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In this paper, a model problem that can be used for mathematical modeling and
investigation of arc phenomena in electrical contacts is considered. An analyt-
ical approach for the solution of a two-phase inverse spherical Stefan problem
where along with unknown temperature functions heat flux function has to be
determined is presented. The suggested solution method is obtained from a new
form of integral error function and its properties that are represented in the form
of series whose coefficients have to be determined. Using integral error function
and collocation method, the solution of a test problem is obtained in exact form
and approximately.
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1 | INTRODUCTION

Partial differential equations play an important role for the development of models in heat conduction and investigated in
various aspects (see, for example, literature’ and the references therein). To realize the physical changes, some models
need to be expressed as free or moving boundary problems. The theory of free boundaries has seen great progress in the
last half century. For the general literature up to 2015, we refer to Friedman®* and Chen et al.* Also, a long list of studies
and literature therein are devoted to Stefan-type problems and their analytical and numerical solutions. #3

Arcing processes are very rapid and include phase transformations. Thus, it is reasonable to use Stefan-type problems
for mathematical modeling of this phenomena. Worth to say that exact solution of the problem allows to elucidate and
enhance understanding of arcing processes and contribute to the development of the arc theory. Present study is devoted
to theoretical investigation and mathematical modeling of arc phenomena in electrical contacts and appears as a con-
tinuation of recent studies where mathematical modeling of short arcing is considered. **** While in 2 studies,™* the
analytical solutions of the one- and two-phase (direct) Stefan problems are found, in this paper, we consider an inverse
Stefan problem for which along with unknown temperature functions, heat flux function has to be determined. In the
considered model, heat flux depends on time variable; however, it is well known that besides time variable, heat flux



FIGURE 1 The contact spot model

depends on numerous factors like electron bombardment and diverse electric contact effects like tunnel, Joule, Thomson,
and Peltier effects. Thus, this model does not claim to be universal for all electric contact phenomena occurring during
opening or switching electric contacts.

In this study, we consider spherical model that agrees with Holm's so-called ideal sphere usually applied for electric
contacts with small contact surface (radius of b < 107*m) and low electric current.”

1.1 | Problem statement

In a spherical model, the contact spot is given by the spherical surface of radius b. The heat flux P(f) entering this surface
melts the electric contact material (liquid zone b < r < a(f)) and then passes further through the solid zone a(f) < r < o
(for the illustration of the model, see Figure 1).

The heat equations for each zone are
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the Stefan's condition
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aswell as the condition at infinity
fico, 1) = 0. (10)

Here, ¢, and @, are unknown heat functions, P(f) is an unknown heat flux coming from electric arc, Ty, s 2 melting
temperature of electric contact material, f{r) is a given function, and a,, az, 4;. 4z, L, and y are given constants. In the
equation, power balance is described by Stefan’s condition (9). The function «(f) describing the interphase location is
given in the inverse problem under consideration.

2 | PROBLEM SOLUTION

Suppose that the initial and free boundary conditions are analytic functions and they can be expanded in Taylor series as
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We represent the solution of (1) to (10) in the following form
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where coefficients A, By, Cyy, and Dy, have to be found. Here, i"erfix is integral error function determined by the following
recurrent formulas:
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Lemma 1. The integral error function holds the following properties:
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The proof of the lemma can be given by the L'Hopital's rule and properties of i"erfix function.
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Theorem 2. Let f be n times differentiable analytic function. Then
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Proof. Using Lemma 1, it is easy to see that
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2.1 | Calculation of coefficients

By the theorem and equations (4) and (11), we can write
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From (8), when we put r = a(f), then b will be canceled and there left only series a(t) = Z“"M 2. In integral error
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To calculate coefficient C,, we apply Leibniz and Faa Di Bruno formulas and Bell polynomials. Using Leibniz formula,
we have
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Using Faa Di Bruno formula and Bell polynomials for a derivative of a composite function, we have
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by taking kth derivatives of both sides of (13) at r = 0, we have
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From expression (14), we express coefficients C,. From (7}, we have
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In the same manner, we get recurrent formula from (15) where we express A, in terms of By, as
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We can express coefficients A, from this expression. In Stefan’s condition (9), we take first derivative of
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If we multiply both sides of (17) by rair) and use (7) and (8), we get the following expression
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where
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Taking k-times derivative of both sides of (18) at ¢ = 0, we get recurrent formula for B, coefficients.
By using all these expression on condition (&), we express coefficient of heat flux. From (8), we get
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Remark 3. For the convergence of temperature functions 8,,®., it is possible to follow the idea proposed in Holm.™

3 | APPROXIMATE SOLUTION OF ATEST PROBLEM

In this section, the collocation method that is practical for engineers is applied using 3 points f; =0, = 0.5, and ; = 1
To show the effectiveness of the method, we proposed the following problem. Solution is found both exactly and

approximately.
Let us consider
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We represent solution of the problem in the following form
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It is clear that from (20), we get Dy, and from (21), we get Cp,. Also, using (21), we can express A, in terms of By, Thus, we

can find By, by (22).
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Let fir) = r. Using (21), we have
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Let us transform (22) to obtain
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Multiply both sides on ¢, we get
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For the first derivative at r = 0, we get
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We find coefficients Ay, By from (12) and (21) when n < 3.

3.1 | Test problem

Letfiri = Ty =04 = 4; = L,ay = a; = 1,LL = a = y = 1. Mathcad 15 is used for computations, and we get
approximate values for 4y = 296 = 1075, 4, = 0341, A; = 972 By = —-9335%x 1077, B, = —0057, and B; = 1
whereas exact values are Ay = 296 % 107%, A, = 0,341, A; = —9.72, By = —9.335377 % 1077, By = —0.05678483, and
B, = 1.0OO0ODOO0000T.

In Figure 2, the graphs of both reconstructed exact (exact_Flux_P(0,t)) and approximate (approx_Flux_P(0,£)) flux
functions are shown.
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FIGURE 2 Exact and approximate values of flux function [Colour figure can be viewed at wileyonlinelibrarv.com]
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FIGURE 3 Relative error [Colour figure can be viewed at wilevonlinelibrary.com)
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FIGURE 4 Relative error for small ¢ values [Colour fipure can be viewed at wileyonlinelibrary.com)

In Figures 3 and 4, we illustrate the graph of relative error function calculated by following formula that is less than
0.0032% at pointx = 0,0 < ¢ < 0.025

|exact flux-approximate flux| - 100
exact flux )

Errorg =

4 | CONCLUSION

A mathematical model describing heat propagation in electric contacts is constructed on the base of two-phase spher-
ical inverse Stefan problem. The heat source P(f) which is occurred by arcing, bridging, etc. can be determined from
Equation 19. Temperature functions ©,,0; that are given in the form of series are determined whose coefficients
An, Bn, Cn, and Dy are also determined from Equations 14, 16, and 17. In the test problem, we used maximum principle
for error estimate; the deviation does not exceed 3.2 x 10~ for 3 points. For better precision, more points has to be taken
and better computer characteristics are required.
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