α2 

GTP dt levels using fitted parameter values. 

Fig. 20. Underlying αGTP, i and αGTP, s dynamics for NECA-fitted parameters, for a range of agonist concentrations. Time is on a logarithmic scale to clearly show the peak- 

plateau time scales. 
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2002 ). These models have enabled a foundation biased agonism

theory to be established, largely at the level of receptor activation.

For functional readouts downstream of the receptor, further detail

has been added at the level of G protein binding ( Ehlert, 2008 ),

and simple empirical models for pathway signalling ( Roche et al.,

2013 ). In this paper, we have developed a new model for biased

agonism which includes the detail of G protein activation via a cu-

bic ternary complex/G protein cycle model, with αGTP as a read-

out, and serving as an indicator/proxy of pathway activity. This

model is general in terms of the number of active receptor con-

formations and G proteins, and also that it is not specific to any

particular pathway; it can thus be used to model biased signalling

at any GPCR, and detailed further signalling components can be

added downstream of αGTP to model particular pathways as de-

sired. Potentially, our model could provide a foundation for simu-

lating single-ligand multi-pathway dynamics, such as recent exper-

imental work revealing dynamic biased signalling behaviour at the

dopamine D 2 receptor ( Herenbrink et al., 2016 ). 

An important advance in the present study is the analysis of

signalling dynamics as predicted by our model. The role of kinetic

context in the investigation of biased agonism has recently been

highlighted ( Herenbrink et al., 2016 ) and, as such, a model and

method for analysing dynamics represents a timely contribution to

the literature. A number of dynamic features have been observed

here, including the apparent inverse agonist effect of an “antag-

onist”, dynamic inter-conversion of agonist effect, and the time-

dependence of bias factor order. Non-monotonic concentration-

response relationships for endpoint signals are possible from our

model, for both a single αGTP readout within a two-pathway sys-

tem, and downstream crosstalk between two α signals. 
GTP 
The current standard method for quantifying bias from experi-

ental data uses parameters fitted to the equilibrium operational

odel of agonism ( Black and Leff, 1983; Kenakin et al., 2012 ). Cal-

ulating bias factors using this empirical model applied to time-

ourse data shows the dynamic nature of bias ( Herenbrink et al.,

016 ), and our model and computations have reproduced this phe-

omenon. We propose that such analysis may provide important

ew insights into, and quantitative characterisation of, experimen-

al timecourse results. The use of the operational model appears

o be the current state-of-the-art in bias quantification, but it has

 number of limitations: It is empirical rather than mechanistic,

t does not consider dynamics, and it does not account for consti-

utive activity ( Stott et al., 2015 ). An alternative model which in-

ludes constitutive activity is given in Slack and Hall (2012) , but

his equilibrium model has yet to be fully explored with respect to

iased signalling. While beyond the scope of our current work, a

aluable future investigation will focus on further formulation and

efinition of dynamic bias factors, including constitutive activity. 

We have shown our model to be capable of reproducing end-

oint trends in experimental data for cAMP levels in response to

igands at the A 1 R receptor, through multi-pathway ( αGTP, s and

GTP, i ) signalling with functionally opposite downstream signals.

his endpoint analysis has resulted in parameterisations of the

odel which then predict the underlying αGTP dynamics, qual-

tatively consistent with our earlier agonist-induced simulations.

his validation of our model allows us to propose its use for fur-

her study of downstream signalling, and fitting to time-course

ata when it becomes available. For example, for any future dy-

amic cAMP experimental readouts, our simple functional mod-

ls (14) and (15) can be used to fit to time-courses, with better fits
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Table A1 

Parameter values for 2 G protein, 2 active receptor state model. 

Label Meaning Cell or ligand specific Value Units Source 

k L + Ligand binding rate Ligand 9.40E + 04 M 

−1 s −1 Bridge et al. (2010) 

k L − Ligand unbinding rate Ligand 3.10E-01 s −1 ”

k 1 act+ Receptor activation rate to R ∗1 Cell 1.0 0E + 0 0 s −1 ”

k 1 act− Receptor deactivation rate from R ∗1 Cell 1.00E + 03 s −1 ”

k 2 act+ Receptor activation rate to R ∗2 Cell 1.0 0E + 0 0 s −1 ”

k 2 act− Receptor deactivation rate from R ∗2 Cell 1.00E + 03 s −1 ”

k 1 G + G protein 1 binding rate Cell 1.00E + 08 M 

−1 s −1 ”

k 1 G − G protein 1 unbinding rate Cell 1.00E-01 s −1 ”

k 2 G + G protein 2 binding rate Cell 1.00E + 08 M 

−1 s −1 ”

k 2 G − G protein 2 unbinding rate Cell 1.00E-01 s −1 ”

k 1 GRA + G protein 1 reassociation rate Cell 7.00E + 05 M 

−1 s −1 ”

k 1 GRA − G protein 1 dissociation rate Cell 1.30E-03 s −1 ”

k 2 GRA + G protein 2 reassociation rate Cell 7.00E + 05 M 

−1 s −1 ”

k 2 GRA − G protein 2 dissociation rate Cell 1.30E-03 s −1 ”

k 1 
hyd+ Hydrolysis rate of Gα1 

GTP Cell 1.00E-02 s −1 ”

k 1 
hyd− Exchange rate of GTP for GDP at G 1 α Cell 1.00E-04 s −1 ”

k 2 
hyd+ Hydrolysis rate of Gα2 

GTP Cell 1.00E-02 s −1 ”

k 2 
hyd− Exchange rate of GTP for GDP at G 2 α Cell 1.00E-04 s −1 ”

k 1 , 1 
GTP+ R ∗1 G 1 dissociation rate Cell 1.0 0E + 0 0 s −1 ”

k 1 , 2 
GTP+ R ∗1 G 2 dissociation rate Cell 1.0 0E + 0 0 s −1 ”

k 2 , 1 
GTP+ R ∗2 G 1 dissociation rate Cell 1.0 0E + 0 0 s −1 ”

k 2 , 2 
GTP+ R ∗2 G 2 dissociation rate Cell 1.0 0E + 0 0 s −1 ”

νθ
+ Forward cooperativity factor for ligand binding a G θ bound receptor Ligand 1.0 0E + 0 0 ”

νθ
− Backward cooperativity factor for ligand binding a G θ bound receptor Ligand 1.0 0E + 0 0 ”

ζ j 
+ Forward cooperativity factor for ligand-bound R j activation Ligand 1.00E + 03 ”

ζ j 
− Backward cooperativity factor for ligand-bound R j activation Ligand 1.0 0E + 0 0 ”

μ j,θ
+ Forward cooperativity factor for G θ -bound R j activation Cell 1.0 0E+0 0 ( j = θ ), 0 ( j � = θ ) ”

μ j,θ
− Backward cooperativity factor for G θ -bound R j activation Cell 1.0 0E + 0 0 ”

R tot Total receptor concentration Cell 4.15E-10 M ”

G 1 tot Total G 1 concentration Cell 4.15E-10 M ”

G 2 tot Total G 2 concentration Cell 4.15E-10 M ”

L tot Total Ligand concentration Ligand 1.00E-07 M ”
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xpected by letting a greater number of parameters float, or us-

ng a more detailed cAMP model (eg. Leander and Friedman, 2014 ).

he simulation and fitting in the current work also clearly shows

hat single-ligand multi-pathway activation at a single receptor

rovides a mechanism for non-monotonic concentration-response

elations either for αGTP itself or for downstream signals, by way

f functional antagonism. While functional signalling experiments

ften results in monotonic concentration-response curves, rela-

ionships with downturns at high concentrations are not uncom-

on ( Calabrese and Baldwin, 2001; PliSka, 1994; Zhu et al., 2013 ),

nd the current work provides a plausible mechanistic model for

nderstanding such results in systems where multi-pathway sig-

alling via a single receptor is possible. 

The mathematical work here represents a theoretical frame-

ork for further study of the potential benefits of developing bi-

sed agonists as therapeutics. The multidimensionality of GPCR

ignalling now constitutes a new paradigm in drug discovery, and

he potential benefits of new understanding of multi-pathway sig-

alling lie in the development of “functionally selective” drugs

hich preserve efficacy in target pathways, while minimising ac-

ivation of unwanted side-effect pathways at the same recep-

or ( Rankovic et al., 2016 ). Further mechanistic modelling encom-

assing G protein binding and activation, downstream signalling,

ynamics and complexity of the level we have studied here is ac-

nowledged as a potentially very valuable advance towards such

rug discovery goals ( Stott et al., 2015; Urban et al., 2007 ). 
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ppendix A. Parameter values 

In Table A.1 , we give a base parameter set for all computations.

ny variations from this parameter set are shown in figure titles

nd captions. 

ppendix B. Receptor cross states 

In Fig. B.1 , we show simulated time courses for αGTP , under

ariation of receptor cross state activation and accessibility. In the

op row, we allow activation of both G proteins by either active

tate (by setting k 
j,θ
GT P 

= 1 ∀ j, θ ), and vary the propensity for G pro-

ein binding to the active states by varying μ1 , 2 
+ . With μ2 , 1 

+ = 0 . 001

so that there is very little R ∗2 G 

1 , top left plot), as μ1 , 2 
+ increases,

asal α2 
GT P 

increases due to increased signalling via pre-coupled

 

∗1 G 

2 . Also there is a slight increase in plateau α2 
GT P 

. In this case,

he perhaps unexpected trend in the peak response, whereby peak
2 
GT P 

does not increase with μ1 , 2 
+ , is due to the fact that for large 

1 , 2 
+ , the basal conditions are “near equilibrium”, and the peak

ay increase or decrease with increased μ1 , 2 
+ . The α1 

GT P 
equilib-

ium and dynamics are not significantly affected by changes in
1 , 2 
+ . Performing the same simulations with μ2 , 1 

+ = 10 0 0 (top right

https://doi.org/10.13039/501100000268
https://doi.org/10.13039/501100000265
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Fig. B1. Time courses for varying agonist accessibility of receptor cross states. Here, [ L ] = 10 −5 M. 
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plot), α1 
GT P 

dynamics are again largely unaffected by the variation

in μ1 , 2 
+ , but this time the system is closer to equilibrium and α1 

GT P 

has a lower peak than for μ2 , 1 
+ = 0 . 001 . 

In the case where cross states are accessible in the G pro-

tein binding sense, but there is specificity with respect to g pro-

tein activation (so k 1 , 2 
GT P 

= k 1 , 2 
GT P 

= 0 ), for increasing μ1 , 2 
+ , we now

have more of G 

2 trapped in a non-signalling complex R ∗1 G 

2 , giv-

ing reduced basal and equilibrium α2 
GT P 

. The basal and equilib-

rium levels are monotonic with μ1 , 2 
+ , but the peak levels are not.

For μ2 , 1 
+ = 0 . 001 , as μ1 , 2 

+ increases, more R ∗1 is trapped in non-

signalling complexes, so there is less R ∗1 G 

1 available to signal, re-

sulting in a lower α1 
GT P 

. For μ2 , 1 
+ = 10 0 0 , we see the same trends,

but with lower α1 , 2 
GT P 

signals, since there is more non-signalling

R ∗2 G 

1 . 

Appendix C. Effect of ν

In Fig. C.1 , we show that the effect of varying νθ (the mi-

croaffinity constant νθ that controls the preference of ligand for

RG 

θ over R ) is as expected; increasing νθ increases both peak and

plateau αθ
GT P 

. 

Appendix D. Further experimental detail for cAMP experiments 

CHO-K1 cells, expressing the A 1 R were routinely grown in

Hams F-12 media (supplemented with 10% FBS), at 37 °C, in a hu-

midified atmosphere, containing 5% CO 2 . Where G s assays were

performed, cells were pre-treated, for 16–18 h with 200 ng/ml

PTX. Upon day of assay, cells were harvested and brought to sin-

gle cells suspension using trypsin (containing 0.05 EDTA). Cells

were washed and resuspended in stimulation buffer (PBS contain-

ing 0.1% BSA and 25 μM rolipram). Cells were seeded onto 384-

well, white, optiplates and stimulated with either agonist alone,

or co-stimulated with agonist and 10 μM forskolin, for 30 min.
AMP levels were then detected using a LANCE ® cAMP detection

it (PerkinElmer, Boston, MA), and plates read using a LB 940 mul-

imode microplate reader (Berthold technologies, Germany) (exci-

ation: 340 nm, emission: 665 nm). 

ppendix E. Parameter estimates for cAMP experiments 

In Table E.1 , we show parameter estimates for the experimental

ata shown in Fig. 18 . Inspection of the values shows that ligand-

ependent parameter values vary over orders of magnitude across

he three experiments, while cell-only parameter value estimates

re all within an order of magnitude of each other, as expected.

lso, our estimates for the G protein totals are consistent with the

bservation that in most membranes, the amount of G i protein ex-

eeds the amount of G s ( Barritt, 1992 ). 

ppendix F. Parameter estimates, units and scales 

We remark here that, in keeping with ( Bridge et al., 2010;

oodroffe et al., 2010 ), we have reported concentrations in units

f molar (M), and performed computations using parameters in the

nits shown in Table A.1 . While working in these units requires

imensional parameter values on widely different orders of mag-

itude, we encounter no numerical difficulties related to roundoff

rrors or catastrophic cancellation. An alternative choice of con-

entration units suggested by Table A.1 is nM, so that the recep-

or and G protein concentrations, if scaled with their initial values,

ould be O(1) . In Table F.1 we show the variable and parame-

er values affected by this change of units, which gives a smaller

ange of orders of magnitude in our parameter list. Re-computing

ith the new concentration units, for both simulation and param-

ter estimation, gives the same dynamic results and fitting as with

he original parameter set (see, eg., Fig. F.1 ). In Table F.1 , we also

how sample parameter estimates for the experimental data using

ECA as the ligand. Rescaling all concentrations (changing units to
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Fig. C1. Response surfaces for varying ν1 , 2 
+ , with expected monotonic relationships. Here, [ L ] = 10 −5 M. 

Table E1 

Parameter estimates for fitting biased agonism with 

functional antagonism model to cAMP data (see 

Fig. 18 ). 

Parameter Cmpd6 Cmpd20 NECA 

k L + 1.20E + 04 7.49E + 03 1.52E + 04 

ζ 1 
+ 4.47E + 03 1.52E + 02 4.55E + 03 

ζ 2 
+ 2.70E + 04 7.00E + 03 2.54E + 04 

ν1 
+ 5.82E-01 1.22E + 01 5.82E-01 

ν2 
+ 6.0 0E + 0 0 2.54E + 02 8.36E + 00 

k 1 act+ 8.80E-01 1.44E + 00 9.32E-01 

k 2 act+ 6.47E-01 1.40E + 00 5.94E-01 

k 1 G + 6.34E + 08 5.69E + 08 6.55E + 08 

k 2 G + 2.89E + 09 3.72E + 09 2.36E + 09 

k 1 GRA + 7.55E + 05 7.99E + 05 7.63E + 05 

k 2 GRA + 4.10E + 05 3.50E + 05 3.28E + 05 

k 1 
hyd+ 2.42E-03 4.40E-03 2.42E-03 

k 2 
hyd+ 3.20E-03 3.00E-03 3.30E-03 

k 1 , 1 
GTP+ 1.90E-01 2.01E-01 1.75E-01 

k 2 , 2 
GTP+ 1.87E-01 2.27E-01 1.87E-01 

μ1 , 1 
+ 1.28E + 00 2.16E + 00 1.28E + 00 

μ2 , 2 
+ 8.60E-01 8.50E-01 8.60E-01 

R tot 4.15E-10 4.15E-10 4.15E-10 

G 1 tot 3.79E-10 4.80E-10 4.49E-10 

G 2 tot 8.22E-10 7.20E-10 8.28E-10 

C s 4.30E + 08 4.36E + 08 3.24E + 08 

C i 4.40E + 08 5.30E + 08 4.99E + 08 

n  

t  

f  

g  

T  

n

 

t  

a  

c  

c  

B  

s  

b

Table F1 

Parameter values for 2 G protein, 2 active receptor state mo

Label Meaning Value (typical s

k L + Ligand binding rate 9.40E-05 

k 1 G + G protein 1 binding rate 1.00E-01 

k 2 G + G protein 2 binding rate 1.00E-01 

k 1 GRA + G protein 1 reassociation rate 7.00E-04 

k 2 GRA + G protein 2 reassociation rate 7.00E-04 

R tot Total receptor concentration 4.15E-1 

G 1 tot Total G 1 concentration 4.15E-1 

G 2 tot Total G 2 concentration 4.15E-1 

L tot Total ligand concentration 1.00E + 02 
M rather than M), we reduce the range of orders of magnitude of

he parameters. Further, we have taken initial parameter estimates

rom this rescaled set, and perturbed them, then re-run genetic al-

orithms, and recover this rescaled set as our best fit (see Fig. F.2 ).

his indicates that the original fitting routine did not suffer any

umerical difficulties due to the range of orders of magnitude. 

Beyond this simple change of units, careful scaling of both

he state and time variables by representative values would yield

 fully nondimensional system which would allow for identifi-

ation of relative magnitudes of dimensionless parameters which

ontrol the dynamics, as in Woodroffe et al. (2010, 2009) and

ridge et al. (2010) . Such an approach is useful for (smaller) ODE

ystems for which further analytical work may be tractable, but is

eyond our scope here. 
del, now measuring concentrations in nM. 

imulation) Value (fitted for NECA) Units 

1.52E-05 nM 

−1 s −1 

6.55E-01 nM 

−1 s −1 

2.36E + 00 nM 

−1 s −1 

7.63E-04 nM 

−1 s −1 

3.28E-04 nM 

−1 s −1 

4.15E-01 nM 

4.49E-01 nM 

8.28E-01 nM 

– nM 
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Fig. F1. Agonist-agonist time courses, equivalent to Fig. 4 , but using new rescaled parameter set. We see that the αGTP concentrations are simply rescaled. 

Fig. F2. Parameter fitting for NECA experiment, using new rescaled parameter set. 
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