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 Abstract 

As sea level is projected to rise throughout the 21st century due to climate change, 

there is a need to ensure that sea level rise (SLR) models accurately and 

defensibly represent future flood inundation levels to allow for effective coastal 

zone management. Digital Elevation Models (DEMs) are integral to SLR 

modelling, but are subject to error, including in their vertical resolution. Error in 

DEMs leads to uncertainty in the output of SLR inundation models, which if not 

considered, may result in poor coastal management decisions. However, DEM 

error is not usually described in detail by DEM suppliers; commonly only the 

RMSE is reported. This research explores the impact of stated vertical error in 

delineating zones of inundation in two locations along the Devon, United 

Kingdom, coastline (Exe and Otter Estuaries). We explore the consequences of 

needing to make assumptions about the distribution of error in the absence of 

detailed error data using a 1m, publically available composite DEM with a 

maximum RMSE of 0.15m, typical of recent LiDAR-derived DEMs. We 

compare uncertainty using two methods (i) the NOAA inundation uncertainty 

mapping method which assumes a normal distribution of error, and (ii) a 

hydrologically correct bathtub method where the DEM is uniformly perturbed 

between the upper and lower bounds of a 95% linear error in 500 Monte Carlo 

Simulations (HBM+MCS). The NOAA method produced a broader zone of 

uncertainty (an increase of 134.9% on the HBM+MCS method), which is 

particularly evident in the flatter topography of the upper estuaries. The 

HBM+MCS method generates a narrower band of uncertainty for these flatter 

areas, but very similar extents where shorelines are steeper. The differences in 

inundation extents produced by the methods relates to a number of underpinning 

assumptions, and particularly, how the stated RMSE is interpreted and used to 

represent error in a practical sense. Unlike the NOAA method, the HBM+MCS 

model is computationally intensive, depending on the areas under consideration 

and the number of iterations. We therefore used the HBM+ MCS method to 

derive a regression relationship between elevation and inundation probability for 

the Exe Estuary. We then apply this to the adjacent Otter Estuary and show that it 

can defensibly reproduce zones of inundation uncertainty, avoiding the 



 

 

computationally intensive step of the HBM+MCS. The equation-derived zone of 

uncertainty was 112.1% larger than the HBM+MCS method, compared to the 

NOAA method which produced an uncertain area 423.9% larger. Each approach 

has advantages and disadvantages and requires value judgements to be made. 

Their use underscores the need for transparency in assumptions and 

communications of outputs. We urge DEM publishers to move beyond provision 

of a generalised RMSE and provide more detailed estimates of spatial error and 

complete metadata, including locations of ground control points and associated 

land cover.  

Keywords: Sea Level Rise; DEM Error; Uncertainty; Digital Elevation or Terrain 

Models; Coastal Applications 

Introduction  

Climate change induced sea level rise (SLR) is one of the most significant challenges 

facing the world’s coastal zone. An estimated 270 million people are at risk of a 1 in 

100-year coastal flood event, a figure which is set to rise to 350 million by 2050 

(Jongman et al., 2012). Sea level has been rising throughout the 20th century and 

between 1870 and 2004 global mean sea level rose 0.2m (Church and White, 2006). 

Under all SLR scenarios the frequency and magnitude of coastal flooding is likely to 

increase. In the UK, the 2009 UK Climate Projections (UKCP09) scenarios forecast a 

maximum SLR of 1.45m, and a minimum of 0.21m by 2100 (Sayers et al., 2015). For 

effective coastal zone management, it is important to identify the areas at risk of 

flooding from future SLR.  

Geographic Information Systems (GIS) have been used successfully to analyse 

the impact of SLR at a range of spatial scales (Hennecke, 2004; Li et al., 2009; Chang, 

2014), and have become an established method of assessing coastal flood risk (Gesch, 

2009). Although SLR must be considered in relation to all underlying coastal dynamics 



 

 

(French & Burningham, 2013), topography is a principal driver in many coastal change 

processes (Zhang, 2010). 

Digital Elevation Models (DEMs), which represent topography, store elevation 

data on a cell-by-cell basis. However, all spatial datasets, including DEMs, have 

inherent inaccuracies introduced by errors from several sources, which propagate into 

uncertainty when used as data products (Fisher & Tate, 2006; Wechsler, 2007; Cooper 

& Chen, 2013). Understanding error and associated uncertainty, and how to 

communicate and analyse these concerns, has been a significant challenge for the 

research community (Goodchild, 2010; Wallentin & Car, 2013). Discussions of 

uncertainty have moved from a simple acknowledgement, to being a key factor in GIS 

based decision-making (Couclelis, 2003; Tucci & Giordano, 2011). Decisions made 

using GIS data without consideration of uncertainty, may well be based on inaccurate 

and misleading understandings of spatial processes. This has the potential to affect the 

appropriateness of management and policy (Boin & Hunter, 2007). This is particularly 

problematic when mapping SLR (Rahmstorf, 2007), as although it is relatively simple 

to raise the water level on a DEM (Gesch, 2013), the accuracy and resolution with 

which the topography was originally mapped will affect the reliability of the results and 

model outputs (Coveney & Fotheringham, 2011; van de Sande et al., 2012).  

Knowing the error in model inputs, such as DEMs, can help ensure that more 

representative SLR inundation predictions are produced (Chu-Agor et al., 2011). 

Sources of error in DEMs can be identified as being those arising from variation in the 

accuracy of the data collection; those derived from the processing of the LiDAR data; 

and those resulting from the characteristics of the physical environment (Shearer, 1990; 

Li, 1998; Fisher & Tate, 2006). Errors from all sources are often collectively, but 

incompletely, expressed as root mean square errors (RMSE) (Maune et al., 2007), in 



 

 

both the vertical (RMSEz) and horizontal dimensions (RMSExy). Both represent the 

deviation of a modelled value from the true ground elevation/location (Gesch, 2013). 

Light Detection and Ranging (LiDAR) is a method of generating highly accurate 

DEMs. Recently large volumes of high quality LiDAR derived DEMs have become 

available. These are strongly suited to SLR assessments (Bales et al., 2007; Zhang, 

2010) due to their low vertical error (Gesch, 2009). For example, some very high-

resolution LiDAR derived DEMs (<50cm spatial resolution) have an RMSEz of 5cm. 

This is a significant improvement on DEMs derived using alternative methods, where 

the vertical error can exceed 2m (Poulter & Halpin, 2008). Earlier SLR assessments 

were based on such coarse scale DEMs (Poulter & Halpin, 2008; Li et al., 2009). 

However DEMs with high vertical errors have been found to be problematic for SLR 

assessment, and any results generated should be interpreted with caution (Santillan & 

Makinano-Santillan, 2017).    

It is important to note that improvements in data quality do not necessarily 

remove the issue of error and associated uncertainty (Daly, 2006). Therefore as more 

high resolution products become freely available, exaggerated expectations of realism 

and accuracy need to be managed (Dottori et al., 2013) to avoid what Beven et al. 

(2015) refer to as ‘hyper-resolution ignorance’. Error and the resulting uncertainty of 

perceived higher quality products should be considered and understood for effective 

policy and management decision making.  

Although elevation is a primary variable in many SLR studies, few have 

examined the impact of vertical error and the resulting inundation uncertainty (Gesch, 

2013). Studies have tended to focus on the quantification of error (such as the RMSE) 

within a DEM, rather than the degree to which error is likely to impact the delineation 

of areas at risk of flood inundation (Coveney & Fotheringham, 2011). In 2015 the UK 



 

 

Environment Agency released its LiDAR derived DEMs as open, freely downloadable 

data (at resolutions of 25cm, 50cm, 1m, and 2m). As these high resolution DEMs are 

more likely to be used in SLR assessments (Cooper & Chen, 2013), it is important to 

now consider the impact of their vertical error on the results of commonly used SLR 

models.  

The paucity of research examining the impact of DEM vertical error on 

inundation extent arises for several reasons. Firstly, there is usually very limited 

information about error beyond the RMSE, and secondly there is little guidance as to 

what practitioners should assume this error measure represents, or indeed how it should 

be used to understand its consequence for coastal planning and decision making. 

Finally, this may also be a result of the computationally intensive assessment process 

needed to present a defensible representation of resulting uncertainty. We aim to 

address this by assessing, quantifying, and presenting the uncertainty that arises in 

inundation due to stated vertical error within a publically available LiDAR-derived 

DEM using two different approaches. One of which makes the assumption of vertical 

errors being normally distributed at a point and across the DEM surface, while the other 

assumes a spatially random distribution of error, but drawn uniformly from between the 

upper and lower bounds of the 95% linear error. We will then explore the feasibility of 

developing elevation/uncertainty relationships based on one of these methods, and 

assess whether these relationships are adequately representative to replace intensive 

iterative approaches as an initial tool in assessing inundation extent and uncertainty 

associated with SLR projections.   

Methodology  

The UK Environment Agency’s 1m resolution LiDAR derived DEM was chosen 

because it was the highest spatial resolution dataset available with complete coverage of 



 

 

the study area. The DEM was projected according to the OSGB’36 British National 

Grid, with elevations recorded Above Ordnance Datum Newlyn (AODN). This DEM is 

a publically available composite data output. It is the product of 47 individual LiDAR 

surveys with varying RMSE values and systematic and random errors (available in the 

online supplementary material for this paper). No further data quality information was 

available for the either the composite data product or the individual surveys, as is the 

case with many similar datasets (Gesch, 2013). This includes precise details on the 

location of the ground control points (GCPs) and their associated landcover, or any 

further information regarding the spatial structure of the reported error across the 

composite DEM. As error will vary across the individual surveys, the quality control 

standards for the composite DEM will be used as model inputs in this research. The 

specifications for the DEM require horizontal (planar) accuracy, or absolute spatial 

error, of less than ±40cm (horizontal RSMExy=0.40m) (Environment Agency, 2016). 

For the 1m resolution DEM, this horizontal error is within the cell size and will 

therefore not be considered further. The vertical accuracy, or absolute height error, is 

required to be within ±15cm (vertical RMSEz=0.15m). 

Equation 1 (Gesch, 2013) determines the minimum SLR projection that should 

be modelled alongside any DEM with a known vertical error. Using an increment 

smaller than this would invalidate the results as the projection would be within the 

bounds of the published error of the DEM (Gesch, 2009).  

𝑆𝐿𝑅𝑚𝑖𝑛 = 𝑅𝑀𝑆𝐸𝑧 ∗ 3.92  (1) 

The minimum SLR projection that should be modelled with the 1m DEM from 

the UK Environment Agency is 0.59m (Table 1), and using lower SLR estimates for the 

UK would require a more accurate DEM. The UKCP09 H++ prediction of 1.42m, a 



 

 

worst case-low probability scenario for South-West England, was therefore selected 

(Sayers et al., 2015).  

 

Table 1: Suitability of UKCP09 SLR Scenarios for Mapping with the 1m DEM 

(After Sayers et al., 2015) 

Scenario Sea Level Rise 

for Lyme Bay 

𝐒𝐋𝐑𝐦𝐢𝐧 for a 15cm 

RMSE  

Suitability  

2 Degree 0.28m 0.59m Not Suitable 

4 Degree 0.66m 0.59m Suitable 

H++ 1.42m 0.59m Suitable 

 

The effects of vertical error are exaggerated along open, flat areas of coastline, 

such as estuaries, where even a relatively small error can lead to a significant 

misrepresentation of inundation (Bales et al., 2007). The Exe Estuary and adjacent Otter 

Estuary, South Devon, were chosen as the case study areas. Both estuaries include a 

variety of coastal environments (including cliffed beaches, coastal sand/gravel spits, 

wetlands/inner estuarine habitats) and therefore represent a range of gradients. Local 

highest astronomical tide (HAT) (2.8 meters above Ordnance Datum (maOD)) was used 

in conjunction with the SLR projection, as recommended by the US National Oceanic & 

Atmospheric Administration (NOAA) (NOAA, 2010).  

The analysis consisted of two phases. Firstly, inundation uncertainty in both the 

Exe and Otter Estuaries arising from the stated vertical error was assessed using two 

methods (i) the NOAA z-score approach of Schmid et al. (2014) (NOAA method) and 

(ii) a probabilistic approach using a hydrologically correct bathtub model with Monte 

Carlo Simulation (HBM+MCS method). Secondly, based on the Exe Estuary, a 



 

 

generalised regression relationship was derived linking elevation (relative to Ordnance 

Datum) and inundation uncertainty. This was then applied to the Otter Estuary and 

evaluated in relation to the other methods.  

Phase 1: Modelling Inundation Uncertainty 

This section outlines the methodology applied for Phase 1 of the analysis. Firstly, the 

NOAA method (after Schmid et al., 2014) is presented. Secondly, we describe the 

analysis undertaken to derive our probability of inundation generated using Monte Carlo 

simulation and a hydrologically correct bathtub model (HBM+MCS). 

The NOAA Method 

NOAA’s Coastal Services Centre’s Sea Level Rise and Coastal Flooding Impacts 

Viewer uses the RMSEz to map inundation probability using a Z-score approach 

(Schmid et al., 2014).  For each cell within the DEM the standard (Z) score is given by 

Equation 2: 

𝑍(𝑥,𝑦) =  
(𝑤𝑎𝑡𝑒𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑖𝑛𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛) − 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 (𝑥.𝑦))

𝑅𝑀𝑆𝐸𝑧
      (2) 

The cumulative probability of inundation (PI) can then be obtained by using the 

Z-score to calculate the corresponding probability from the cumulative (one tail) normal 

distribution (Schmid et al., 2014). The resultant spatially continuous inundation measure 

was categorised and mapped according to descriptors adapted from the 

Intergovernmental Panel on Climate Change’s (IPCC) Fifth Assessment Report (Table 

2). In this method, no account is taken of whether areas are hydrologically connected or 

not. 

 



 

 

Table 2: Probability of Inundation Descriptors (after Mastrandrea et al., 2010)  

Descriptor PI Value Range 

No Inundation 0 

Exceptionally Unlikely 0.1-1 

Very Unlikely 1.1-10 

Unlikely 10.1-33 

About as Likely as Not 33.1-66 

Likely 66.1-90 

Very Likely 90.1-99.9 

Virtually Certain 100 

   

The Hydrologically Correct Bathtub Model & Monte Carlo Simulation 

(HBM+MCS Method) 

Monte Carlo Simulation (MCS) is a form of probabilistic analysis that has been used to 

model the effects of error in GIS (Fisher, 1991; Openshaw et al., 1991). MCS allows an 

assessment of uncertainty in inundation model outputs through the addition of 

probability distributions to replace single values (Fisher, 1991), giving an indication of 

the effect of error in the input data (Openshaw et al., 1991). Similar iterative 

approaches, based on MCS, have been applied to GIS error/uncertainty studies (Fisher, 

1991; Lanter & Veregin, 1992; Holmes et al., 2000).  

In such approaches, the original DEM is considered only one possible realisation 

of the true elevation. Further DEM realisations are produced by adding randomly 

generated error fields to the original (Rubinstein, 1982). In our case, error fields were 

created based on the linear error with a 95% confidence level (LE95z), calculated by 

Equation 3 (Gesch, 2007).  



 

 

𝐿𝐸95𝑍 = 1.96 ∗ 𝑅𝑀𝑆𝐸𝑧  (3) 

The use of the LE95 has become a commonly used representation of vertical 

error (Gesch, 2009, 2013), and has been applied to SLR uncertainty studies (Santillan & 

Makinano-Santillan, 2017) in the absence of the actual distribution of error being 

known. Although the LE95z is property of the normal distribution, we are using it in this 

context simply to attempt to account for the fact that the RMSE is not a precise 

quantification of error, and that the LE95z at least provides a more realistic range within 

which the actual (unknown) DEM error is likely to be located. The linear error at 95% 

confidence for the DEM in our study is 0.294m.  

In the absence of any additional information relating to how vertical error might 

vary spatially in response to other factors, we assumed that error at each cell could vary 

up to the maximum in either direction, i.e., we have chosen to sample from the LE95z 

bounds uniformly This replicates The US Nature Conservancy Method (TNC) (Gilmer 

and Ferdana, 2012) except that where they use the RMSE, we have used LE95Z.  

Our rationale for selecting a uniform distribution is that Schmid et al. (2014) 

present evidence that error may not be normally distributed in coastal environments. 

Sefercik et al. (2015) similarly show for their inland site that errors were normal for 

shorter vegetation, but were not for taller vegetation. Since the location and land cover 

of ground control points has not been provided and we have no other information about 

error, drawing from a uniform distribution, rather than a normal distribution, is more 

conservative. Five hundred individual randomised error fields with uniformly 

distributed values between -0.294m and +0.294m were therefore created for both 

estuaries. The implications of the variety of assumptions about distributions of error that 

must necessarily be made are considered further in the discussion. Although some 

studies have used a 3x3 averaging window to simulate spatial autocorrelation (e.g. 



 

 

Reuter et al., 2009; Leon et al., 2014), selecting this or any other averaging window 

would be an arbitrary decision, therefore no attempts were made to recreate the spatial 

structure of error. Each randomised error field was added to the original DEM creating a 

series of 500 new, equally valid, realisations of elevation.  

The hydrologically correct bathtub model, widely used in SLR assessments (van 

de Sande et al., 2012; Sahin, 2014), was used to model inundation.  The original bathtub 

model approach assumed that any areas with elevation values below the SLR projection 

should be classified as ‘flooded’ (Curtis & Schneider, 2011). An enhancement to this 

approach requires spatial continuity between the ocean and flooded areas for them to be 

classified. This approach is known as the hydrologically correct bathtub model and 

allows for a more representative model of surface flooding (Sahin, 2014). Each 

elevation realisation, for both estuaries, was used as the input to a hydrologically correct 

bathtub model as presented below.  

Firstly, the local HAT (SHAT) was added to the H++ scenario for Lyme Bay 

(SCC) (1.42m) to establish the inundation surface (S) (Equation 4): 

𝑆 =  𝑆𝐻𝐴𝑇 +  𝑆𝐶𝐶    (4) 

S was then combined with each DEM iteration to identify areas that would be 

inundated due to SLR. Each cell within the DEM was identified as either ‘Flooded’ or 

‘Not Flooded’, based on whether it was below or above S. Each of the new inundation 

surfaces was run through a grouping function using an eight-side rule (Oswald & Treat, 

2013). This rule ensures that a cell will only be coded as flooded in the resultant surface 

(SFlood) if it is both below S and connected to an adjacent cell that is, or is connected to, 

open water (Equation 5) (Poulter & Halpin, 2008). SFlood therefore represents the flood 

inundation extent for that DEM iteration.  



 

 

𝑆𝐹𝑙𝑜𝑜𝑑 =  {𝐸 > 𝑆,0 
𝐸 ≤ 𝑆,1 ∗ 𝐶𝑖    (5) 

Where E is the elevation of a given cell, C represents connectivity (1 = 

connected, 0 = not connected) and i is the connectivity rule (in this case the eight-side 

rule). The 500 SFlood surfaces were combined, and at the cell scale, the number of counts 

of SFlood = 1 represents the frequency of inundation, which we take to be a measure of 

the probability of inundation (PI) (Equation 6). 

𝑃𝐼 =  [
∑ 𝑆𝐹𝑙𝑜𝑜𝑑

𝑛
𝑖=1

𝑛
] ∗ 100     (6) 

Where n is the number of DEM iterations, and PI is the probability of inundation 

expressed as a percentage. Areas which produced PI values of 0 represent those where 

no flooding occurred in any of the iterations, while a PI value of 100 represents areas 

which flooded in all iterations. Both areas represent certainty (either inundated or not 

inundated). Areas marked as flooded in some iterations, and not in others define a zone 

of inundation uncertainty. Low PI values represent low occurrence of inundation across 

the iterations and thus higher uncertainty in the flood extent and vice versa. Probability 

of inundation was mapped using the same class descriptors as mentioned earlier (Table 

2).   

Phase 2: Developing a Predictive Relationship between Elevation & Uncertainty  

Unlike in watershed modelling, where multiple flow directions need to be considered, 

the flow of coastal inundation is primarily dependent on elevation (Poulter & Halpin, 

2008). It stands to reason that in a situation of gradually increasing shoreline elevations, 

vertical error will give rise to some inundation uncertainty at the upper end of the 

shoreline elevations. It follows that if a site was selected that had a sufficiently 

representative number of elevation points and their associated inundation uncertainties, 



 

 

it should be possible to define a generalised relationship between elevation and 

inundation, assuming a consistent local datum. Modelling inundation uncertainty using 

a MCS approach and a hydrologically correct bathtub model is computationally 

intensive, and having a generalised relationship would provide a much quicker 

indication of inundation uncertainty when applied to other areas. The advantage of full, 

iterative hydrologically correct bathtub modelling is that the protection effects of 

shoreline defences can be represented, which may be lost in the application of a 

generalized relationship. This poses questions about the trade-off between 

computational effort against efficiency, and reasonable representation. This was the 

focus of the second phase of the research.  

For each elevation in the original DEM (expressed relative to Ordnance Datum), 

the corresponding range in probability of inundation was plotted. Ordinarily one would 

expect high probability for low elevations, and lower probability (higher uncertainty) 

for higher elevations. However, for some lower elevations a low probability of 

inundation is found, most likely because these elevations are located behind protective 

enclosures such as levees. The use of a hydrologically correct bathtub model prevents 

these areas from becoming flooded because although they might be at low elevation, 

they are not hydrologically connected and therefore cannot be flooded.  The most 

conservative assumption therefore is to take the maximum probability of inundation 

associated with each elevation.  These points were extracted from the Exe Estuary area 

and the best fit non-linear regression equation was found. This equation was then 

applied to the Otter Estuary to produce an equation-derived probability of inundation 

surface (PIeqn). We then evaluate the output against the probability of inundation surface 

for the Otter Estuary derived in Phase 1, using the NOAA and HBM+MCS models.  



 

 

Results 

Phase 1: Modelled Inundation Uncertainty  

Figures 1 and 2 show the uncertainty surface arising from the respective modelling 

approaches in two contrasting topographies of the Exe Estuary (Figure 1 - flatter, Figure 

2 - steeper). In all instances, the minimum extent of the waterbody of each estuary under 

climate change is clearly defined by the ‘virtually certain’ class. Depicted beyond this 

flood extent are zones of inundation uncertainty, which vary in extent depending on the 

method used. In the case of the hydrologically correct bathtub method (Figures 1A and 

2A) the zone of uncertainty is smaller than that produced by the NOAA method 

(Figures 1B and 2B) . However, it is evident in both locations that increases in 

inundation uncertainty generally conform to increases in elevation. Local slope is also 

important, for example the zone of uncertainty is narrow where shoreline slopes are 

steep (Figure 2), but broadens where shoreline profiles are flatter, for example location 

B at the head of the estuary. 

Table 3 shows the extents and proportional areas as derived using the respective 

methods and the same inundation probability classes (Table 2) for entire study area. 

Also shown is the relative increase/decrease in areas identified by the NOAA method 

relative to the HBM+MCS method. Note that as both the upper (extremely unlikely) and 

lower (very likely) classes are reached, the relative increase predicted by the NOAA 

method over the HBM+MCS method also increases. Table 3 also shows the area of 

virtually certain inundation (the area of the estuary at HAT under climate change). 

Although the area derived by the NOAA method is 1% less than that derived from the 

HBM+MCS method (Table 3), in Figure 1 this difference appears greater due to the flat 

local topography of the mapped area.  

 



 

 

 

Figure 1: Probability of Inundation for the upper Exe Estuary arising from (A) 

HBM+MCS method assuming a 95% confidence error and (B) the NOAA method. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 2:  Probability of Inundation for an area of steeper topography in the Exe 

Estuary arising from (A) HBM+MCS method assuming a 95% confidence vertical error 

and (B) the NOAA method. 

 

 

 

 

 

 

 

 

 



 

 

Table 3: Comparison of PI Likelihood Classification between the NOAA 

Method and the MCS Method for the whole study area (Otter and Exe Estuaries) 

Inundation 

Probability 

HBM+MCS Method NOAA Method Difference between 

Approaches 

m2 Proportion 

of Zone of 

Uncertainty 

m2 Proportion 

of Zone of 

Uncertainty 

m2 Percentage 

Change 

Exceptionally 

Unlikely 

27,282 4.3% 766,624 51.7% 739,342 2709.1 

Very 

Unlikely 

66,970 10.7% 439,315 29.6% 372,345 555.9 

Unlikely 113,381 18.1% 31,140 2.1% -82,241 -72.5 

About as 

Likely as Not 

187,449 30.0% 19,814 1.3% -167,635 -89.4 

 

Likely 161,331 25.7% 151,000 10.1% -10,331 -6.4 

Very Likely 69,511 11.1% 74,018 5.2% 4,507 6.5 

Total area of 

‘Zone of 

Uncertainty’ 

625,924 1,470,579 844,655 134.9 

Full extent at 

HAT under 

climate 

change (m2) 

71,533,781 70,790,456 -743,325 -1 

 

 

 



 

 

Figure 3 shows the relationship between local slope, inundation probability and 

associated inundated area. Each inundation class is comprised of almost a full range of 

slopes, but it is clear that most of the inundation is co-located with low slopes. This is 

especially the case for the class of greatest uncertainty (exceptionally unlikely), where 

approximately 75% of the total area of the class is co-located with slopes of 4.9 degrees 

or less. 

Figure 3: Cumulative area occupied by different slopes at each inundation 

probability class for the whole study area. 

Phase 2: Developing a Predictive Relationship between Elevation & Uncertainty  

In this section we consider the utility of a generalised relationship between elevation 

and probability of inundation. Figure 4 shows a plot of elevation against probability of 

inundation (PI) for the Exe Estuary.  Each point represents a cell within the zone of 

uncertainty, with the colours representing the probability of inundation according to the 

classes in Table 2. 



 

 

Figure 4 Elevation (maOD) versus probability of inundation (PI) for the Exe 

Estuary. 

 

The general relationship between increasing elevation and decreasing 

probability of inundation is evident. There is a clustering of points towards the right of 

the plot that defines a boundary curve showing the maximum probability of inundation 

for a given elevation. However, the plot also shows that there are areas with lower 

elevation that have a low probability of inundation.  As mentioned earlier, these are 

areas which benefit from being located behind a protective structure (e.g. levee, bridge) 

and therefore only flood when the DEM error lowers the elevation (including the level 

of the structure) in an iteration, creating hydrological connectivity. Figure 5 shows an 

example of this situation, where the probability of inundation is ‘exceptionally unlikely’ 

to the east of a structure. Almost all of the points of the lowest probability class in 

Figure 4 come from this location. This is what would be expected from a hydrologically 



 

 

correct bathtub model; the distribution of uncertainty in this location reflects the 

distribution of potential elevations in relation to the height of the controlling structure. 

 

 

Figure 5: Impact of a protective structure, cell connectivity and DEM error in 

modelling probability of inundation.  

 

Figure 6 presents the maximum probability of inundation for any given elevation 

(the boundary curve of points on the right of Figure 4) which were extracted and 

plotted. A non-linear regression analysis found the best fitting equation between the two 

variables was a Ratkowsky Model (r2 = 0.99) (Equation 7). 

 

 

 

 



 

 

 

Figure 6: Maximum probability of inundation (PI) for each elevation (maOD) 

derived from the Exe Estuary. 

𝑃𝐼𝑒𝑞𝑛 =  
𝑎

(1+𝑒𝑏−𝑐𝑥)   (Equation 7) 

Where PIeqn is the generalised probability of inundation, x is the DEM-derived 

elevation and coefficients as defined in Figure 6.  

Figure 7a shows the probability of inundation (PI) determined by the 

HBM+MCS method for the Otter Estuary. Figure 7b shows inundation probability as 

determined by the generalised equation (PIeqn) developed from the Exe Estuary analysis. 

Figure 7c shows the extent of inundation defined by the NOAA method. As was the 

case with the Exe, the NOAA method identifies a considerably larger upper area of high 

uncertainty relative to the HBM+MCS method. The equation approach yields an area of 

uncertainty intermediate between these methods. Note the area of uncertainty in the 



 

 

upper centre of Figure 7b that is not shown as inundated in Figure 7a. This is an area of 

low topography behind a protective structure which does not appear in Figure 7a 

because although it is at low elevation, it is not hydrologically connected until the 

height of the protective structure is exceeded.    

 

Figure 7. (A) Probability of inundation as determined by the HBM+MCS 

method. (B) Equation derived probability of inundation overlain with the outline of the 

HBM+MCS modelled zone of uncertainty. (C) Uncertainty derived by the NOAA 

method, overlain with the zone of uncertainty derived from the HBM+MCS method. 



 

 

Table 4 compares the area of inundation (m2) for each probability class and 

according to each of the three methods.  

 

Table 4: Comparison of Uncertain Area in Modelled and Predicted Surfaces for 

the Otter Estuary 

Probability of 

Inundation 

HBM+MCS 

Method (m2) 

Equation Method (m2) NOAA Method (m2) 

m2 

% Change 

to MCS 

m2 

% Change 

to MCS 

Exceptionally 

Unlikely 

1282 22,678 1668.9 53,993 4111.6 

Very Unlikely  3970 14,406 262.8 25,307 537.5 

Unlikely  7381 13,200 78.8 18,428 149.7 

About as Likely 

as Not  

12,449 13,422 7.8 18,657 49.8 

Likely  10,331 16,126 56.1 23,352 126.1 

Very Likely  4511 4890 8.4 69,509 1440.9 

Total Inundation 

Uncertainty 

39,942 84,722 112.1 209,246 423.9 

Minimum 

Inundated Area - 

Virtually Certain 

2,147,456 1,776,019 -17.3 1,735,671 -19.17 

Discussion  

We have used three approaches to represent coastal inundation which also incorporate 

representation of uncertainty arising from vertical error in the DEM. The most 

straightforward to apply is the NOAA method (Schmid et al., 2014), as all that is 



 

 

required is an inundation surface, a DEM and the RMSE. From this a corresponding 

inundation uncertainty surface can be visualised according to user defined classes. 

When applied to the Exe and Otter Estuaries, this method delineates the widest extents 

of uncertainty. Unlike the HBM+MCS method, the NOAA method does not inherently 

accommodate the problem of mapping non-hydrologically connected areas, but avoids 

the computational time associated with the iterative HBM+MCS method (which 

includes connectivity assessment). In an attempt avoid the computationally intensive 

HBM+MCS method we test a regression approach which is straightforward to apply, 

but has limitations in that it identifies low elevation areas behind protective structures as 

areas of inundation uncertainty. Our regression approach identifies areas of inundation 

uncertainty intermediate between those of the NOAA and HBM+MCS methods, but is 

reliant on the HBM+MCS approach having been undertaken for a representative area 

with a similar HAT and SLR projection.  

While superficially the choice between these approaches might rest on decisions 

about time and computational resources, we suggest that the differences between them 

are much more strongly related to their underpinning assumptions and associated value 

judgements. In particular, (i) how DEM error is measured and reported when published, 

(ii) the extent to which assumptions are made about the distribution of error, both at a 

point and across a surface, and (iii) how the resultant inundation probability surface is 

classified, and where one defines flood extent for practical purposes. 

We will now consider the first of these issues. There is evidence that in LiDAR 

derived DEMs, vertical error varies with landcover (Hodgson and Bresnahan, 2004; 

Hodgson et al., 2005) and terrain complexity, but also with data acquisition factors and 

selected processing methods (e.g. GPS signal, flight conditions, data cleaning) (Fowler 

et al., 2007; White et al., 2011). As mentioned earlier, in most instances all errors are 



 

 

intended to be represented in the RMSE. In practice, this is calculated by selecting a 

number of ground control points (GCPs) and then comparing the DEM cell values at 

these locations to those surveyed (Wechsler, 2007). The errors encapsulated in the 

RMSEz and RMSExy scores thus represent deviation from the true measured values. 

This raises the question of the choice of GCPs, their coverage and suitability for all 

coastal areas. 

In the US, The Federal Emergency Management Agency (FEMA) data quality 

assurance specifications (2003) require assessment of error across several classes [(a) 

open terrain, (b) urban or built-up infrastructure, (c) forest, (d) scrub-shrub, (d) weeds, 

tall grass and crops]. In practice, and even for coastal data, few ground control points 

are selected within coastal marsh environments, and it is assumed that category (d) 

would reasonably account for salt marsh (Schmid et al., 2011). Although one might 

intuitively anticipate higher errors for complex vegetation such as forests, Schmid et al. 

(2011) show that errors in salt marsh vegetation can be considerable. The structure of 

salt-marsh vegetation makes differentiation between ground and vegetation surface 

challenging, leading to vertical errors in the form of a positive bias (Schmid et al. 2011). 

Publishers of DEM products will usually provide a RMSE, and increasingly RMSEz and 

RMSExy. However further details such as the number, location and landcover in which 

the CGPs are located are usually not provided, as is the case with the composite DEM 

used for this analysis. A first question for any users of these datasets for coastal 

applications needs to be whether the stated RMSE adequately represents the specific 

errors associated with various coastal landcovers.  It should be noted that some of these 

errors can be overcome by more judicious choices in LiDAR data observation 

processing methods. For example, Schmid et al. (2011) suggest analytical techniques 



 

 

that for their study resulted in a reduction in bias of 12cm and an improvement in 

vertical accuracy of 8cm in saltmarsh vegetation.   

The second major consideration is concerned with assumptions about the 

distribution of errors. Spatial accuracy data standards (e.g. the US National Standard for 

Spatial Data Accuracy (NSSDA)) have traditionally assumed that the errors in spatial 

data are normally distributed (Zandbergen, 2008). This presumption has been extended 

to LiDAR-derived DEMs, where some have suggested that in open terrain (as opposed 

to forests and difficult to penetrate areas), the data ‘have normally distributed errors’ 

(NOAA 2012:7), although it is not clear from this source whether this is in reference to 

horizontal errors, vertical errors, or both.  Zandberg’s evaluation of the assumption of 

normality in several spatial datasets found strong evidence for non-normal distributions 

(Zandberg, 2008), and further suggested that, as a single statistic, the RMSE 

insufficiently characterises the nature of positional error in some geographic data 

sets. In the specific case of positional error in LiDAR-derived DEMs, he suggested that 

these could be ‘approximated with a normal distribution of the original (positive and 

negative) vertical errors after removal of a small number of outliers’ (Zandberg, 

2008:126).  Blak (2006) suggests that assumptions of normality would overstate vertical 

errors when they are not normal.   

The NOAA method acknowledges that ‘while there is an understanding that 

LiDAR errors may not always follow a normal distribution, the use of the normal 

assumption is in many cases acceptable and also the more conservative approach’ 

(Schmid et al., 2014: 553). The Z-score transformation underpinning the NOAA 

method, therefore assumes errors are normally distributed.  The consequence of the 

lower tail of the distribution is that locations at the higher end of the elevation 

distribution will be classed as uncertain, but with very low probabilities. This is the 



 

 

reason why this method generates the largest areas of inundation in Figures 1, 2 and 7. 

This is likely to be an overestimation of inundation, but consistent with a conservative 

approach. 

The HBM+MCS method makes a different set of assumptions relating to the 

practical implementation of the RMSE. One option, as implemented by Gilmer and 

Ferdana (2012), would be to constrain the elevation at any cell to be between (elevation 

+ the RMSEz) on the upper limit and (elevation - the RMSEz) on the lower limit.  In 

other words the ‘DEM estimated’ elevation surface can only vary from the true 

elevation by + or – the RMSE. Given that there is inevitably always some uncertainty 

with the validity of RMSE as a measure, we feel that a slightly more conservative 

approach is warranted. We therefore adopted the Gesch (2009) LE95 approach, where 

errors at 95% confidence are estimated (Equation 3). We recognise that in calculating 

these errors we are assuming the errors are normally distributed and not biased (Schmid 

et al. 2014). However this assumption is only being made in the HBM+MCS method to 

constrain the errors realistically between the narrower range of just +/- RMSE (i.e. 

Gilmer and Ferdana, 2012), and the unconstrained NOAA method, which uses the full 

distribution and therefore over-estimates inundation in very low probability areas. 

Once we had determined the upper and lower bound of the error, and in the 

absence of any additional knowledge about the spatial distribution of vertical errors, we 

considered that the safest assumption would be to allow the error to vary randomly 

between the bounds defined by the LE95.  The consequence of this assumption is that a 

more constrained zone of uncertainty is defined which is less than the NOAA method, 

but is more than that derived by just using +/- RMSE. This is shown clearly in the 

cumulative frequency plot for the Exe Estuary (Figure 8). The NOAA method generates 

values on the tails of the distribution, whereas in the HBM+MCS method the error is 



 

 

generated randomly and uniformly but constrained within the assumed bounds of +/-

LE95. There is of course no independent, objective, or ‘true’ estimate of 

inundation probability by which we can evaluate these methods. Furthermore, the point 

of this paper is not to recommend specific choices of distribution, but to rather highlight 

the consequences of necessarily having to make these choices.  Choice of method must 

therefore be made on the basis how appropriate we feel the necessary associated 

assumptions are. A further advantage of the HBM+MCS over the NOAA method is 

that it incorporates hydrologically correct inundation, but at computational cost.  

 

 

Figure 8: Cumulative frequency plot for the Exe Estuary showing the effect of 

an assumption of a normal distribution of RMSE (grey line) versus a uniform 

distribution constrained in the upper and lower bounds by the LE95 (black line). 

 



 

 

Given the resource-intensive nature of HBM+MCS method, we considered 

whether it might be possible to generalise the relationship between elevation and 

inundation probability. This could then be used in nearby areas with similar conditions 

of HAT and future SLR, potentially limiting the extent of coastline for which full 

HBM+MCS would need to be undertaken. The fundamental assumption here is that the 

maximum probability of inundation at each elevation defines the generalised 

relationship between elevation and inundation probability. This necessarily means that 

some low elevation areas which benefit from protective structures will be shown as 

inundated, when in relation to the hydrologically correct modelling, they would only 

flood if levels exceeded the height of the structure. This leads to the over-estimation in 

inundation probability behind levees as evident when comparing Figure 7a and Figure 

7b for the Otter. Apart from over-estimation in these areas, inundation probability is 

mapped relatively well in comparison with the HBM+MCS method. One could also 

argue that as these areas are depressions, they are at risk from local surface water and 

would be the first places for groundwater egress to manifest. The equation approach 

correctly identifies these as areas of risk, but incorrectly as areas of sea level related 

inundation. Some users might see value in these areas of risk also being mapped. In the 

case of the Otter, these areas of over estimation are still considerably less than the areas 

of inundation as depicted by the NOAA method. We therefore suggest that as long as 

the equation method is correctly applied (i.e. areas of the same local HAT and SLR 

projection) and that users exercise judgement and make allowances for local structures 

(which can be determined by authoritative maps or the directly comparable Digital 

Surface Model to the Elevation Model used in the assessment), a ‘reasonable’ estimate 

of uncertainties due to DEM vertical error can be made.  



 

 

The reference to ‘reasonable’ above brings into focus the final of the three major 

observations we would like to make; namely around classification, representation 

and selection of inundation extents for practical use and decision making. Although we 

have applied the same classification and associated descriptors across all methods, 

this is nevertheless a value judgement. Figure 9 shows the Otter Estuary with inundation 

probability reclassified into a binary ‘certain’ and ‘uncertain’ classification. This form 

of binary classification has been used in previous SLR uncertainty studies (NOAA, 

2010).  

 

Figure 9: The three uncertainty representation methods for the Otter Estuary 

with a binary ‘certain’ and ‘uncertain’ classification. 

 



 

 

With the NOAA method it is recommended that each study ‘should chose the 

percentile ranks (e.g. 75%, 80% or 95%) that make sense to differentiate between areas 

that have high uncertainty and those that seem well represented by the mapped output’ 

(Schmid et al., 2014: 559). In effect, and particularly given the conservative ‘over-

estimation’ arising from the assumption of normality, this equates to a reasonable value-

judgement being made as to how much of the mapped uncertainty we should take 

seriously for practical purposes. In the HBM+MCS method we embed a value judgment 

by constraining possible error to the LE95. Value judgements, particularly in the 

absence of more detailed information relating to the distribution of error in DEM 

products, are therefore necessary, regardless of what method is used. The important 

consideration therefore, is that all assumptions and value judgements are considered 

explicitly during the analytical process, and communicated clearly on resulting maps 

and other outputs.      

Conclusion  

This study set out to explore how the stated vertical error of a publically available 

LiDAR-derived DEM might impact on defining estuary extents at HAT under future 

climate change. Relatively few studies have addressed this need, which is becoming 

increasingly urgent as publically available DEMs become more widespread and better 

integrated into longer term coastal zone planning. For our study, stated RMSEz was low 

and although this does translate into a zone of inundation uncertainty, these are not large 

areas. For this location therefore, DEMs of this stated quality are appropriate to inform 

coastal decision-making. However, additional uncertainty analysis by the methods 

proposed provides a basis for relatively more informed decisions..  

In this study we only considered DEM vertical error; inaccuracy of inundation 



 

 

identification arises from compound errors linked to tidal gauges, methods of 

interpolation, modelling assumptions and the confidence associated with climate change 

related sea level projections. Additionally, storm surges and the uncertainty associated 

with estimating these magnitudes, can significantly increase inundation levels. Coastal 

managers should therefore be mindful of all these sources of error.  A broader 

consideration of all sources of error as recommended by Schmid et al. (2014) would 

likely significantly increase the zone of inundation uncertainty, so research to examine 

the compound effects of these errors is important. We evaluated a method currently 

used to visualise inundation uncertainty nationally in the US (NOAA method, Schmid et 

al., 2014), against a method, based on hydrologically correct bathtub modelling and 

perturbation of the DEM constrained by the stated error in a Monte Carlo simulation. 

The two methods produced similar coverage in the ‘virtually certain’ classification 

(with a difference of -1%). However, the NOAA method produced a much larger zone 

of uncertainty compared to our HBM+MCS method (with an increase of 134.9%). We 

also expressed the outcome of this modelling as a regression equation and explored the 

utility of this as a quick approach to map inundation uncertainty in adjacent areas.  

The different methods identify varying zones of uncertainty, especially in flatter 

topography (slopes of <5 degrees), but produce near identical inundation extents for 

steeper topography. These relative differences are exaggerated in flatter areas because 

the same change in the vertical dimension has greater impact on extent in areas of low 

slope.  Compared to the original HBM+MCS methods the equation-derived area of 

uncertainty was 112.1% larger, while the NOAA method 423.9% larger.  The extents of 

the zones of inundation uncertainty so defined, relate strongly to the underpinning 

assumptions about the distribution of error and methodological judgements about how, 

or whether, stated RMSE errors should be used in a practical sense. Ultimately the 



 

 

decision to represent inundation uncertainty is too, a value judgment. Considerations of 

DEM error and associated metadata in published DEMs, is still an area of concern. We 

reiterate the call by Wechsler a decade ago, and more recently Gesch, that DEM 

vendors should be urged to provide information on DEM error beyond just the RMSE 

(Wechsler, 2007; Gesch, 2013). This would include metadata regarding location of 

ground control points and associated land cover, estimates of consolidated vertical error 

(CVA) for each land cover and ideally, more advanced error assessment approaches 

(e.g. Sefercik et al. 2015).     
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