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Abstract

The distribution of emergency aid from warehouses to relief centers to satisfy the needs of the
victims in the aftermath of a disaster is a complex problem because it requires a rapid response
to human suffering when resources are scarce amidst great uncertainty. In order to provide an
effective response and use resources efficiently, this paper presents a novel model to optimize
location, transportation, and fleet sizing decisions. In contrast with existing models, vehicles
can be reused for multiple trips within micro-periods (blocks of hours) and/or over periods
(days). Uncertainty regarding demand, incoming supply, and availability of routes is modelled
via a finite set of scenarios, using two-stage stochastic programs. ‘Deprivation costs’ are used to
represent social concerns and minimized via two objective functions. Mathematical programming
based heuristics are devised to enable good-quality solutions within reasonable computing time.
Experimental results based on data from the disastrous 2011 floods and landslides in the Serrana
Region of Rio de Janeiro, Brazil, show that the model’s novel characteristics help get aid faster
to victims and naturally enforce fairness in its distribution to disaster areas in a humanitarian
spirit.
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1. Introduction

Brazil’s National System for Protection and Civil Defense (SINPDEC) manages the country’s
emergency preparedness and response to severe disasters. Its main role is to reduce the impact of
disasters in vulnerable communities, and so mitigate human suffering and preserve the population’s
well-being (Valencio, 2010). The increasing number of affected people and the economic damage
caused by disasters in recent years have highlighted the difficulty that organizations such as
SINPDEC face in responding effectively to the various types of disasters that plague Brazil. For
example, in one of the country’s worst socio-environmental disasters, the so-called Megadisaster
of the Serrana region of Rio de Janeiro state in 2011, floods and landslides claimed more than
1,000 lives and left around 30,000 people displaced and homeless. Experts assess that this scale
of impact was due to the lack of well-structured contingency plans and coordination problems
between the different bodies involved in the initial response phase.

Clearly, part of the problem is due to the unpredictability and complexity of such disaster
events. The needs of victims are difficult to forecast and can arise with little or no warning. There
is a mismatch between supply and demand, as the latter may depend on the uncertain behavior
of in-kind donations (Barber, 2012). Transport links may be poorly mapped, only partially
functional, or destroyed. Transport to distribute relief supplies may not be readily available.
Moreno et al. (2016) also points out that “... multiple agencies may be trying to satisfy the
same perceived need in an uncoordinated manner, just as commercial competitors do, but with
little prior information about needs, resulting in over and under supply with consequent human
suffering and avoidable deaths”. These problems can be even more challenging in developing
economies where relief resources are usually scarce and thus not sufficient to fulfill people’s needs
in the aftermath of a disaster.

This paper handles this complexity by proposing a novel integrated approach to improve
distribution logistics in disaster situations under uncertainty. Our optimization model integrates
key preparedness and response activities for an effective disaster management, such as location
of relief centers and transportation of emergency aid, which includes fleet-sizing decisions in
both pre- and post-disaster phases. Each single vehicle is allowed to make several journeys
within the period and over the time horizon without restricting the period’s length, economizing
overall resources. Typical uncertainty data such as victims’ needs, incoming supplies, and route
availability is modeled via a set of discrete scenarios and incorporated in the optimization model
following the two-stage stochastic programming paradigm.

Furthermore, we propose two approaches to take into account social concerns during relief
operations, both based on the concept of deprivation costs that victims incur due to the lack of
emergency aid. One approach prioritizes the minimization of deprivation costs over logistics costs,
while the other, minimizes logistics and deprivation costs jointly in a single objective function as
(Holgúın-Veras et al., 2013). Overall results in this paper show that it is possible to mitigate
human suffering via a more effective demand fulfillment policy based on deprivation costs in
either mono- or bi-objective fashion. In fact, the main findings clearly show that deprivation costs
help to provide a more equitable solution amongst the different affected areas and, simultaneously,
providing good service levels as much as possible given the scarcity of resources.

The computational results are analyzed with data instances based on the disastrous 2011
floods and landslides in the Serrana Region of Rio de Janeiro, Brazil. We also devised three
heuristic strategies to provide good-quality solutions within reasonable elapsed times for our
practical instances: a fix-and-optimize heuristic; a two-step heuristic based on an approximate
linear programming model; and a hybrid heuristic that combines the fix-and-optimize and the
two-step heuristics. Even though developed with reference to a particular Brazilian case, the
numerical results have general relevance for the efficient management of such humanitarian supply
chains over a myriad of sudden-onset disasters.

The rest of the paper is organized as follows. Section 2 presents the literature review. Section
3 describes the problem and presents the mathematical model. Section 4 develops the solution
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methods. Section 5 discusses the computational results. Finally, Section 6 presents the final
remarks and future research.

2. Literature review

This paper’s literature review focuses on integrated disaster logistics models with multiple
trips and deprivation costs, looking at three streams. The first stream (i) concerns recent
modelling approaches for integrating distribution, fleet sizing and/or location decisions. The
second stream (ii) focuses on how existing approaches have incorporated partial multiple trips.
Finally, the third stream (iii) reviews the few models with deprivation costs. The key papers in
each category are exhibited in Table 1, which summarizes the main characteristics, decisions,
and objective functions of their corresponding optimization approaches, showing their main
differences with this paper.

Most studies that developed integrated models for coordinating preparedness and response
activities in humanitarian logistics focused on multi-period settings. However, most multi-period
models overlooked the uncertainty about the number of affected people and their needs (Yi
and Ozdamar, 2007; Afshar and Haghani, 2012; Lin et al., 2012; Vanajakumari et al., 2016).
Recognizing the inherent uncertainty in disaster operations, such as the needs of victims, route
availability, supplies, and shipping time, various authors have proposed two-stage stochastic
programming models, often representing pre-disaster preparedness as first-stage decisions and
post-disaster response as second-stage decisions (Salmerón and Apte, 2010; Mete and Zabinsky,
2010; Ahmadi et al., 2015; Rath et al., 2016).

A few papers have attempted to handle multiperiod and stochastic issues in a scenario-based,
two-stage paradigm (Bozorgi-Amiri and Khorsi, 2016; Moreno et al., 2016). Fleet (re)sizing is
an important recourse decision to hedge against severe uncertainty in post-disaster situations,
but this option was adopted only in Moreno et al. (2016). However, in these studies there is
still potential to save overall resources by considering the option of reusing the vehicle fleet over
the time horizon and within each period, respectively. Note that, although many papers have
considered reusing vehicles, with exception of Moreno et al. (2016), none have explicitly discussed
this issue nor its benefits in relief distribution.

In this paper, we propose to define the concept of the “partial multi-trip” when vehicles are
assumed to be used only once by each period over the time horizon or several times within a
period, but without exceeding the period’s length. Perhaps surprisingly, only a few papers permit
the (re)utilization of vehicles for partial multiple trips within fleet sizing decisions. Two cases are
considered: (i) partial multiple trips over the time horizon; or (ii) partial multiple trips within
each time period.

In case (i), travel times are assumed to be multiples of the period length. For example,
day-long periods lead to travel times of 1 day, 2 days, etc. This approach is not accurate when
travel times are much shorter than a period. If, for example, a travel time last 2 hours and
the period length is a day, then during the 22 subsequent hours the vehicle is considered “not
available” and cannot be used again until the next day. This limited option of reusing vehicles
featured in Ozdamar et al. (2004); Yi and Kumar (2007); Yi and Ozdamar (2007); Afshar and
Haghani (2012) and Pérez-Rodŕıguez and Holgúın-Veras (2015). While Ozdamar et al. (2004)
minimized only the unsatisfied demand, Yi and Kumar (2007) used a weighted-sum function of
unmet demand and untreated wounded victims and Pérez-Rodŕıguez and Holgúın-Veras (2015)
considered “social costs” via a single objective function composed of logistics and deprivation
costs.

In case (ii), vehicles can be reused within the same time period to perform more than one trip.
This approach is recent and seems to be more efficient than case (i), but travel times are assumed
to be shorter than a period’s length and departures in one period cannot arrive in subsequent
periods. This case includes integrated models with facility location (Moreno et al., 2016; Bastian
et al., 2016; Bozorgi-Amiri and Khorsi, 2016) and without (Lin et al., 2011; Rivera-Royero et al.,
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2016; Ferrer et al., 2016). The multi-objective deterministic model by Lin et al. (2011) distributes
prioritized aid, minimizing unmet demand, logistics costs, and differences in the satisfaction
rate between affected areas. Ferrer et al. (2016) addressed last-mile distribution under uncertain
conditions using a deterministic model and a multi-criteria metaheuristic approach. Rivera-
Royero et al. (2016) minimizes a deprivation cost to mitigate unmet demand in a post-disaster
situation, as discussed next. All the aforementioned papers did not discuss the useful impact of
performing the existing two types of multiple trips towards to save overall resources. Here, we
explicitly show that allowing a vehicle to make several journeys within the period and over the
time horizon without restricting the period’s length helps to save overall resources.

Recent years have seen an emphasis on addressing human suffering in humanitarian logistics.
Holgúın-Veras et al. (2013) distinguished between social costs (deprivation plus logistics costs)
and other objectives while a later paper (Holgúın-Veras et al., 2016) discussed how to estimate
deprivation functions. Most research has considered deprivation costs within relief distribution
models, such as Pérez-Rodŕıguez and Holgúın-Veras (2015) and Rivera-Royero et al. (2016) who
both integrate distribution of supplies and fleet sizing with inventory allocation decisions, but
without explicitly considering facility location. In particular, Pérez-Rodŕıguez and Holgúın-Veras
(2015) incorporated social costs as a sum of logistics and deprivation costs in mixed-integer
non-linear programming models in which an exponential function accounts for the deprivation
times for each demand node and emergency aid. Non-linearity limits the size of solvable instances,
so heuristic approaches are used to solve simpler versions of the model. In contrast, Rivera-Royero
et al. (2016) proposed a mixed-integer linear programming model to approximate the exponential
nature of the deprivation cost. A linear deprivation function dependent on the number of time
periods is used to account for the deprivation time. The approximation can be improved by
reducing the planning periods, but it assumes that demands arise only once, at the beginning
of the time horizon. This is often an unrealistic assumption given that victims’ needs typically
arise in any moment during the timeline of the disaster.

From a different perspective, Huang et al. (2015) used three objectives related to humanitarian
principles: lifesaving utility, delay cost, and equity. The lifesaving utility is the preference of
affected people regarding the emergency commodity. The delay cost (deprivation cost) represents
the effect of not receiving the relief item, reflecting the human suffering caused. Finally, the
equity measure aims to minimize unfairness of delivery between affected areas. Different to most
studies, the deprivation function is a linear mapping of the deprivation time, so that the shortage
effect does not increase exponentially, as it does in Holgúın-Veras et al. (2013).

Pradhananga et al. (2016) presented a two-stage stochastic programming model to integrate
resource allocation and distribution in pre-disaster planning over a static horizon, assuming
too that demands arise only at the beginning of the time horizon. Location, prepositioning,
and procurement are decided in the first-stage, and procurement and distribution of supplies
in the second-stage. Post-disaster costs include logistics and exponential deprivation costs.
However, the resulting problem is still linear because deprivation times are evaluated according
to pre-determined conditions to make them dependent only on certain distance parameters.

Notice that the inclusion of deprivation costs in humanitarian logistics is still scarce. Most
studies made strong model assumptions attempting to handle deprivation costs in a tractable
fashion. For example, the assumption that demands arise only once at the beginning of the
time horizon (Rivera-Royero et al., 2016; Pradhananga et al., 2016) is not directly applicable to
the complex disaster considered in this work (floods and landslides), because relief distribution
must be performed when large amounts of demands are still occurring (randomly) over a time
horizon of days or weeks. In addition, the linear deprivation function proposed by Huang et al.
(2015) overlooks the typical (exponential) behavior of being deprived from critical supplies. In
fact, Holgúın-Veras et al. (2016) concluded that deprivation cost functions are better fitted via
exponential functions. Pérez-Rodŕıguez and Holgúın-Veras (2015); Rivera-Royero et al. (2016);
Huang et al. (2015) also over-simplified their problems by ignoring the uncertainty which is

4
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clearly present in practice.
Motivated by several issues not previous researched, this paper develops a novel approach

for relief distribution in a multi-period, multi-modal, and multi-commodity context under
uncertainty that combines key decisions, such as location of relief centers, distribution of
emergency commodities, and fleet sizing in both stages. Uncertainty in incoming supplies,
proportion of usable commodities, demand, and availability of routes is handled via a two-stage
scenario-based approach that is illustrated using real information on floods and landslides disasters
in Rio de Janeiro, Brazil, from 1966 to 2013. In summary, our paper’s innovative contributions
are as follows:

• We use two different time scales, for example days and hours, to model deprivations costs,
while preserving the inherent exponential nature of human suffering, in contrast to the linear
deprivation cost function of Huang et al. (2015). Thus our mathematical model remains a
mixed-integer linear program, differently from the non-linear model of Pérez-Rodŕıguez
and Holgúın-Veras (2015).

• Our model is more realistic than many existing studies, for the following reasons: (i)
Demands can arise in any time period during the timeline of the disaster, thus the so-called
inter-temporal effects in distribution relief are properly assessed. In effect, larger deliveries
to a relief center can be strategically used in our context to satisfy immediate and future
people’s needs when emergency aid can be stored from one period to another. On the
contrary, Rivera-Royero et al. (2016) and Pradhananga et al. (2016) assume that demands
arise only at the beginning of the time horizon. (ii) Our proposed deprivation function
takes into account the total number of people affected by the shortage of a given emergency
commodity. This is important as deliveries are commonly “family-oriented” in disaster
situations, not oriented to a single person. (iii) Vehicles are allowed to perform total
multiple trips anytime during the time horizon. These three features have not been taken
into account before in a dynamic stochastic environment.

• Finally, for the first time, social concerns are considered via a hierarchical bi-objective
function that prioritizes saving lives as fast as possible, while efficiency takes secondary
importance’. Moreover, a mono-objective version of the problem evaluate the most suitable
approach in disaster management.
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3. Problem description and mathematical modeling

We propose to devise a mathematical tool to support typical logistics activities that must
be effectively carried out within the disaster life cycle to fulfill victims’ needs in the aftermath
of a disaster event. Based on Brazilian practices and reality, we assume that humanitarian
assistance is composed of different types of emergency commodities, which are usually in-kind
donations raised after disaster strikes. Our goal is to provide an optimized plan to ensure that
such goods will be distributed at the right time and place to mitigate human suffering as much
as possible. For this purpose, we present a location-transportation problem that is particularly
appealing to handle recurrent weather-related hazards, such as floods and landslides, which can
be relatively predictable events in terms of timing in some geographical areas, in the sense that
they are mostly associated with certain climatological triggering events that usually occur in
specific seasons. However, even such disaster events may lead to a rather uncertain post-disaster
situation due to the unknown exact nature and magnitude of the hazard. As a consequence,
victims’ needs, incoming supplies, and overall physical damages are rarely precisely known before
disaster strikes.

To take into account the aforementioned uncertainty, we invoke a two-stage stochastic
programming paradigm in which preparedness (pre-disaster) decisions are taken in the first-stage,
typically 1 to 4 weeks before disaster strikes, with partial information on the disaster impact and
effects. In practical settings, such information can be given by forecast or early-warning systems,
for example. The response (post-disaster) decisions are thus performed in the second-stage.
Following stochastic programming theory, victims needs, incoming supplies (in-kind donations),
arc availability (undamaged roads), and the proportion of usable inventory at relief centers (RCs)
are modeled as random variables over a probability space (Ξ,Π), in which Ξ is the support of
each scenario ξ and Π is a probability measure such that Π(ξ ∈ Ξ) = 1 almost surely.

In the first-stage, we plan two logistics activities: the pre-selection of a set of relief centers
(RCs) that will be used by displaced and homeless people seeking humanitarian assistance; and
the definition of the fleet of vehicles in terms of type and number that should be deployed at
the existing depots to carry the emergency commodities to the pre-selected RCs. We assume
that depots are already located in non-vulnerable areas based on the fact that warehousing is
usually a long-term decision, and thus beyond the scope of this paper’s goals. However, we must
define which RC will be established to meet the needs of the affected areas in an attempt to
avoid wasting time finding/setting appropriate facilities after a disaster, which is usually more
time-consuming, considering the chaotic post-disaster situation (socioeconomic vulnerabilities,
network damages, etc.). Moreover, priority should be given to the relief assistance in the first
few hours after a disaster strikes to mitigate human suffering and avoid deaths.

As the relief centers are usually existing facilities that operate as public schools, churches,
and offices, among others, they do not necessarily have suitable infrastructure to temporarily
accommodate supplies. For this reason, we consider a storage capacity given in volume of goods
and a per product capacity to indicate, for example, that some RCs might not have the required
quality of refrigeration to store medical products. As a consequence, such relief aid should not
be sent to that RC. It is worth noting that RCs can be located in vulnerable areas. The fixed
cost for opening and operating relief centers are associated with minor arrangements.

The fleet of vehicles can be composed of different transportation modes in order to reach
collapsed regions. They must be rapidly deployed as soon as disaster strikes, and possibly be
located at the depots nearer the pre-selected RCs. It is assumed that vehicles are procured via
public tender and there are only a limited number of them in the first-stage. Commodities can
be heavy or bulky, so vehicle loading is limited by both weight and volume capacities.

In the second-stage, we basically need to plan how to fulfill victims’ needs for each potential
disaster scenario, which involves performing transportation and relief distribution activities, and
which also includes inventory management at depots and RCs. All the response decisions are
taken over a finite time horizon divided into day-long time periods which are further divided into
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micro-periods of hours or blocks of hours. Some decisions must be taken by period and other
ones by micro-period. Commonly, after the disaster strikes, incoming supplies, mainly in the
form of in-kind donations, will randomly arrive at some existing depots. From the depots, these
relief supplies are sent to the already established RCs using the available vehicles through the
undamaged arcs in order to fulfill the victims’ needs as soon as possible. Thus, the recourse
decisions include the flow of commodities and vehicles along the routes by micro-period. The
vehicles defined in the pre-disaster may be not enough to complete the distribution of commodities,
so additional vehicles can be procured by period in the second-stage, and via the spot market
at much higher prices. We assumed that the vehicle’s operation is intrinsically associated with
the depot where it was first procured. Therefore, a given vehicle’s route starts at a given depot,
visits a relief center to unload, and returns to the same depot. However, this assumption could
be extended to more general settings where the procured vehicles can be managed by any other
depot or relief agency.

Based on practical disaster situations, this paper assumes that relief centers have to meet
large quantities of demand and, for this reason, the vehicles used to transport the commodities
usually unload all their truckload at the same relief center. Furthermore, in most cases, the
vehicles available to perform the relief distribution have a small capacity in comparison to the
quantity of emergency commodities that need to be shipped. For this reason, we do not consider
the possibility that a vehicle visits more than one RC before returning to its depot. Travel
times on route (i, j) and (j, i) are the same. We assume an upper bound for the total number of
vehicles that can travel along a route. However, in more practical situations, it is considered as a
sufficiently large number.

A vehicle can be reused, i.e., perform total multiple trips over the time horizon. Based on
the 2011 floods and landslides in the Serrana region of Rio de Janeiro State in Brazil, Figure 1
shows an example where vehicles must complete 3 trips from a depot in Nova Friburgo (NFR) to
relief centers located in Santa Maria Madalena (SMM), Petrópolis (PTP), and Sapucacia (SPC)
over a time horizon of 2 periods of 6 hours each. Figure 2 shows two contrasting schedules for
the 3 trips: when resources are sufficient (3 vehicles available) and when resources are scarce
(1 vehicle available). When no multiple trips are permitted, then 3 vehicles are needed as each
route requires a vehicle. When partial multiple trips over the time horizon are permitted, but not
within each time period (case i), then vehicles can be (re)used only at the beginning of the next
time period, so vehicle 2 is needed to perform trip 3. When partial multiple trips within each
time period are permitted (case ii), vehicle 1 is free at the end of period 1 and so can be reused
for trip 2. However, trips 2 or 3 cannot occur in period 1 because the total travel time is greater
than the period’s length. Finally, when total multiple trips are permitted (case i+ii), a single
available vehicle can perform all the trips, saving resources. Within the traditional approaches,
if only one vehicle is available, then at least one trip cannot happen, causing an unnecessary
shortage of commodities.

There are relief inventory at depots and RCs. The first case refers to the total quantity of
in-kind donations not sent to the RCs yet, thus remaining at the depots from one period to
another at least. Those commodities that were already sent to the RCs in a given period, but
not used to prompt satisfy victims needs of the same period, compose the RCs inventory. We
assume that the relief inventory at the depots are not affected by the disaster because those
facilities are always located in safe places. However, relief inventory can be damaged at the RCs
depending on the disaster impact and effects, analogously to Galindo and Batta (2013), among
others, in which it is considered the potential destruction of supplies that were stored near the
demand points. We penalize only the relief inventory at the RCs to avoid keeping a great amount
of unused goods in those facilities, which might disrupt the humanitarian assistance there.

We assume that either victims travel from the affected areas to the RCs seeking emergency
commodities or they were already evacuated from the affected areas to the RCs by relief agencies.
In both cases, there is a cost to be paid by either agencies or victims, which it is defined here as
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Figure 1: Illustrative example with 3 trips.
Nova Friburgo Sapucaia 2:18 horas

Nova Friburgo Petrópolis 2:36 horas

Nova Friburgo Santa Maria Madalena 1:37 horas

Periods Travel time

Micro-periods 1 2 3 4 5 6 7 8 9 10 11 12 Trip (hours)

Trip 1 1 (NFR-SMM) 3

Trip 2 2 (NFR-PTP) 5

Trip 3 3 (NFR-SPC) 4

Trip 1
Trip 2 (i)

Trip 3

Trip 1 (ii) (*)

Trip 2

Trip 3

Trip 1 Vehicle is not available

Trip 2

Trip 3 Vehicle is busy

Periods

Micro-periods 1 2 3 4 5 6 7 8 9 10 11 12
Proposed model (i)+(ii) Vehicle 1

(i) Vehicle 1

(ii) Vehicle 1

Without multiple trips Vehicle 1

Trip 2

Trip 1 Trip 2

Multiple trips within each time 

period.
Vehicle 2

Vehicle 2

Vehicle 3

Assumptions: One vehicle is 

available. Trip 1 must be finalized 

within period 1. Trips 2 and 3 must 

be finalized within period 2.

Assumptions: Three vehicles are available. Trip 1 must be finalized within period 1. Trips 2 and 3 

must be finalized within period 2.

Period 1 Period 2

Trip 1 Trip 2 Trip 3

Trip 1

Multiple trips over the time 

horizon.

Period 1 Period 2

Vehicle 1

Vehicle 1

Vehicle 1

Vehicle 1

Vehicle 2

Vehicle 1
Vehicle 1

Trip 1

Proposed model (i)+(ii)

(ii)

(i)

Without multiple trips

Vehicle 1

Vehicle 1

Figure 2: Schedule with multiple trips.

“the cost of meeting victims’ needs”. Clearly, this cost involves transportation and it is supposed
to increase for longer distances. For this reason, it makes sense to assume that is proportional to
the distance between RCs and affected areas. Such costs are deemed zero if a relief center is in
the same geographical region as the affected area. This assumption stimulates the pre-selection
of RCs that are closer to affected areas.

Since the incoming supply is random, it can arise in a smaller quantity than required by the
victims, causing unfulfilled needs. In order to take into account human suffering as a consequence
of the relief aid shortage, we propose to use the idea of deprivation costs to prioritize demand
fulfillment to those people who are deprived from a given relief aid for longer. The next section
presents our two-stage stochastic multi-trip location-transportation model with social concerns,
denoted model FLTP.
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3.1. Indexes and Sets
w ∈W Emergency commodities.
i ∈ I Depots.
j ∈ J Relief centers.
k ∈ K Affected Areas.
l ∈ L Types of Vehicles.
ξ ∈ Ξ Scenarios.
t ∈ T Time periods.
θ ∈ Θ Micro-periods.
Θ(t) ⊆ Θ Subset of the micro-periods within period t.
θFt ⊆ Θ(t) First micro-period of period t.
θLt ⊆ Θ(t) Last micro-period of period t.
δ ∈ ∆w Deprivation time for commodity w in terms of micro-periods.

The relationship between periods and micro-periods is illustrated in Figure 3. For example,
with a time horizon of 4 day-long periods and micro-periods of 4 hours, {θF1 , θF2 , θF3 , θF4 } =
{1, 7, 13, 19} and {θL1 , θL2 , θL3 , θL4 } = {6, 12, 18, 24}. If demand for commodity 1 can remain unmet
for up to 6 micro-periods, then the corresponding deprivation set is posed as ∆1 = {1, 2, 3, 4, 5, 6}.
Note that θ is the index regarding micro-periods, whereas δ is the index associated with the
amount of time “in deprivation” which is evaluated in the number of micro-periods.

Figure 3: A time horizon of 4 day-long periods and micro-periods of 4 hours.

3.2. Deterministic Parameters
αj Fixed cost for opening and operating relief center j.
βl (β′l) Fixed cost of vehicle type l in the first-stage (second-stage).
γijl Shipping cost for vehicle type l in the predetermined route (i, j).
κw Inventory cost of commodity w.
ηkj Cost of relief center j serving affected area k.
νw (ν ′w) Volume (weight) of commodity w.
ϑl (ϑ′l) Capacity by volume (weight) of vehicle type l.
ρj (ρ′wj) Capacity of relief center j by volume (number of commodity type w).
ϕijl Maximum number of vehicles type l that can travel along arc (i, j) at each

micro-period.
φl Maximum number of vehicles type l available in the first-stage.
gw(δ) Deprivation cost of commodity w as a function of the deprivation time δ ∈ ∆w.
|∆w| Number of micro-periods from which unmet demand reaches the maximum

penalty.
gw(|∆w|) Maximum deprivation cost of commodity w.
τijl Travel time of vehicle l along arc (i, j).
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3.3. Stochastic parameters
q ξwit Incoming supply of commodity w at depot i in period t in scenario ξ.
pξwjt Proportion of commodity w at relief center j in period t which remains

usable in scenario ξ.
d ξwkt Demand for commodity w in affected area k in period t in scenario ξ.
aξijlt = 1, if route (i, j) is available for vehicle type l in period t in scenario ξ.

= 0, otherwise.
πξ Probability of occurrence of scenario ξ.

3.4. First-stage decision variables
Nli Quantity of vehicles type l procured in the first-stage at depot i.
Yj = 1, if relief center j is open.

= 0, otherwise.

3.5. Second-stage decision variables
N ′lit Quantity of vehicles type l procured in the second-stage at depot i

at period t in scenario ξ.
P θξ
wijl Amount of commodity w shipped from depot i to relief center j

using vehicle l at micro-period θ ∈ Θ in scenario ξ.
V θξ
ijl Number of vehicles type l that start the distribution along route (i, j)

at micro-period θ ∈ Θ in scenario ξ.
Z θξ
wjkt Delivery quantity of commodity w in relief center j at micro-period θ ∈ Θ

to supply the need of affected area k in period t in scenario ξ.
IDξ

wit Inventory of commodity w in depot i at period t in scenario ξ.
IRCξwjt Inventory of commodity w in relief center j at period t in scenario ξ.
U θξ
wkt Demand of commodity w from affected area k in period t

that remains unmet until micro-period θ ∈ {Θ ∪ {θL|T | + 1}} in scenario ξ.
TU ξ

w(δ) Total demand of commodity w that remains unmet for δ deprivation micro-periods
in scenario ξ.

3.6. Objective Function
The objective function of the model FLTP is formulated as follows:

min {fLC , fDC} (1)

where

fLC =
∑
j∈J

αj · Yj +
∑
i∈I

∑
l∈L

βl ·Nli +
∑
t∈T

∑
ξ∈Ξ

πξ · β′l ·N
′ξ
lit

+ (2)

∑
j∈J

∑
θ∈Θ

∑
ξ∈Ξ

πξ ·

(∑
i∈I

∑
l∈L

γijl · V θξijl +
∑
k∈K

∑
t∈T

∑
w∈W

ηkj · Zθξwjkt

)
+

∑
j∈J

∑
t∈T

∑
w∈W

∑
ξ∈Ξ

πξ · κw · IRCξwjt,

and

fDC =
∑
w∈W

∑
ξ∈Ξ

πξ ·

 ∑
δ∈∆w

(gw(δ)− gw(δ − 1)) · TU ξ
w(δ)+ (3)

∑
k∈K

∑
t∈T

max{gw(|∆w|)− gw(|Θ| − θLt + 1), 0} · U
(θL

|T |+1)ξ
wkt

]
.
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The objective function (1) minimizes both expected logistics costs (2) and human suffering
(3). Function (2) involves the first-stage costs of opening or operating relief centers and acquiring
vehicles before a disaster, respectively, and the second-stage costs of acquiring vehicles after a
disaster, shipping emergency commodities, supplying the affected areas, and holding inventory
at relief center nodes, respectively. Function (3) is the monetary cost of depriving victims of
emergency commodities over a number of micro-periods. We use two ways to account for both
objectives: (i) via a bi-objective model that prioritizes fDC over fLC (Section 4.1) and (ii)
merging both functions into a single objective, i.e., fLC + fDC .

The demand of a period t can be satisfied in any micro-period of the period t without be
considered as unmet demand. If the demand of period t is not promptly satisfied in period
t it is considered unmet from the first micro-period of period t + 1 (θLt + 1, or equivalently,
θFt+1) with one micro-period of deprivation and can be satisfied in some of the next periods
t′(t′ > t) incurring in deprivation costs or can be lost if it is not satisfied within the maximum
deprivation time |∆w| incurring in the maximum deprivation cost gw(|∆w|). For example, with a
time horizon of 4 days and 6 micro-periods of 4 hours each every day, as shown in Figure 3, the
demand of period t = 1 is considered unmet from micro-period 7 onwards since θL1 + 1 = θF2 = 7.
Following this rationale, the demand of the last period |T | is counted as unmet in the “dummy”
micro-period θL|T | + 1 = θL4 + 1 = 25. Here, we use the general term “unmet demand” in two
situations: Firstly, a shortage when a given demand is not satisfied in the current period, but is
backlogged to be satisfied later. Secondly, a lost demand when a given demand is not satisfied
during the entire time horizon.

Following this reasoning, the first term of equation (3) penalizes the shortage of commodities
while the second term penalizes the lost demand in the final “dummy” micro-period θL|T | + 1.
Demands that remain unmet over a deprivation time of δ micro-periods have also not been satisfied
for deprivation times of δ − 1, δ − 2, ..., 1 micro-periods. So, to avoid double-counting, the first
term of the objective function (3) does not consider the cost gw(δ), but rather gw(δ)− gw(δ − 1).
For example, let ∆w = {1, 2, 3} and assume that a given demand is unmet for δ = 3 micro-periods.
Then the resulting deprivation cost is [gw(3)− gw(2)] + [gw(2)− gw(1)] + [gw(1)− gw(0)] = gw(3),
with gw(0) = 0. If the cost gw(δ) were used, then the resulting deprivation cost would be
gw(3) + gw(2) + gw(1) which overestimates the actual cost.

A demand dξwkt that is not fulfilled in any micro-period θ ∈ Θ during the time horizon is
considered lost and must be penalized with the maximum deprivation cost gw(|∆w|). In this
case, the deprivation cost is evaluated in the dummy micro-period θL|T | + 1. For example, let
∆w = {1, 2, 3, 4, 5} in a time horizon of 4 days and 6 micro-periods every day, as shown Figure
3. Thus lost demand must be penalized with gw(5). According to our modeling assumptions,
any unmet demand in the last period t = 4 arises in micro-period θL|T | = 24 and becomes
unmet in micro-period θL|T | + 1 = 25, with a total deprivation time of one micro-period as a
result of the difference between θL|T | + 1 and θL|T |. Notice that, as the planning horizon ends at
the dummy micro-period 25, the unmet demand of period 4 will never reach more than one
micro-period of deprivation. So it suffices to penalize this unmet demand in the first term of
equation (3) with gw(1) − gw(0) = gw(1), where gw(0) = 0. However, as this unmet demand
was not met in the time horizon, it must be penalized with gw(5) according to our modeling
assumptions. So we need to add an extra penalization of max{gw(|∆w|)− gw(|Θ| − θL4 + 1), 0} =
max{gw(5) − gw(24 − 24 + 1), 0} = max{gw(5) − gw(1), 0} = gw(5) − gw(1) in the second
term of equation (3) to obtain the total penalty value gw(5). We must subtract gw(1) from
the second term of equation (3) because this term was already counted in the first term of
equation (3), otherwise the penalization would be gw(5) + gw(1) and not gw(5). Note that
without the second term (max{gw(|∆w|)− gw(|Θ| − θL4 + 1), 0}), the last period’s unmet demand
would be penalized using just gw(1), which represents the lowest deprivation cost. Note also
that the demand of period t = 3 is considered unmet from micro-period θ = 19, with a
deprivation cost of gw(1), to micro-period θ = 23, with a total deprivation cost of gw(5)
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i.e., max{gw(5) − gw(24 − 18 + 1), 0} = max{gw(5) − gw(7), 0} = 0. In this case, because
gw(δ) ≥ gw(δ′) ,∀δ ≥ δ′, there is no need to include the deprivation cost at the end of the time
horizon. Although gw(δ) is a non-linear function, it is a parameter and so the model remains
linear.

3.7. Constraints
Flow conservation. Constraints (4) and (5) conserve the flow of commodities at depots

and relief centers, respectively. We assume that depots are located only in non-vulnerable areas,
but relief centers can be located in vulnerable (disaster) areas as well. Thus inventory that can
be carried forward from one period to the next is reduced by the proportion of usable inventories
pξwjt in (5). Thus, the proportion of usable inventories pξwjt considers that some products can
become obsolete during the disaster. Parameter pξwjt = 1, for example, indicates that there is no
obsolete inventory. On the other hand, pξwjt = 0.05 indicates that only 5% of the product w is
kept in inventory at relief center j from period t− 1 to period t. As the parameter pξwjt is an
index in t, it can control the obsolescence of the inventory in each time period.

q ξwit + IDξ
wi(t−1) =

∑
j∈J

∑
l∈L

∑
θ∈Θ(t)

P θξ
wijl + IDξ

wit, ∀w ∈W, i ∈ I, t ∈ T, ξ ∈ Ξ (4)

∑
i∈I

∑
l∈L

∑
θ∈Θ(t)

P
(θ−τijl)ξ
wijl + pξwjt · IRC

ξ
wj(t−1) =

∑
k∈K

∑
θ∈Θ(t)

t∑
t′=1

Z θξ
wjkt′ + IRCξwjt, (5)

∀w ∈W, j ∈ J, t ∈ T, ξ ∈ Ξ.

Constraints (6) keep the supply of commodities to affected areas within their availability.
Note that commodities are available in relief centers τijl micro-periods after leaving depots. For
example, if τijl = 2, then commodity w shipped in vehicle type l from depot i in micro-period
θ = 5 is available in relief center j from micro-period 7 onwards. Both constraints (5) and (6)
allow available commodities in relief centers to fulfill demand in a period (t′ = t) or unmet
demand from past periods (t′ = 1 to t′ = t− 1).

∑
k∈K

θ∑
θ′=θF

t

t∑
t′=1

Z θ′ξ
wjkt′ ≤ p

ξ
wjt · IRC

ξ
wj(t−1) +

∑
i∈I

∑
l∈L

θ∑
θ′=θF

t

P
(θ′−τijl)ξ
wijl (6)

∀ w ∈W, j ∈ J, θ ∈ Θ(t), t ∈ T, ξ ∈ Ξ.

Capacity of relief centers. Constraints (7) and (8) limit transportation to be only from
depots to existing relief centers. Based on practical disaster operations, the flow of emergency
commodities arriving in relief centers respects a total capacity in volume (ρj) and a per type of
product (ρ′wj) capacity. The per-product capacity reflects that some relief centers may not be
able to store certain commodities, e.g., vaccines that need refrigeration.

∑
w∈W

∑
i∈I

∑
l∈L

∑
θ∈Θ(t)

νw · P
(θ−τijl)ξ
wijl +

∑
w∈W

νw · IRCξwj(t−1) ≤ ρj · Yj , ∀ j ∈ J, t ∈ T, ξ ∈ Ξ. (7)

∑
i∈I

∑
l∈L

∑
θ∈Θ(t)

P
(θ−τijl)ξ
wijl + IRCξwj(t−1) ≤ ρ

′
wj · Yj , ∀w ∈W, j ∈ J, t ∈ T, ξ ∈ Ξ. (8)

Capacity of vehicles. Constraints (9) and (10) state that each vehicle has certain capacity
in terms of volume (ϑl) and weight (ϑ′l) and the products must comply with it.

ϑl · V θξ
ijl ≥

∑
w∈W

νw · P θξ
wijl, ∀i ∈ I, j ∈ J, l ∈ L, θ ∈ Θ, ξ ∈ Ξ. (9)

ϑ′l · V
θξ
ijl ≥

∑
w∈W

ν′w · P
θξ
wijl, ∀i ∈ I, j ∈ J, l ∈ L, θ ∈ Θ, ξ ∈ Ξ. (10)
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Procurement of vehicles in both stages. Constraints (11) limit the number of each
type of vehicle that can be procured in the first-stage. There are no limits in the second-stage.
Constraints (12) ensure that only vehicles that were assigned to depots in either the first or
second-stage may be used to transport supplies to relief centers. These constraints also reflect
that each vehicle can make multiple round trips (depot i → relief center j →depot i) during the
whole time horizon. Since travel times on routes (i, j) and (j, i) are equal, each vehicle takes
2 · τijl micro-periods for a single round trip. For example, if τijl = 2 and vehicle type l arrives
at relief center j from depot i in micro-period θ = 8, then this vehicle is busy in micro-periods
5, 6, 7, and 8 because the round trip takes 2 · τijl = 4 micro-periods, i.e., from micro-period
θ − (2 · τijl − 1) = 5 to micro-period θ = 8.∑

i∈I
Nli ≤ φl, ∀ l ∈ L (11)

∑
j∈J

θ∑
θ′=θ−(2·τijl−1)

V θ′ξ
ijl ≤ Nli +N ′ξlit, ∀ i ∈ I, l ∈ L, θ ∈ Θ(t), t ∈ T, ξ ∈ Ξ. (12)

Note how general constraints (12) are. For example, if there is a setup time to use a vehicle
again, then it suffices to include it in the vehicle’s travel time. In example of Figure 2, even with
a setup time of 5 micro-periods (5 hours), it would still be possible to use the same vehicle to
perform trip 2. If the setup time was 4 micro-periods (4 hours), then the vehicle can perform
trip 3.

Availability of arcs. Constraints (13) prevent a vehicle of type l travelling on an arc (i, j)
in any micro-period θ of a period t in scenario ξ if the arc is not available in that period for
this type of vehicle. For example, floods and landslides may cause the collapse of arc (i, j) for
land transportation, but not for air transport. Note that if arc (i, j) is available (aξijlt = 1),
then constraints (13) provide an upper bound for the total number of vehicles that can travel
along the arc, which is usually a large number. It is also possible to consider a reduced ϕijl
to represent some situations where the arcs are partially damaged, so there will be a limited
number of vehicles that can traverse them.

θ∑
θ′=θ−(2τijl−1)

V θ′ξ
ijl ≤ ϕijl · a

ξ
ijlt, ∀i ∈ I, j ∈ J, l ∈ L, θ ∈ Θ(t), t ∈ T, ξ ∈ Ξ. (13)

Evaluation of unmet demand. Constraints (14) evaluate the unmet demand of period t in
the first micro-period of period t+ 1, i.e., in micro-period θLt + 1. Note that the unmet demand in
a period t is equal to the demand of period t (d ξwkt) minus the quantity of commodities delivered
(
∑
j∈J

∑
θ∈Θ(t) Z

θξ
wjkt) for the demand of period t. For instance, Figure 4 shows the unmet demand

of periods 1 and 2, calculated in micro-periods 7 and 13, as d ξwk1−Z
1ξ
wjk1−Z

4ξ
wjk1 = 10−2−4 = 4

and d ξwk2 − Z
8ξ
wjk2 − Z

12ξ
wjk2 = 5 − 2 − 2 = 1, respectively. Thus, constraints (14) define the

initial unmet demand of each period. On the other hand, constraints (15) define the demand
that remains unsatisfied in the next micro-periods until reaching the maximum deprivation
time |∆w|, i.e., from micro-period θLt + 2 to micro-period θLt + |∆w|. If ∆w = {1, 2, 3}, for
example, we need to calculate the unmet demand of period 1 until the micro-period θL1 + 3 = 9.
Figure 4 shows the demand of period 1 that remains unmet for micro-periods 8 and 9 calculated
as U 8ξ

wk1 = U 7ξ
wk1 − Z

7ξ
wjk1 = 4 − 1 = 3 and U 9ξ

wk1 = U 8ξ
wk1 − Z

8ξ
wjk1 = 3 − 3 = 0, respectively.

Finally, constraints (16) define the total amount of demand for each commodity and scenario that
remains unsatisfied for δ micro-periods, based on the unmet demand calculated in constraints (14)
and (15). The unmet demand of period 1 of Figure 4, for example, remains unmet for δ = 2
micro-periods of deprivation if it was not fulfilled until the micro-period θL1 + 2 = 6 + 2 = 8,
while the demand of period 2 remains unmet for δ = 2 micro-periods if it was not fulfilled until
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the micro-period θL1 + 2 = 12 + 2 = 14. Then, TU ξ
w(2) = U 8ξ

wk1 + U 14ξ
wk2 = 3 + 2 = 5.

U
(θL

t +1)ξ
wkt = d ξwkt −

∑
j∈J

∑
θ∈Θ(t)

Z θξ
wjkt , ∀ w ∈W,k ∈ K, t ∈ T, ξ ∈ Ξ. (14)

U θξ
wkt = U

(θ−1)ξ
wkt −

∑
j∈J

Z
(θ−1)ξ
wjkt ,

∀ w ∈W,k ∈ K, t ∈ T, ξ ∈ Ξ, θ ∈
{

Θ ∪ {θL|T | + 1} : θLt + 2 ≤ θ ≤ θLt + |∆w|
}
. (15)

TU ξ
w(δ) =

∑
t∈T

∑
k∈K

U
(θL

t +δ)ξ
wkt , ∀ w ∈W, δ ∈ ∆w, ξ ∈ Ξ. (16)

2 4 1 3

2 2 2

3 5

4 3 0 2 2 0 1

Micro-periods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Periods 1 2 3

10 5 9

Figure 4: Example of unmet demand in a time horizon divided in 3 days and each day divided into 6 micro-periods
of 4 hours each.

Domain of the decision variables. Constraints (17), (18) and (19) define the domains
of the decision variables.

Yj ∈ B, ∀j ∈ J. (17)

V θξ
ijl ∈ Z+, ∀i ∈ I, j ∈ J, l ∈ L, θ ∈ Θ, ξ ∈ Ξ. (18)

Nli, N
′ξ
lit, P

θξ
wijl, Z

θξ
wjkt, IRC

ξ
wjt, ID

ξ
wit, U

θξ
wkt, TU

ξ
w(δ) ∈ R+, (19)

∀ i ∈ I, j ∈ J, l ∈ L, w ∈W, t ∈ T, θ ∈ Θ, δ ∈ ∆, ξ ∈ Ξ.

4. Solution approaches

4.1. Solving the bi-objective problem
There are various techniques to solve multi-objective optimization models, such as hierarchical

optimization (Anandalingam and Friesz, 1992), goal programming (Romero, 1991), and the
epsilon constraint method (Haimes et al., 1971). In this paper, we use a bi-level hierarchical
optimization procedure. At the first level, model FLTP is solved via the minimization of the
deprivation costs (fDC), then the minimum deprivation cost (fDC∗) is added as a constraint
(fDC ≤ fDC∗) and the model re-solved at the second level minimizing overall logistics costs
(fLC). Note that the new constraint added at the second level is always feasible unless the first
level optimization problem is already infeasible. This hierarchical procedure reflects humanitarian
principles where saving lives as fast as possible − via the minimization of the deprivation cost −
is paramount and the efficient use of scarce resources via the minimization of the logistics costs
takes secondary importance.

This approach is also flexible enough to include a deviation variable, say dev (such that
fDC ≤ fDC∗ + dev) is minimized in the objective function at the second level of the procedure.
This analysis can be useful when there is a clear justification for trading off shortages of emergency
commodities with lower logistics costs.
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4.2. Solving the MIP problems
Both levels require solving a relatively complex MIP problem even for small instances. For

example, an instance with 3 depots, 8 relief centers, 5 affected areas, 3 commodities, 10 time
periods, 240 micro-periods (of one hour each ), 3 scenarios, 2 vehicles, and a maximum deprivation
time of 96 micro-periods implies a problem with more than 909,526 variables (51,840 of which are
integer) and 25,784 constraints. Even though this problem size is not necessarily prohibitive for
commercial solvers such CPLEX, the numerical tests below show that the second-level problem
cannot be efficiently solved without exploiting specialized solution methods.

By recognizing that our model FLTP is a combination of different structural elements, such as
multiple periods and micro-periods, commodities, nodes (depots and relief centers), vehicles, and
scenarios, we develop three heuristics based on decomposition and mathematical programming
techniques to provide good-quality solutions within a plausible amount of time: a fix-and-optimize
heuristic (FXO), a two-step heuristic based on an approximate model (TSH), and a hybrid
heuristic that combines FXO and TSH.

4.2.1. Fix-and-Optimize heuristic (FXO)
In a traditional fix-and-optimize (FXO) heuristic, a given initial solution is improved iteratively.

A partition criterion is specified whereby the variables of each partition are iteratively fixed and/or
unfixed in an attempt to produce smaller and easier MIPs. Each MIP consists of integer variables
specific to the current iteration (partition) that must be optimized and integer decisions that are
fixed according to the incumbent solution. If the resulting solution is better than the incumbment
solution, then the incumbent is updated. The process is repeated until reaching a given stopping
criteria, e.g., after a time limit, or after a number of iterations without improvement in the
solution.

The initial solution here is generated by not satisfying any demand, i.e., all the decision
variables are set to zero, with exception of those for unmet demand. As in Moreno et al.
(2016), time horizon decomposition is used to fix/unfix the discrete variables V θξ

ijl . Assume
that Vθ = [V θξ

ijl , ∀(i, j, l, ξ)]. Then, at each iteration, the algorithm maintains the integrality
of variables V θ, where θ ∈ Θ(t) refers to the micro-periods in the current time period t.
Simultaneously, all the remaining variables, i.e., Vθ : θ ∈ Θ(t), where t is not the current period,
are fixed according to the incumbent solution. A pseudo code for this FXO algorithm is outlined
in Algorithm 1.
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Algorithm 1 FXO heuristic.
1: Initialization: Generate an initial solution. Fix all variables at their current values. Define a

partition Pt for the discrete variables V θξ
ijl : θ ∈ Θ(t).

2: Incumbent solution := initial solution; OF incumbent := objective function of the initial solution.
3: LastImprovement:=0; t′ := |T |.
4: while iter¡IterLimit do
5: for t = |T | to 1 do
6: if t = t′ and LastImprovement=1 then
7: Stop.
8: else
9: Unfix variables from set Pt.

10: Solve the resulting subproblem.
11: if OF MIP ¡ OF incumbent then
12: LastImprovement := 0; t′ := t.
13: Incumbent solution := MIP solution
14: OF incumbent:= OF MIP
15: end if
16: Fix all variables according to the incumbent solution.
17: end if
18: end for
19: LastImprovement:=1;
20: end while
Note. OF MIP : objective function of the subproblem. OF incumbent: objective function of the incumbent
solution. LastImprovement: controls if there is an improvement in the objective function of the incumbent solution.
IterLimit: maximum number of iterations.

4.2.2. Two-step heuristic (TSH)
In the first step of the two-step heuristic, an approximate linear programming version of the

original mathematical model is solved in order to obtain location and transportation decisions.
In the second step, the original formulation is solved with the information gathered from the
approximate model and the fleet sizing decisions thus determined. Algorithm 2 shows the two-step
heuristic.

Algorithm 2 Two-step heuristic.
1: Step 1: Solve the approximate location-transportation model (ALTP). The objective fDC is solved

at the first level and the objective fALC at the second level.
2: Fix variables P θξ

wijl, Z
θξ
wjkt, IRC

ξ
wjt, ID

ξ
wit, U

θξ
wkt, and TU ξ

w(δ) at their values obtained in step 1.
3: Step 2: Solve the original FLTP model (1)−(19) via the minimization of fLC .

Model ALTP is posed as follows:

min {fALC , fDC} (20)
s.t.: constraints (4)− (8), (14)− (19)

θ∑
θ′=θ−(2τijl−1)

∑
w∈W bw · P θ′ξ

wijl

ϑl
≤ (ϕijl − 2τijl) · aξijlt,

∀i ∈ I, j ∈ J, l ∈ L, θ ∈ Θ(t), t ∈ T, ξ ∈ Ξ. (21)
θ∑

θ′=θ−(2τijl−1)

∑
w∈W b′w · P θ′ξ

wijl

ϑ′l
≤ (ϕijl − 2τijl) · aξijlt,

∀i ∈ I, j ∈ J, l ∈ L, θ ∈ Θ(t), t ∈ T, ξ ∈ Ξ. (22)

Yj , P
θξ
wijl, Z

θξ
wjkt, IRC

ξ
wjt, ID

ξ
wit, U

θξ
wkt, TU

ξ
w(δ) ∈ R+, (23)

∀ i ∈ I, j ∈ J, l ∈ L, w ∈W, t ∈ T, θ ∈ Θ, δ ∈ ∆, ξ ∈ Ξ.
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in which

fALC =
∑
j∈J

αj · Yj +
∑
w∈W

∑
j∈J

∑
t∈T

∑
ξ∈Ξ

πξ ·

κw · IRCξwjt +
∑
k∈K

∑
θ∈Θ

ηkj · Zθξwjkt

+ (24)

∑
w∈W

∑
i∈I

∑
j∈J

∑
l∈L

∑
θ∈Θ

∑
ξ∈Ξ

πξ ·
(
βl
|T |

+ β′l + γijl

)
·
(
νw
2ϑl

+ b′w
2ϑ′l

)
· P θξ

wijl.

The objective (24) differs from (2) regarding the evaluation of shipping and fixed costs
of contracting vehicles. Model ALTP determines shipping and fixed costs using the relation(
νw
2ϑl

+ ν′w
2ϑ′

l

)
· P θξ

wijl, which is an approximation of the number of vehicles used by micro-period in
the second-stage. Note that the objective function (24) underestimates the total shipping cost
and overestimates the fixed cost of vehicles.

The model ALTP does not consider the variables related to the fleet sizing decisions, i.e., V θξ
ijl ,

Nli, N ′ξlit, and the binary variable associated with the relief centers Yj . Thus constraints (9)−(13)
are dropped and the new approximate constraints (21) and (22) are added to ensure that the
original model FLTP solved in the second step will produce a feasible solution regarding the
minimum number of vehicles needed to transport aid. The arc capacity ϕijl is reduced by a factor
2τijl in order to avoid infeasibility when the approximate number of vehicles (νw

ϑl
+ ν′w

ϑ′
l
) · P θξ

wijl

are rounded up and used in the second step of the heuristic to evaluate the (integer) number of
vehicles V θξ

ijl for each scenario. Constraints (23) define the domain of the decision variables.

4.2.3. Hybrid heuristic (TSH+FXO)
The third heuristic (TSH+FXO) is a hybrid strategy based on the previous two heuristics,

whereby the solution of the TSH heuristic is used as the initial solution of the FXO heuristic.

5. Computational results

The main goal of this section is twofold: firstly, to analyze the performance of the proposed
solution approaches for the model FLTP; secondly, to analyze the performance of the model
regarding the impact of the total multiple trips and deprivation costs, being the main novel
characteristics of our model. All models and methods were coded in GAMS 24.1.3 and optimized
via the solver CPLEX 12.5 on an Intel Xeon E5-1650 processor with 32 GB RAM under the
Windows 7 operating system. The stopping criteria to solve the hierarchical bi-level model were
either elapsed times exceeding 3,600 seconds or optimality gaps relative to the best lower bound
becoming smaller than 0.1%. Following a hierarchical approach, the optimization model of the
second level was solved only if the optimality gap of the first level is approximately zero.

This section is organized as follows. Subsection 5.1 presents the scenario generation. Sub-
section 5.2 describes the data instances. Subsection 5.3 presents how deprivation costs were
estimated. Subsection 5.4 analyzes the performance of the solution approaches for a set of
practical instances. Subsection 5.5 discusses the performance of the model focusing on its novel
characteristics. Finally, Section 5.6 shows the impact of the randomness via the evaluation of
both Expected Value of Perfect Information and Value of Stochastic Solution.

5.1. Scenario generation
The scenario generation was based on the method developed in Moreno et al. (2016), which

estimates the stochastic data according to the type/magnitude of previous disasters in the same
geographical region. This method comprises four main parts: 1) analysis of historical data; (2)
disaster categorization; (3) bootstrap phase; and (4) scenarios evaluation.
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1. Analysis of historical data. Firstly, we carried out a careful research on the number of
floods and landslides in the State of Rio de Janeiro from 1966 to 2013, as well as their
corresponding number of affected people. These data were directly obtained from EM-DAT
(2015). This investigation generated columns 2 and 3 of Table 2.

2. Disaster categorization. The disasters were classified as either emergency situation, crisis
situation, minor disaster, moderate disaster, or major disaster according to the scale
proposed by Eshghi and Larson (2008), which basically compares the number of fatal
and affected victims for a given disaster. The classification is put in ascending order of
pessimism, i.e., emergency situation is the least pessimistic disaster in terms of total affected
(or fatal) victims, while major disaster refers to the most pessimistic disaster type. The
categorization for our real data is shown in the last column of Table 2.

Table 2: Floods and mass movements in the state of Rio de Janeiro between 1966 and 2013. (Source: Moreno
et al. (2016)).

Year Fatal Victims Affected Disaster type1

1990 7 800 Emergency situation
1992 25 1,000 Emergency situation
2013 30 1,510 Crisis situation
2001 50 1,946 Crisis situation
2003 7 2,000 Crisis situation
2013 2 2,000 Crisis situation
2007 6 2,272 Crisis situation
2008 9 50,953 Minor disaster
2010 256 74,938 Minor disaster
2013 4 200,000 Moderate disaster
2011 909 304,562 Moderate disaster
1988 289 3,020,734 Major disaster
1966 350 4,000,000 Major disaster
1 Classification based on Eshghi and Larson (2008).

3. Bootstrap phase. We calculate the probability of occurrence of each type of disaster by
using the Bootstrap method (Efron, 1979)attempting to incorporate extra variability in the
small sample. Thus, B = 1000 random samples was generated from the original data in
Table 2, each sample with 13 entries. For each sample b = 1, ..., B we calculate the relative
frequency and the average number of affected people for each type of disaster. Finally,
the Bootstrap relative frequency was determined as

∑
b
fa

b

B , while the Bootstrap average
number of affected people was evaluated as

∑
b
victima

b

B , for a ∈ A, with A = { emergency
situation, crisis situation, minor disaster, moderate disaster, major disaster }.
fab is the relative frequency of disaster a in the sample b and victima

b is the average number
of affected people of disaster a in the sample b. Notice that this step provides not only the
probability of the scenarios, but also the realizations for the total number of victims in
each scenario. From the total number of victims, we estimate the number of victims per
affected area based on its population density. As we are dealing with a multiperiod model,
it is necessary to determine the number of victims per period (day). For this purpose, we
used a random number generator based on a discrete uniform distribution that considers
peaks of victims in some periods, as proposed in Alem et al. (2016). Finally, the victims
needs are simply evaluated as follows. Water and personal hygiene kits, one for each victim;
food and domestic hygiene kits, one for each 5 victims; medical kits, one for a group of 90
victims.

4. Scenarios evaluation. All random variables are assumed to be dependent on the type or
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magnitude of the disaster. For example, worse disasters generate a higher number of victims
(d), which increases the demand and supply of emergency commodities. Worse disasters
are also assumed to result in fewer routes for trucks and helicopters, in more routes for
boats, and in a decreased amount of usable inventory at relief centers. The amount of
supplies in depots was randomly generated according to the number of the victims using a
uniform distribution. Similarly, the usable inventory at relief centers was generated via a
uniform distribution.
Then one scenario was considered for each type of disaster, totalling 5 scenarios. Each
scenario consists of one different value (realization) for each stochastic parameter, e.g.,
scenario ‘emergency situation’ (#1) is represented by the vector [q 1,p1,d 1,a1], with
corresponding probability of occurrence given by π1.

Table 3 summarizes the resulting scenarios and the demand and supply at each city. The
demand on Table 3 corresponds to the number of victims requiring commodities at each affected
city (Teresópolis-TRS, Petrópolis-PTP, Nova Friburgo-NFR, São José do vale do Rio Preto-SJV,
Bom Jardim-BJD). The supply corresponds to the number of victims for whom supply is available
in the depots located in three cities (Teresópolis-TRS, Petrópolis-PTP, Nova Friburgo-NFR).
Finally, the demand and supply of each type of commodity was generated based in the quantity
of commodities required by each victim. For the sake of brevity, the detailed values are provided
in the supplementary material.

Table 3: Stochastic data according to each disaster type.

Number of affected people
Scenario Disaster type Probability TRS PTP NFR SJV BJD Total (d)

1 Emergency situation 0.153850 220 382 238 27 34 901
2 Crisis situation 0.384600 476 827 512 58 73 1,946
3 Minor situation 0.153850 15,378 26,724 16,542 1,866 2,343 62,853
4 Moderate situation 0.153850 61,704 107,233 66,373 7,489 9,401 252,200
5 Major disaster1 0.153850 856,234 1,488,042 921,036 103,918 130,451 3,499,681

Avg. proportion % of available routes
Number of victims for whom supply is available of usable Heli-

Scenario TRS PTP NFR Total inventory Truck Boat copter
1 536 233 144 913 U(0.95, 1.05) · d U(0.85, 1.0) 80% 20% 95%
2 1,122 488 302 1,912 U(0.90, 1.10) · d U(0.80, 0.95) 65% 30% 85%
3 38,223 16,607 10,279 65,109 U(0.85, 1.15) · d U(0.75, 0.90) 50% 40% 75%
4 155,607 67,607 41,846 265,060 U(0.80, 1.20) · d U(0.70, 0.85) 35% 50% 65%
5 2,199,353 955,559 591,451 3,746,363 U(0.75, 1.25) · d U(0.65, 0.75) 20% 60% 55%

1 This is a hypothetical scenario assuming that 22% of the current population of the State of Rio de Janeiro is
concentrated in the Serrana Region.
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5.2. Case Study
The data set used in the computational tests are based on the 2011 Megadisaster in the

Serrana region of Rio de Janeiro state in Brazil (Dourado et al., 2012; Rio De Janeiro, 2011).
The base case was designed to be realistic, but due to the limited availability of information,
some parameters were estimated from the literature (The Sphere Project, 2011; Alem et al., 2016;
Moreno et al., 2016). The data constituted 3 depots (I) located in larger cities, 16 potential
locations for relief centers (J), 5 affected areas (K) (cities), 5 emergency commodities (W ) (food,
domestic hygiene kits, personal hygiene kits, medical kits, and water), 3 types of vehicles (L)
(trucks, boats, and helicopters), 5 scenarios (Ξ) (type of disasters) and a time horizon of 10
periods (days) with 240 micro-periods (hours). Further details of the parameters may be found
in the supplementary material (Appendix A; see Tables A1−A5).

A total of 17 instances were generated from the base data to examine situations with higher
supply; less supply; reduced capacity of relief centers; increased travel times; higher number of
scenarios; and reduced number of available vehicles. The proposed instances are summarized
in Table 4. The column max

w
|∆w| in Table 4 indicates the maximum deprivation time of the

products considered in the instance. We considered three type of instances. The first type
(I1-I5, I7-I8) considers all the depots and affected areas, but only the three products with higher
priority (water, food, medical kits), the three less pessimistic scenarios (emergency situation,
crisis situation, minor disaster), two types of vehicles (trucks, boats), and half of the total
of relief centers available. The second type (I9-I13, I15-I17) considers all the depots, relief
centers, affected areas, commodities, scenarios, and vehicles. The third type (I6, I14) refers
to instances with 13 scenarios; in these cases, the remaining data is the same as in instances
I1 and I9, respectively. The 13 scenarios correspond to the 13 past disaster events provided
in Table 2. Such instances then have two ‘emergency situation’ scenarios, five ‘crisis situation’
scenarios, two ‘minor situation’ scenarios, two ‘moderate disaster’ scenarios, and two ‘major
disaster’ scenarios. The stochastic data for these equiprobable scenarios were also generated
according to the type/magnitude of the corresponding disaster, as shown in Table 3.

Table 4: Characteristics and dimensions of the proposed set of instances.

Instance Characteristic |I| |J | |K| |W | |T | |Θ| |Ξ| |L| max
w
|∆w|

I1 Base case 3 8 5 3 10 240 3 2 96
I2 I1 with q ξwit increased 50% 3 8 5 3 10 240 3 2 96
I3 I1 with q ξwit reduced 50% 3 8 5 3 10 240 3 2 96
I4 I1 with ρj and ρ′wj reduced 100

times
3 8 5 3 10 240 3 2 96

I5 I1 with τijl increased 5 times 3 8 5 3 10 240 3 2 96
I6 I1 with |Ξ| = 13 3 8 5 3 10 240 13 2 96
I7 I1 with φ1 = 5, aξij2t = 0 3 8 5 3 10 240 3 2 96
I8 I1 with φ2 = 5, aξij1t = 0 3 8 5 3 10 240 3 2 96
I9 Base case 3 16 5 5 10 240 5 3 120
I10 I9 with q ξwit increased 50% 3 16 5 5 10 240 5 3 120
I11 I9 with q ξwit reduced 50% 3 16 5 5 10 240 5 3 120
I12 I9 with ρj and ρ′wj reduced 100

times
3 16 5 5 10 240 5 3 120

I13 I9 with τijl increased 5 times 3 16 5 5 10 240 5 3 120
I14 I9 with |Ξ| = 13 3 16 5 5 10 240 13 3 120
I15 I9 with φ1 = 5, aξij2t = aξij3t = 0 3 16 5 5 10 240 5 3 120
I16 I9 with φ2 = 5, aξij1t = aξij3t = 0 3 16 5 5 10 240 5 3 120
I17 I9 with φ3 = 5, aξij1t = aξij2t = 0 3 16 5 5 10 240 5 3 120
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5.3. Deprivation cost estimation
Different emergency commodities may have distinct priorities regarding victims needs, so two

deprivation cost functions are proposed for high-priority commodities (gw(δ) = gHPw (δ)) and for
low-priority commodities (gw(δ) = gLPw (δ)) as follows:

gHPw (δ) = NPw · CMw ·
e1.5031+0.1172·δ − e1.5031

e1.5031+0.1172·|∆w| − e1.5031 , and (25)

gLPw (δ) = NPw · CMw ·
e0.065·δ − 1
e0.065·|∆w| − 1

, (26)

where NPw is the number of people affected by the shortage of commodity w and CMw is the
maximum deprivation cost per person for commodity w.

Differently from Pérez-Rodŕıguez and Holgúın-Veras (2015), our suggested deprivation cost
function accounts for scales NPw·CMw

e1.5031+0.1172·|∆w|−e1.5031 and/or NPw·CMw

e0.065·|∆w|−1 attempting to take into
account the emergency commodities that serve more than one person. For example, one unit of
food kit serves 5 people (approximately one family). In this context, the proposed scales ensure
that after |∆w| micro-periods of deprivation, the total deprivation cost is equal to the maximum
deprivation cost per person (CMw) multiplied by the number of affected people (NPw), e.g.,
gLPw (|∆w|) = NPw ·CMw · e

0.065·|∆w|−1
e0.065·|∆w|−1 = NPw ·CMw. The same rationale holds for high-priority

commodities.
Maximum deprivation costs and times can thus be set for specific emergency commodities.

For example, water and food are high-priority commodities with similar cost functions, but the
deprivation time for water is lower than that for food. Maximum deprivation times do not need
to be evaluated on a “death basis”. We prefer to use a less pessimistic reference for the maximum
deprivation time because the time horizon is rather short (10 days) and we would like to encourage
the demand fulfillment in the first few days after disaster strikes. Since the time horizon is usually
short, the maximum deprivation time for low-priority commodities (domestic hygiene kits and
personal hygiene kits) was set at 5 days (120 hours), whereas for high-priority commodities it
was set at 3 days (72 hours) for water and 4 days (96 hours) for food and medical kits. Table 5
summarizes the selected values for NPw, CMw, |∆w| and gw(δ) for each commodity. Figure 5
shows the deprivation cost functions gw(δ) for the first 120 hours of deprivation time. Clearly,
the functions are monotonic, non-linear, and convex with respect to the deprivation time δ, as
recommended by the literature (Holgúın-Veras et al., 2013; Pérez-Rodŕıguez and Holgúın-Veras,
2015).

Table 5: Parameters and deprivation cost functions for the considered commodities.

|∆w| CMPw
1 NPw gw(δ)2 gw(1) gw(|∆w|)

w Commodity (hours) (BRL) (BRL) (BRL)

1 Water 72 140,000 1 6.7404 ·QH(δ) 3.768 140,000
2 Food 96 140,000 5 2.0229 ·QH(δ) 1.1308 700,000
3 Medical kits 96 140,000 90 36.4128 ·QH(δ) 20.35 12,600,000
4 Personal hygiene kits 120 14,000 1 1.2055 ·QL(δ) 0.3854 14,000
5 Domestic hygiene kits 120 14,000 5 6.0275 ·QL(δ) 1.927 70,000
1 Value based on Holgúın-Veras et al. (2013).

5.4. Computational performance of the solution approaches
The proposed instances I1−I17 were solved via the approaches developed in Section 4. Table 6

summarizes how each solution method was tested, focusing on the maximum allowed elapsed
times for each strategy. Even though all the methods use either the linear or the mixed-integer
linear programming CPLEX solver at some step, we use the term “CPLEX” strategy to emphasize
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Figure 5: Deprivation cost functions gw(δ).

the approach in which the monolithic model is directly solved by this solver without any proposed
heuristic.

Table 6: Summary of the solution strategies.

Strategy Description Maximum elapsed time

CPLEX Level 1: CPLEX to solve FLTP
minimizing fDC

3,600 seconds

Level 2: CPLEX to solve FLTP
minimizing fLC

3,600 seconds

FXO Level 1: FXO to solve FLTP minimizing
fDC

360 seconds for each subproblem,
totalling 3,600 seconds for the first
level

Level 2: FXO to solve FLTP minimizing
fLC

360 seconds for each subproblem,
totalling 3,600 seconds for the
second level

TSH Level 1: CPLEX to solve ALTP
minimizing fDC

3,600 seconds

Level 2: CPLEX to solve ALTP
minimizing fALC

3,600 seconds

TSH+FXO Level 1: CPLEX to solve ALTP
minimizing fDC

3,600 seconds

Level 2: CPLEX to solve ALTP
minimizing fALC and FXO to solve FLTP
minimizing fLC

360 seconds for each subproblem,
totalling 3,600 seconds for the
second level

We also analyzed some alternative configurations of CPLEX 12.5, such as turning off cutting
planes, setting the frequency for invoking RINS heuristic to be after every 10 nodes, setting
best-bound search for node selection and branching on the variable with minimum infeasibility
for variable selection, and the MIP emphasis on feasibility. Under this alternative configuration,
average elapsed times improved around 2% for the minimization of FDC in the first level and
optimality gaps improved up to 5% for the minimization of FLC in the second level of the
hierarchical method. This alternative configuration was thus used in all the remaining tests.

Table 7 shows the main results regarding objective function values, optimality gaps, and
elapsed times for all solution approaches. The gap is computed as gap= Zh−Zl

Zh , where Zh is the
objective function of the incumbent solution provided by the corresponding method and Z l is
the best lower bound. In most instances, the lower bound is the solution given by the linear
relaxation. In a few instances, though, the lower bound was improved by CPLEX. The results
suggest that it is easier to solve the first level subproblem, i.e., the minimization of the total
deprivation costs, than the minimization of the logistics costs in the second level. Only two
(three) instances were not solved by the CPLEX (FXO) strategy within gaps of less than 1% in
the first level of the hierarchical model. In these cases, it was not possible to solve the second
level model. Average elapsed times to solve the corresponding first level model by CPLEX, FXO,
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and TSH strategies were 458.6, 571.3 and 16.88 seconds, respectively. For the second level, it is
clear that FXO strategy provides better results than CPLEX, since average gaps were reduced
from 97.09% with CPLEX to 76.85% with FXO. The two-step heuristic TSH is more efficient to
solve the hierarchical model at both levels than CPLEX and FXO. In fact, at the first level, TSH
improved the results given by CPLEX and FXO strategies by 99.86% and 99.72% (on average),
respectively. At the second level, TSH yielded solutions with an average improvement of 52.81%
and 40.38% in comparison to the CPLEX and FXO strategies, respectively. In addition, TSH
presented elapsed times significantly lower than CPLEX and FXO. The hybrid heuristic was the
strategy that most improved optimality gaps in the second level model, but at the expense of
increasing elapsed times. In the second level, average gaps decreased from 45.82% with TSH to
33.66% with TSH+FXO, whereas elapsed times increased by 70.68%.

The comparative performance of the proposed methods were evaluated via performance
profiles. Roughly speaking, performance profiles are based on the cumulative distribution
function P (f, q), which indicates the probability of a given method being within a factor 2q ∈ R
from the best possible ratio (Dolan and Moré, 2002). Table 8 exhibits the extreme values of the
performance profiles. For the first level, the heuristic TSH achieved the best elapsed time for
100% of instances and the best gap for 94% of instances. In the 6% remaining instances, TSH
still provides a gap within a factor of 20.2088 ≈ 1.15 times the best solution found. For the second
level, the hybrid heuristic (TSH+FXO) achieved the best gap for 100% of the instances, but
the best elapsed time was found only for 17.65% of the instances. Although heuristic TSH was
the fastest strategy for 100% of the instances in the second level, it performed badly regarding
optimality gaps, being within a factor of 21.957 ≈ 3.88 times the best solutions of the hybrid
strategy.

In summary, the best strategy to find an acceptable solution in a short time is TSH at
both levels of the hierarchical model. However, if the decision-maker is able to accept longer
computational times, thus having tighter optimality gaps, the hybrid strategy TSH+FXO should
be used at the second level of the hierarchical model. The results of the remaining sections refer
to the solutions obtained by the hybrid heuristic.
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Table 8: Extreme values of the performance profile for the proposed solution methods.

First level fDC Second level fLC

GAP Time GAP Time
Solution method P (f, q) q P (f, q) q P (f, q) q P (f, q) q

CPLEX to solve fDC and CPLEX to solve fLC 0.8824 6.643 − 7.113 − 3.247 0.1765 9.476
FXO to solve fDC and FXO to solve fLC − 5.661 − 7.113 − 2.923 0.1765 9.476
TSH to solve fDC and TSH to solve fLC 0.9412 0.2088 1.000 - 0.1176 1.957 1.000 -

TSH to solve fDC and TSH+FXO to solve fLC 0.9412 0.2088 1.000 - 1.000 - 0.1765 9.154
Values of P (f, q) when q = 0. Fraction of instances for which the strategy reached the best solution (in GAP or time).
Values of q when P (f, q) = 1. The solution achieved by the strategy is within a factor of 2q of the best approach.
Best results for gaps and objective functions. Best results for elapsed times.

5.5. Benefit of the proposed approach
Here, we discuss the performance of our approach in terms of: (i) reusing vehicles; (ii)

deprivation costs; (iii) prioritizing deprivation over logistics costs. In the first case (i), we
compare the solutions with total multiple trips to the solution with the possibility of performing
partial multiple trips only within each period. We call this strategy WP (“within period”). The
comparison between multiple and single trips in a similar context is discussed in Moreno et al.
(2016). In the second case (ii), we compare the model with deprivation costs to a similar model
where deprivation costs are replaced by a static penalty equal to the maximum deprivation cost
per person, i.e., gw(δ)− gw(δ− 1) = CMw, for all δ, w. This last equality shows that the penalty
for unsatisfied demand is the same regardless of how long a victim is deprived of an emergency
commodity. We call this strategy WCP (“worst-case penalty”). We performed preliminary
computational experiments with other penalty values, such as that in Moreno et al. (2016, 2017)
which used as penalty 10 times the commercial value of the product and Holgúın-Veras et al.
(2013), which used values between $50 and $5,000,000 for “human life valuation”. However, the
overall computational results were similar for the bi-objective model, in which the deprivation
cost does not compete with logistic costs. Finally, the last case (iii) aims to show the impact of
modelling a bi-objective function to prioritize deprivation costs instead of using a mono-objective
function, as proposed in the seminal paper of Holgúın-Veras et al. (2013).

5.5.1. Impact of deprivation costs
The impact of the deprivation costs is evaluated according to three main aspects or performance

measures: amount of unmet demand in the last period of the time horizon; fairness in distribution;
and deprivation times. In order to compare fairness between two distribution policies, the tests
analyze the standard deviation across unmet demands per affected area and the worst-case
scenario for the distribution. Tables 9 and 10 shows those performance measures obtained with
and without the consideration of the deprivation costs.
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Overall results indicate that average service levels are higher when deprivation costs are
considered. Moreover, deprivation costs help to reduce the standard deviation of the service
levels evaluated across affected areas in 7 instances. The remaining instances experience similar
standard deviations with or without deprivation costs. Interestingly, 6 of 7 instances − I1, I3,
I4, I5, I7, and I8 − refer to examples consisting of only the three less pessimistic scenarios, i.e.,
emergency situation, crisis situation, and minor disaster. These scenarios exhibit lower total
demands in comparison to the most pessimistic scenarios (moderate and major disaster) and,
consequently, a lower flow of commodities as well. This result suggests that the distribution policy
without deprivation costs often neglects scenarios with lower demands, which are particularly
pronounced in smaller cities, such as São José do Vale do Rio Preto (SJV) and Bom Jardim
(BJD).

For example, the total demand of victims located in SJV in the emergency situation scenario
for instance I1 consists of 15 units of water, 3 units of food, and 1 medical kit. This rather
low demand is not satisfied until the end of the humanitarian operations without deprivation
costs, since the distribution policy prioritizes the cover of (higher) demand of bigger cities,
such as Petrópolis (PTP), Teresópolis (TRP), and Nova Friburgo (NFR). In this case, the
overall logistics costs are more important for determining the distribution policy than the fact
that some areas have not received emergency aid for a longer period. On the other hand,
the distribution of emergency commodities reaches SJV in the presence of deprivation costs
because the corresponding shortage penalty increases exponentially with time in this case. As a
consequence, the distribution prefers to fulfill (smaller) demand but from more affected areas as
soon as possible, instead of satisfying more demand from less affected areas.

This result is particularly clear when analysis show that the average minimum service level
per affected area is around 4% better when deprivation costs are used. In some instances, though,
the improvement was more pronounced, e.g., 16.17% in instance I4 and 11.35% in instance I1.
Moreover, when the external supplies are reduced in instance I3, none of the demand of SJV
was satisfied without deprivation costs; however, this affected area may receive 56 emergency
commodities if deprivation costs are taken into account. Even though this amount of delivery is
negligible from the commercial supply chain perspective, it indicates that more affected areas can
be covered by relief teams even under a lack of resources, when deprivation times are prioritized
over pure logistics costs, which is in line with the spirit of humanitarian logistics.

On average, the standard deviation of service levels per affected area is almost 21% lower with
deprivation costs. In some instances, though, this performance measure is much improved with
deprivation costs, e.g., instance I14 experienced a standard deviation reduction by more than
95% mainly because 23,399 more emergency commodities were delivered. Without deprivation
costs, though, the distribution policy in instance I14 prioritizes the delivery of food and medical
kits over water (similar to the behaviour of the results of the instance I6). Clearly, without
deprivation costs, the “urgent need” of aid is not taken into account, and for this reason, the
distribution may prefer to focus on less urgent aid where the corresponding logistics costs are
cheaper or the worst-case penalty is higher. This behaviour is particularly pronounced in instance
I14 due to its characteristics, such as 5 emergency aid commodities and 13 scenarios. However,
in real humanitarian operations, water should be delivered faster than the remaining emergency
aid due its deprivation time, which is naturally enforced with our proposed model.

Deprivation costs also yield more effective solutions in terms of response and coverage. In fact,
a total amount of 1,501 more emergency commodities were fulfilled until the last period of the
time horizon with deprivation costs. Moreover, the total amount of aid delivered with deprivation
costs is greater than or equal to the corresponding solution without deprivation costs for all the
proposed instances. On the other hand, to provide a more effective distribution in an attempt to
cover more affected areas and victims as soon as possible, the solution with deprivation costs
usually postpones more emergency aid than the solution without deprivation. However, the time
extension of such emergency aid postponement is much worse without deprivation costs. Table 11
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shows the difference between the total amount of postponed emergency aid with and without
deprivation costs. This difference is evaluated for time extensions in the following intervals, given
in hours: [1, 24], [25, 48], [49, 72], [73, 96], and [97, 120]. Note that there is a greater amount of
postponed emergency aid until 24 hours when deprivation costs are considered. However, as
expected, deprivation costs help to mitigate the wait time of the victims for meeting their needs
as time goes by. In this case, there is less postponed aid after 24 hours because the corresponding
deprivation cost is extremely high. The rationale behind the fact that the model with deprivation
costs postpones more emergency aid in the first 24 hours, in comparison to the model under
worst-case penalty, is based on the manner in which shortages are penalized in each approach.
Under worst-case penalty, for example, the penalty incurred for postponing 1 unit of water for
25 hours (BRL 3,500,000) is smaller than when postponing 5 units of food for 1 hour (BRL
4,200,000). When deprivation cost is considered, the penalty for postponing 1 unit of water for
25 hours (BRL 537.18) is higher than the penalty for postponing 5 units of food for 1 hour (BRL
5.65). In this case, the worst-case penalty approach postpones a total amount of 1 unit of water
for 25 hours, whereas the deprivation cost model postpones 5 units of food for 1 hour. From the
human suffering point of view, there is no doubt that it is much worse to wait 25 hours for water
than 1 hour for food.

Table 11: Absolute difference in terms of shortage of commodities between models FLTP and WCP.

#WCP -#FLTP
Instance 1− 24 hours 25− 48 hours 49− 72 hours 73− 96 97− 120 hours

I1 −30,525 23,636 6,242 96 NA
I2 −1 − − 12 NA
I3 −3,428 1,377 1,432 −1,298 NA
I4 −27,338 20,210 9,843 25 NA
I5 −35,927 15,344 15,751 48 NA
I6 253,916 192,241 20,189 5,024 NA
I7 −26,603 19,458 5,998 25 NA
I8 −19,586 11,829 5,944 72 NA
I9 −2,855 2,912 178 48 −
I10 5 − − 23 −
I11 2,044,001 38,170 420,571 477,827 314,883
I12 −119,183 16,419 20,245 −66,982 49,004
I13 −80,710 59,594 21,346 96 −
I14 −3,862,454 3,089,194 679,658 − −
I15 −17,461 17,050 548 1 −
I16 279,578 52,780 2,176 96 −
I17 −69 43 25 1 −

Total −1,648,639 3,560,258 1,210,146 415,113 363,887
Average −96,979 209,427 71,185 24,418 40,432

Maximum 2,044,001 3,089,194 679,658 477,827 314,883
Minimum −3,862,454 − − −66,982 −
1 #F LT P : Shortage of commodities in FLTP model according to the deprivation time; #W CP : Shortage of commodities

in WCP approach according to the deprivation time.
− This symbol is used when the shortage of commodities in both models is equal.
NA: Not Available.

Deprivation costs often change the structure of (sub)optimal solutions. To take advantage
of deprivation times, thus improving fairness in distribution, there is a clear trend in opening
more relief centers in some instances (I1, I8, I9, I10, I11, and I17) in order to avoid shortages
for longer periods of time as much as possible. In both cases, with our without deprivation
costs, inventory levels are rather low because of the stock losses, and mostly used to reduce
logistics costs. Apparently, higher inventory levels lead to fewer number of vehicles assigned in
the second-stage, which makes sense because this pre-positioned “safe stock” can be delivered
using some vehicles already contracted in previous periods, avoiding contracting more vehicles to
perform trips between depots and relief centers where this safe stock is placed.
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In general terms, the results of the FLTP model are in line with results in the literature
(Holgúın-Veras et al., 2013; Pérez-Rodŕıguez and Holgúın-Veras, 2015). The use of deprivation
costs makes sense only in a situation of scarcity. For example, instances with a higher number
of supplies (I2,I10) present the smallest difference between the models with deprivation cost
(FLTP) and without deprivation cost (WCP), as shown in Tables 9, 10 and 11. The use of social
cost leads to delivery strategies with fairness in distribution amongst all affected areas. Social
costs thus, show the importance of handling disaster situations in a multi-period approach. The
numerical analysis indicates that exponentially increasing deprivation cost functions produce
results that mitigate the total deprivation time compared with a constant penalty function, as
also concluded in Pradhananga et al. (2016).

5.5.2. Impact of multiple trips
Not surprisingly, the possibility of performing multiple trips over the time horizon helps to

decrease logistics costs, in fact by 24%, on average, mainly because the fixed cost of vehicles
decreases substantially. Without multiple trips, it is necessary to hire 8% more vehicles at the
first-stage and up to 60% more vehicles at the second-stage. Not performing multiple trips also
deteriorates overall service levels in instances I4, I5, I6, and I12. The shortage of commodities
in these instances consists of an average of 2,339 more commodities than in the original model.
Worse shortages occur when travel times of some routes are longer than one day (instance
I5), which implies not traversing this route and, consequently, not delivering the emergency
commodities to the corresponding relief centers without reusing vehicles.

In instances I4, I6, and I12, it is not possible to perform distribution of commodities in a
given period due to the limited capacity of relief centers. In model FLTP, though, this issue is
overcome by scheduling new departures of vehicles to arrive in the first micro-periods of future
periods − when there is available capacity − which is not possible when the option of multiple
trips is not allowed. For instances I4, I5, and I12, deprivation costs without multiple trips are
only slightly worse (less than 0.01%). On the other hand, not performing extra trips deteriorates
deprivation costs by 6.45% in instance I6. Since the number of vehicles is not limited in the
second-stage, the prohibition of multiple trips did not cause huge differences in deprivation costs.
However, when the number of vehicles is bounded in both stages, not reusing vehicles might
increase deprivation costs.

Vehicle scheduling with and without the option of multiple trips is illustrated in Figure 6 for
instance I6. More than 35% of departures occur in the first hour of each day. The peaks in hours
7, 13, and 19 indicate that most vehicles return to depots to perform new departures. There are
also departures from depots to relief centers in the last hours (21-24) of the days, which is not
possible without performing multiple trips. In this case, there are no arrivals in relief centers
in the first 2 hours of the days due to travel times, which deteriorates overall service levels. In
particular, instance I6 presents a higher amount of unmet demand when multiple trips over the
time horizon are not allowed (almost 40,000 units higher), which increases deprivation costs.

The results also suggested that keeping an inventory of emergency aid at some relief centers
might be a good strategy to take advantage of vehicle capacity in the context of multiple trips.
This phenomenon was particularly evidenced in instances I6, I12, I13, I15, and I16. In the single
trip approach, more vehicles are assigned to increase the capacity of the fleet, which is particularly
important in periods of higher demand. In this case, it is possible to reduce overall transportation
costs via acquisition of an extra number of vehicles, thus avoiding keeping emergency aid in
stock, as seen in instances I9-I17. Finally, note that multiple trips encourage the usage of more
expensive vehicles, such as helicopters, as these vehicles present shorter travel times and so can
be reused more times. Their use may help to reduce deprivation times in collapsed areas.

5.5.3. Mono- and Bi-objective Approaches
The idea of using a bi-objective model via a bi-level hierarchical procedure is to prioritize

the minimization of deprivation costs in such a way this first-level objective is “infinitely
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Figure 6: Proportion of departures from depots in the hours of the days ( Number of departures at each hour of the day
Total of departures ).

more important” than the minimization of the second-level logistics costs objective. However,
the original idea of social costs proposed by Holgúın-Veras et al. (2013) is to consider both
deprivation and logistics costs in the same objective function. In an attempt to analyze the
impact of optimizing both costs simultaneously, we present the results of the corresponding
mono-objective problem (MFLTP) with the following structure: min fLC + fDC . Tables 12 and
13 show the detailed solutions provided by both approaches in terms of overall costs, logistics
costs, deprivation costs, lost demand, and shortage of emergency commodities.
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Table 13: Shortage by scenario for both mono- and bi-objective models in instance I14.

Difference
Scenario Model MFLTP Model FLTP (MFLTP-FLTP)
Emergency situation 455 455 0
Emergency situation 607 607 0
Crisis situation 769 769 0
Crisis situation 1,058 963 95
Crisis situation 1,030 1,030 0
Crisis situation 1,114 1,109 5
Crisis situation 1,155 1,081 74
Minor situation 22,474 22,474 0
Minor situation 33,210 32,835 375
Moderate disaster 71,472 69,581 1,891
Moderate disaster 154,794 153,482 1,312
Major disaster 1,125,239 934,665 190,574
Major disaster 2,648,098 2,647,953 145

Total 4,061,474 3,867,004 194,470

As expected, there is a clear tradeoff between logistics and deprivation costs. The mono-
objective approach yields an average logistics cost 21% lower than the bi-objective model, while
deprivation costs are only marginally affected. Cheaper logistics costs were achieved mainly
by reducing the corresponding fixed costs. In fact, the first and the second-stage fixed costs of
vehicles were decreased by 4 and 55%, respectively, whereas the fixed costs associated with relief
centers were 12% cheaper. On the other hand, inventory costs increased up to 9% as a result of
extra inventory to take advantage of vehicle capacity.

Not surprisingly, the total unmet demand in the last period is similar in both approaches
because deprivation costs incurred in not meeting demand at the end of the time horizon are
prohibitively high. On the other hand, the shortage of emergency commodities over the time
horizon is almost 1% worse in the mono-objective problem. Although this number could sound
negligible in a commercial supply chain, it represents an average of 9,129 emergency aid units
that could be sufficient to supply overall demand in many affected areas with a lower number of
victims, e.g., São José do Vale do Rio Preto (SJV), which is in line with the spirit of humanitarian
logistics. The bi-objective results are particularly appealing for dealing with worse scenarios. For
example, according to the results from instance I14, the bi-objective model delivers 190,000 more
commodities in comparison to the mono-objective in the case of a major disaster.

The performance of both models is explained as follows. The bi-objective model yields
shortages only when there is not sufficient supply and/or capacity to meet demand in the affected
areas, as deprivation costs are prioritized in the first level. In the mono-objective model, though,
both costs are considered together; for this reason, there is no general preference between either
deprivation or logistics costs. In particular, as the shortage cost incurred in postponing one
unit of any emergency aid for an hour is lower than the fixed cost of acquiring any vehicle,
the mono-objective problem rations supplies that are available at the depots, thus causing
“unnecessary” short-term deprivation at some nodes that do not necessarily lead to improved
deprivation costs in future periods. Similar results were also pointed out by Pérez-Rodŕıguez and
Holgúın-Veras (2015). Thus, the bi-objective model provides a superior solution as it reduces
both the deprivation cost and the rationing of commodities.

Finally, it is worth noting that both approaches have similar computational performance.
In fact, in the bi-level framework, the first level is solved very fast (on average, 16 seconds, as
shown Table 7), while the second level takes 1 hour. The mono-objective approach uses all the
time limit of 2 hours to provide a feasible solution. Both approaches require the utilization of
the proposed heuristic methods.
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5.6. Expected Value of Perfect Information and Value of the Stochastic Solution
In order to quantify the uncertainty effect in our problem, we analyzed both the Expected

Value of Perfect Information (EVPI) and the Value of the Stochastic Solution (VSS) (Kall and
Wallace, 1994; Birge and Louveaux, 1997). Whereas EVPI measures the expected gain of perfect
information, VSS represents the expected cost incurred in ignoring uncertainty while making
a decision. We evaluate EVPI as follows: EVPI = RP −WS, in which RP is the objective
value of the two-stage stochastic programming problem, WS =

∑
ξ π(ξ) ·WS(ξ) is the expected

wait-and-see solution, and WS(ξ) expresses the objective value of the deterministic problem for
scenario ξ. VSS is posed as follows: VSS = EEV− RP. EEV represents the expected value of
using the EV solution, and EV is the expected value problem. EEV exhibits the same structure
as the recourse problem, but with the first-stage variables fixed according to a reference scenario
given by problem EV. We use the worst-case scenario as our reference EV problem as in Döyen
et al. (2011) and Moreno et al. (2016) to avoid underestimating the number of vehicles and
relief centers necessary to perform distribution in the most pessimistic scenarios, thus implying
excessively high overall costs.

Problems WS, EV, and EEV were solved using the best solution method described in 4.
As deprivation costs are similar for all these problems in most instances, we evaluated both
EVPI and VSS measures based on the logistics costs only. An exception was given by instances
I6 and I8 in which deprivation costs yielded by the EEV problem are much higher than the
corresponding deprivation costs provided by the RP problem. Neglecting uncertainty in these
case deteriorates significantly the demand fulfillment policy. On average, both EVPI and VSS
values are relatively high, suggesting that not only randomness is indeed important, but also
that ignoring uncertainty via the worst-case reference scenario leads to a bad strategy. Table 14
summarizes the EVPI and VSS results.

Taking the first-stage decisions based on the worst-case scenario given by the EV problem
usually lead to an over pessimistic relief distribution strategy. This is particularly true for
instances with a higher number of scenarios (I6) or with a limited number of available vehicles in
the first-stage (I8). On instance I8, for example, under the minor disaster scenario (worst-case
scenario for that instance), there are many routes that are not available for trucks, which are the
only transportation mode in this case. Thus, the distribution of aid to some RCs is not possible,
which results in not pre-selecting them. In fact, it is useless to establish a RC if there is no
vehicle that may reach it. However, some of those RCs are necessary to the relief distribution
and humanitarian assistance in less pessimistic scenarios, which are not taken into account when
we solve the EV problem based on the worst-case scenario. As a result, the corresponding EEV
solution presents an increased unmet demand in comparison to the RP solution.

Similarly, on instance I6, the configuration of the transportation network based on the
worst-case scenario (a major disaster situation) is suitable for performing the relief distribution
by boats only. Nevertheless, it turns out to be more expensive or even infeasible to use boats to
perform the relief distribution in emergency situation scenarios whose corresponding networks
are mainly suitable for land transportation. On the other hand, as instance I14 allows for renting
helicopters in the second-stage, it is possible to meet victim’s needs via such mode, but this
strategy generates higher logistics costs, as expected. In this case, the configuration of the
network based on the relief distribution of goods by boats in the worst-case scenario is also
suitable for the use of helicopters in the other scenarios. In fact, the transportation network
defined in the first-stage according to the EV problem does not affect the demand fulfillment
policy, but it increases logistics costs substantially, mainly due to the (first-stage) vehicles’ fixed
costs and by the (second-stage) shipping and meeting costs. For instances I1-I5 and I9-I14, e.g.,
the fleet sizing based on the worst-case scenario overestimates the number of vehicles actually
needed for the relief distribution, thus increasing the EEV first-stage costs. In addition, some
procured vehicles may be unsuitable or useless for less pessimistic scenarios. On the other hand,
most vehicles procured in the first-stage of the RP problem are suitable for the majority of its
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scenarios. Exceptions are noticed in instances I7 and I15-I17 in which the number of available
vehicles in the first-stage is not sufficient to perform relief distribution. Therefore, both RP and
EEV solutions provide similar first-stage procured costs.

The instances with fewer vehicles in the first-stage (I7, I8, I15, I16, and I17) yield relatively
low EVPIs. In fact, in those cases, the first-stage decisions are usually equal to the upper bound
on the total number of available vehicles, so both problems WS and RP have similar objective
values, which decreases EVPI values. It seems that the impact of the uncertainty is more
pronounced in the instances with more scenarios (I6 and I14). Consequently, the cost of ignoring
uncertainty is also higher in these instances, as the reference scenario is not a good approximation
to the empirical distribution of the random variables. For reduced capacities and/or changes in
the available amount of external supply, EVPI and VSS decreased in comparison to the base
case (I1 and I9). Finally, higher travel times lead to higher EVPIs, as suggested by the results of
instances (I8 and I16).

Table 14: EVPI and VSS values.

Logistics cost (fLC)
EVPI/RP VSS/RP

Instance EVPI (%) VSS (%)
I1 165,613 81.93 20,596 0.0011
I2 13,779 28.25 37,252 0.0090
I3 9,968 26.51 9,737 0.0001
I4 129,117 69.95 49,316 0.0016
I5 158,026 81.23 28,015 0.0015
I6 13,005,624 67.13 NA NA
I7 7,274 10.68 17 0.0000
I8 26,330 3.128 NA NA
I9 3,881,446 69.34 3,215,906 0.2679
I10 2,165,416 89.48 575,605 0.2390
I11 1,394,974 92.47 490,545 0.0001
I12 1,194,517 84.52 644,196 0.0001
I13 4,909,655 74.00 2,789,848 0.2277
I14 42,908,821 85.67 44,546,580 3.723
I15 772,825 28.37 29,955 0.0025
I16 2,493,405 8.797 75,652 0.0063
I17 20,467,264 15.45 704,054 0.0587

Average 5,512,003 53.93 3,547,818 0.3026
Maximum 42,908,821 92.46 44,546,580 3.723
Minimum 7,274 3.127 16.55 −

NA: Not Available.

6. Conclusions and future research

Particularly in under-developed countries, the administrative bodies responsible for disaster
management activities struggle to provide a coordinated and effective disaster response due
to the complex characteristics of these wrenching events. From the social concerns’ point of
view, human suffering must be mitigated as much as possible, but overall scarce resources often
make this task challenging. We have attempted to deal with this complexity by proposing a
novel integrated relief distribution model under uncertainty with deprivation costs via mono-
and bi-objective approaches. The proposed optimization model is indeed effective to help in
humanitarian relief because we combined several practical decisions regarding the location of
relief centers, distribution aspects involving type and number of vehicles before and after the
occurrence of a disaster, inventory levels at relief centers, and also the possibility of increasing
the coverage of distribution by allowing multiple trips within and over time periods for any
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vehicle. Deprivation costs account for the amount of time that the victims are deprived from
emergency aid. Different aid implies different deprivation times and costs, which may represent
the importance of a certain commodity over the remaining ones. Differently from the main
literature, the optimization model with deprivation costs is still a mixed-integer linear program
− even though the deprivation function preserves the inherent exponential nature of the human
suffering −, as deprivation times are treated as inputs of the problem. A potential limitation of
the proposed model is its computational efficiency when practical instances are solved only via
commercial optimization packages. To overcome this issue, specific mathematical programming
based heuristics were designed to solve more efficiently the proposed instances.

From a real set of instances inspired by the so-called Megadisaster of the Serrana region of
upstate Rio de Janeiro of 2011, we have showed that deprivation costs may improve not only
service levels, but also enhance distribution fairness among the affected areas. In fact, in some
cases, service levels were 16.17% better and 21% more equitable. The possibility of performing
multiple trips contributed in saving overall resources, thus also improving service levels. It is
worth concluding that both the mono- and bi-objective modeling paradigms we devised could
be controversial from some points of view. On the one hand, the bi-objective model does not
consider logistics cost at the first level, which modifies the original idea of social cost proposed by
Holgúın-Veras et al. (2013). On the other hand, the mono-objective model rations supplies that
are already available at the depots, thus causing “unnecessary” short-term deprivation at some
nodes that do not necessarily lead to improved deprivation costs in future periods. Following
the humanitarian principles standpoint, we believe that relief aid rationing should be avoided
as much as possible if there are enough resources to perform the distribution. In cases where
resources are very scarce, on the contrary, rationing of product could be absolutely justified.

In an attempt to make our results indeed useful to help humanitarian logisticians in real
disaster situations, it would be necessary to use the mathematical tools within information
system frameworks, e.g. GIS technologies, in real-time disaster operations, and/or as a part of
training programs (simulation) for professionals that work in the field not only in the aftermath
of a disaster, but also prior to disaster. Thus a natural extension of this paper would be to
explore the combination of such technologies and optimization models, as in Rodŕıguez-Esṕındola
et al. (2018). Consequently, alternative faster solution methods should be fundamental to provide
almost online solutions. Due to the unpredictability of the disaster events, minimizing the
expected value only may be risky, thus risk-averse two-stage models deserve future investigation,
as in . Finally, it might be useful to model deprivation costs based on the severity casualty, so as
to penalize with a higher deprivation cost those shortages associated with worse severity levels.
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