
Sulfur flotation performance recognition based on hierarchical classification of local
dynamic and static froth features

Yalin Wanga,∗∗, Bei Suna,∗∗, Runqin Zhanga,∗∗, Quanmin Zhub

aSchool of Information Science and Engineering, Central South University, China 410083
bDepartment of Engineering Design and Mathematics, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK

Abstract

This study proposes a flotation performance recognition system based on a hierarchical classification of froth images using both
local dynamic and static features, which includes a series of functions in image extraction, processing and classification. Within
the integrated system, to identify the abnormal working condition with poor flotation performance (NB it could be significantly
different with the dynamic features of the froth in abnormal working condition), it is functioned firstly with building up local
dynamic features of froth image from the information including froth velocity, disorder degree, and burst rate. To enhance the
dynamic feature extraction and matching, this system introduces scale-invariant feature transform (SIFT) method to cope with froth
motion and the noise induced by dust and illumination. For the performance subdivision under normal working conditions, Bag-
of-words (BoW) description is utilized to fill the semantic gap in performance recognition when images are directly described by
global image features. Accordingly typical froth status words are extracted to form a froth status glossary so that the froth status
words of each patch form the BoW description of an image. A Bayesian probabilistic model is built to establish a froth image
classification reference with the BoW description of images as the input. An expectation-maximization (EM) algorithm is used for
training the model parameters. Data obtained from a real plant are selected to verify the proposed approach. It is noted that the
proposed system can reduce the negative effects of image noise, and has high accuracy in flotation performance recognition.
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1. Introduction

Froth flotation is a widely used mineral separation technol-
ogy to acquire high-grade concentrates. It has a long process
flow which involves complex physical and chemical reactions
with various influence factors. Due to reasons like fluctuation of
feeding conditions, maloperations and external disturbances, a
flotation process exhibits multiple working conditions with dif-
ferent flotation performance. An accurate mathematical model
that could comprehensively and precisely describe the dynam-
ics of a froth flotation process, and thus to guide the operation,
is costly to obtain. As an alternative, surface froth features,
which are closely related to the final concentrate grade and re-
covery rate, are utilized as the performance indicator in practi-
cal production [1].

Performance recognition is crucial and fundamental in the
optimal operation of a flotation process. With the development
of machine vision and artificial intelligence, digital image pro-
cessing technology has been widely applied in the classifica-
tion of froth surface images and recognition of flotation perfor-
mance [2]. Moolman et al. used digital image analysis and an
artificial neural network approach in the classification of froth

∗Corresponding author
∗∗These authors contributed equally to this work and should be considered

co-first authors.
Email address:bei.sun@csu.edu.cn (Bei Sun)

images [3, 4]. Hargrave et al. studied the prediction of flotation
performance through off-line analysis of color, texture, and oth-
er visual features of coal and tin froth surface [5]. Singh et al.
first divided a froth image into patches. Then extracted the RG-
B color information of each patch, and used the information
in the image classification using a radial basis function neural
network [6]. Zhu et al. and He et al. applied the probability
density function (PDF) in the description of froth size distri-
bution and studied the reagent dosage predictive control of a
copper flotation process [7][8]. The above results indicate the
effectiveness of the static froth features, such as color, texture,
size, in the classification of froth images and identification of
flotation performance. On the other hand, researchers have s-
tudied the relationship between dynamic froth features, such as
froth stability and velocity, and the concentrate grade as well
as the recovery rate. Ventura-Medina et al. verified that froth
stability plays an important role in flotation performance. They
related changes in the fraction of air overflow to the variations
in the performance of a copper flotation process [9]. Barbian
et al. used the froth stability column method to quantify froth
stability on both laboratory scale and industrial scale [10]. The
result indicated that lower air flow rates resulted in better froth
stability and improved flotation performance [11]. Morar et al.,
Barbian et al., and Runge et al. verified that froth stability mea-
surements in combination with froth velocity, and without the
use of color, can predict concentrate grade [12][13][14]. They
concluded that froth stability is related to the concentration of
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the attached material within the system, whereas the velocity
is related to the concentration of entrained material recovered.
Morar chose the burst rate of froth surface lamellae to represent
froth stability since each burst event signal is not determined by
bubble size or any other froth structural features [15].

As indicated by previous studies, both dynamic features,
such as froth stability, and static features, reflect flotation per-
formance from different aspects, and should be taken into con-
sideration together in flotation performance recognition.How-
ever, there are few studies used both dynamic and static features
in flotation performance recognition[16]. For a more detailed
review of the application of machine vision in flotation process
monitoring and control, the reader is referred to excellentre-
views such as [17, 18, 19] and the references therein.

For sulphur flotation process, due to the high hydrophobici-
ty of sulphur, the addition of chemical reagents is not required.
The operations mainly include adjusting of air flow rate and
pulp level. It is important to keep the pulp level around optimal
to assure that a sufficient part of the valuable froth is collect-
ed while abnormalities like turning pulp is avoided. According
to expert experience, when pulp overflows, the froth exhibits
distinct dynamic features compared with normal working con-
ditions. This is verified in [20, 21, 22] which concluded thatthe
variation of pulp level is reflected by the dynamic froth features
including velocity, disorder degree and burst rate.

This study utilized both local dynamic and static froth fea-
tures to detect the abnormal working condition and evaluatethe
sulfur flotation performance under normal working condition-
s. In Section 2, the sulfur flotation process is introduced and
analyzed, and a hierarchical flotation performance recognition
framework is proposed. In order to obtain the dynamic features
of froth and avoid the semantic gap in performance recogni-
tion when images are directly described by global image fea-
tures, the froth images are divided into local patches. Section
3 studies the detection of abnormal working conditions using
local dynamic froth features. Three local dynamic featuresof
the froth, including froth velocity, disorder degree, and burst
rate, are extracted using the Scale Invariant Feature Transform
(SIFT) algorithm. These local dynamic features are then used
to detect the abnormal working conditions. Section 4 consid-
ers the evaluation of flotation performance under normal work-
ing conditions using local static froth features. The localstatic
features such as texture and color are extracted to obtain the
’Bag of Words’(BoW) description. The flotation performance
is then recognized using a Bayesian probabilistic model. By
comprehensively considering the relationship between flotation
performance and local dynamic and static froth features, a hier-
archical sulfur flotation performance recognition system is es-
tablished. In Section 5, the proposed approach is tested through
simulation experiments with data collected from a real plant.

2. Problem analysis

In metallurgy plants, sulfur flotation is used to recover valu-
able sulfur as a secondary product from leaching residues of
sulfide minerals. It is conducted by taking advantages of the
naturally strong hydrophobicity of sulfide ores. The addition

of chemical reagents is not necessary. The operation of sulfur
flotation mainly involves the adjusting of pulp level and inlet
air flow. As shown in Fig. 1, air is blew into the flotation cel-
l to enable the formation of air bubbles with mineral particles
attached. The sulfur concentrate is recovered by collecting the
mineralized froth at the overflow of the flotation cell.
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Figure 1: Cross-section diagram of a flotation cell

The thickness of froth layer has a large impact on the con-
centrate grade. Increasing the thickness of the froth layercan
prolong the residence time of the solid particles in the froth
layer. It is beneficial to the detachment of gangue, and thus
improve the concentrate grade. The height of the flotation cell
is fixed, and equals to the sum of the pulp level and thickness
of the froth layer. If the pulp level is low, then the froth layer
is thick, and vice versa. Therefore, pulp level, which indicates
and affects the flotation performance, is a key variable in sulfur
flotation.

Pulp level is related to a number of dynamic froth features.
When the pulp level is too high, the froth layer is extremely thin.
The froth mainly consists of blister and flows fast. This may
lead to the spillover of pulp and a low concentrate grade. When
the pulp level is too low, the froth layer is excessively thick.
The froth becomes sticky and difficult to collapse or burst. This
leads to a slow froth overflow, or even non-overflow, resulting in
low recovery. Hence, changes in pulp level are directly reflected
in thedynamic features of froth image, including velocity, dis-
order degree, and burst rate, which reflect flotation performance
to a large extent. On the other hand, froth images under differ-
ent working conditions exhibit differentstatic features, such as
the fineness of froth texture, depth of grooves, etc. In addition,
the froth color reflects the quantity of minerals carried by the
froth.

Therefore, in order to improve the recognition performance,
a flotation performance recognition system based on the hierar-
chical image classification using both local dynamic and static
features is proposed (Fig. 1). In order to detect the abnormal
working conditions, a SIFT operator is incorporated in a fea-
ture matching approach to extract the local dynamic features of
sulfur flotation froth. When the process is under normal work-
ing conditions, static froth features are utilized in the recogni-
tion. The local froth features, such as texture and color, are
transformed into codewords which are then described using the
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Figure 2: The hierarchical performance recognition system
based on both local dynamic and static froth features

BoW model. The Bayesian probabilistic model is introduced to
train the model parameters using the expectation-maximization
algorithm(EM).

3. Abnormal working condition recognition based on Scale-
Invariant Feature Transform

In this section, a feature matching method based on SIFT is
devised to extract the local dynamic features of froth image.
First, three local dynamic features, i.e., speed, disorderdegree,
burst rate, and their computing formulas are selected and de-
fined, respectively. Then, the relationship between these fea-
tures and flotation performance is analyzed using froth images
collected from a sulfur flotation plant. These dynamic features
are used to detect the abnormal working condition, which laid a
foundation for the later ’static features-based’ flotationperfor-
mance subdivision under normal working conditions.

3.1. Key points extraction and matching

SIFT algorithm is a local feature descriptor based on scale
space theory[23][24]. The main idea of scale pace theory is
to present the original image on different scales and to extrac-
t the invariant key points, edge, corner, as well as other fea-
tures. SIFT is invariant to rotation, scaling, brightness change
and affine transformation of image, and holds a certain stability
towards angular variation and noise. For two consecutive im-
ages to be matched, two vector sets of key points in the two im-
ages can be obtained. Then, the vector similarity is calculated to

determine whether the two key points match. Implementation
of SIFT algorithm is as follows,

• The detection of key points in froth images;

• Accurate positioning of key points;

• Calculating the orientation parameters of key points;

• Generation of parametric statistics and the final descrip-
tion vector of key points.

The effectiveness of SIFT was tested under three typical cat-
egories of froth status. In the first category, the moving speed
of froth is moderate and the moving direction is stable and uni-
form. The froth has good surface adhesion and hardly burst. In
the second category, froth moves faster with disordered direc-
tions and less foam on the surface, resulting in low concentrate
grade. In the third category, froth moves in a high speed which
resulted in blurry froth surface and poor flotation performance.
The matching results are shown in Fig. 2 (the coordinates are
pixel coordinates). In Fig. 2 (a), (c), and (e), red line depicts
matching result of the key points. The two endpoints of each
red line represent the two matched key points. (Because of the
large number of matched points, the figure shows only part of
the key points). Fig. (b), (d), and (f) show schematic views of
the velocity field of each category.

3.2. Local dynamic features extraction based on SIFT

According to the result of section 3.1, froth velocity, disorder
degree and burst rate are selected as the dynamic features of
froth. The formulae of these dynamic features are given in Eqs.
(1) to (7).

Consider two consecutive images, the key points are first ex-
tracted. The pixel displacements in the X and Y directions of
the key point in unit time are obtained, as well as the velocity
of the froth. Take the pixel displacements of two consecutive
images in the X direction asx, the pixel displacement in the Y
direction asy, the velocity in the horizontal direction asVx, the
velocity in the vertical direction asVy, the froth velocity as V,
and the movement direction asθ. Then if the sampling rate of
the cameras in the sulfur flotation plant isD frame images per
second, the equations for these variables are as follows,

Vx =
∑

D

x (1)

Vy =
∑

D

y (2)

V =
√

V2
x + V2

y (3)

θ = arctan
Vy

Vx
(4)

The unit of the velocity’s magnitude and velocity’s direction
is pixel/sec (pixel per second) and deg/s (degree per second), re-
spectively. In addition, to describe the disorder degree, express
the froth velocity as,

V = V̄ + V′, (5)
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(a) SIFT-based matching results in the first category (b) Froth velocity field of the first category

(c) SIFT-based matching results in the second category (d) Froth velocity field of the second category

(e) SIFT-based matching results in the third category
(f) Froth velocity field of the third category

Figure 3: Schematic view of froth velocity field in different categories
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whereV̄ is the average velocity of the froth over a period of
time, andV′ is the fluctuation of froth velocity. Then, define
the following,

VT =

√
V′2

V̄
. (6)

The average value ofVT over a certain period of time is taken
to represent the froth disorder degree. Besides the fluctuation in
velocity magnitude, the change in froth velocity directionalso
reflects the disorder degree of froth movement to some extent.
It can be noted from Fig. 2 that, in Fig. 2(d) the change in
froth movement direction is more obvious than the change in
Fig. 2(b) and (f), which is relatively stable.

Froth burst rate can be measured by the ratio of the total num-
ber of key points and the number of matched key points. The
greater the ratio, the higher the burst rate:

S =
N̄sum

Nmatch
, (7)

whereN̄sum is the average number of key points in two adjacen-
t frames of images, andNmatch is the number of matched key
points in two adjacent frames of images.

3.3. Abnormal working condition recognition based on local
dynamic features

A flotation process has both normal and abnormal working
conditions, and according to the different grades of concentrate,
the flotation performance under normal working conditions can
be divided into three categories like excellent, good, and gener-
al, see Table 1. Froth images representing the four performance
categories are shown in Fig. 4.

Table 1: Flotation froth appearance in different performance
categories

Category Froth appearance description
Excellent Moderate froth size and thickness, moderate velocity

magnitude, and stable movement direction
Good Uneven froth size distribution, easily burst, moderate

velocity magnitude, and stable movement direction
General Blurry froth surface, less concentrate attached, high

velocity, stable movement direction
Abnormal No significant froth on the surface, deep texture, high

velocity and disordered movement

Consider a froth image sequence collected from a plant in
three different time periods (denoted as A, B, and C), time pe-
riod A refers to normal performance, while time period B and
C refer to abnormal performance. The local dynamic froth fea-
tures extracted using the SIFT image matching algorithm are
shown in Fig. 5. Fig. 5 (a)-(f) show froth velocity and froth
velocity direction in time periods A, B and C. Fig. 5 (g) shows
the froth burst rate in time periods A, B and C.

As can be seen from Fig. 5, the dynamic features in the three
time periods showed great differences. Flotation performance
in time period A is normal, in which the velocity magnitude
kept in the range of 300-500 pixels/sec and movement direction

maintained at a small range of 40-65 deg/s. However, in time
period B, the froth velocity magnitude is in the range of 600-
700 pixels/sec, which indicates a very high speed. The move-
ment direction maintained at a smaller range of 20-35 deg/s,
froth during this period is likely to burst, and this resulted in
unsatisfying flotation. In time period C, both froth velocity and
velocity direction fluctuate sharply, and froth movement isdis-
ordered. This is due to turning pulp, which indicates poor flota-
tion performance and should be avoided.

4. Froth image classification based on the BoW model and
Bayesian probabilistic model

Global features extracted from two distinct images may be
very similar, resulting in lower accuracy froth image classifi-
cation and performance recognition. Moreover, when the im-
age is processed as a whole, describing the image using global
features is unintelligible. There exists a semantic gap problem
in the classification, i.e., the inconsistency between global fea-
tures and high-level semantic. In addition, due to dust and il-
lumination, the noises in froth images have diverse impactson
different categories of froth images. Hence, to improve the ac-
curacy of image classification and performance recognition, as
well as to achieve optimal control of sulfur flotation, localdy-
namic froth features are extracted and utilized in this study. An
image is first divided into patches. The texture and color fea-
tures of local patches are extracted, and transformed into words
of froth status. Then, the BoW description of the images is
obtained. The Bayesian probability model is introduced, and
EM (Expectation-Maximization) algorithm is used for training
model parameters.

4.1. BoW description of froth image

The BoW description of froth images is inspired by the BoW
text classification model[25][26]. BoW is a simplified repre-
sentation model, in which a text (or document) is represented
as a bag of keywords and phrase. The grammar and the order
of words in the text are ignored. In a document, the occurrence
frequency of each key word is a representation of the theme.
Similarly, in image classification, the occurrence frequency of
each froth status word indicates the theme of an image, i.e.,the
category an image belongs to.

To start with, K-means clustering method is applied to obtain
the froth status glossary,

• Step 1: SelectN frames of images from the image library.
The selected images should cover as much categories of
flotation performance as possible;

• Step 2: Divide each image intom × m patches with the
same pixel sizeLx × Ly;

• Step 3: Extract texture features (ASM, ENT, CON, IDM,
COR) and relative red component values of each patch of
each image to form a 1×6 dimensional feature description
vector;
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(a) Excellent (b) Good

(c) General (d) Abnormal

Figure 4: Sulfur flotation froth images under different performance categories
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Figure 5: Froth burst rate in periods A, B, and C
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• Step 4: Cluster all the feature description vectors using K-
means method to obtainD clustering centers, which are
the words of froth status. Then, the froth status glossary is
obtained.

After the establishment of the froth status glossary, the BoW
approach can be adopted to describe the froth image. BoW
description of a froth image is a 1× D dimensional vector, in
which each element illustrates the occurrence frequency ofcor-
responding froth status word in the patches. The acquired BoW
description of a froth image is shown in Fig. 5. The acquisition
steps are given as follows.

• Step 5: As each patch of the under processing image has
different local features, repeat steps 1-3 to acquire feature
vector description of each patch;

• Step 6: Obtain the similarity between the feature vector of
each patch with the words in the froth status glossary by
calculating the Euclidean distance. Then, choose the one
with the highest similarity as the froth status word of the
patch.

• Step 7: Calculate the frequency of each froth status word
to obtain the BoW description.

Figure 6: BoW description of froth images

As can be seen from Fig. 6, the BoW of a froth image is o-
batined as [0, 0, 3, 3, 3, 1, 6,0]. Its high-level semantic meaning
could be derived from the BoW description. The BoW descrip-
tion vector is a 1× 8 vector, which means there are 8 froth
status words in the froth status glossary. In the BoW descrip-
tion vector, 6 means that the 7th froth status word appeared 6
times, which indicates plenty of big froth in the image. Ele-
ments with a value of 0 had no corresponding froth status word
in the image, which means that the image did not contain blurry
or smooth texture regions. This description is similar to human
understanding, which from a certain perspective fills the seman-
tic gap.

4.2. Froth image classification based on the Bayesian proba-
bilistic model

The Bayesian theorem derive the probability of an even-
t based on prior probability of conditions related to the event.

In sulfur flotation froth image classification, in order to make
full use of prior knowledge (prior probability) and sample in-
formation, the following assumptions are made.

• One image solely belong to one categoryzk ∈ {z1, · · · , zNz},
e.g., excellent, good, general.

• Category variableszk(k = 1, 2, 3, · · · ,Nz) obey the poly-
nomial distribution on all froth image sample sets.

• Froth status wordsω j( j = 1, 2, 3, · · · ,Nw) obey the poly-
nomial distribution on a certain categoryzk.

On the basis of the above three assumptions, define following
variables:p(d) represents the occurrence probability of a BoW
vector (abstracted from a froth image) in the sample set,p(ω j |
zk) depicts the occurrence probability of froth status wordω j

when the corresponding categoryzk is set, p(zk, d) stands for
the probability distribution of all categories in one image. Thus,
the joint probability distribution of the froth status wordω j and
BoW vectord is,

p(di , ω j) = p(d)p(ω j | d) (8)

p(ω j | d) =
Nz
∑

k=1

p(ω j | zk)p(zk | d) (9)

Thus
p(d, ω) = p(d)

∑

z

p(z | d)p(ω | z) (10)

which can also be formulated as

p(d, ω) =
∑

z

p(d)p(d | z)p(ω | z). (11)

Therefore, for the whole BoW vector set and froth status
glossary, the model becomes

P(D,W) =
D
∏

d

Nw
∏

w

p(d)
∑

z

p(z | d)p(ω | z), (12)

wheredi is the ith BoW vector in the sample set,Nw is the
number of froth status words, andD is the number of BoW
vectors in the sample set. The total number of model parameters
is D · Nz + Nz · Nw.

Hence, the maximum likelihood parameter optimization
problem of the classification model based on the Bayesian prob-
abilistic model can be formulated as

max logP(D,W) (13)

st.
∑

z

p(z | d) = 1

∑

z

p(ω | z) = 1

∑

z

p(d) = 1.

Since the model contains unobservable parameterz, the
Expectation-Maximization algorithm (EM) [27] is applied in
the identification. The steps are described below.
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• Initializing the model parametersp(ω | z) and p(ω | d)
according to the experts’ experience and knowledge.

• Step ’E’: Calculatep(z | ω, d).

p(z | ω, d) =
p(ω | z, d)

p(ω, d)
=

p(ω | z)p(z | d)
∑

z p(ω | z)p(z | d)
(14)

Here,p(z | ω, d) is the category distribution of froth status
words in a specific given froth image.

• Step ’M’: Calculate the derivations of the parameters, the
maximum likelihood condition is met when the derivatives
are equal to 0. Therefore,

p(d) =

∑

ω

∑

z n(d, ω)p(z | ω, d)
∑

d
∑

ω

∑

z n(d, ω)p(z | ω, d)
=

n(d)
∑

n n(d)
, (15)

p(ω | z) =
∑

d n(d, ω)p(z | ω, d)
∑

ω

∑

d n(d, ω)p(z | ω, d)
, (16)

p(z | d) =
∑

ω n(d, ω)p(z | ω, d)
∑

z
∑

ω n(d, ω)p(z | ω, d)
=

∑

ω n(d, ω)p(z | ω, d)
n(d)

,

(17)

wheren(d, ω) indicates the times that froth status wordω ap-
pears in froth imaged. Step ’E’ and step ’M’ conduct iterative-
ly until convergence. The resulted model parametersp(ω | z)
andp(z | d) can then be used to derive the category of the froth
image.

4.3. Experimental verification and analysis
In Section 3, by using the dynamic feature extraction based

on the SIFT feature matching method described, abnormal
working condition can be identified when the dynamic features
exceed a predefined threshold. This section deals with the clas-
sification of flotation performance under normal working con-
ditions. The number of flotation performance categories is set
asNz = 3. We collected 300 froth images cover all the three
categories (excellent, good, general) from a plant, 150 images
for model training and the rest 150 images for testing. Before
conducting the experiment, the images were labelled manually
according to experts’ experience. The labelling result wasthen
used as a reference to evaluate the image classification result.

In the simulation, the size of froth status glossary is assumed
to be 20. The performance of the proposed image classification
approach is illustrated in Fig. 7 and Table 2. Fig. 8 and Fig. 9
illustrate the impact of the size of froth status glossary and the
number of patches in an image on the classification results.

The simulation result indicates a high classification accuracy.
In addition, the size of froth status glossary and the numberof
patches in an image have an impact on the classification result.
Increase the size of glossary would improve the classification
accuracy. However, the flotation froth image obtained has a
low gray level and the contrast between images in different cat-
egories are not obvious. And beyond certain limits, increasing
the size of the glossary can not result in a higher classification
accuracy. So a large froth status glossary is not advised. Simi-
lar phenomena was found in the relation between classification
accuracy and the number of patches in an image.

Category 1 Category 2 Category 3
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Entire sample
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Figure 7: Image classification result based on Bayesian proba-
bilistic model using local static features (Nz=3, the size of froth
status glossaryNw=20)

Table 2: Statistics of froth image classification result (Nz=3, the
size of froth status glossaryNw=20)

Numbers Excellent Good General
Samples 56 58 46
Accuracy 52 54 42
Accuracy rate 92.8% 93.1% 91.3%
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Figure 8: Influence of codebook size on classification accuracy
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Figure 9: Influence of number of patches on classification ac-
curacy
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5. Results and Discussion

5.1. Recognition of abnormal working condition

Fig. 10 shows the distribution of froth image samples, where
the axes are the parameters of two local dynamic features (ve-
locity and disorder degree). Statistical results of the normal and
abnormal working conditions based on classification of froth
velocity and disorder degree are shown in Table 3. The classifi-
cation and recognition system showed high accuracy for normal
working condition recognition, up to 96.5%. The accuracy for
abnormal working condition recognition is 86.7%.

Froth velocity

Normal image

Abnormal image

F
ro
th

d
is
or
d
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d
eg
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e

Figure 10: Feature distribution under normal and abnormal
working conditions

Table 3: Classification performance using velocity and disorder
degree

Category Normal Abnormal
Manual classification 57 15
System classification 59 13
Errors 2 2
Accuracy 96.5% 86.7%

5.2. Hierarchical classification system

Figs. 11 and 12 show the classification result with a combina-
tion of local physical and dynamic features. The static features,
such as texture and color features, are normalized and convert-
ed into one parameter, which is denoted as mean absolute of
texture. Fig. 11 gives the distribution result of manual classi-
fication of froth image samples, and Fig. 12 shows the distri-
bution result of the proposed classification system. Statistical
result of the hierarchical classification system based on dynam-
ic and static characteristics are shown in Table 4, where A, B, C,
and D correspond to four categories of froth performance (ex-
cellent, good, general, and abnormal, respectively). The result
indicated that the proposed hierarchical classification based on
local dynamic and static features could accurately identify the
four types of froth.
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Figure 11: Manual classification result
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Figure 12: Classification result using the proposed method

Table 4: Statistical results of the proposed classificationsystem

Category A B C D
Manual classification 19 18 20 15
System classification 21 18 22 13
Errors 2 1 3 2
Accuracy 89.5% 94.4% 85.0% 86.7%
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6. Conclusions

A sulfur flotation performance recognition system based on
hierarchical classification was developed in this paper. Since
froth shows largely different dynamic characteristics under nor-
mal and abnormal working conditions in sulfur flotation, both
local dynamic and static features were utilized to reduce the
limitations introduced by only using static froth featuresin
flotation performance recognition. The experimental results in-
dicate that the abnormal and normal working conditions can
be effectively identified with high recognition accuracy. There-
fore, this system shows prospect for applications in sulfurflota-
tion plants, and could be tailored and applied in other flotation
processes.

The effectiveness of this method could be explained from
the perspective of information. In the operation of industri-
al processes, operators usually encounter the the ’information
asymmetry’ situation in which the control variables are adjust-
ed with limited information compared with the complex system
dynamics and it is thus hard to achieve global optimal[28]. By
utilize both local dynamic and static froth features, the ’infor-
mation asymmetry’ situation in sulfur flotation process is lifted.
The result in this paper encouraged the development of more
advanced flotation performance recognition algorithms which
could process more froth features, especially in the context of
fiercer competition and the global upgrading of industrial au-
tomation system from Industry 3.0 to Industry 4.0.
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