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Abstract: Over 95% of human genes are alternatively spliced, expressing splice isoforms that often
exhibit antagonistic functions. We describe genes whose alternative splicing has been linked
to prostate cancer; namely VEGFA, KLF6, BCL2L2, ERG, and AR. We discuss opportunities to
develop novel therapies that target specific splice isoforms, or that target the machinery of splicing.
Therapeutic approaches include the development of small molecule inhibitors of splice factor kinases,
splice isoform specific siRNAs, and splice switching oligonucleotides.
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1. Introduction

1.1. Pre-mRNA Splicing and Its Regulation

Pre-mRNA splicing was discovered in 1977 when the RNA sequence of adenoviruses was
compared with their genome through the direct visualisation of RNA-DNA hybrids via electron
microscopy. The hybrids of mRNA and restriction endonuclease cleavage fragments of viral DNA
revealed loops that were unable to hybridize to the DNA. These intervening sequences were called
‘introns’ whereas the hybridized regions were called ‘exons’ [1,2].

Pre-mRNA splicing is catalysed by the spliceosome, a dynamic molecular machine which includes
five small nuclear ribonucleoprotein particles (snRNPs) and a large number of auxiliary proteins [3].
These cooperate to recognize splice sites accurately and catalyse two transesterification reactions,
each involving a nucleophilic attack on the terminal phosphodiester bonds of the intron [4]. Three sites
participate in the splicing reaction: the 5′ splice site (5′ SS); the 3′ splice site (3′ SS); and the branch
point sequence (BPS). It is now clear that the vast majority of human genes (>95%) are alternatively
spliced, so that exons can be spliced together in different ways [5].

Pre-mRNA splicing is remarkably accurate thanks to the involvement of cis-regulatory elements
that facilitate the identification of exon–intron junctions, preventing ‘pseudoexons’ from being
included in mRNA. These elements can act as exonic splicing enhancers (ESEs) or silencers (ESSs),
and intronic splicing enhancers (ISEs) or silencers (ISSs) [6,7]. They are recognised by ‘splice factors’,
including RNA-binding proteins of the SR (serine/arginine-rich) family and the hnRNPs (heterogenous
nuclear ribonucleoprotein) proteins [8]. SR proteins generally facilitate the recruitment of spliceosomal
components such as the U1 snRNP to the 5′ splice site or U2AF65 to the pyrimidine tract adjacent to
the 3′ splice site, facilitating recruitment of U2 snRNP across the branchpoint [9]. The SR protein SRSF1
binds to the ESE and facilitates splice site selection by promoting exon definition, helping to select
alternative 5′ or 3′ splice sites in a concentration-dependent manner [10,11]. Increased concentrations
of SRSF1 often promotes the selection of intron-proximal splice sites whereas increased concentrations
of hnRNP A1 promotes that of intron-distal splice sites [12]. However, SR and hnRNP proteins can
also do the opposite, depending on cell type [13,14].
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Several splice factors, including SR proteins, undergo post-translational modifications which
influence their interaction and specificity with other proteins as well as their local concentration
adjacent to pre-mRNA substrates [15,16]. These modifications include phosphorylation by protein
kinases such as AKT [17,18], DYRKs [19,20], SRPKs, and CLKs [21–23], and dephosphorylation by
protein phosphatases including PP1 and PP2 [24]. These modifications also regulate SR protein
contributions to the regulation of mRNA export [25], nonsense-mediated decay [26], and mRNA
translation [27].

1.2. Extent of Alternative Splicing

In 1978, Wally Gilbert proposed that different combinations of exons could produce
multiple mRNA isoforms of a single gene introducing the concept of alternative splicing [28,29].
Alternative splicing is the main source of proteomic and functional diversity and is crucial for the
correct expression of the majority of metazoan genes [6,7]. A widely cited example that illustrates
the ability of alternative splicing to generate a substantial repertoire of proteins is the Drosophila
melanogaster gene Dscam (Down syndrome cell adhesion molecule). It can express 38,016 distinct splice
isoforms from several clusters of mutually exclusive exons [30]. The isoforms differ in the three IgG-like
domains in the extracellular portion of Dscam, changing their binding specificity. The different binding
specificities affect interactions between cells, facilitating complex networks of neuronal connections.
The neurexin genes are a well-studied family of genes in both invertebrates and vertebrates; they are
required for the formation and function of synapses. They are highly diversified in vertebrates, and are
also characterised by extensive alternative splicing through multiple mini-exons and alternative 5′ and
3′ splice sites producing an impressively wide range of splice isoforms [31]. Alternative splicing has
been examined in the nematode model organism Caenorhabditis elegans demonstrating tissue-specific
alternative splicing [32] and an involvement in sex determination [33]. Alternative splicing has also
been documented in plants [34]; examples include alternative transcripts of Vp-1 in wheat [35], and the
r1 gene [36] and the MADS box genes in maize [37].

There are several types of alternative splicing. The most prevalent type in vertebrates and
invertebrates is exon skipping, in which whole exons are omitted from the mature transcript.
Mutually exclusive exons are adjoining exons where only one is included in the mRNA. The boundaries
and therefore sizes of exons can also vary through the use of alternative 5′ or alternative 3′ splice sites.
Another form of alternative splicing is intron retention, in which individual introns are not removed.
There are generally higher rates of intron retention in less complex metazoans [38]. The use of alternative
exons can also arise due to alternative promoters or alternative polyadenylation sites. Nearly 95% of
human genes are alternatively spliced expressing at least 90,000 isoforms from ~20,000 protein-coding
genes [39]. Alternative splicing plays an important role in normal development and differentiation;
aberrant alternative splicing is associated with an increasing range of human diseases including
tauopathies, spinal muscular atrophy, retinitis pigmentosa, and many types of cancer [40,41]. Thus,
understanding the nature and regulation of alternative splicing is a major topic in molecular biology
nowadays. Its involvement in disease processes presents novel therapeutic opportunities.

2. Alternative Splicing and Prostate Cancer

2.1. The Challenge of Prostate Cancer

Prostate cancer (PCa) is one of the most important public health concerns worldwide with
numbers of cases increasing significantly every year [42]. Its incidence is particularly high in western
countries [43] where it is the most common malignancy and the second leading cause of death in
men. In 2018, in the USA alone, the projected estimate is 29,430 deaths, 164,690 new cases [44] with an
annual cost of treatment amounting to 12 billion dollars [45]. Lower incidence is observed in Asian
countries; it is increasing in developed countries in South America, the Caribbean and sub-Saharan
Africa [46]. These variations in incidence have been attributed, on the one hand, to diet, genetics,
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lifestyle, and environment and, on the other hand, to the availability of the prostate-specific antigen
(PSA) screening test [43,47]. However, the PSA test lacks precision as elevated PSA levels are also
associated with benign prostate lesions [48,49]. PCa is a highly heterogenous and multifocal disease
ranging from relatively harmless, indolent disease to metastatic and lethal disease [50]. The biological
diversity of PCa together with the development of resistance to androgen depletion therapies poses
significant challenges in the clinic [51,52].

Alternative splicing contributes to tumour heterogeneity and is exploited by cancer cells,
allowing them to divert away from normal developmental pathways [53]. It is therefore an appropriate
time to look at alternative splicing as a possible context in which to develop novel targeted therapies
for the treatment of PCa. In the following sections, we describe how alternative splicing affects genes
that are clearly linked to the aetiology of PCa.

2.2. Vascular Endothelial Growth Factor (VEGFA)

Vascular endothelial growth factor VEGFA (also known as VEGF) is a key regulator of
angiogenesis, required for cancer growth and metastasis [54]. VEGFA acts as a mitogen on endothelial
cells through the VEGFR1, VEGFR2 and VEGFR3 receptors [55,56]. VEGFA is a member of a growth
factor family with a common VEGF homology domain; the family includes VEGFA, VEGFB, VEGFC,
VEGFD, VEGFE, VEGFF, and placental growth factors PIGF1 and -2 [57,58]. The conserved domain
includes a cystine-knot structure formed by eight conserved cysteine residues [59].

The human VEGF genes generally contain seven exons; VEGFA has eight [60]. The VEGF genes
are highly evolutionarily conserved [61]. At least 12 VEGFA isoforms are generated through alternative
splicing of exons 6, 7 and 8 [62] giving rise to proteins with different heparin-binding properties [63].
VEGFA expresses both pro-angiogenic VEGFxxx and anti-angiogenic VEGFxxxb isoforms, where xxx
is the number of amino acids. The isoforms are generated through use of alternative 3′ splice
site in exon 8; the proximal splice site results in pro-angiogenic VEGF and distal exon 8 splice
sites anti-angiogenic VEGF [64]. VEGFA expresses at least seven additional splice isoforms due
to alternative splicing of exons 6 and 7 generating VEGF121, VEGF145, VEGF148, VEGF165, VEGF183,
VEGF189, and VEGF206, all of which exhibit different biological properties [58]. The anti-angiogenic
isoforms are generally downregulated and the pro-angiogenic isoforms upregulated in tumours [65].
One of the main anti-angiogenic isoforms downregulated in a variety of cancers including PCa is
VEGF165b [66]. Curiously, both alternative splice sites in exon 8 are followed by six amino acids
before the stop codon; pro-angiogenic VEGFA ends in CDKPRR whereas anti-angiogenic VEGFA
ends in SLTRKD [67]. This subtle change affects its interaction with the receptor VEGFR2 resulting
in weakened downstream signalling [68]. The regulation of alternative splicing of VEGFA into pro-
and anti-angiogenic isoforms has yet to be fully understood [69]. However, recent studies have
identified that three SR proteins, SRSF6 [64,70], SRSF1 activated by the splice factor kinase SRPK1 [71],
and SRSF2 [72] all contribute to its regulation. Pro- and anti-angiogenic VEGFA splice isoforms are
not the only VEGFA splice isoforms that are biologically significant in prostate cancer. For example,
an increase in the VEGF121/VEGF165–189 ratio in PC3 PCa cells results in a significant increase in
angiogenesis in vivo, highlighting the importance of the VEGF121 isoform in PCa, and demonstrating
that the balance of splice isoforms affects prostate carcinogenesis [73].

2.3. The KLF6 Gene

The KLF6 gene product (Krüppel-like factor 6, also known as BCD1, COPEB, and ZF9) belongs to
the family of Krüppel-like zinc finger transcription factors which consists of at least 24 members
including Sp1-like (Sp1-8) and KFL-like factors (KFL1-16) [74]. It regulates a wide range of
cellular processes including differentiation, proliferation, and apoptosis [75]. The gene is located
on chromosome 10p15.2, a region deleted in about 55% of sporadic prostate adenocarcinomas [76].
It consists of four exons encoding a protein of 283 amino acids, including an N-terminus transactivation
domain and three C-terminal C2–H2 zinc fingers that form a DNA-binding domain [77]. KLF6 is a
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tumour suppressor gene, named after the gap gene Krüppel from Drosophila melanogaster that causes a
crippled phenotype when inactivated [78]. It is down-regulated in several types of cancer including
PCa through a range of mechanisms including loss of heterozygosity (LOH), somatic mutations,
or aberrant alternative splicing [79,80].

The alternative splicing of KLF6 results in the production of at least four splice isoforms [74].
One of the mutations found in PCa patients is a single nucleotide substitution in intron 1 that creates a
novel binding site for the splicing factor SRSF5. This results in the use of two cryptic splice sites in
exon 2 and enhances the expression of three alternative mRNA variants encoding for truncated KLF
proteins; these are named Krüppel-like factor 6 splice variants 1, 2 and 3 (KLF6-SV1, SV2, and SV3).
KLF6-SV does not have a zinc-finger DNA-binding domain but preserves most of the N-terminal
domain [81]. KLF6-SV1 is formed by an alternative 5′ splice site in exon 3. A polymorphism of this
isoform, IVS1 −27G>A, the IVS∆A allele, was shown to be associated with increased risk of PCa when
142 probands from a familial PCa registry were examined [82]. KLF6-SV1 is an antagonist of KLF6,
and acting in a dominant-negative manner, it can promote increased cell growth. Knockdown of
full length KLF6 increased tumour formation whereas knockdown of KLF-SV1 inhibited tumour
formation [82]. Increased expression of KLF6-SV1 in tumours from men after prostatectomy is
associated with lower survival rates and disease recurrence. When PCa cells are forced to overexpress
this isoform in a mouse model, the mice are more susceptible to develop multi-organ metastases [83].
Increased expression of KLF6-SV1 is dependent on the Ras/PI3-K/Akt cell signalling pathway
associated with increased cell proliferation and survival [84]. Together these findings suggest that the
expression of the KLF6-SV1 isoform can promote metastatic phenotypes, and could be considered a
target for therapy. The example also illustrates the point that a tumour suppressor gene can in fact
acquire the properties of an oncogene, depending on how it is alternatively spliced.

2.4. The BCL2L1 Gene

The BCL2L1 (BCL2-like 1) gene, commonly referred to as BCLX, is a member of the BCL-2 gene
family. The BCL-2 family encodes part of the core of the apoptotic machinery and is conserved from
the nematode Caenorhabditis elegans to mammals [85]. Apoptosis is a highly regulated process in
development, and it is critical for the development and progression of cancer [86]. The BCL-2 family is
composed of three groups; anti-apoptotic proteins, pro-apoptotic effectors and pro-apoptotic activators.
They share at least one out of four conserved BCL-2 homology domains (BH1-4) [87]. BCL2L1 has three
exons and expresses several isoforms by alternative splicing with opposing functions, notably BCL-xL
(B cell lymphoma extra-long) and BCL-xS (B cell lymphoma extra-small). The isoforms arise from
alternative 5′ splice sites in exon 2. When the proximal splice site is selected, the BCL-xL isoform is
expressed, whereas the BCL-xS isoform is expressed from the distal splice site [88].

The alternative splicing of BCL2L1 is known to be regulated by several splice factors.
The pro-apoptotic isoform BCL-xS is promoted by hnRNP H and F [89], SAM68 [90], RBM25 [91],
and RBM11 [92]. In contrast BCL-xL is promoted by SRSF1 [93], SRSF9 [94], and SAP155 [95]. In PCa
cells, treatment with the drug calyculin A blocks emetine-induced BCL-xL expression through inhibition
of the protein phosphatases PP1 and PP2A, phosphatases that are known to dephosphorylate SR protein
splice factors [96]. BCL-xS is down-regulated in many types of cancer including prostate cancer [97].
BCL-xL is associated with hormone refractory phenotype in PCa [98] and contributes to resistance to
chemotherapy [99]. In contrast, BCL-xS inhibits cell survival [100] and the shift from BCL-xL to BCL-xS
expression induces apoptosis in PC3 and MCF-7 cells [86]. There is therefore interest in developing
therapeutic tools that alter the balance of BCL2L1 splice isoforms in tumour cells to promote apoptosis.

2.5. The ERG Gene

ERG (V-Ets avian erythroblastosis virus E26 oncogene homolog) is a member of the ETS
(E26 transformation-specific) transcription factor family, one of the largest families of transcriptional
regulators consisting of at least 27 members, subdivided into five subfamilies [101]. All ETS
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transcription factors contain a conserved ETS DNA-binding domain, consisting of 85 amino acids that
recognize a core GGAA/T sequence [101]. ERG is expressed at low levels in normal prostate epithelial
cells [102] and plays a key role in regulating a variety of cellular pathways such as cell proliferation,
inflammation, apoptosis, and bone formation [103]. Strikingly, the ERG gene is highly expressed in
more than 60% of patients with aggressive PCa [104].

ERG expression is generally activated through a 3 Mb deletion in chromosome 21 resulting
in the fusion of the promoter of the androgen-regulated, prostate specific transmembrane serine
protease TMPRSS2 gene with the coding region of ERG, generating an androgen-responsive fusion
oncoprotein [105]. Prostate cancer cells positive for the fusion show increased ERG expression in
response to androgens due to the TMPRSS2 promoter [106]. This fusion is the most common genetic
lesion associated with disease mortality [107]. TMPRSS2 can also fuse with the ETV1 and ETV4
genes (also members of the ETS family of transcription factors), but the fusion with ERG is the most
prevalent, detected in ~50% of patients [108,109]. The TMPRSS2-ERG fusion is also associated with
increased tumour growth and metastasis [110] and correlates with PSA recurrence and seminal vesicle
invasion [111].

The ERG gene consists of 17 exons and expresses several splice isoforms of which at least five are
translated; ERG-1, ERG-2, ERG-3, ERG-4, and ERG-5 [112,113]. TMPRSS2-ERG fusions express several
fusion transcripts depending on the precise site of fusion, causing additional heterogeneity [114].
Recent evidence has underlined the biological relevance of cassette exon 7b of ERG. This exon encodes,
in frame, 24 amino-acids that are added to the transcription activation domain in the middle of the
protein. Rates of exon 7b inclusion increase in later stages of PCa, suggesting that it enhances ERG’s
oncogenic potential [115], presumably by altering the effect of ERG on its target genes. Therapies could
be designed that target, specifically, ERG’s cassette exon 7b.

2.6. The Androgen Receptor (AR)

The normal development and maintenance of the prostate is dependent on androgens whose
production is regulated by the hypothalamic-pituitary gonadal through the androgen receptor
(AR, also known as DHTR or NR3C4) [116]. AR is a 110 kDa member of the steroid receptor
transcription factor family which includes the estrogen receptor-α (ERα), estrogen receptor-β (ERβ),
and progesterone receptor (PR) [53]. Men express one copy of the AR gene located at Xq11-12.
The gene has eight exons and the protein is 919 amino acids long with three major functional
domains. These are the N-terminal domain, the DNA-binding domain and the ligand-binding domain
each with a vital role in AR activity [117,118]. Alterations in AR transcripts including insertions of
cryptic exons downstream of the coding sequences [119] or exon skipping [120] disrupt the open
reading frame, leading to the expression of truncated proteins that are not androgen dependent.
Reactivation of AR signalling contributes to castration-resistant PCa [121]. There is still a degree
controversy in relation to the association between AR activation and disease progression; some studies
suggest that high AR expression increases tumour grade and stage leading to lower recurrence-free
survival [122], whereas other studies associate decreased AR expression with tumour progression [123].
These discrepancies could be explained by the fact that it is not just overall expression of AR that
matters, but also its alternative splicing.

There are at least 22 splice variants of AR [124] with AR-V7 and ARV567es the most commonly
studied; of these, AR-V7 has been detected in the clinic [125]. Both splice variants lack the C-terminal
ligand-binding domain; they are constitutively active and therefore resistant to traditional androgen
deprivation therapy [126]. AR-V7 mRNA arises from an alternative 3′ splice site next to a cryptic exon
3B [127]. The detection of AR-V7 transcripts in circulating tumour cells of 62 men with progressive,
metastatic castration-resistant PCa was associated with resistance to the AR inhibitors abiraterone and
enzalutamide [128]. The splice factors U2AF65 and SRSF1 have been found to play a critical role in
mediating AR-V7 expression [129].
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ARV567es arises from exon 5 to 7 skipping causing an early stop codon after the first 29 nucleotides
of exon 8 [130]. ARv567es has also been found to activate androgen-responsive genes such as KLK3,
TMPRSS2, and NKX3.1 in a hormone-independent manner when ectopically expressed in LNCaP
cells [131]. Using a probasin promoter driven ARv567es transgenic mouse, it was found that expression
of ARv567es in prostate leads to epithelial hyperplasia after 16 weeks, and invasive adenocarcinoma
by year one in the experimental model. However, the precise role of the ARv567es in normal prostate
growth and castration-resistant PCa is still unclear [132].

Additional splice variants of AR have been described. One was identified by RACE (rapid
amplification of cDNA ends) in CWR-R1 cells and named AR8. Its expression is highest in cells
derived from castration-resistant tumours [133]. AR8 lacks a DNA-binding domain and localizes
to the plasma membrane. Overexpression of AR8 promotes the association of Src and AR with the
EGF receptor following EGF treatment. Another study described AR45, an isoform that lacks exon
1. Its overexpression decreases the proliferation of androgen-dependent LNCaP cells through the
formation of AR-AR45 heterodimers, presumably by inhibiting the activity of full length AR [134].
In summary there are several, functionally distinct AR splice variants that contribute to androgen
resistance mechanisms. It is therefore imperative to develop novel therapies that modify AR
alternative splicing.

3. Modulation of Splicing for Therapeutic Benefit

Clinically significant splice isoforms often exhibit unique biological properties and can be
targeted by pharmacological agents directly, or through targeting the splice factors that regulate
their expression [135]. To illustrate this point, small molecular inhibitors of the SRPK1 splice factor
kinase that phosphorylates the oncogenic splice factor SRSF1 can switch VEGFA splicing in favour
of the anti-angiogenic isoforms in PCa cells [71]. SRPK1 inhibitors decrease tumour growth in a PCa
mouse model in vivo providing strong evidence that they could be used therapeutically for treating
PCa [72,136,137]. SPHINX is the latest generation SRPK1 inhibitor; it exhibits anti-tumour effects after
repetitive intraperitoneal administration in a mouse model of orthotopic PCa [136]. The inhibition of
SRPK1 brings benefits to other pathologies that involve abnormal angiogenesis. For example, a single
dose of an earlier SRPK1 inhibitor, SRPIN340, significantly inhibits angiogenesis and increases normal
vascularization in a mouse model of retinal neovascularization [72].

Small molecule inhibitors can also be used to alter the expression of AR splice isoforms through
the inhibition of HSP90, a protein required for nuclear translocation of full-length AR in response
to hormone. The first HSP90 inhibitor in clinical trials is alvespimycin [138]; it produces a good
response in castrate-refractory PCa, and a stable response in patients with melanoma, chondrosarcoma,
and renal cancer [139]. A second-generation HSP90 inhibitor called onalespib inhibits more than 500
splice isoforms including AR splice isoforms. In particular, onalespib was found to reduce the levels of
both full length AR and AR-V7 in PCa cell lines in a concentration and time-dependent manner; it also
reduced tumour growth in AR-V7 expressing 22Rv1 tumour xenografts [140]. However, the effect
of HSP90 inhibition on the expression of AR splice isoforms is not yet entirely clear. Treatment with
the second-generation HSP90 inhibitor luminespib increased AR-V7 expression in VCaP cells [141]
whereas geldanamycin did not affect AR-V7 levels in 22Rv1 cells [142].

Another approach is the use of splice-switching oligonucleotides (SSOs). SSOs are short (15–25 bases
in length), synthetic, antisense, modified nucleic acids that target exon-intron junctions or regulatory
exonic and intronic sequences [143]. Their binding leads to the blocking of the RNA–RNA base-pairing
or protein–RNA binding interactions that occur between components of the splicing machinery
and the pre-mRNA [144]. SSOs have been used to modify splicing of BCL2L1, disrupting tumour
growth in vivo by targeting the 5′ splice site of exon 2 of BCL2L1 pre-mRNA. This led to decreased
expression of Bcl-xL and an increased expression of Bcl-xS splice isoform, inducing apoptosis in breast
and PCa cells and reducing the tumour burden in vivo [145]. Another study found that the Bcl-xS
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isoform, induced by SSOs, sensitized the cancer cells to treatment with ultraviolet, γ-irradiation and
chemotherapeutic drugs [99].

Small interference RNAs (siRNAs) have been widely used to target splice variants and counteract
their oncogenic activities. SiRNAs have been used to target specific AR exons, for example exon 1 in
human prostate carcinoma 22Rv1 cells reduced cell proliferation [146]. SiRNA-mediated knockdown
of AR isoforms that lack the C-terminal hormone binding domain suppressed androgen-independent
cell proliferation, and induced G1 cell-cycle arrest and apoptosis; similar results were obtained
through treatment with the antibiotic nigericin, known to act at a post-transcriptional level on AR
expression [147].

Figure 1 summarizes different approaches to altering splicing in vivo. Splice factor kinases [71,136],
splice factors [148], or even spliceosome components [149] can be targeted directly. RNA interference
-based methods [150,151] and SSOs [86,152] have been successfully used to target specific splice
isoforms at the RNA level. It seems highly likely that prostate cancer patients will benefit in the
future from therapies directed at altering splicing of cancer-associated genes. The challenge will be to
improve the stability, specificity, and delivery of modifiers of splicing to tumour sites, while minimising
side-effects [152].
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Figure 1. Different approaches to the in vivo modification of splicing of cancer-specific isoforms.
Growth stimulatory signals that activate splice factor kinases through AKT or splice factors directly
through ERK can be inhibited; splice factor kinases, splice factors or components of the spliceosome can
also be targeted directly. At the RNA level, pre-mRNA splicing can be modified with splice switching
oligonucleotides (SSOs), and specific mRNA isoforms can be targeted with siRNAs. At the protein
level, drugs can also be targeted at specific isoforms.

4. Conclusions

It is abundantly clear that alternative splicing is vital for normal gene regulation, and that aberrant
splicing is involved in many types of cancer, including prostate cancer. Therefore understanding the
regulation of alternative splicing can provide new contexts for the development of novel therapeutic
strategies. A number of cancer specific splice variants have been identified and discussed in this article,
including VEGFA, KLF6, BCL2L2, ERG, and AR. Novel therapeutic strategies including the use of SSOs
to alter the balance of pro- and anti-apoptotic BCL2L2 isoforms, siRNAs that target specific AR exons,
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small molecule inhibitors that block AR-mediated signalling, or small molecules that inhibit splice
factor kinases, have all shown promise. There is a pressing need to expand research into alternative
splicing not just in the context prostate cancer, but in the context of many other important diseases.
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Abbreviations

BPS branchpoint sequence
ESE exonic splice enhancer
ESS exonic splice silencer
ISE intronic splice enhancer
ISS intronic splice silencer
hnRNP heterogenous ribonucleoprotein
RACE rapid amplification of cDNA ends
snRNP small nuclear ribonucleoprotein
SR protein serine/arginine-rich splice factor
SSO splice-switching oligonucleotide
PCa prostate cancer
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