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Abstract

This study proposes a flotation performance recognition system based on a hierarchical classification of froth images using bc
local dynamic and static features, which includes a series of functions in image extraction, processing and classification. With
the integrated system, to identify the abnormal working condition with poor flotation performance (NB it could be significantly
different with the dynamic features of the froth in abnormal working condition), it is functioned firstly with building up local
dynamic features of froth image from the information including froth velocity, disorder degree, and burst rate. To enhance th
dynamic feature extraction and matching, this system introduces scale-invariant feature transform (SIFT) method to cope with fro
motion and the noise induced by dust and illumination. For the performance subdivision under normal working conditions, Bag
of-words (BoW) description is utilized to fill the semantic gap in performance recognition when images are directly described by
global image features. Accordingly typical froth status words are extracted to form a froth status glossary so that the froth stat
words of each patch form the BoW description of an image. A Bayesian probabilistic model is built to establish a froth image
classification reference with the BoW description of images as the input. An expectation-maximization (EM) algorithm is used fo
training the model parameters. Data obtained from a real plant are selected to verify the proposed approach. It is noted that 1
proposed system can reduce the negatifects of image noise, and has high accuracy in flotation performance recognition.
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1. Introduction images [3, 4]. Hargrave et al. studied the prediction of flotation
performance throughftline analysis of color, texture, and oth-
Froth flotation is a widely used mineral separation technoler visual features of coal and tin froth surface [5]. Singh et al.
ogy to acquire high-grade concentrates. It has a long proces$st divided a froth image into patches. Then extracted the RG-
flow which involves complex physical and chemical reactionsB color information of each patch, and used the information
with various influence factors. Due to reasons like fluctuation ofn the image classification using a radial basis function neural
feeding conditions, maloperations and external disturbances,réetwork [6]. Zhu et al. and He et al. applied the probability
flotation process exhibits multiple working conditions with dif- density function (PDF) in the description of froth size distri-
ferent flotation performance. An accurate mathematical modejution and studied the reagent dosage predictive control of a
that could comprehensively and precisely describe the dynangopper flotation process [7][8]. The above results indicate the
ics of a froth flotation process, and thus to guide the operatiorsffectiveness of the static froth features, such as color, texture,
is costly to obtain. As an alternative, surface froth featuressize, in the classification of froth images and identification of
which are closely related to the final concentrate grade and retotation performance. On the other hand, researchers have s-
covery rate, are utilized as the performance indicator in practitudied the relationship between dynamic froth features, such as
cal production [1]. froth stability and velocity, and the concentrate grade as well
Performance recognition is crucial and fundamental in theas the recovery rate. Ventura-Medina et al. verified that froth
optimal operation of a flotation process. With the developmengtability plays an important role in flotation performance. They
of machine vision and artificial intelligence, digital image pro-related changes in the fraction of air overflow to the variations
cessing technology has been widely applied in the classifican the performance of a copper flotation process [9]. Barbian
tion of froth surface images and recogpnition of flotation perfor-et al. used the froth stability column method to quantify froth
mance [2]. Moolman et al. used digital image analysis and agtability on both laboratory scale and industrial scale [10]. The
artificial neural network approach in the classification of frothresult indicated that lower air flow rates resulted in better froth
stability and improved flotation performance [11]. Morar et al.,
Barbian et al., and Runge et al. verified that froth stability mea-
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the attached material within the system, whereas the \gloci of chemical reagents is not necessary. The operation afrsulf
is related to the concentration of entrained material reced.  flotation mainly involves the adjusting of pulp level andetl
Morar chose the burst rate of froth surface lamellae to meare  air flow. As shown in Fig. 1, air is blew into the flotation cel-
froth stability since each burst event signal is not deteadiby | to enable the formation of air bubbles with mineral paggl
bubble size or any other froth structural features [15]. attached. The sulfur concentrate is recovered by collgdtia

As indicated by previous studies, both dynamic featuresmineralized froth at the overflow of the flotation cell.
such as froth stability, and static features, reflect flotaper-
formance from dferent aspects, and should be taken into con- Overfiow
sideration together in flotation performance recognitidow- 1
ever, there are few studies used both dynamic and statigréesat
in flotation performance recognition[16]. For a more detil
review of the application of machine vision in flotation pess
monitoring and control, the reader is referred to excelfent
views such as [17, 18, 19] and the references therein.

For sulphur flotation process, due to the high hydrophobici-
ty of sulphur, the addition of chemical reagents is not resgli
The operations mainly include adjusting of air flow rate and
pulp level. It is important to keep the pulp level around ozl 1 I
to assure that a flicient part of the valuable froth is collect-
ed while abnormalities like turning pulp is avoided. Acdogd
to expert experience, when pulp overflows, the froth exibit
distinct dynamic features compared with normal working-con

Foam
layer

Pulp
layer

Height of flotation cell

Figure 1: Cross-section diagram of a flotation cell

ditions. This is verified in [20, 21, 22] which concluded tktze The thickness of froth layer has a large impact on the con-
variation of pulp level is reflected by the dynamic froth feas ~ centrate grade. Increasing the thickness of the froth leger
including velocity, disorder degree and burst rate. prolong the residence time of the solid particles in thehfrot

This study utilized both local dynamic and static froth fea-layer. It is beneficial to the detachment of gangue, and thus
tures to detect the abnormal working condition and evalirge improve the concentrate grade. The height of the flotatidin ce
sulfur flotation performance under normal working conditio is fixed, and equals to the sum of the pulp level and thickness
s. In Section 2, the sulfur flotation process is introduced an of the froth layer. If the pulp level is low, then the froth &y
analyzed, and a hierarchical flotation performance redimgni is thick, and vice versa. Therefore, pulp level, which irdés
framework is proposed. In order to obtain the dynamic festur and dfects the flotation performance, is a key variable in sulfur
of froth and avoid the semantic gap in performance recogniflotation.
tion when images are directly described by global image fea- Pulp level is related to a number of dynamic froth features.
tures, the froth images are divided into local patches. i@ect When the pulp levelis too high, the froth layer is extremalpt
3 studies the detection of abnormal working conditions gisin The froth mainly consists of blister and flows fast. This may
local dynamic froth features. Three local dynamic featuries lead to the spillover of pulp and a low concentrate grade. Whe
the froth, including froth velocity, disorder degree, angtdt  the pulp level is too low, the froth layer is excessively kic
rate, are extracted using the Scale Invariant Feature finans The froth becomes sticky andfficult to collapse or burst. This
(SIFT) algorithm. These local dynamic features are thew useleads to a slow froth overflow, or even non-overflow, resgltin
to detect the abnormal working conditions. Section 4 considlow recovery. Hence, changes in pulp level are directly cédle
ers the evaluation of flotation performance under normakwor in thedynamic features of froth image, including velocity, dis-
ing conditions using local static froth features. The Icstatic ~ order degree, and burst rate, which reflect flotation perémue
features such as texture and color are extracted to obtain tlio a large extent. On the other hand, froth images undtsrdi
'Bag of Words'(BoW) description. The flotation performance ent working conditions exhibit fierentstatic features, such as
is then recognized using a Bayesian probabilistic model. Byhe fineness of froth texture, depth of grooves, etc. In aufdit
comprehensively considering the relationship betweeatftmt  the froth color reflects the quantity of minerals carried bg t
performance and local dynamic and static froth featureigera h  froth.
archical sulfur flotation performance recognition systenes- Therefore, in order to improve the recognition performance
tablished. In Section 5, the proposed approach is testeddghr  a flotation performance recognition system based on thafhier
simulation experiments with data collected from a realplan  chical image classification using both local dynamic anticsta
features is proposed (Fig. 1). In order to detect the abnlorma
working conditions, a SIFT operator is incorporated in & fea
ture matching approach to extract the local dynamic featofe

In metallurgy plants, sulfur flotation is used to recovemwal sulfur flotation froth. When the process is under normal work
able sulfur as a secondary product from leaching residues diig conditions, static froth features are utilized in theagni-
sulfide minerals. It is conducted by taking advantages of théion. The local froth features, such as texture and cola, ar
naturally strong hydrophobicity of sulfide ores. The aduditi transformed into codewords which are then described ubimg t
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Froth image of determine whether the two key points match. Implementation

sulfur flotation of SIFT algorithm is as follows,
y SIFT e The detection of key points in froth images;
Local dynamic
characteristics e Accurate positioning of key points;
l e Calculating the orientation parameters of key points;
Normal e Generation of parametric statistics and the final descrip-
performance tion vector of key points.
Bayesian BoW \ 4 The dfectiveness of SIFT was tested under three typical cat-
Probability Fault - : :
A 4 performance egories of froth status. In the first category, the movingespe
Local physical characteristics of froth is moderate and the moving direction is stable arid un
& Image classification form. The froth has good surface adhesion and hardly burst. |
l the second category, froth moves faster with disorderesteir
Port " tions and less foam on the surface, resulting in low conegatr
eriormance recognition . . . .
(Excellent / good / Average) grade. In_ the third category, froth moves in a hlgh speed lwhic
resulted in blurry froth surface and poor flotation perfonta
| The matching results are shown in Fig. 2 (the coordinates are

v pixel coordinates). In Fig. 2 (a), (c), and (e), red line dépi
Operational matching result of the key points. The two endpoints of each
Instructions red line represent the two matched key points. (Becausesof th

large number of matched points, the figure shows only part of
Figure 2: The hierarchical performance recognition systenthe key points). Fig. (b), (d), and (f) show schematic views o
based on both local dynamic and static froth features the velocity field of each category.

3.2. Local dynamic features extraction based on SIFT

According to the result of section 3.1, froth velocity, dider
degree and burst rate are selected as the dynamic features of
froth. The formulae of these dynamic features are given i1 Eq
(1) to (7).

Consider two consecutive images, the key points are first ex-
3. Abnormal working condition recognition based on Scale- ~ tracted. The pixel displacements in the X and Y directions of

Invariant Feature Transform the key point in unit time are obtained, as well as the vejocit
of the froth. Take the pixel displacements of two conseeutiv

In this section, a feature matching method based on SIFT i§nages in the X direction as the pixel displacement in the Y
devised to extract the local dynamic features of froth imagedirection asy, the velocity in the horizontal direction &, the
First, three local dynamic featureS, i_e_, Speed, disaﬂdgree, VelOCity in the vertical direction aVy, the froth VelOCity asV,
burst rate, and their computing formulas are selected and d@nd the movement direction &s Then if the sampling rate of
fined, respectively. Then, the relationship between theae f the cameras in the sulfur flotation plantdsframe images per
tures and flotation performance is analyzed using froth @sag second, the equations for these variables are as follows,

BoW model. The Bayesian probabilistic model is introduaed t
train the model parameters using the expectation-maxtioiza
algorithm(EM).

collected from a sulfur flotation plant. These dynamic feagu
are used to detect the abnormal working condition, whiahdai Vi = Z X (1)
foundation for the later ’static features-based’ flotatmanfor- b
mance subdivision under normal working conditions. V, = Z y )
D
3.1. Key points extraction and matching
) . ) V= VZ+V2 3)
SIFT algorithm is a local feature descriptor based on scale
space theory[23][24]. The main idea of scale pace theory is 0 = arcta Vy @)
to present the original image onfidirent scales and to extrac- B rvx

t the invariant key points, edge, comer, as well as other féa  The unit of the velocity's magnitude and velocity's direxti

tures. SIFT is invariapt to rptation, scaling, brightne!sartge“ is pixesec (pixel per second) and degdegree per second), re-
and dfine transformation of image, and holds a certain Stab'l'tyspectively. In addition, to describe the disorder degregrass
towards angular variation and noise. For two consecutive iMine froth velocity as,

ages to be matched, two vector sets of key points in the two im- _
ages can be obtained. Then, the vector similarity is cated!® V=V+V, (5)



(a) SIFT-based matching results in the first category

(e) SIFT-based matching results in the third category
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(b) Froth velocity field of the first category
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(d) Froth velocity field of the second category
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(f) Froth velocity field of the third category

Figure 3: Schematic view of froth velocity field inftérent categories



whereV is the average velocity of the froth over a period of maintained at a small range of 40-65 giegHowever, in time
time, andV’ is the fluctuation of froth velocity. Then, define period B, the froth velocity magnitude is in the range of 600-

the following, 700 pixelgsec, which indicates a very high speed. The move-
Vv72 ment direction maintained at a smaller range of 20-35sjeg
Vr = VA ®)  froth during this period is likely to burst, and this resdlte

unsatisfying flotation. In time period C, both froth velgcénd

velocity direction fluctuate sharply, and froth movemertis

ordered. This is due to turning pulp, which indicates podaflo
ntﬂ'on performance and should be avoided.

The average value &fr over a certain period of time is taken
to represent the froth disorder degree. Besides the fluctuiat
velocity magnitude, the change in froth velocity directalso
reflects the disorder degree of froth movement to some exte
It can be noted from Fig. 2 that, in Fig. 2(d) the change in

froth movement direction is more obvious than the change iy £t image classification based on the Bow model and
Fig. 2(b) and (f), which is relatively stable. Bayesian probabilistic model
Froth burst rate can be measured by the ratio of the total num-

ber of key points and the number of matched key points. The opg features extracted from two distinct images may be

greater the ratio, the higher the burst rate: very similar, resulting in lower accuracy froth image cliss
Neurn catiqn and performance recognition. _MoreO\_/er, When_ the im-
(7) ageis processed as a whole, describing the image usinglgloba
features is unintelligible. There exists a semantic gajplera

whereNgymis the average number of key points in two adjacen-in the classification, i.e., the inconsistency between gl édna-

t frames of images, anbimaccn is the number of matched key tures and high-level semantic. In addition, due to dust &nd i
points in two adjacent frames of images. lumination, the noises in froth images have diverse impaets

different categories of froth images. Hence, to improve the ac-

3.3. Abnormal working condition recognition based on localCuracy of image classification and performance recogniasn

dynamic features well as to achieve optimal control of sulfur flotation, lochl-
namic froth features are extracted and utilized in thistéah
qmage is first divided into patches. The texture and color fea
tures of local patches are extracted, and transformed iotdsv
of froth status. Then, the BoW description of the images is
obtained. The Bayesian probability model is introduced an
EM (Expectation-Maximization) algorithm is used for trizig
model parameters.

S_

- £
Nmatch

A flotation process has both normal and abnormal workin
conditions, and according to thefdirent grades of concentrate,
the flotation performance under normal working conditiozis ¢
be divided into three categories like excellent, good, asmteg
al, see Table 1. Froth images representing the four perfocea
categories are shown in Fig. 4.

Table 1: Flotation froth appearance inffdrent performance

categories 4.1. BoW description of froth image
The BoW description of froth images is inspired by the Bow
Category  Froth appearance description text classification model[25][26]. BoW is a simplified repre
Excellent  Moderate froth size and thickness, moderatecitglo sentation model, in which a text (or document) is represkente
ood "&agn'tuie'ti”q St&l:?'e; T‘;O;{ement ql'reth'Oft‘ dorat as a bag of keywords and phrase. The grammar and the order
00 neven froth size distriobution, easlily burst, moceral H H

velocity magnitude, and stable movement direction of words in the text are |gnorgd. Ina document, the occumenc
General Blurry froth surface, less concentrate attachiegh h frequency of each key word is a representation of the theme.

velocity, stable movement direction Similarly, in image classification, the occurrence frequyeof
Abnormal  No significant froth on the surface, deep textuighh each froth status word indicates the theme of an imagethe.,

velocity and disordered movement

category an image belongs to.
To start with, K-means clustering method is applied to abtai

Consider a froth image sequence collected from a plant "];'he froth status glossary,
three diferent time periods (denoted as A, B, and C), time pe-
riod A refers to normal performance, while time period B and
C refer to abnormal performance. The local dynamic froth fea
tures extracted using the SIFT image matching algorithm are
shown in Fig. 5. Fig. 5 (a)-(f) show froth velocity and froth o Step 2: Divide each image intm x m patches with the
velocity direction in time periods A, B and C. Fig. 5 (g) shows same pixel sizéy x Ly;
the froth burst rate in time periods A, B and C.

As can be seen from Fig. 5, the dynamic features in the three e Step 3: Extract texture features (ASM, ENT, CON, IDM,

e Step 1: SelecN frames of images from the image library.
The selected images should cover as much categories of
flotation performance as possible;

time periods showed greatftirences. Flotation performance COR) and relative red component values of each patch of
in time period A is normal, in which the velocity magnitude each image to form ax1 6 dimensional feature description
kept in the range of 300-500 pixgdec and movement direction vector;
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(a) Excellent (b) Good

(c) General (d) Abnormal

Figure 4: Sulfur flotation froth images undefigirent performance categories
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e Step 4: Cluster all the feature description vectors using Kin sulfur flotation froth image classification, in order to kea
means method to obtaid clustering centers, which are full use of prior knowledge (prior probability) and sampie i
the words of froth status. Then, the froth status glossary i$ormation, the following assumptions are made.

obtained. .
e Oneimage solely belongto one categar¢ {z1,- - - , Zn,},

After the establishment of the froth status glossary, th&/Bo e.g., excellent, good, general.
approach can be adopted to describe the froth image. BoW
description of a froth image is ax D dimensional vector, in
which each elementillustrates the occurrence frequencgef
responding froth status word in the patches. The acquiréiBo ¢ Froth status words)(j = 1,2,3,- -, Ny) obey the poly-
deSCfiption of a froth image is shown in Flg 5. The acqlﬂﬁltl nomial distribution on a certain categany
steps are given as follows.

e Category variableg(k = 1,2,3,---,N;) obey the poly-
nomial distribution on all froth image sample sets.

On the basis of the above three assumptions, define following
e Step 5: As each patch of the under processing image hagriables:p(d) represents the occurrence probability of a Bow
different local features, repeat steps 1-3 to acquire featurgector (abstracted from a froth image) in the sample et; |
vector description of each patch; z) depicts the occurrence probability of froth status wand
) . o hen the corresponding categamyis set, p(z., d) stands for
o Step 6: Obtain the similarity between the feature vector o he probability distribution of all categories in one imagéus,

each patch with the words in the froth status glossary by, _ . . P
calculating the Euclidean distance. Then, choose the O#h:ﬁggcrig;g?sbmty distribution of the froth status watg and

with the highest similarity as the froth status word of the

patch. p(di, wj) = p(d)p(wj | d) (8)
e Step 7: Calculate the frequency of each froth status word N,
to obtain the BoW description. plwj | d) = Z p(w; | 2Pz | d) (9)
k=1
Thus
Froth status codebook p(d, 0.)) = p(d) Z p(Z | d) p((/) | Z) (10)
(0.45,1.55,0.28,0.31,0.91,1.08) Z
Vocabula (0.26,2.04,0.48,0.23,0.86,1.06) i
Y1 026,2.12,0.54,0.31,085.1.07) which can also be formulated as
(0.40,1.87,0.54,0.30,0.86,1.08)
(0.52,1.57,0.63,0.25,0.88,1.05)
(0.67,1.13,0.45,0.31,0.92,1.04) p(d, w) = Z p(d)pd | 2p(w | 2). (11)
(0.65,1.02,0.33,0.42,0.94,1.04)
(0.35,1.60,0.15,0.67,0.93,1.07) z
Des‘z‘r’i‘;mn‘ Therefore, for the whole BoW vector set and froth status
) , . & . SO glossary, the model becomes
7 - 7 ., Frequency of each codeword
" Word4.,, *Word7 . ‘Word 7+ . :Word 3 ‘ occurrence

D Nw

PO.W) =[ [[[p@ D pzIdp@id.  (12)
d w z

Figure 6: BoW description of froth images

whered; is theith Bow vector in the sample sely,, is the
As can be seen from Fig. 6, the Bow of a froth image is o-number of froth status words, aridl is the number of Bow

batined as [00, 3,3, 3, 1, 6,0]. Its high-level semantic meaning vectors in the sample set. The total number of model paramete

could be derived from the BoW description. The BowW descrip-IS D-Np+No- Nov. - o
: . . Hence, the maximum likelihood parameter optimization
tion vector is a 1x 8 vector, which means there are 8 froth

status words in the froth status glossary. In the Bow descripproblem of the classification model based on the Bayesian-pro

tion vector, 6 means that the 7th froth status word appeared listic model can be formulated as
times, which indicates plenty of big froth in the image. Ele- max logP(D, W) (13)

ments with a value of 0 had no corresponding froth status word st Z z1d)=1
in the image, which means that the image did not containlurr - P B
or smooth texture regions. This description is similar tonan
understanding, which from a certain perspective fills tmeae Z plwl|2) =1
tic gap. ZZ:
p(d) = 1.
4.2. Froth image classification based on the Bayesian proba- z
bilistic model Since the model contains unobservable parametethe

The Bayesian theorem derive the probability of an evenExpectation-Maximization algorithm (EM) [27] is applied i
t based on prior probability of conditions related to thergve the identification. The steps are described below.
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e Initializing the model parameteny(w | 2) and p(w | d) 60 —
. , . I Entire sample
according to the experts’ experience and knowledge. 55 I ccrate samplol]
e Step 'E’: Calculatep(z | w, d). é 50
d d 2
0| w.d) = P2 _ pwidpEld s
plw.d) 2, p(w|2p(z| d) %
Here,p(z| w, d) is the category distribution of froth status "
words in a specific given froth image. Category 1 Category 2 Category 3

e Step 'M’: Calculate the derivations of the parameters, the__ o ]
maximum likelihood condition is met when the derivatives Figure 7: Image classification result based on Bayesianeprob
are equal to 0. Therefore bilistic model using local static featureld/=3, the size of froth

S A wpEle.d  nd) status glossari,=20)

p(d) = = . (15)
2d Lo 2Nd 0)pZ] w,d)  Xnn(d)
Table 2: Statistics of froth image classification reshit3, the
D(w|2) = 24 N(d, w)p(z] w, d) (16)  Size of froth status glossal,=20)
Zw Zd n(d7 (‘)) p(Z | w, d) '
Numbers Excellent  Good General
n(z|d) = 2o N(d, w)p(z] w, d) _ 2o N(d, w)p(z| w, d) Samples 56 58 46
n(d, w)p(z| w,d n(d Accuracy 52 54 42
2z 2o N w)p(z] @, 0) (@ (17) ’ Accuracy rate  92.8% 93.1%  91.3%
. () . 0 . 0
wheren(d, w) indicates the times that froth status wasdap-
pears in froth imaged. Step 'E’ and step 'M’ conduct iterative- 100
ly until convergence. The resulted model paramepées | 2) .l
andp(z | d) can then be used to derive the category of the froth
image. I
4.3. Experimental verification and analysis é "I
In Section 3, by using the dynamic feature extraction based ;‘ N
on the SIFT feature matching method described, abnormal % 75}
working condition can be identified when the dynamic feaure < .l
exceed a predefined threshold. This section deals with #se cl
sification of flotation performance under normal working con &
ditions. The number of flotation performance categorie®is s soL . = = + =
asN; = 3. We collected 300 froth images cover all the three ’ Codebook size .

categories (excellent, good, general) from a plant, 15@&sa
for model training and the rest 150 images for testing. Befor Figure 8: Influence of codebook size on classification aayura
conducting the experiment, the images were labelled mgnual
according to experts’ experience. The labelling result thas
used as a reference to evaluate the image classificatiolt resu 100
In the simulation, the size of froth status glossary is agslim g5 |
to be 20. The performance of the proposed image classificatio
approach is illustrated in Fig. 7 and Table 2. Fig. 8 and Fig. 9
illustrate the impact of the size of froth status glossany te
number of patches in an image on the classification results.
The simulation result indicates a high classification aacwr
In addition, the size of froth status glossary and the nurober
patches in an image have an impact on the classificationtresul 70}
Increase the size of glossary would improve the classifinati
accuracy. However, the flotation froth image obtained has a
low gray level and the contrast between images ffedent cat- 60— 0 0 200 20
egories are not obvious. And beyond certain limits, indregas Number of patches
the size of the glossary can not result in a higher classificat L
accuracy. So a large froth status glossary is not adviseui- Si Figure 9: Influence of number of patches on classification ac-
lar phenomena was found in the relation between classifitati ¢Uracy
accuracy and the number of patches in an image.
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5. Results and Discussion

5.1. Recognition of abnormal working condition

‘2‘““\.“ # Type A
Fig. 10 shows the distribution of froth image samples, where : 0 ?"’“(3
. + Type C
the axes are the parameters of two local dynamic features (ve 5 TVLCD
locity and disorder degree). Statistical results of thewadrand ..
abnormal working conditions based on classification oftfrot g
velocity and disorder degree are shown in Table 3. The fiassi =
cation and recognition system showed high accuracy for abrm
working condition recognition, up to 9%. The accuracy for
abnormal working condition recognition is 38%. 08
Disorder degree 0.2 Feature
08 # Normal image ) . . i
o7t + +Abnormal image| + 2 & ] Figure 11: Manual classification result
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Figure 10: Feature distribution under normal and abnormal TR
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Table 3: Classification performance using velocity andrdiso
degree

[
=1
S

Category Normal  Abnormal

Manual classification 57 15 Feature

System classification 59 13

Errors 2 2 . . e . .

Accuracy 96.5%  86.7% Figure 12: Classification result using the proposed method

5.2. Hierarchical classification system

Figs. 11 and 12 show the classification result with a combina-
tion of local physical and dynamic features. The staticufess,
such as texture and color features, are normalized and denve
ed into one parameter, which is denoted as mean absolute
texture. Fig. 11 gives the distribution result of manuatsla

gflb|e 4. Statistical results of the proposed classificagimiem

fication of froth image samples, and Fig. 12 shows the distri- Category A B C D
bution result of the proposed classification system. Sitzis Manual classification 19 18 20 15
result of the hierarchical classification system based omuy System classification 21 18 22 13
ic and static characteristics are shown in Table 4, where £,B Errors 2 ! 3 2

! ! Accuracy 89.5% 94.4% 85.0% 86.7%

and D correspond to four categories of froth performance (ex
cellent, good, general, and abnormal, respectively). Ekalt
indicated that the proposed hierarchical classificaticgedan
local dynamic and static features could accurately idgitié
four types of froth.
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6. Conclusions

A sulfur flotation performance recognition system based ori13]
hierarchical classification was developed in this papencé&i
froth shows largely dferent dynamic characteristics under nor- 14
mal and abnormal working conditions in sulfur flotation, tbot
local dynamic and static features were utilized to reduee th
limitations introduced by only using static froth featuries
flotation performance recognition. The experimental tis5nk
dicate that the abnormal and normal working conditions cari16]
be dfectively identified with high recognition accuracy. There-
fore, this system shows prospect for applications in stilfda-
tion plants, and could be tailored and applied in other fiotat
processes.

The dfectiveness of this method could be explained from

the perspective of information. In the operation of industr
al processes, operators usually encounter the the 'infisma
asymmetry’ situation in which the control variables areuat}
ed with limited information compared with the complex syste
dynamics and it is thus hard to achieve global optimal[28]. B ,y;
utilize both local dynamic and static froth features, thedr-
mation asymmetry’ situation in sulfur flotation processfiedl.
The result in this paper encouraged the development of moré?!
advanced flotation performance recognition algorithmscwhi |23
could process more froth features, especially in the comtex
fiercer competition and the global upgrading of industriad a
tomation system from Industry 3.0 to Industry 4.0.
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