
1

qvm: a command line tool for the provisioning of
virtual machines

Abstract—The purpose of this paper is to create and demonstrate a command line utility that uses freely available cloud images—typically intended

for deployment within public and private cloud environments—to rapidly provision virtual machines on a local server, taking advantage of the ZFS

file system. This utility, qvm, aims to provide syntactical consistency for both potential contributors and users alike—it is written in Python and uses

YAML for all user configuration; exactly like cloud-init, the post-deployment configuration system featured in the cloud images used by qvm to allow

its rapid provisioning. qvm itself does not use the libvirt API to create virtual machines, instead parsing pre-defined templates containing options

for the commonly used virt-install tool, installed alongside virt-manager, the de facto graphical libvirt client. The utility is capable of importing cloud

images into zvols and creating clones for each virtual machine using the pyzfs Python wrapper for the libzfs_core C library, as well as a custom

recreation of pyzfs based on the zfs command line utility. qvm aims to introduce some basic IaC constructs to the provisioning of local virtual

machines using the aforementioned common tools, requiring no prior experience beyond the usage of these tools. Its use of cloud-init allows for

portability into existing cloud infrastructure, with no requirements on common Linux distributions, such as Red Hat Enterprise Linux, Debian, or

SUSE, and their derivatives, beyond their base installation with virtualisation server packages and the prerequisite Python libraries required by qvm.

1 INTRODUCTION

ITH computers being as powerful as they are today and

technologies such as hardware assisted virtualisation being

commonplace, virtualisation has become an integral component

of the testing and development processes for developers and

system administrators alike. Whether this be to rapidly provision

a software environment consistently as required, or to provide a

temporary environment to test applications, virtualisation is a

more cost and resource effective manner of providing a flexible

development environment.

Tools such as Vagrant are aimed at developers for the exact

use case described above. However, such a tool could be argued

to be limited and somewhat inaccessible for system

administrators or “homelab" users who may not have experience

coding in Ruby as Vagrant requires, may have cloud-init scripts

that they currently deploy in cloud environments that they want

to provision locally, or simply may briefly look at a tool like Vagrant

and conclude it is too complicated for their use case.

Such users frequently end up using graphical tools and

installing operating systems on test virtual machines from scratch;

just to complete an installation can take more than ten minutes,

without factoring in any post-installation configuration.

A solution for this problem is commonly used in the world of

cloud computing. Cloud-init is a first-boot configuration system

that allows users to configure a new virtual machine instance with

new user and group configurations, automatic software

installations, and even run user scripts. If the administrator is

willing to do so, it is possible to use cloud-init exclusively for all

post-installation setup tasks, without the use of external

configuration management or remote execution tools such as

Ansible or Puppet.

Increasingly common is the use of the ZFS file system: an

extremely high performance, highly resilient file system with built-

in volume management, redundant array of

independent/inexpensive disks (RAID)-like redundancy and virtual

block device capabilities. Such a backing file system is ideal for

hosting virtual machine images, however at present there is no

framework for managing virtual machines and ZFS volumes

concurrently—all configuration must be performed manually by

the administrator.

This project aims to resolve this issue. Quick Virtual Machine

(qvm) is a utility that takes advantage of preinstalled cloud images

running cloud-init—available from all the major enterprise Linux

distributions—ZFS volumes (zvols) (detailed in Appendix A) and

the virt-install command line virtual machine provisioning utility,

allowing system administrators to provision virtual machines in as

little as fifteen seconds, all from a single configuration file.

2 RESEARCH

2.1 Virtualisation fundamentals

This section covers content not directly related to the project

itself. However, this content is directly connected with the domain

in which qvm is used: QEMU/KVM and libvirt. As a result, this

content is likely a better fit for core research than as appendices.

In this project we consider the term "virtualisation" in its

modern context, generally referring to the emulation of real

hardware devices in order to run an operating system. By

implication, this means that we do not refer to containerisation

technologies such as Linux Containers (LXC), Docker, FreeBSD jails,

or systemd-nspawn. These function by replicating user space

software environments and may take advantage of kernel

features, such as Linux’s cgroups, to control access to system

resources. These technologies all use the host operating system’s

kernel directly, as opposed to running their own kernel. In

practice, this means running an application in a containerised

environment is not the same as on a native environment; if there

are kernel features required by an application that are present in

the containerised environment but not present in the native

environment and vice versa, the application will fail to behave in

the same way.

Although the adoption of virtualisation at scale has only really

occurred in the past decade or so with modern public and private

cloud computing platforms and localised virtualisation platforms,

the basic constructs of virtualisation have actually been theorised

W

2
since the advent of modern computing. Popek and Goldberg [1]

conceptualised two types of virtual machine based on IBM

technologies of the time:

Virtual machine monitor (VMM) A piece of software that has

three key characteristics: “the VMM provides an

environment for programs which is essentially identical to

the original machine"; “programs run in this environment

show at worst only minor decreases in speed" (with

performance being impacted due to the mandatory

intervention of the control program); “the VMM is in

complete control of system resources" [1]. The paper later

explains three related properties that are desirable for

programs running under such an environment, efficiency

being the only one of these that does not have direct

equivalence to the three aforementioned fundamental

characteristics: “all innocuous instructions are executed by

the hardware directly, with no intervention at all on the part

of the control program" [1]. This is not realistically feasible

due to the aforementioned impact.

Hybrid virtual machine (HVM) A similar system that interprets

virtual machine instructions rather than directly executing

them, catering for the many architectures of the time that

could not be virtualised. The instruction set architecture of

the given example, the DEC PDP-10, used a non-privileged

instruction to switch between protection levels. However, its

user mode was privileged, making it suitable for running

HVMs [1].

While these definitions have developed over time, the

principles fundamentally remained the same. Modern

virtualisation typically considers the type of hypervisor, and the

virtualisation technique.

2.1.1 Hypervisors

The control program that Popek and Goldberg discuss (covered in

section 2.1) is, in terms of responsibilities, directly equivalent to a

hypervisor in the modern interpretation: a computing entity,

typically a piece of software, that runs virtual machines. We

loosely consider there to be two types of hypervisor:

Type 1 A "thin" bare-metal software layer that runs on the host

hardware, providing the same services as the virtual machine

monitor concept. VMware ESXi is one of the most well known

proprietary examples of a Type 1 hypervisor. This is, in its

most basic interpretation, similar to the VMM concept.

Type 2 A user space application that runs a guest operating system

as a process, akin to any other typical user space application.

Oracle’s VirtualBox is a well known, crossplatform type 2

hypervisor. Modern instruction sets do

not run user applications in a privileged ring, however the

fundamental concept of running a virtual machine in line

with user applications is the same as the HVM concept.

Due to modern virtualisation techniques, implementation

techniques and modern instruction set and operating system

architectures, these hypervisor types should not be considered

beyond a superficial context. QEMU/KVM virtualisation (covered

in section 2.2) serves as an example that blurs the lines between

these hypervisor types.

2.1.2 Virtualisation techniques

While translation was a requirement for hybrid virtual machines,

the capabilities of modern software and hardware offer increased

granularity in their techniques, whether this be to compensate for

missing capabilities or to improve performance. High level

examples of these techniques include:

Emulation Guest operating systems run unmodified in the

virtualised environment. The virtual machine runs at the

same privilege level as any other user application. The host

performs on-the-fly binary translation of every instruction to

emulate another CPU instruction set or device. QEMU is one

of the better known hypervisors capable of emulation,

however due to the availability of more better performing

virtualisation techniques and the lack of need for emulation

of platforms other than x86-64, it is rarely used in the

contexts that apply to this project.

Paravirtualisation Guest operating systems have the necessary

drivers to hook into the hypervisor layer, and are exposed to

a similar, though not the same environment as the host

machine. System calls are made directly to the hypervisor

rather than an emulated processor that requires translation,

at the same privilege level as the host kernel. This is one of

the most best performing options for machines with

processors missing hardware virtualisation extensions. Xen is

one of the more well known hypervisors with

paravirtualisation capability, and is the sole hypervisor for

Amazon Elastic Compute Cloud (EC2). It is frequently claimed

that the guest operating system must be "modified" in order

to be paravirtualised; paravirtualisation is implemented

using the pvops driver suite included in the Linux kernel.

Support for paravirtualisation isn’t available for all virtualised

devices. Building support is timely and may not be worth the

effort.

Full virtualisation Guest operating systems run unmodified in the

virtualised environment, running at a lower privilege level

than the host kernel. The host machine is required to use

dynamic recompilation to translate guest operating system

calls to native calls. Performance is poorer than with

paravirtualisation as system calls by the guest require

expensive operations for context switching and privilege

level escalation. It is rarely used as a result.

Hardware-assisted virtualisation Guest operating systems run

unmodified in the virtualised environment. Hardware

virtualisation extensions such as Intel’s VT-x allow for virtual

machine system calls to run directly on the processor without

translation. In the case of x86compatible processors, this is

achieved using protection

ring -1, dedicated to hypervisor instructions. There are also

technologies for hardware passthrough to a virtual machine:

input-output memory management unit (IOMMU)

passthrough and single root I/O virtualisation (SR-IOV). These

are beyond the scope of this report.

In modern virtualisation solutions, a combination of

paravirtualisation and hardware-assisted virtualisation solutions

are common; QEMU/KVM is a prime example.

3
2.2 QEMU/KVM

It is common for even experienced professionals to be unsure of

the distinction between QEMU and Kernel-based Virtual Machine

(KVM). KVM is often used synonymously to describe QEMU/KVM

solutions—indeed the use of KVM implies this combination—but

in themselves they are very different pieces of software. qvm, the

utility produced in this project, deploys QEMU/KVM virtual

machines through the virt-install utility, briefly covered in section

2.4.2.

QEMU is described on its website as a "generic and open

source machine emulator and virtualizer" [2]. This isn’t entirely

true; QEMU alone has emulation capabilities, however it is

capable of using Xen as its backend hypervisor, or KVM kernel

modules, for the purpose of virtualisation.

Unlike VirtualBox, which as a product is a hypervisor packaged

with graphical user interface (GUI) and command line interface

(CLI) management tools, QEMU is purely a standalone type 2

hypervisor. It provides no management components or

frameworks aside from its provisioning tool (qemu-system-

architecture) This means that all virtual machines created with a

standalone QEMU install are transient by default; they exist until

their termination, at which point any references to their creation

cease to exist.

KVM is a collection of Linux kernel modules that enable the use

of hardware virtualisation extensions, such as Intel VT-x, for the

purpose of hardware-assisted virtualisation.

While it’s possible to share CPU time between virtual machines

and the host, it isn’t feasible to do the same with hardware

devices. It isn’t logically possible to simply pass a host network

adaptor directly to a virtual machine on a temporary basis, for

example. Paravirtualisation of virtual devices is the common

approach to this. For QEMU/KVM and a number of other

virtualisation solutions, the Virtio project—extended from the

KVM project—provides drivers in the guest and paravirtualised

virtual devices on the host are used in conjunction with hardware-

assisted execution of the guest. These Virtio drivers are included

in the Linux kernel by default, allowing for full compatibility on

installation.

2.3 libvirt

It is possible to manage the lifecycle of QEMU/KVM virtual

machines manually, using common system utilities such as such as

the ip command in conjunction with scripting to create and

destroy virtual networks—or a network manager such as

NetworkManager or systemd-networkd to automate this

process—and systemd services or custom startup scripts to

recreate virtual machines on system boot.

However, doing so is generally time consuming and requires

custom configuration files (such as systemd units) to be created

for every virtual machine that the user wishes to create.

Therefore, libvirt is typically installed alongside

QEMU for management purposes. It is a management framework

supporting a number of popular operating systems, hypervisors

and containerisation solutions: VMware ESXi, QEMU, VirtualBox,

Xen, and LXC amongst others. Its API is accessible in a number of

languages, the best supported being Python [3]. libvirt and its

included tools introduce a number of capabilities:

Management of virtual machines, through the

aforementioned API or through the virsh CLI utility. This

includes the ability to create persistent virtual machines,

i.e. those that can be restored as and when required,

often on host reboot.

Management and creation of virtual network bridges,

firewalls, and NAT-based networking. Management and

creation of storage volumes in numerous formats (of

which QEMU Copy-on-Write 2 (qcow2) and raw are within

the context of this project), snapshots and pools (file

systems or directories for the purpose of organisation).

Quality of Service, benchmarking and tuning for shared

system resources such as CPU, disk and network I/O.

Polkit integration to allow selective or full administration

by unprivileged users.

Unconventionally, virsh does not provide an argumentative CLI

method for creating domains (libvirt’s terminology for virtual

machines) and networks. Without the use of a third-party utility,

users are required to build Extensible Markup Language (XML)

files manually. For networks this is generally acceptable and

convenient, as most use cases are simple enough to not require

particularly complicated or lengthy configuration files. However,

for domains this is rarely viable for direct usage; creating a usable

virtual machine can result in a lengthy XML file. As a result, it is

common to use the virt-install utility, detailed in section 2.4.2.

2.4 Current approaches

There are a number of software utilities, both CLI and GUI based,

that provide the ability to provision virtual machines. All the

examples covered in this section interact with libvirt; the

differences lie in their intended user base, their capabilities, and

their primary method of deployment: either configuring pre-built

operating system images, or requiring a full operating system

installation from scratch. This section covers the most prevalent

of these options and their typical advantages and disadvantages.

2.4.1 virt-manager

Commonly referred to by its desktop name (Virtual Machine

Manager), virt-manager is the de facto GUI client for libvirt,

installed as part of the core virtualisation client group of most

Linux distributions. It provides the ability to connect to both local

and remote libvirt instances (allowing it to function as a GUI front-

end for entire environments built from multiple hypervisors and

virtualisation hosts),

4

Fig. 1. virt-manager

providing the capability of managing the full lifecycle of virtual

machines, networks and storage pools. It provides access to the

graphical output and input devices of virtual machines via Virtual

Network Computing (VNC) or Simple Protocol for Independent

Computing Environments (SPICE)

(with the latter additionally providing local and remote USB

redirection, allowing USB mass storage devices to be attached to

a guest) using its virt-viewer counterpart.

Most users of virt-manager usually install operating systems to

virtual machines from scratch using a standard installation disk

image. However, as virt-manager is effectively an interface for

libvirt rather than being a specialised deployment tool in itself, it

is possible to use other image types (such as cloud images using

cloud-init for first-boot configuration commonly used in cloud

services, and as used by this project—see section 2.4.3). However,

to configure these images as intended requires the manual

creation of a configuration image outside of virt-manager and

mounting the image as a CD; it is not possible to paste the

contents of a cloud-init user-data file as it would be in an

OpenStack private cloud environment, for example. qvm performs

this task for the user.

virt-manager provides configuration presets for a number of

different operating systems, ranging from present day releases

back to long-unsupported releases of Ubuntu, Red Hat Enterprise

Linux and CentOS, Fedora and Windows, among others. However,

during testing as part of the research process for this project, it

was discovered that for recent releases of many of the

aforementioned distributions these templates are sub-optimal, or

at the very least conservative for the sake of stability: for example,

the use of Serial ATA virtual disk devices as opposed to Virtio

paravirtualised disk devices, the latter of which offer better

performance and lower overheads compared to the former. As a

result, before creation users will most likely need to change a

number of settings for their virtual machines before creation.

Testing for this paper found that creating a running virtual

machine with virt-manager and installing the operating system

takes around 7–12 minutes. This process is interactive (requires

user input), requiring the following steps if they haven’t already

been performed:

1) Create storage pool for ISO images

2) Create storage pool for virtual machine images 3)

 Download installation ISO image to ISO pool

These steps are then followed by these mandatory steps:

1) Create new virtual machine

2) Configure new virtual machine, possibly correcting

options that have been defined by templates

3) Install operating system, configuring users, networking,

and storage in the virtual machine

4) Run any post-installation configuration that the user

desires within the installed operating system, such as

adding users, setting user group membership, changing

default Secure Shell (SSH) configurations.

2.4.2 virt-install

virt-install is the de facto CLI virtual machine provisioning tool

installed alongside virt-manager; it is only capable of this, with the

intention being that any other required configuration tasks for the

virtualised environment, such as the management of networks or

storage pools, are performed using libvirt’s virsh utility; as stated

in section 2.3. As with virt-manager, it is capable of connecting to

remote hosts. It supports installation from remote, PXE and image

sources, and its configuration options for provisioning virtual

machines (or domains in libvirt’s terminology) are closely aligned

with the options that can be specified in domain XML

configuration files [4]. As stated in section 2.3, the primary

advantage of virt-install is that users do not need to deal with

these complicated XML configurations.

virt-install has access to the same templates as virtmanager,

and thus suffers the same limitations. However, being a CLI utility

it is perhaps best suited to being incorporated into a scripted

workflow or other CLI application. Its input format is extremely

well suited to being mapped using a YAML or Python dictionary; it

is used for qvm for this reason (detailed further in section 5).

2.4.3 Cloud-init

Cloud-init is described in its documentation as “the de facto multi-

distribution package that handles early initialization of a cloud

instance" [5]. In simple terms, cloud-init is a system that allows

administrators and users to configure a new virtual machine

instance on first deployment. It provides a variety of modules,

ranging from updating the installation and configuring users

through to configuring the instance for management by an

external configuration management system such as Puppet, or

even install software packages such as Spacewalk (a data centre

management and provisioning tool).

Cloud-init is typically installed on pre-configured images

intended for use with cloud services such as OpenStack or Amazon

Web Services (AWS). However, it can be used with standalone

virtual machines through the NoCloud datasource type—simply a

disk image containing the mandatory user-data and meta-data

files, attached as the installation image on first boot [6]. This is the

5
capability that qvm relies upon to rapidly configure the virtual

machines it provisions.

2.4.4 Vagrant

Vagrant is “a tool for building and managing virtual machine

environments in a single workflow" [7]. It is primarily aimed at

developers to rapidly create entire virtual environments—

potentially constructed from multiple virtual machines and virtual

networks—to allow consistent development environments across

multiple machines and developers. Vagrant supports multiple

providers: its terminology for the entity that runs the

environment, whether this be officially supported (VirtualBox,

VMware, Docker and Hyper-V) [8] or third-party providers such as

vagrant-libvirt or even cloud services such as AWS.

Vagrantfiles, used to build these environments, are written in

Ruby. This is both a benefit and a drawback: Vagrantfiles may be

provider-agnostic or at the very least multi-provider compatible

due to the capability of including logic, however most system

administrators are likely to be unfamiliar with Ruby altogether;

Python is usually the primary choice after shell scripting.

Vagrant boxes are pre-configured images used as a base for

machines created by Vagrant. These images are created especially

for Vagrant: this means that aside from using them as Vagrant

providers, it is not possible to reuse Vagrant images or

Vagrantfiles with other deployment solutions.

2.4.5 Virtual machine storage

There are three commonly used storage solutions for QEMU/KVM

virtual machines:

QEMU Copy-on-Write 2 (qcow2) The default and native image

format for QEMU/KVM virtual machines. It provides full

support for snapshotting, using raw or other qcow2 images

as underlying base images (for example, a cloud image use

case as used in this project), sparse (as needed) or full

allocation of space on creation. The main benefit of this is

portability: no matter the underlying file system, the same

features can be used.

raw This refers a disk image or block device, whether virtual or

real, that is passed directly to the virtual machine with no

additional metadata layers unlike qcow2, and thus no

support for advanced features such as snapshotting and

using underlying base images. For LVM storage detailed here,

or ZFS volumes (zvols) as used in this project, raw images will

be used. It is up to the underlying storage layers to provide

snapshotting, portability of functionality or other

functionality.

Logical Volume Manager (LVM) Use of LVM volumes directly as

block devices (used raw), providing snapshotting and cloning

functionality below file system level (and skipping any host

file system layers altogether).

For the application of this project, where snapshotting and

cloning of pre-built images is used for rapid virtual machine

provisioning, layered copy-on-write (CoW) solutions such as

qcow2 and LVM suffer from significant performance degradation.

This is covered in (Appendix A). This content has been placed in

the appendix to this report as it was originally taken from another

piece of work. However, it should be considered an integral part

to the research and design for this project.

2.5 Chosen approach

From the above research it is possible to conclude that:

Installation-based approaches are too time consuming for

rapid testing.

System administrators with limited programming

experience will find tools such as Vagrant too difficult to

approach in a rapid fashion, ruling it out as a viable option.

ZFS offers superior performance, file system-level

resiliency and data integrity and volume capabilities (see

Appendix A) that users may wish to leverage, without the

additional layers of functionality required by other storage

solutions.

Readily available cloud images are necessary to rapidly

deploy virtual machines. Cloud-init uses easily readable

YAML Ain’t Markup Language (YAML) documents for its

configuration files, and provides portability between

cloud environments and this tool.

For the sake of consistency with cloud-init, YAML is a

mandatory requirement for any additional configuration files

required for this tool. While cloud-init requires multiple

documents for the NoCloud datasource suitable for this utility,

having three separate documents for a single virtual machine (and

potentially a directory to hold them) is cumbersome. Thankfully,

YAML provides the ability to store multiple documents in a single

file. The details of these documents are detailed in section 3.1.2.

Ansible, a remote execution and configuration management

utility that is becoming increasingly popular among enterprise

users, was considered for thie project. However, the ZFS module

was deemed too unreliable to be suitable. Fabric, a remote

execution library for Python, was also considered, however this

implementation would be too complicated given that ZFS does not

offer remote management built-in, but virt-install, used by qvm to

deploy virtual machines, does have this capability.

This chosen approach is detailed further in the following

Requirements (3), Design (5) and Implementation (8) sections.

3 REQUIREMENTS

The requirements covered here are prioritised using the MoSCoW

method: Must or Should, Could or Won’t. These priorities are

designated by the bracketed letters at the end of each

requirement title. They are then grouped into related categories

in the following sections: Basic functional requirements (3.1), Error

state requirements (3.2), ZFS functional requirements (3.3).

3.1 Basic functional requirements

3.1.1 Importing of cloud images (M)

The utility must be able to import an uncompressed cloud image

in raw disk format to a new ZFS volume (zvol) specified by the user.

This process must involve the automatic creation of the specified

zvol, the creation of a base snapshot in the following format:

(specified zvol)@base

6
The process will not allow a user-definable set of zvol

properties. Virtual machine zvol properties will be inherited from

their parent cloud image zvols; thus allowing users to input

unsuitable values will impact the performance of all virtual

machines. The following defaults will be used:

volblocksize: 16K The fixed block size of the zvol (the smallest

transactional unit). This provides a reasonable balance between

compression ratio and performance.

refreservation: none Sparse allocation—only space consumed

within the image will be allocated, rather than the full size of

the raw image.

Handling of error conditions must conform to the

requirements specified in section 3.2.

3.1.2 Virtual machine provisioning file format (M)

All the required configuration documents for provisioning a virtual

machine must be contained in a single YAML file. The file must

contain three documents:

vm A document containing a single top-level YAML dictionary. This

dictionary must contain top-level options for virt-install as per its

manual page [9]. Second-level options must be specified in a

nested dictionary in the same manner. The top-level dictionary

must contain a lower-level dictionary specifying disk settings as

per the virt-install manual, and a further nested zvol dictionary

containing valid dictionary options as per the zfs CLI utility manual

page. user-data A document containing the cloud-init user-data

document as per the cloud-init documentation [6].

meta-data A document containing the cloud-init meta-data
document as per the cloud-init documentation [6].

Each document shall be separated as per the YAML

specification [10]: using “- - -" on a new line to mark the beginning

of a new document and, optionally aside from the end of the final

document, “. . ." on a new line to mark the end of a document.

Each top-level document shall have a single identifier for the

qvm utility; a key-value entry, where the key is “qvm" and the

value is one of either “vm", “user-data" or “metadata" for each

respective matching document.

An example of this file format can be found in the root of the

included CD.

3.1.3 Provision new virtual machine (M)

The utility must be able to provision a new virtual machine from

the provided input file as specified above. A new zvol must be

created from an exist cloud image snapshot, under the name

specified by the user, conforming with the requirements specified

in ZFS volume clone creation (M), section 3.3.

Handling of error conditions must conform to the

requirements specified in section 3.2.

3.2 Error state requirements

3.2.1 Atomicity (M)

During the occurrence of a failure after a persistent modification

(i.e. one that is not temporary) has been made, the utility must

either revert these changes, or if this fails or cannot be performed,

inform the user which changes failed to be reverted. Once the

utility exits, it must leave the system in an unchanged persistent

operational state on failure, or leave the system in the state

changed by the successful completion of the intended task.

The utility will be capable of making four types of change to a

system in total:

1) The creation of a zvol and snapshot for the purpose of

importing a cloud image.

2) The creation of a zvol cloned from an imported cloud

image snapshot for the purpose of creating a disk for a

new virtual machine.

3) The creation of a new virtual machine.

4) The creation of a cloud-init configuration image to be

attached to the virtual machine for post-creation

configuration.

Of these changes, only changes 1 and 2 shall be revertable by

the utility. Change 3 is validated before being made; if validation

fails, the virtual machine won’t be created. Change 4 places cloud-

init configuration data and creates the image in a subdirectory

under /tmp, which will not impact the operational state of the

system, and will be deleted on system reboot automatically.

However, if change 3 or 4 fail, changes 1 and 2 will be reverted.

3.2.2 Error reporting and return codes (S)

The utility should print errors in the following format:

Error task description: error description

Errors should be written to the standard error stream, and

error events should cause the utility to return 1 (nonzero). For all

successful runs, the utility should return 0.

While accurate error messages must be reported, this

requirement is treated as “should" within the MoSCoW

framework as certain external utilities used, such as the output of

failed validation or the output of the ZFS CLI utility on failure will

output errors in a different format.

3.3 ZFS functional requirements

3.3.1 ZFS volume creation (M)

The utility must be able to create ZFS volumes (zvols) as specified

by the user for the top-level requirement Import cloud image

specified in section 3.1. The zvol creation process must be able to

configure new zvols with the properties specified by the processes

defined by these requirements, or fall into an error state

conforming to the requirements specified in section 3.2.

Handling of error conditions must conform to the

requirements specified in section 3.2.

3.3.2 ZFS volume snapshot creation (M) To meet the top-level

requirement Import cloud image specified in section 3.1, the

utility must be able to create a snapshot of the zvol by the process

outlined in this top-level requirement. A zvol cannot be directly

cloned; a snapshot is required to define a set, read-only state on

which a clone can be based. As snapshots inherit properties from

their source zvols, the utility will not accept any properties to fulfil

this requirement. See the aforementioned top-level requirement

for specific details of the fulfilment of this requirement.

Handling of error conditions must conform to the

requirements specified in section 3.2.

7
3.3.3 ZFS volume clone creation (M)

To meet the top-level requirement Provision new virtual machine

specified in section 3.1, the utility must be able to clone the

snapshot specified in the Import cloud image top-level

requirement of the aforementioned section, provided that the

specified cloud image snapshot exists. This process must be able

to accept valid properties to be applied to the newly created

clone.

Handling of error conditions must conform to the

requirements specified in section 3.2.

4 NON-FUNCTIONAL REQUIREMENTS

Due to the nature of this utility—a purely technical CLI utility that

facilitates a technical process—the non-functional requirements

are limited, and tie in closely with a number of functional

requirements.

4.0.1 Simple command line input format

The utility should have a command line input format that is

intuitive to follow. This means minimising configurable options

that provide no realistic benefit, such as the capability of selecting

zvol properties for the Import cloud image functional requirement

specified in section 3.1. This will likely manifest as providing

singular options on the command line, such as providing only

“import" and “vm" top-level options, and only allowing the

relevant sub-options, such as the target zvol and the path of the

image file to be imported in the aforementioned functional

requirement.

4.0.2 Simple virtual machine provisioning file format

For the user, the only point of complexity should exist in the virtual

machine provisioning file; these complexities are introduced by

cloud-init and virt-install as opposed to the utility itself. The utility

should existing cloud-init user-data and meta-data documents to

be simply copied into the file without any modification beyond

adding the required qvm key/value entries specified in the Virtual

machine provisioning file format requirement (section 3.1).

5 DESIGN

There are a number of factors that ultimately make qvm’s design

process fairly straightforward:

Classes There is no specific requirement in Python to use classes,

unlike a language like Java where they are mandatory.

Misuse of classes in Python is unfortunately extremely

common; rather than using modules (files holding functions

for the sake of modularity), many developers integrate these

functions as methods of a class with no unique attributes,

thus performing tasks that don’t apply to that class. The

general consensus for class usage is to use them “where and

when they make sense". In the case of qvm, the only scenario

where this makes sense is when provisioning a new virtual

machine, as the utility iterates over the same dictionaries in

order to validate and create the components required for the

virtual machine, namely the zvol and the virtual machine

itself. As a result, there is only a single class in this utility (see

section 6).

Simplicity qvm doesn’t aim to be an entirely new virtual machine

lifecycle management tool. The primary caveats of virsh for

the intended use case of qvm, which are covered in the

Introduction (section) are the lack of ZFS support, the

difficulty in creating XML files to define a libvirt domain

(virtual machine), and the lengthy installation and post-

installation setup times of virtual machines. qvm successfully

alleviates these issues. There is little room for interpretation

regarding the tasks it is required to perform, and the order in

which these tasks are executed. qvm is therefore best

considered as an automation tool for a particular workflow

required by a common use case.

“Vertical" interaction qvm doesn’t recursively or iteratively

interact with external entities (or actors in Unified Modelling

Language (UML) terminology) and process data from them.

Taking the most complicated use case as an example,

provisioning a new virtual machine: qvm imports all the data

that it requires from a single file at the beginning of the

process. Processing is performed iteratively on this data

internally, only communicating with external subsystems to

validate the virt-install command used to create the virtual

machine, to run this command, to create the required zvols

and cloud-init directories, files and images.

As a result of the last point, tools such as sequence diagrams

aren’t well suited to conveying the design of qvm, as the design

would be conveyed as interacting almost entirely with itself aside

from the interactions described above.

5.1 Use cases

5.1.1 Import cloud image

Fig. 2. System-level UML use case diagram: Import cloud image

Provided that Check image exists is successful (the image is

found) the actions represented by the rest of the use cases will be

performed: first Process zvol properties (which can be fulfilled by

one of either Process default zvol properties or Process input zvol

properties) then Create zvol. Note that Process input zvol

properties was not implemented as it was deemed to be

unnecessary—see Importing of cloud images in section

3.1.

8
The use case does not cover the failure of any stage. However,

as stated in Error state requirements (3.2), the only possible

change that is required to be reverted in this use case is the

creation of the zvol and snapshot for the cloud image. As all of the

functionality required to implement this use case is exclusive (i.e.

not conveniently implementable for use in other use cases), this

use case will be implemented in a single function

(import_cloud_img).

5.1.2 Provision new virtual machine

Fig. 3. System-level UML use case diagram: Provision new virtual machine

The Provision new virtual machine use case detailed in Fig. 3 is

the most prevalent use case in this project, representing the core

functionality that gives the project value over existing approaches

to virtual machine deployment.

Aside from the Import qvm file secondary-level use case, to be

implemented in the import_yaml function, all of the functions

required to implement this use case are part of the

VirtualMachine class; these functions are detailed in section 6 that

follows.

import_yaml will take the file path of a qvm file as an

argument. It will extract the three documents (detailed in Virtual

machine provisioning file format in section 3.1), remove any qvm

identifiers, and return a dictionary containing four nested

dictionaries:

userdata and metadata Cloud-init user-data and meta-data

dictionaries respectively.

vm Dictionary containing arguments to virt-install to create a

virtual machine.

zvol Dictionary containing zvol options for the cloned zvol to be

created for the new virtual machine. Originally stored in the

vm dictionary but separated as the entries here are not valid

arguments for virt-install.

The import_yaml function could be implemented as a factory

(an object that instantiates a class). Alternatively, Python’s special

__new__ method could be used, though this is best avoided

where possible as it overrides the default functionality of

instantiating a new class. However, it will implemented as a

separate function as the output it will return is not proprietary to

the VirtualMachine class.

6 VIRTUALMACHINE CLASS

qvm features only a single class: the VirtualMachine class. Classes

in Python are not mandatory, but they are frequently overused.

Such a class is suitable in this scenario because:

The class methods perform tasks operating only within the

context of the class (i.e. reading and occasionally

modifying data based on instance variables). It is desirable

to simply interaction with an instance of a class to simple

method calls (detailed below). Simply, the use of a class in

the manner detailed below is easily understandable by

those reading the code.

The class methods, in order of execution, are briefly covered

in the following sections.

6.1 __init__()

In addition to the four dictionaries detailed in section 5.1.2 being

imported as self.dict, the following variables will be set:

self.zvol_base A variable to hold the name of the cloud image

snapshot that will be used as the base for the cloned zvol for

the virtual machine, allowing this entry to be removed from

the zvol dictionary, which will then be parsed for valid zvol

properties.

self.zvol_vm The name of the zvol that will be created from

cloning the cloud image base snapshot (the above item). This

is used for the zfs_cli.clone function (see section 8.2.1), and

to set the disk path for the virtual machine (see below).

For virt-install validation to pass, the following variables in the

vm dictionary will need to be set in advance:

cdrom The path to the cloud-init image to be attached to the

virtual machine.

disk > path The path to the actual zvol block device to be used by

the virtual machine, located at

/dev/zvol/self.zvol_vm.

6.2 create_cloudinit_iso()

A subdirectory will be created in /tmp/ of the format

“qvmrandint". The contents of the self.userdata and

self.metadata dictionaries will be written to user-data and meta-

data files respectively. The genisoimage utility (in reality a symlink

to mkisofs in most Linux distributions) will be called to create an

image named “seed.iso" as per cloudinit’s instructions [6].

6.3 clone_base_zvol()

This function will call zfs_cli.clone() to create the zvol specified in

variable self.zvol_vm, or print a failure.

9
All of the functions including and succeeding this one will be

required to destroy the zvol created here on failure in order to

meet the Atomicity requirement specified in section 3.2.

6.4 build_cmd()

This function will iterate over the self.vm dictionary, creating and

populating the self.cmd list of arguments as required by the

subprocess module that will run the validation and creation virt-

install commands. This function will need to handle three types of

virt-install options:

Basic functional booleans - -switch

Basic functional options - -switch option

Bottom-level options switch=option,...,switch-n=option-n

This will process regardless of the input without returning

errors, as any errors will be validated in the following function.

6.5 create()

This function will perform two runs of virt-install with self.cmd: the

first with the --dry-run option, which will validate and return errors

if any invalid options have been specified; the second without the

--dry-run option provided that validation has passed.

7 TESTS

It has been ensured that the submitted utility has passed all of the

tests specified in this section prior to submission. Tests have been

divided into two types: Success states (7.1) and Error states (7.2),

with descriptions of passing criteria specified below for each test.

As many of the failure tests are identical in nature, merely running

at different points in execution, the conditions for these tests have

been grouped together.

Performance tests have not been created for this project, as

the performance of the utility is entirely dependent on the

performance of external utilities and the system on which qvm is

executed.

7.1 Success states

7.1.1 Import cloud image

A new zvol with the name specified by the user must be created

along with a snapshot of the same name named “base". The zvol

must contain a bootable cloud image, tested with either a

manually provisioned virtual machine running a clone of the base

snapshot, or a virtual machine provisioned with qvm. The utility

must provide clear messages of the current activity being

executed, and a message on completion, written to the standard

out stream.

7.1.2 Provision new virtual machine

A new zvol with the name and properties specified by the user

must be created. A virtual machine matching the specifications

input by the user in the qvm file must be created. The virtual

machine must boot, and the machine must be configured or show

evidence of execution of the tasks specified by the user (found

running ps -ef once logged in to the virtual machine).

The virtual machine must provide clear messages of the

current activity being executed, and notify the user on

completion.

7.2 Error states

7.2.1 Error importing cloud image

The utility should return 1 and provide relevant error messages

provided the following conditions are met while attempting to

import a cloud image:

Image could not be found. Image
size could not be retrieved. zvol
could not be created.

The utility should additionally destroy the zvol created if the

following errors occur:

zvol device could not be opened. zvol

device file does not exist.

zvol snapshot could not be created.

If any of the above destruction attempts fail, the utility should

inform the user that manual deletion of the zvol is required.

7.2.2 Error importing qvm file

The utility should return 1 and provide relevant error messages

provided the following conditions are met while attempting to

import a qvm file:

qvm file not found. qvm file is any userdata, metadata or

vm documents. vm dictionary is missing a nested disk

dictionary. disk dictionary is missing a nested zvol

dictionary. zvol dictionary is missing a base key and value.

7.2.3 Error provisioning virtual machine

The utility should return 1 and provide relevant error messages

provided the following conditions are met while attempting to

provision a virtual machine:

Cloud-init directory could not be created. Command
to create cloud-init image failed. zvol clone failed.

The utility should additionally destroy the zvol created if

validation for the virtual machine has failed.

7.2.4 Invalid command line input format

If invalid, too many or too few command line options are entered

when executing the utility, a message describing how to use the

utility should be written to the standard error stream.

8 IMPLEMENTATION

8.1 Development environment

The implementation phase of this project was performed on a

system running Arch Linux, a rolling release Linux distribution that

is continuously updated, as opposed to a set release distribution

more commonly used with servers. This was largely trouble free

but still not recommended for the average user, as such a

distribution is theoretically more likely to encounter issues with

“bleeding edge" software that have not been tested for long

enough durations to be considered stable in terms of features and

10
reliability. The only issue that occurred was the release of libvirt

3.0.0, which broke support for using symbolic links to block

devices as disks for virtual machines [11]. However, this was fixed

in the following 3.1.0 release, and would have been easy to

workaround in this utility by passing the disk file path to the

os.readlink() Python function [12].

Python was the chosen language for this project primarily as

Python is the de facto scripting language for system

administrators after shell scripting. Many projects, such as libvirt

(section 2.3, prioritise their Python library over their API

implementations in other languages. This project was

implemented using Python 2 (specifically the latest release,

2.7.13). The only reason for this was pyzfs’ lack of support for

Python 3 [13].

The project uses the PyYAML library for importing the virtual

machine document and exporting the cloud-init user-data and

meta-data files for the configuration image. It uses the pyzfs

library for some operations: this is detailed in the ZFS challenges

(8.2) section below.

8.2 ZFS challenges

The original intention for this project was to use the pyzfs Python

bindings for the libzfs_core C library. However, while testing as

part of the research phase of this project became apparent that

the C library was incomplete. pyzfs’ documentation portrays the

library as featurecomplete, with no reference to any particular

capabilities not being implemented. This is to be expected; pyzfs

aims to provide a stable interface, with immediate compatibility if

the C library provides an implementation later. pyzfs provides the

libzfs_core.is_supported() function to determine whether the C

library provides a corresponding implementation, but not

whether this implementation is featurecomplete.

Testing prior to implementation for this project using pyzfs to

perform numerous operations on zvols (create, clone, and

snapshot) raised a NotImplementedError exception. There have

been several updates to ZFS on Linux (ZOL) since this project was

implemented, and it seems that these capabilities have been

implemented in the C library. However, this project still uses a

workaround reimplementation (created as part of this project) of

the required subset of functions in the pyzfs library using the zfs

CLI utility. Its library can be found in the zfs_cli directory of the

provided CD, and is implemented as the zfs_cli library.

8.2.1 zfs_cli

zfs_cli aims to replicate the functionality of the pyzfs library as

closely as possible. Thus, arguments it accepts are mostly the

same. However, the properties dict can use the same strings as

the command line argument, allowing users to specify size-based

properties such as volblocksize and volsize in abbreviated 2x size

formats (e.g. “K" for kibibyte, “M" for mebibyte, “G" for gibibyte

and so on; note that these units differ from 10x units—gigabyte,

megabyte and so on— with these latter units often being misused

to represent the former).

The library raises the same exceptions as pyzfs, and thus

requires it as a dependency. zfs_cli module is made up of four

parts:

Command builders The create, clone and destroy functions build

valid commands for the zfs CLI utility.

run_cmd Function that uses subprocess.checkoutput() to run the

command and handle the CalledProcessError exception

during an error, passing the output to the raise_exception

function.

raise_exception Parses the output of run_cmd. Raises pyzfs’

ZFSIntializationFailed error if the user doesn’t have the

appropriate permissions to perform an action (i.e. they aren’t

root or they have not been given adequate permissions using

zfs allow). Otherwise, passes the output to

exception_mapper. Raises the error, or raises

ZFSGenericError with the output from the zfs CLI utility.

exception_mapper Maps the errors returned by the zfs CLI utility

to the appropriate pyzfs errors, or returns ZFSGenericError if

no mapping could be found.

The use of the zfs CLI utility allows for more verbose, accurate

output than would otherwise be presented by pyzfs. However, this

does mean that the error output of zfs_cli is inconsistent; if this

library were to be completed, developers would be required to

parse strings to handle certain specific errors rather than

exceptions or error codes, which is theoretically detrimental for

performance and would make development with it a frustrating

experience. However, for this particular project this is sufficient;

on error, qvm will simply destroy the create zvol.

9 EVALUATION

This project successfully provided a solution to the outlined

problem, and the solution for the end user is as elegant as

envisioned. However, it would have been desirable to have

implemented pyzfs properly as opposed to relying on a fragile

custom API reimplementation; this would have simplified the code

base even further, and allowed for more accurate error reporting

from the ZFS C API itself as opposed to having a collection

mappings, which is created effectively using guess work during

testing.

There are a couple of features that would have been worth

considering:

Automatic configuration of the selected virtual network to

provide network configuration settings via Dynamic Host

Configuration Protocol (DHCP), allowing the host, or any

system using the host for Domain Name Service (DNS)

resolution. Ability to delete virtual machines and their

corresponding zvols within the utility.

However, implementing such features would not be without

their drawbacks. The first item alone would require libvirt to be

queried to get the Media Access Control (MAC) address of the

network interface, configure the network XML file and restart the

network device prior to starting the virtual machine; it doesn’t

seem that it is possible to use virt-install to define a virtual

machine without starting it, and cloud-init will only configure on

first boot unless the instance identifier is changed, making

implementing this potentially convoluted. The alternative would

be to force users to generate and specify MAC address explicitly,

introducing complexity that the tool was created to avoid.

11
Integrating this tool within a workflow that configures an external

DHCP and DNS service such as dnsmasq, perhaps driven by

Ansible, is a possible solution.

For the latter of the aforementioned features—the deletion of

virtual machines and zvols—as libvirt does not provide zvol

support, the disk device path would need to be parsed separately

from the virtual machine, outside of libvirt. If the zvol directory

were to be changed (by the ZFS on Linux project), this method

would fail. Regardless, it is inconsistent, and it is possible to

instead simply delete a virtual machine using the following

command:

for i in destroy undefine; do

virsh $i VM_NAME

done zfs destroy VM_ZVOL

This fits in well with the overall aim of this utility: to provide a

convenient method of creating virtual machines, rather than

providing a full management solution.

There is also an argument as to whether YAML dictionaries are

suitable for describing virtual machines in this project. The use of

dictionaries means that only a single entry for a particular device

type can be specified, leaving users with only a single network

device or disk. However, there is a strong argument that such

configurations should be substituted for Virtual LANs (VLANs) on

a single interface, and disk partitioning and/or Virtio’s file sharing

capabilities should be used instead. The former two of these

features can be deployed within qvm. Additionally, virt-install

makes certain presumptions when it comes to creating virtual

machines with multiple disks; the first disk will be used as the boot

disk. This introduces ambiguity into the tool; an inexperienced

user is unlikely to realise these implications, nor the dictionary

behaviour in these circumstances. These complexities stretch

beyond this tool: network configuration with multiple interfaces

becomes increasingly difficult to manage unless addressing is

specified statically within qvm.

APPENDIX A–ZFS

ZFS is a file system originally created by Sun Microsystems.

Originally open-sourced as part of OpenSolaris in 2005,

contributions to the original ZFS project were discontinued

following Oracle’s acquisition of Sun Microsystems in 2010 [14].

The OpenZFS project succeeds the original open-source branch of

ZFS, bringing together the ports for illumos, FreeBSD, Linux and OS

X [15]. While OpenZFS and ZFS are distinct projects, the term ZFS

may refer to either or both of them depending on context.

However, there are no guarantees to maintain compatibility

between the on-disk format of the two [16]. In this instance and

indeed most instances, ZFS refers to the ZFS on Linux (ZOL) port.

The OpenZFS project is still in its infancy, however its ZFS ports

have already been proven to successfully address a large number

of issues with current storage solutions.

A.1 Overview

Unlike traditional file system, RAID and volume manager layers,

ZFS incorporates of these features. Some ZFS primitives relevant

to the discussion of the proposed solution include:

Virtual Device (VDEV) Built from one or more block devices,

VDEVs can be standalone, mirrored, or configured in a RAID-

Z array. Once created a VDEV cannot be expanded aside from

adding a mirror to a single disk VDEV.

RAID-Z ZFS has built-in RAID functionality. In a basic configuration

it has the same caveats by default. However, the biggest

difference is the capability of triple parity (RAID-Z3), with an

additional performance cost still.

zpool Built from one or more VDEVs, a ZFS file system resides on

a zpool. To expand a zpool, we can add VDEVs. ZFS will write

data proportionately to VDEVs in a zpool based on capacity;

the trade-off is space efficiency versus performance.

Datasets A user-specified portion of a file system. Datasets can

have individual settings: block sizes, compression, quotas and

many others.

Adaptive Replacement Cache (ARC) In-memory cache of data that

has been read from disk, with the primary benefits being for

latency and random reads, areas where mechanical disk

performance suffers greatly.

Level 2 Adaptive Replacement Cache (L2ARC) SSD-based cache,

used where additional RAM for ARC becomes cost-

prohibitive. As with ARC, the primary benefit is performance;

a single decent SSD will be capable of random read I/O

operations per second (IOPS) hundreds to thousands of times

higher and latency hundreds to thousands of times lower

than a mechanical disk.

ZFS Intent Log (ZIL) and Separate Intent Log (SLOG) ZFS

approximate equivalents of journals; the differences are

briefly detailed in A.4.

Other ZFS features include: compression, recommended for

most modern systems with hardware-assisted compression

usually being of inconsequential CPU performance cost with the

benefit of marginally reduced disk activity; dynamic variable block

sizing; ZFS send/receive, which creates a stream representation of

file system or snapshot, which can be piped to a file or command

(such as ssh), allowing for easy and even incremental backups.

Fundamental to qvm are ZFS volumes (zvols). These are virtual

block devices analogous to raw volumes in LVM configurations.

zvols can take advantage of most of the features ZFS has to offer;

they can be sent and received via ZFS send/receive, they use copy-

on-write semantics to write data, and can be snapshotted and

cloned at no performance cost. This last fact alone makes ZFS

viable in configurations at any scale, unlike LVM (see section A.5).

The block size of zvols are fixed, unlike standard ZFS datasets;

higher block size equate to higher compression ratios (and thus

reduced space utilisation on disk) but reduced performance when

dealing with smaller IO. It is possible to specify whether space is

sparsely allocated (allocated as space is used) or fully allocated

(pre-allocated based on the configured volume size).

12
A.2 Basic operations

ZFS’ on-disk structure is a Merkle tree [17], where a leaf node is

labelled with the hash of the data block it points to, and each

branch up the tree is labelled with the concatenation of the

hashes of its immediate children (Fig. 4), making it self-validating.

Fig. 4. Merkle Tree [18]

During write operations, the block pointers are updated and

the hashes are recalculated up the tree, up to and including the

root node, known as the uberblock. Additionally, ZFS is a CoW file

system—for all write operations, both metadata and data are

committed to new blocks. All write operations in ZFS are atomic;

they either occur completely or not at all.

As detailed in the following text, these three attributes are

directly responsible for many of the benefits in performance and

data integrity that ZFS offers.

A.3 Consistency

On modification, traditional file systems overwrite data in place.

This presents an obvious issue: if a failure—most commonly

power—occurs during such an operation, the file system is

guaranteed to be in an inconsistent state and not guaranteed to

be repaired, i.e. brought back to a consistent state. When such a

failure occurs, non-journalled file systems require an file system

check (fsck) to scan the entire disk to ensure metadata and data

consistency. However, in this instance, there is no reference point,

so it is entirely possible and common for an fsck to fail.

Most of the file systems used today use journaling in order to

ensure file system consistency. This involves writing either

metadata alone or both metadata and data to a journal prior to

making commits to the file system itself. In the occurrence

described previously, the journal can be “replayed" in an attempt

to either finish committing data to disk, or at least bring the disk

back to a previous consistent state, with a higher probability of

success.

Such a safety mechanism isn’t free, nor does it completely

avert risks. Ultimately, the heavier the use of journalling (i.e. for

both metadata and data) the lower the risk of unrecoverable

inconsistency, at the expense of performance.

As mentioned previously, ZFS is a CoW file system; it doesn’t

ever overwrite data. Transactions are atomic. As a result, the on-

disk format is always consistent, hence the lack of fsck tool for ZFS.

The equivalent feature to journalling that ZFS has is the ZIL.

However, they function completely differently; in traditional file

systems, data held in RAM is typically flushed to a journal, which

is then read when its contents is to be committed to the file

system. As a gross oversimplification of the behaviour of ZFS, the

ZIL is only ever read to replay transactions following a failure, with

data still being read from RAM when committed to disk [19]. It is

possible to store replace the ZIL with a dedicated VDEV, called a

SLOG, though there are some important considerations to be

made.

A.4 Silent corruption

Silent corruption refers to the corruption of data undetected by

normal operations of a system and in some cases unresolvable

with certainty. It is often assumed that servergrade hardware is

almost resilient to errors, with errorcorrection code (ECC) system

memory on top of common ECC and/or cyclic redundancy check

(CRC) capabilities of various components and buses within the

storage subsystem. However, this is far from the case in reality. In

2007, Panzer-Steindel at CERN released a study [20] which

revealed the following errors under various occurrences and tests

(though the sampled configurations are not mentioned):

Disk errors Approximately 50 single-bit errors and 50 sector-sized

regions of corrupted data, over a period of five weeks of

activity across 3000 systems

RAID-5 verification Recalculation of parity; approximately 300

block problem fixes across 492 systems over four weeks

CASTOR data pool checksum verification Approximately “one bad

file in 1500 files" in 8.7TB of data, with an estimated “byte

error rate of 3 10 7"

Conventional RAID and file system combinations have no

capabilities in resolving the aforementioned errors. In a RAID-1

mirror, the array would not be able to determine which copy of

the data is correct, only that there is a mismatch. A parity array

would arguably be even worse in this situation: a consistency

check would reveal mismatching parity blocks based on parity

recalculations using the corrupt data.

In this instance, CASTOR (CERN Advanced STORage manager)

and it’s checksumming capability coupled with data replication is

the only method that can counter silent corruption; if the

checksum of a file is miscalculated on verification, the file is

corrupt and can be rewritten from the replica. There are two

disadvantages to this approach: at the time of the report’s

publication, this validation process did not run in real-time; and

this is a file-level functionality, meaning that the process of

reading a large file to calculate checksums and rewriting the file

from a replica if an error is discovered, will be expensive in terms

of disk activity, as well as CPU time at a large enough scale.

As stated in A.2, ZFS’s on-disk structure is a Merkle tree,

storing checksums of data blocks in parent nodes. Like CASTOR, it

is possible to run a scrub operation to verify these checksums.

However, ZFS automatically verifies the checksum for a block each

time it is read and if a copy exists it will automatically copy that

block only, as opposed to an entire file.

All the aforementioned points apply to both metadata and

data. A crucial difference between a conventional file system

combined with RAID and ZFS is that these copies, REFERENCES known

as ditto blocks, can exist anywhere within a zpool (allowing for

some data-level resiliency even on a single disk), and can have up

to three instances. ZFS tries to ensure ditto blocks are placed at

13
least 1/8 of a disk apart as a worst case scenario. Metadata ditto

blocks are mandatory, with ZFS increasing the replication count

higher up the tree (these blocks have a greater number of

children, thus are more critical to consistency) [21].

Another form of silent corruption associated with traditional

RAID arrays is the “write hole"; the same type of occurrence as

outlined above but on power failure. In production this is rare due

to the use of uninterpretable power supplys (UPSs) to prevent

system power loss and RAID controllers with battery backup units

(BBUs) to fix inconsistencies by restoring cached data on power

restoration. However, the problems remain the same as Panzer-

Steindel [20] outlined in arrays without power resiliency; there is

no way of determining whether the parity or data is correct, or

which copy of data is correct. ZFS’ consistent on-disk format and

atomic operations mean that data will either be committed from

ZIL or won’t be committed at all, with no corruption taking place

either way.

There are additional complexities regarding ZFS’ data integrity

capabilities; Zhang, Rajimwale, Arpaci-Dusseau et al. [22] released

a very thorough study in 2010, finding that provided a copy was

held in ARC, ZFS could actually resolve even the most extreme

metadata corruption as a secondary benefit to performance, as it

would restore consistent metadata on commits to disk. However,

they also found that ZFS does make assumptions that memory will

be free of corruption, which could result in issues for systems with

faulty memory or non-ECC memory. This is beyond the scope of

this paper, however the general consensus is that single-bit errors

are common enough to warrant the use of ECC memory; most

servers sold today do.

All of this is of particular importance with the gradually

reducing cost of disks and proportional reduction in power

consumption as capacities increase causing many organisations to

keep “cold" and “warm" data—accessed infrequently and

occassionally respectively—on their primary “hot" storage

appliances and clusters for longer periods of time.

A.5 Snapshots

LVM snapshotting allows any logical volume to have snapshotting

capabilities by adding a copy-on-write layer on top of an existing

volume. Presuming volume group vgN exists containing logical

volume lvN and snapshot snpN is being taken, the following

devices are created:

vgN-lvN virtual device mounted to read/write to the volume

vgN-snpN virtual device mounted to read/write to the snapshot

This allows snapshots to be taken, modified and deleted

rapidly, as opposed to modifying vgN-lvN and restoring later

vgN-lvN-real actual LVM volume; without snapshots, this would

be named vgN-lvN, would be mounted directly and would be the

only device to exist vgN-lvN-cow actual copy-on-write snapshot

volume

When a block on volume vgN-lvN-real is modified for the first

time following the creation of snapshot vgN-snpN, a copy of the

original block must first be taken and synchronously written in

lvN-cow [23], [24]. In other words, LVM effectively tracks the

original data in the snapshot at modification time, and the first

modification of the block guarantees a mandatory synchronous

write to disk. This is hugely expensive in terms of write

performance; some tests yield a six-time reduction in

performance [25], while others claim to have “witnessed

performance degradation between a factor of 20 to 30" [24].

Furthermore, the performance degradation introduced by

snapshots is cumulative—the aforementioned tasks need to be

performed for each snapshot. LVM snapshots should be

considered nothing more than a temporary solution allowing

backups to be taken from a stable point in time.

For native copy-on-write file systems such as ZFS, snapshots

are a zero-cost operation. They simply use block pointers like any

other data, therefore there is no impact on performance.

REFERENCES

[1] G. J. Popek and R. P. Goldberg, ‘Formal requirements for virtualizable
third generation architectures’, Commun. ACM, vol. 17, no. 7, pp. 412–
421, Jul. 1974, ISSN: 0001-0782. DOI: 10 . 1145 / 361011.361073.
[Online]. Available: http://doi.acm.org.ezproxy.
uwe.ac.uk/10.1145/361011.361073.

[2] QEMU. (), [Online]. Available: http://wiki.qemu.org/Main_ Page
(visited on 18/01/2017).

[3] libvirt. (2017). libvirt Application Development Guides, [Online].
Available: https : / / libvirt . org / devguide . html (visited on
19/01/2017).

[4] ——, (2017). Domain XML format, [Online]. Available: https://
libvirt.org/formatdomain.html (visited on 02/04/2017).

[5] Canonical Ltd. (27th Mar. 2017). Summary, [Online]. Available:
https://cloudinit.readthedocs.io/en/latest/index.html (visited on
03/04/2017).

[6] ——, (27th Mar. 2017). Nocloud, [Online]. Available: https:// cloudinit
. readthedocs . io / en / latest / topics / datasources / nocloud.html
(visited on 03/04/2017).

[7] HashiCorp. (27th Mar. 2017). Introduction to Vagrant, [Online].
Available: https : / / www. vagrantup . com / intro / index . html (visited
on 02/04/2017).

[8] ——, (27th Mar. 2017). Providers, [Online]. Available: https://
www.vagrantup.com/docs/providers/ (visited on 02/04/2017). [9] Red
Hat, Inc. (27th Mar. 2017). virt-install(1), [Online]. Available:
https://github.com/virt-manager/virt-manager/blob/master/
man/virt-install.pod (visited on 03/04/2017).

[10] O. Ben-Kiki, C. Evans and I. döt Net, Yaml ain’t markup language
(yamlTM), 3rd ed., version 1.2, 1st Oct. 2009. [Online]. Available:
http://yaml.org/spec/1.2/spec.html (visited on 03/04/2017).

[11] Red Hat, Inc. (16th Jan. 2017). Bug 1413773 - new regression on GIT:
Error:An error occurred, but the cause is unknown, [Online]. Available:
https://bugzilla.redhat.com/show_bug.cgi?id= 1413773 (visited on
04/04/2017).

[12] Python Software Foundation, The Python Standard Library, 1.5.1.4.
Files and Directories, 27th Mar. 2017. [Online]. Available: https:
//docs.python.org/2/library/os.html#files- and- directories (visited on
04/04/2017).

[13] ClusterHQ. (12th Mar. 2016). dataset names not accepted, [Online].
Available: https://github.com/ClusterHQ/pyzfs/issues/ 26 (visited on
04/04/2017).

[14] OpenZFS. (27th Feb. 2017). History, [Online]. Available: http:// open-
zfs.org/wiki/History (visited on 27/02/2017).

[15] ——, (27th Feb. 2017). Welcome to OpenZFS, [Online]. Available:
http://open-zfs.org/wiki/Main_Page (visited on 27/02/2017).

[16] ZFS on Linux. (20th Jan. 2013). ZFS on Linux issue #1225: Explain “The
pool is formatted using a legacy on-disk format." status message,
[Online]. Available: https : / / github . com /
zfsonlinux/zfs/issues/1225#issuecomment- 12555909 (visited on
27/02/2017).

https://doi.org/10.1145/361011.361073
https://doi.org/10.1145/361011.361073
https://doi.org/10.1145/361011.361073
http://doi.acm.org.ezproxy.uwe.ac.uk/10.1145/361011.361073
http://doi.acm.org.ezproxy.uwe.ac.uk/10.1145/361011.361073
http://doi.acm.org.ezproxy.uwe.ac.uk/10.1145/361011.361073
http://wiki.qemu.org/Main_Page
http://wiki.qemu.org/Main_Page
https://libvirt.org/devguide.html
https://libvirt.org/formatdomain.html
https://libvirt.org/formatdomain.html
https://libvirt.org/formatdomain.html
https://cloudinit.readthedocs.io/en/latest/index.html
https://cloudinit.readthedocs.io/en/latest/topics/datasources/nocloud.html
https://cloudinit.readthedocs.io/en/latest/topics/datasources/nocloud.html
https://cloudinit.readthedocs.io/en/latest/topics/datasources/nocloud.html
https://cloudinit.readthedocs.io/en/latest/topics/datasources/nocloud.html
https://cloudinit.readthedocs.io/en/latest/topics/datasources/nocloud.html
https://www.vagrantup.com/intro/index.html
https://www.vagrantup.com/docs/providers/
https://www.vagrantup.com/docs/providers/
https://www.vagrantup.com/docs/providers/
https://github.com/virt-manager/virt-manager/blob/master/man/virt-install.pod
https://github.com/virt-manager/virt-manager/blob/master/man/virt-install.pod
https://github.com/virt-manager/virt-manager/blob/master/man/virt-install.pod
http://yaml.org/spec/1.2/spec.html
https://bugzilla.redhat.com/show_bug.cgi?id=1413773
https://bugzilla.redhat.com/show_bug.cgi?id=1413773
https://docs.python.org/2/library/os.html#files-and-directories
https://docs.python.org/2/library/os.html#files-and-directories
https://docs.python.org/2/library/os.html#files-and-directories
https://github.com/ClusterHQ/pyzfs/issues/26
https://github.com/ClusterHQ/pyzfs/issues/26
http://open-zfs.org/wiki/History
http://open-zfs.org/wiki/History
http://open-zfs.org/wiki/History
http://open-zfs.org/wiki/Main_Page
https://github.com/zfsonlinux/zfs/issues/1225#issuecomment-12555909
https://github.com/zfsonlinux/zfs/issues/1225#issuecomment-12555909
https://github.com/zfsonlinux/zfs/issues/1225#issuecomment-12555909
https://github.com/zfsonlinux/zfs/issues/1225#issuecomment-12555909

