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A B S T R A C T

Machine vision systems offer great potential for automating crop control, harvesting, fruit picking, and a
range of other agricultural tasks. However, most of the reported research on machine vision in agriculture
involves a 2D approach, where the utility of the resulting data is often limited by effects such as parallax,
perspective, occlusion and changes in background light – particularly when operating in the field. The 3D
approach to plant and crop analysis described in this paper offers potential to obviate many of these
difficulties by utilising the richer information that 3D data can generate. The methodologies presented, such
as four-light photometric stereo, also provide advanced functionalities, such as an ability to robustly recover
3D surface texture fromplants at very high resolution.This offers potential for enabling, forexample, reliable
detection of the meristem (the part of the plant where growth can take place), to within a few mm, for
directed weeding (with all the associated cost and ecological benefits) as well as offering newcapabilities for
plant phenotyping. The considerable challenges associated with robust and reliable utilisation of machine
vision inthefield are also considered andpractical solutions are described. Two projects are used to illustrate
the proposed approaches: a four-light photometric stereo apparatus able to recover plant textures at high-
resolution (even in direct sunlight), and a 3D system able to measure potato sizes in-the-field to an accuracy
of within 10%, for extended periods and in a range of environmental conditions. The potential benefits of the
proposed 3D methods are discussed, both in terms of the advanced capabilities attainable and the
widespread potential uptake facilitated by their low cost.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Predicted increases in world population, coupled with the
effects of climate change, mean that the need for increases in the
efficiency of agricultural methods, concurrent with reductions in
their environmental impact, is becoming critical for ensuring
sustainable production. Although food production has increased
significantly over the last century, due largely to the effects of
mechanisation and intensive farming methods, this has come at
the cost of an increased utilisation of resources such as water,
fertilizers, herbicides and pesticides, which is unsustainable for
meeting future demands, both economically and ecologically. It is
then perhaps fortuitous that advanced technologies are now
emerging that offer potential for providing plant-related data and
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knowledge that can enable increases in productivity while
reducing environmental impacts. This can be realised in the form
of new generations of autonomous agricultural robotic devices that
will operate with the needed levels of information and intelligence.
These could take the form of, for example, small tractors fitted with
sensor systems that enable them to operate autonomously and to
identify features of interest – such as weeds. Upon detection a
weed could then be destroyed by a method such as use of a servo
system for spraying a small amount of herbicide at its meristem.
Such an approach offers obvious cost and ecology benefits
compared to general spraying of herbicide, as well as additional
environmental benefits associated with producing less soil
compaction than a full-sized tractor and use of less fuel. However,
significant technical developments are needed before such a
device can operate autonomously and effectively in the field; and
principal among these is an effective sensor system. While
instrumentation such as GPS, inclinometers and accelerometers
may play important roles, perhaps the most useful sensor for
agricultural automation is that of machine vision. In fact it could be
argued that this is a critical enabling technology, and that
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significant breakthroughs in machine vision will enable dramatic
increases in the use of agricultural automation/robotics. In recent
decades there has been considerable development of 2D machine
vision technologies for plant detection/analysis; however there has
only been very limited transfer of these technologies to use in the
field/outdoors. Reasons for this include complications resulting
from variations in illumination experienced outdoors, as well as
the complexities of images captured. Difficulties can occur in
image interpretation/analysis and feature recognition/measure-
ment, due to the inherent complexities of plant morphologies (and
therefore the required complexities of the associated models) with
factors such as unexpected occlusion of view and/or shadowing. If
methods could be found for alleviating these difficulties, then the
effective employment of machine vision for plant analysis, and all
the associated benefits mentioned above, could be realised. One
such method is that of 3D machine vision; where, for example, leaf
surfaces can be recovered in 3D, so that the true area can be
calculated (rather than its projection in a particular direction);
also, the 3D information on the leaf allows its occlusion or
shadowing effects to be evaluated, thereby assisting with
interpretation of conventional images of the plant. The utility of
3D machine vision in agriculture does in fact go well beyond
simply assisting with understanding the general shape and
structure of a plant. Depending upon the exact nature of the 3D
machine technique applied, a range of types of information can be
derived that can inform the farmer, depending upon the particular
needs and requirements. In this paper this range is illustrated by
two very different case studies of 3D vision systems that provide
useful information in the field. The first describes a 3D machine
vision technique that has undergone extensive development in the
Centre for Machine Vision (CMV) at the University of the West of
England (UWE) – photometric stereo (PS); and goes on to show
how this can utilize off-the-shelf components in novel config-
urations that can generate high-resolution 3D surface data for
facilitating directed weed elimination (as described above),
through to new types of plant phenotyping. The second employs
existing low-cost high-performance 3D vision systems and shows
how they can be combined with GPS data for providing useful
produce and field information during potato harvesting.

2. Related work

A great deal of literature exists that reports on studies of
computer vision agricultural applications; and currently a growing
amount is specifically addressing 3D vision work. There is not
space here to review all of this; rather, a selection of work will be
reviewed which is particularly relevant to the subject of this paper
and the associated research. In 2016 Vázquez-Arellano et al. [1]
completed a comprehensive review of 3D Imaging Systems for
Agricultural Applications. They identified reduced labour avail-
ability, scarcity of natural resources, and consumer demand for
quality products as drivers for automation in agriculture; and
stated that 3D vision is a key technology for agricultural
automation. In their 2010 paper [2], McCarthy et al. state that
field environment precision agriculture applications face the
challenge of overcoming image variation caused by the diurnal
and seasonal variation of sunlight; and put forward a view that
augmenting a monocular RGB vision system with additional
sensing techniques potentially reduces image analysis complexity
while enhancing system robustness to environmental variables.
We suggest that 3D data recovery comprises one such additional
sensing technique. In their 2015 review of sensors and systems for
fruit detection and localisation [3], Gongal et al. identify
occlusions, clustering, and variable lighting conditions as the
major challenges for the accurate detection and localization of fruit
in the field environment. They say that improved accuracy can be
achieved through 3D fruit localisation, but point out that methods
such as laser range finding are currently bulky, slow and costly –

however these drawbacks do not apply to other 3D vision
approaches, such as a RGB-D camera or photometric stereo. In
2017 Binch and Fox reported on an interesting controlled
comparison of machine vision algorithms for Rumex and Artica
detection in grassland [4]. They conclude that all the accuracies in
their implementations were lower than those of other researchers
and suggest a number of reasons for this, which were characteristic
of their collecting real data in the field – for example, they required
their data to come from a wide mixture of lighting and weather
conditions. This provides further evidence of the need to address
such factors in order to collect data in the field that will be of real
use to farmers. They also conclude that: “ . . . the best performing
method for the overall spray/no spray decision is based upon
Linear Binary Patterns with Support Vector Machine classification .
. . ” – this is in line with our findings in the same area and will form
part of a future CMV paper. (Although we have also found that
convolutional neural networks provide advanced capabilities for
weed identification in complex grassland images, as outlined
below.) The demands of in-the-field operation are further
illustrated by the example of using machine vision for analysing
potato harvesting. Some previous work has been reported on
vision inspection for potatoes [5–7] and in 2015 Rady provided a
review of Rapid and/or non-destructive quality evaluation
methods for potatoes [8]. However, the systems described in
these papers generally operate indoors and often in laboratory type
conditions (i.e. with careful control of lighting and viewing
directions). In contrast to this, there are many significant
challenges associated with real-time in-the-field analysis of potato
harvesting production (and in fact all in-the-field crop/plant
analysis machine vision applications); and these are described in
Section 4.2.1. The extent to which these can be successfully
addressed is highly dependent upon the manner in which images
are captured and how the 2D/3D data are generated – particularly
what type of camera is employed and how it is configured. Two
types of cameras/imaging were employed in the current work:
specifically a RGB-D device and photometric stereo – therefore
some discussion is provided below of these devices/techniques.

3. Cameras and techniques employed for imaging in-the-field

3.1. The RGB-D camera

RGB-D cameras such as the Microsoft Kinect have been
increasingly employed for machine vision research (particularly
3D work) due to their common availability, low cost and relatively
good range-finding performance. For example, the RGB-D camera
employed in the current work captured data at a rate of 30 frames
per second; and for each frame that was captured by the camera, a
2D colour image and a depth map were generated. The latter gives
a distance, in mm from the camera, for each pixel, thereby
generating a 3D point-cloud. Two versions of RGB-D camera were
experimented with; the first employs a distortion of a projected
infra-red pattern to calculate the depth data, while the second uses
time-of-flight technology. However, the limitation in the pattern
(and camera) resolution, in combination with the fixed field of
view and ranges which these devices operate at, and the
limitations of the USB interfaces they employ, mean that the 3D
data obtained are of relatively low resolution when compared to
the dense arrays of surface normals that can be captured using
photometric stereo (see below). Despite this there are some
agricultural applications where the RGB-D range data can prove
useful – an example is provided by the potato measurement
application described in Section 4.2. However, the analysis of
individual plants, recovering features such as true leaf colour/area
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and leaf veins, for monitoring plant growth and phenotyping, is
beyond the capability of the RGB-D device, but can be achieved
with a photometric stereo analysis.

3.2. Photometric stereo

Photometric stereo (PS) is a technique first described by
Woodham in 1980 [9], which employs a single camera and a set
of at least 3 lights in known locations. Here, rather than
calculating a depth image or a point cloud, a surface normal field
is recovered from an object that is illuminated from different
directions while the viewing direction is held constant (see
Fig. 1). The fraction of the incident illumination reflected in a
particular direction is dependent on the surface orientation,
which can be modelled using Lambert’s Law (this model assumes
that light is reflected uniformly in all directions from a surface).
Therefore, when the directions of incident illumination are known
and the radiance values are recorded, the surface orientation can
then be derived.

Woodham observed that three views are sufficient to uniquely
determine the surface normals as well as albedos at each image
point, provided that the directions of incident illumination are not
collinear in azimuth. Four illuminants/views can be employed for
improved reconstruction performance.

The equations involved in determining the albedo and surface
normal vectors from the three recovered images can be derived:

Let I1 x; yð Þ, I2 x; yð Þ and I3 x; yð Þ be the three images captured
under varied illumination directions. By varying the illumination
direction, the reflectance map is changed accordingly, giving
Eq. (3.1).

I1 x; yð Þ ¼ R1 p; qð Þ
I2 x; yð Þ ¼ R2 p; qð Þ
I3 x; yð Þ ¼ R3 p; qð Þ

8<
: ð3:1Þ

where R1 p; qð Þ, R2 p; qð Þ and R3 p; qð Þ are the reflectance maps under
different illumination directions, while p and q are gradients of the
surface in the x and y directions, respectively. A general reflectance
map in the gradient representation of the surface orientation and
illumination direction is expressed in Eq. (3.2) [9].

R p; qð Þ ¼ % 1 þ pps þ qqsð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ p2 þ q2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ps2 þ qs2

p ð3:2Þ

where % is the albedo, N ¼ �p; �q; 1½ � defines the surface normal
vector, and L ¼ �ps; �qs; 1½ � defines the illumination direction. Let
the surface be z ¼ f x; yð Þ, the gradients in x and y directions
Fig. 1. The principle of photometric stereo, which employs a single camera to
capture multiple images of a surface illuminated by multiple light sources.
become:

p ¼ �@f x; yð Þ
@x

q ¼ �@f x; yð Þ
@y

8>><
>>:
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These equations are derived under the assumptions that 1) the
object size is small relative to the viewing distance. 2) The surface
is Lambertian. 3) The surface is exempt from cast-shadows or self-
shadows.

The PS method reconstructs one surface normal vector per pixel,
and therefore it is capable of recovering surface normals in high
resolution. 3D reconstructions by PS are spatially consistent with PS
images (greyscale) captured by a single camera. This eliminates the
correspondence problem that places a computation burden upon
binocular visionsolutions, i.e. theproblemof ascertaining how pixels
in one image spatially correspond to those in the other image.
Furthermore, the resolution of PS reconstructions is flexible and is
solely determined by the camera and lens employed; thereby
allowing PS to be configured for a specific device or application. In
contrast, data obtained by RGB-D camerasare normally of low spatial
and depth resolution, which severely degrade as the sensor-object
distance increases; and such cameras are generally non user-
configurable. In addition, PS reconstructions provide detailed high-
frequency 3D texture information. 3D depth information can be
derived from PS surface normals when necessary (although some
errors can be introducedduring this step). In contrast to PS, binocular
stereo is more prone to noise and artefacts, since it directly recovers
depth of surface (i.e. image centred) data rather than surface
orientations (i.e. object centred). Although being highly accurate and
of high resolution, PS devices can be constructed at a similar or lower
cost to the RGB-D or Kinect camera, with the potential flexibility of
being portable or long-range; and thus comprise a powerful solution
to 3D imaging.

Despite these significant potential advantages, utilisation of
photometric stereo in machine vision applications has been rather
limited in comparison to other techniques such as the RGB-D
camera mentioned above. This is perhaps because RGB-D cameras
are available off the shelf at low cost in the form of devices such as
the Kinect; but this is not true of photometric stereo, where instead
the user is obliged to mount and configure a camera and a set of
lights in known orientations. In addition, it is necessary to switch
each light at high speed and in exact synchronisation with the
image capture – all of which can prove to be a considerable
challenge in terms of instrumentation and programming. A final
reason is that the RGB-D camera, as the name suggests,
concurrently produces RGB and depth images for a given scene.
In contrast, implementing photometric stereo requires processing
and combining image intensities and to ensure maximum
resolution when doing this, grey-scale cameras are usually
employed – consequently the albedos often emerge as grey-scale
images. It is however possible to also capture RGB images by
replacing the grey scale camera with a colour one; and we have
done this in the field, for plant analysis.

Having given an outline of the capabilities of the cameras
employed, the following section describesthe experiencesof applying
our machine vision technologies for crop/plant analysis in the field.

4. Machine vision case studies for in the field crop/plant analysis

4.1. Use of machine vision for weed detection and analysis:
experiments and observations

4.1.1. 2D weed detection and analysis in the field
Recent crop/plant machine vision work that has been under-

taken by CMV in the field is that of 2D weed detection and analysis
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employing a conventional colour camera mounted on a tractor
without any shrouding [10]. This produced data that were usefully
processed for detection of weeds in grass, which is less trivial than
detection of weeds on dirt – the latter can be achieved through
analysis of the green and red components of images from colour
cameras, for identification of greenness [11]. Our approach to
separating the weeds such as dock from the grass involved: edge
detection, texture analysis through use of a local entropy filter to
differentiate between areas of high entropy (grass, owing to the
higher frequency, multidirectional texture) and low entropy (dock
leaves), and image processing techniques such as erosion and
dilation/thresholding, as shown in Fig. 2.

The chief complication with this approach is associated with
unexpectedanddramatic changesinilluminationlevels.Thecauseof
this can range from the sun emerging from behind cloud, through to
the tractor changing direction, resulting in a change in brightness
due to a change in the relative position of the sun, or shadows being
cast by the tractor or associated equipment. The most serious
potential problem associatedwithlight level change is the possibility
of image saturation. The chance of this occurring can be minimised
through use of an automatic shutter speed adjustment or (if the
intensity change is severe), automatic iris adjustment. The only
problem with employing such approaches is that they will take a
short time to adjust to the light level change and during this time
good image capture may not be possible, resulting in data loss. The
second potential drawback associated with light level changes and
shadowing is that it introduces a level of complexity in the images
which may result in simple image processing techniques being
ineffective for weed feature identification/segmentation. A possible
solution to this problem involves the application of machine learning
to the weed segmentation. In CMV, neural networks trained on
extensive sets of grass and weeds-in-grass images have shown
considerable robustness to changes in illumination. Many of our data
sets have been collected under conditions of dramatic changes in
illumination, with shadows commonly present. The resulting
Fig. 2. Conventional image analysis for segmentation of dock (Rumex obtusifolius) in gra
window – high entropy is hotter colours (red/yellow) and low entropy is cooler (blue), (d)
– orange shows dock leaves have been identified. (For interpretation of the references to
complexities of the images has been exacerbated by an observed
wide variation in dock sizes, with some docks being clustered and
other being sparsely distributed, as well as the presence of grass/
dried grass of different lengths. However, analysis of such scenes has
benefittedfromrecentadvancesin open-sourcetechnologiessuchas
TensorFlow, which have offered new opportunities to experiment
freely with contemporary neural network architectures. Particularly
promising results have been attained with the application of
convolutional neural networks, which were found to be able to
reliably identify weeds even in the presence of severe changes in
image brightness. Although this approach has the disadvantage of
requiring large amounts of training data and a potentially significant
training time; this is a promising area of research that is currently
being intensively investigated throughout the computer vision
community. A highperformancecomputerhas beeninstalled inCMV
to progress this work, as well as other in-depth image analysis
methods, such as Local Binary Pattern modelling with Support
Vector Machine classification. In recent tests, we have repeatedly
demonstrated reliable detection of dock in images of grass that were
captured under a wide range of illumination conditions and when
less than 5% of the image concerned was comprised of dock leaf. In
addition to conventional 2D imaging, there are 3D machine vision
approaches that may provide solutions to illumination change
problems as well as potentially offering various types of advanced
capabilities.

4.1.2. 3D weed detection and analysis in the field
Experiments were conducted on plant analysis using 3D data

from a RGB-D camera and it was found that meristem identifica-
tion was possible for some types of plant. Although the depth
resolution limitations resulting from the USB2 interface for the
camera used (Kinect 1, see below), meant that increased accuracy
for meristem detection was not demonstrated, such increased
accuracy might be attainable for future 3D measurements using
the Kinect version 2 with a USB3 interface. It was however found
ss: (a) captured image, (b) edge filtered, (c) local entropy filtering, with a 32 � 32px
 erosion/dilation and thresholding of this entropy, shown against the original image

 colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 3. Low-cost photometric stereo rig for recovering plant 2D and 3D data to
enable measurement of phenotypic traits; where two sets of four LEDs are
employed for performing photometric stereo at two wavelengths – one visible and
the other near-infrared.
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that combining 3D range thresholding with analysis of 2D image
data can improve the reliability of weed identification and enable
weed segmentation and measurement of plant row separation
[12]. We have also overlaid a grid on images (employing every 10th
pixel) and have applied a dense optical flow method to calculate
(2D or 3D) field maps. As mentioned above, recovering features
such as leaf veins, for monitoring plant growth and phenotyping, is
beyond the capability of the RGB-D device. This is because the
Kinect 1 has a depth resolution greater than 1 mm [13], while leaf
vein thicknesses are often less than 1 mm (as we have found in
many of the leaf measurements we have taken in CMV). The
limitation in the 3D resolution of the Kinect is due to the fact that
the camera measures range and the limitation in the resolution of
the projected pattern and/or bandwidth of the USB camera
interface limits the resolution with which 3D features can be
detected. However, PS can be usefully employed to analyse such
features.

4.1.3. Static four-source photometric stereo for plant analysis
In addition to recovering the texture and shape of the surface,

photometric stereo provides a robust means of separating surface
3D and 2D textures – thereby providing good quality 3D surface
data and accurate colour data in situations where conventional
images would reflect hue effects or changes in surface pigmenta-
tion. Once the 3D surface shape data has been recovered, it needs
to be analysed in order to identify meristems for implementing
directed weeding (most efficient weed eradication will occur if
herbicide is applied selectively to the part of the plant that is
growing). To do this we experimented with various methods for
surface modelling; and employed two metrics: “Shape Index”, as
proposed by [14] and “HK Segmentation” [15] (based on “principal
curvatures” calculated using the Hessian matrix of the second
order partial differentials of the surface). The specific implemen-
tation details are beyond the scope of this paper but tests indicated
that the HK-measure gives a better indication of where the
meristem may fall, compared to the shape index.

A major advantage of photometric stereo is that the surface can
be analysed in 3D at a generally much higher resolution than is the
case for other methods – in fact it is only limited by the imaging
resolution of the camera/lens employed. Consequently, the use of
photometric stereo also offers potential to employ machine vision
for generating new advanced capabilities for plant analysis such as
phenotyping. Fig. 3. shows a low-cost photometric stereo rig that
we have developed at CMV specifically for imaging plants (in
visible and near-infrared illumination), to measure phenotypic
traits.

Fig. 4 shows four images of a leaf captured with the Fig. 3 rig.
These are combined with the lighting model (Lambert’s Law) to
recover the 2D albedo and the 3D surface. In the albedo, lighting
effects are eliminated, which allows the vein structure to be more
clearly identified – this is useful for plant classification/phenotyp-
ing. On the right hand side in Fig. 4, the 3D surface of the leaf has
been reconstructed, so that the leaf surface information is known
at each point. This allows parallax effects to be eliminated,
resulting in a more accurate estimate of the leaf area, which is
useful for monitoring plant growth in various growing environ-
ments/conditions. Near-infrared light sources are employed in the
Fig. 3 rig, which we have found to have the advantage of light
reflection being more Lambertian – thereby reducing errors in the
recovery of the surface normals, as well as allowing the plants to be
imaged 24 h a day over long periods without interfering with their
growth cycles (these near-infrared findings are being detailed in a
paper which is in preparation). We have in fact employed LEDs of
wavelength 940 nm, with matching narrow-bandpass filters, to
capture data similar to that shown in Fig. 4, but which were
captured while the leaf was subject to direct and bright sunshine.
This approach, which makes use of the natural dip in sunlight
intensity at around 940 nm [16], offers great potential for capturing
high-resolution 3D data from plants in greenhouse environments,
or outdoors, without the need for controlling background light. We
therefore consider that near-infrared photometric stereo has great
potential; and it is the subject of on-going intensive research effort
in CMV. Our investigations also indicate that photometric stereo
can enhance the utility of hyperspectral imaging for revealing
physiological and structural characteristics in plants. The spectral
response of vegetation is highly affected by its orientation [17];
however this effect can be allowed for by incorporating
photometric stereo surface normal data – thereby increasing the
robustness of spectral measurements without increasing the
overall price of the system.

4.1.4. Two-source photometric stereo for plant analysis from a moving
platform

A four source PS system is incapable of capturing data from a
moving rig as motion between the first and last frame would
prevent successful calculation of the surface normals. Therefore we
instead have implemented a two-source method [18] which allows
calculation of the surface gradient in one direction (2.5D). This
method requires lights to be in line with the x-axis of the camera
(i.e. the direction of movement) in order to recover surface normals
in that plane. We developed and described application of ‘dynamic
photometric stereo’ to tile inspection in 2005 [19]. Here we
employed two near infra-red line lights to recover surface normals
from a tile moving along a conveyor. At that time we found that
although this does not allow full 3D reconstruction of the surface,
the gradient along the x-direction is sufficient to obtain useful
representation of surface shapes – thereby enabling segmentation
of moulding defects. The situation for plant analysis is similar, in
that again the surface normal data using only two sources is
incomplete, but the component in the x plane can still be used for
locating the meristem. We achieved this by manually labelling the
meristems in a series of plant gradient maps, and then employed
localised histograms of gradients for training a classifier, using
techniques that included support vector machine (SVM). The
classifier was then used to scan gradient maps of other plants to
identify similar gradient features (with strength of match indicated
by a heat–map), thereby locating a meristem. Initial tests showed
that although identification of the plant meristems was more
challenging than in the case of four-light PS, it could still be
achieved. On-going work involves further increasing the resolution
of the gradient maps, combined with more powerful neural
network modelling; with the aim of increasing meristem location
reliability over a wide range of plant types.



Fig. 4. Four images captured using Fig. 3 rig, which are combined with a lighting model to generate the albedo 2D leaf data and the 3D leaf surface.
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Following on from the weed detection work, the wide range of
tasks for which machine vision can provide useful agricultural
information is further illustrated by another application developed
in CMV. Here newly emerging low-cost vision technologies are
employed to gather 3D potato tuber data in the field, during
harvesting.

4.2. Measurement of the size distribution of potatoes as they are
harvested in the field

Although the potato metrology system employed off-the-shelf
vision system components, its development and implementation
was nevertheless non-trivial, due to the technical challenges
associated with robust and reliable extended operation of a vision
system outdoors (particularly in an agricultural environment). The
application is concerned with reliable measurement of the size
distribution of potatoes as they are harvested in the field, together
with concurrent recording of GPS position data.

4.2.1. Challenges associated with reliable and robust in-the-field
operation

The challenges associated with this can be summarised as
follows:

1. Exposure to the elements (e.g. driving rain); also, the system
may be subject to cleaning by being sprayed with water from a
hose.

2. Dramatic changes in background lighting, both intra- and inter-
frame, ranging from direct sunlight to heavy shade.

3. The system will be mounted on a harvester which will be
vibrating and moving around.

4. The power supply from the harvester/tractor may be intermittent.
5. Relevant GPS data need to be recorded in real time, associated

with the 3D data capture, collated and made easily available to
the user.
Fig. 5. Asus Xtion Pro RGB-D camera, inside an IP68-rated weather-proof box 
6. The potatoes will be moving on a conveyor within the harvester,
and some will be in contact.

Challenges 1 and 2 were addressed by affixing a structured-
light RGB-D camera (Asus Xtion Pro Live) within an IP68-rated
weather-proof box, which was mounted within a specially
developed rugged shroud, as shown in Fig. 5.

While the camera has to be mounted as rigidly as possible in
order to withstand the robust environment aboard a harvester, its
position also has to be adjustable (to facilitate fitting onto various
makes/models of harvester) while not being so heavy as to apply
undue loads to the harvester canopy frame (to which it will be
attached) during harvesting. Also, to address challenge 3 above,
mounting has to be implemented so as to minimise the dynamic
effects of the vibrations and movements of the harvester. The
solution was to design and manufacture an adjustable and
reconfigurable bracket assembly from aluminium alloy, as shown
in Fig. 6. Two such assemblies were employed to mount the shroud
and camera onto a Grime GT170 harvester that was used for the
trials.

Waterproofing also involved employment of an IP68 rated
protective casing for the ‘Processing Box’, which contained: a
small-form computer (Intel Nuc Kit NUC6i5SYK Intel Core i5-
6260U Barebone), which acted as the main processor for the
device, a USB hub and an OpenUPS2 uninterruptible power
supply. The latter is needed to address challenge 4; so that when
the tractor powers down, the device shuts down gracefully,
rather than having the power cut immediately. The Processing
Box also contained the USB hub and a status LED, used to indicate
when USB writing is complete (and an Arduino to operate the
LED). Fig. 7 shows the contents of the box; and the components
on the outside fascia of the box, which include a waterproof gland
for the camera and GPS cables, a power D-Socket, status LED and
the waterproof USB socket (the last two being used to address
challenge 5).
and mounted within a customised shroud for eliminating direct sunlight.



Fig. 6. Lightweight adjustable and reconfigurable bracket assemblies, developed for mounting the camera and housing on the Grime GT170 harvester.
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Finally, challenge 6 was met by employing a relatively fast shutter
speed to ‘freeze’ the potatoes’ motion on the conveyor; and any
potential problems due to touching potatoes were overcome by
employingthe3Ddatafromthesurfaceofeachpotatotofitanellipsoid
to it, thereby enabling segmentation. This is shown in Fig. 8 below.

4.2.2. Information generated by the potato metrology system
In order to test the operation of the device, potatoes were

measured in daylight in the field, with the harvester moving. The
conveyor was started and a number of potatoes of known
dimension (length, width and height) were passed along the
conveyor, under the device. An example of the results are shown in
Table 1, where it can be seen that the majority of measurements
obtained are within 10% of their true values.

There is often an over-estimation of the major axis (length), due
to potatoes not being true ellipsoids; however, we only use the
minor axis (width) and height in our 3D sizing estimations [20], so
this does not affect the quality of the resulting size gradings.

The next stage was to investigate what useful data can be
provided by the system when the harvester is working in anger in
the field, digging potatoes; where we expect to generate GPS maps
that fit neatly with the satellite view of the harvested field. The
approach employed here involved measuring how many potatoes
were measured to be within each of five discreet size bands, and
then displaying this as a heat map. Five heat maps were generated
for each field, one showing the yield for each sizing band. The
colours of the heat maps represent the number of potatoes within a
corresponding band that have been measured at a particular GPS
location, where blue indicates a low number of potatoes, and red
indicates a large number of potatoes with the corresponding
colours in between (i.e. green means a medium number of potatoes
Fig. 7. The contents and connections for the Processing Box; the rechargeable batteries 

weatherproof USB socket can be seen on the far right.
were seen). Fig. 9 shows heat maps (left) and satellite image (right)
of a field harvested on 13th July 2016.

As can be seen in Fig. 9, the heat maps offer a convenient and
potentially powerful way to visualise 3-dimensional data (latitude,
longitude, number of potatoes). The potential utility of this is clear; it
can enable farmers to easily evaluate yields in particular field (or
parts of fields); and to relate this data to factors such as soil type/
condition, possible usage of fertilizers and pesticides, as well as
environmental conditions and water usage over particular periods.
Such information offers much potential for farmers to more fully
understand performance factors, thereby assisting them with
optimizing yields while reducing/minimising resource usage. This
project is believed to be the first to demonstrate the utility of 3D
machinevisionfor segmentingpotatoesimmediatelyafterbeingdug
up (rather than after being stored for a period), and for determining
yield from a field by measuring the number of potatoes and their size
distribution. The richer data that can be provided by 3D analysis also
allowsfurther information to be generated.By recovering the texture
and shapeof the potato surface,variouscharacteristics thatmay beof
critical interest, can be detected. These include:

� Presence of disease (e.g. potato blight or fungal infection).
� Damage due to fauna (pests in the soil).
� Damage sustained during harvesting.
� The presence of substantial soil on the potato.

However, effective and reliable identification of such features
does require high-resolution recovery of the 3D surface texture of a
potato, and one way of achieving this is to apply PS as described
above. Application of PS to in-depth potato analysis is a promising
area; and it is the subject of on-going research in CMV.
of the OpenUPS2 uninterruptible power supply are visible in the left image and the



Fig. 8. Image of potatoes moving on a conveyor of a harvester, with use of 3D data to facilitate segmentation and measurement of the tubers. (a) The colour frame from the
depth camera, (b) The depth information, with the region of interest highlighted (black rectangle), (c) The same depth frame, normalised to remove background and
annotated with potato detections and measurements.

Table 1
Vision system (Est.) measurements and caliper measurements (True) for potatoes moving along a conveyor on a harvester moving through a field. Units are millimetres
throughout. Percentage accuracies of each vision system measurement are also given.

ID True Length Est. Length % True Width Est. Width % True Height Est. Height % True Sz. Square Est. Sz. Square

1 92 109 84.4 78 60 70.0 56 39 56.4 136 101
2 92 116 79.3 75 82 91.5 54 52 96.2 131 137
3 92 99 92.9 79 88 89.8 54 52 96.2 135 145
4 117 100 83.0 93 88 94.3 55 53 96.2 153 145
5 102 107 95.3 94 100 94.0 63 60 95.0 160 165
6 96 75 72.0 77 63 77.8 58 33 24.2 136 101

Bold indicates measured values.
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5. Discussion

5.1. 3D machine vision: benefits and data capture techniques

In this paper, the literature review and the outline of machine
vision agri-tech work being undertaken in CMV, has identified the
potential benefits of the agricultural application of machine vision;
and particularly 3D analysis. The specific benefits of the latter can
be summarised by the following characteristics of a 3D approach:

� Allows for straightforward segmentation of objects for analysis
(as illustrated by the above potato application).



Fig. 9. Heat maps (left) and satellite image (right) of a field harvested on 13th July 2016, which give an indication of yield across the field. The colours of the heat maps
represent the number of potatoes that have been measured at a particular GPS location. The number of potatoes range from blue (low) to red (high). The five images on the left
correspond to five discreet size bands. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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� Can provide accurate surface recovery, including high-resolu-
tion 3D texture; with many potential applications, such as
introducing new plant measurement capabilities in plant
phenotyping.

� Illumination invariant – can still recover useful information in a
wide range of lighting conditions, including low light, dark
conditions, or even direct sunlight.

� Pose invariant – 3D data can provide objective (object-based)
measurements – thereby eliminating problematic effects of
camera position that are associated with 2D imaging – such as
perspective and parallax.

� Provides additional discriminatory information (such as dis-
eased tubers, damage to tubers sustained during harvesting and
soil adhesion).

� Can be used to augment 2D

The example 3D vision agri-tech applications described in this
paper illustrate how these benefits can be realised with relatively
low-cost vision technologies that are currently emerging. Associ-
ated practical considerations and potential advanced capabilities
are discussed below.

5.2. Detection of meristem for directed weeding; and plant
phenotyping

The work detailed in this paper outlines our implementation of
2D and 3D weed analysis methods in order to detect and locate
weeds at a field level. CMV has produced a system capable of the
detection of weeds in the field and for enabling close analysis of
their structure. The system also includes the capability to produce
a “field map” by mosaicking frames of video data together then
highlighting the weeds upon it. Perhaps most importantly, we have
also explored the possibility of using 3D features to determine
weed location, both on a static rig and under motion.

Alongside the implemented code, we have produced a highly
functional user-interface, pulling together the algorithms into one
place. Users can capture, analyse and export data in a variety of
modalities and modify parameters to examine their effect on the
resulting estimations.
The work investigated both 2D and 3D vision methods for
detecting vegetation and localising the meristem of plants. Results
were generally good, with many meristems being localised to
within a few millimetres of their true location. The 3D data
generated from the PS tests are particularly promising – here
advanced feature analysis can generate much information for
enabling advanced plant analysis capabilities, in both the field and
the laboratory. Regarding the latter, a wide range of experiments
have been undertaken using the PS apparatus shown in Fig. 3 for
accurately monitoring the growth of crops in situ, with detailed
measurement of phenotypic properties made possible by the
highly detailed surface models we obtain through PS. An example
of such a technique is the measurement of plant growth under
various soil or fertiliser conditions or at varied levels of irrigation
and/or temperature. Work has also included illumination at infra-
red wavelengths to reduce the influence of changes in background
light (even resulting in reliable data collection in direct sunlight);
and with a wide range of light wavelengths (i.e. a multi-spectral
approach) with a conventional camera. Also, a hyper-spectral
camera (pushbroom type by Gilden Photonics) has been employed
for implementing the PS. Plant imaging is well suited to this, since
the considerable time that such a camera can take to recover a
hyper-spectral image does not present a problem in this
application. This is an on-going area of research – our experiments
have been very encouraging and this approach promises to offer
new advanced capabilities for plant phenotyping – our intention is
to present the results of this in an on-going series of journal papers.

5.3. Potato measurement during harvesting

A potato metrology system was demonstrated to work well at
accuracy levels of within 10% both in the lab and in field trials.
Measurements are taken based on a virtual sieving algorithm
introduced by Lee [21], which calculates a minimal cross-section of
the potato that will pass through a given sizing grid. The system is
also able to operate with a relatively wide range of potato sizes (<45,
45–65, 65–80 and 80+ mm). However, a major challenge when
implementing a system of this type is how to effectively deal with
unexpected problems. Although the work reported here highlighted
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a number of unforeseen issues, most of these were effectively
addressed. An example issue related to the power supply – once the
tractor is connected one would have expected a constant supply; but
it was found to be very intermittent (lab testing was performed using
a 12 V portable battery where this behaviour was not observed). The
expectation was that the unit could operate from the tractor power
supply, withthe UPS only beingneeded to allow the computertoshut
down cleanly when it detected that the line inwas disconnected, and
also to “clean” the signal from the tractor to produce a reliable 19 V
output. However, experience has shown that it would be advisable to
run the system from a separate 12 V lead-acid accumulator (i.e. a car
battery) and to only employ the tractor power for charging this
battery.

To summarise, the potato project has successfully developed
and tested a demonstrator of the key technologies and functional-
ities that would be needed by an eventual production system. As
mentioned above, a number of outstanding issues have been
identified along the way; other issues worthy of further
investigation are a fuller treatment on the effects of foreign
materials and of moisture causing increased mud content and
specularity in the camera view, and monitoring of tractor speed
(possibly through matching of ‘salient’ features in overlapping
frames as mentioned above) for interpreting the rate of potato
harvesting. The development of any new technology inevitably
requires extensive real-wold testing and a process of iterative
refinement via, in this case, a program of testing and modification
using significant field data capture over an extended period.

6. Conclusion

The question a farmer or agri-tech company may wish to ask is:
which 3D techniques are most likely to enable the potential
benefits (listed in the Discussion) to be realised? From a review of
supplier literature it becomes clear that there are a wide range of
3D vision technologies available, each with their particular
advantages and drawbacks; examples include: stereo vision, laser
triangulation, LIDAR, photometric stereo, and RGB-D cameras. The
latter device provides colour information as well as the estimated
depth for each pixel. In recent years, RGB-D devices such as the
Kinect have become widely available at costs that are around an
order of magnitude less than that of previous sensors that had
similar functionality. This has resulted in a rapid expansion of their
use for 3D machine vision research in various sectors, including
agriculture. An example of this is provided by the potato inspection
project described above, where the RGB camera provided a cost
effective means of deriving the metrics that were of interest to the
collaborating company – specifically potato sizes and yields.
However, if the emphasis had been more on the individual potato
quality characteristics, another method may have been employed
to capture surface texture/topology characteristics at high resolu-
tion. Photometric stereo (PS) is a technique that is well suited to
achieving this, while also having the advantage of being relatively
low-cost. The resolution with which PS allows 3D plant textures to
be recovered, allows detailed inspection of leaf size/shape and
characteristics/condition for implementing cost-effective plant
identification and/or crop monitoring. The potential to employ this
for widespread realisation of advanced capabilities with long term
potential benefits to agriculture, is very great, since the low cost of
the needed emerging equipment means that it is very accessible
and so can be widely applied. Therefore, with world-wide food
security becoming an increasingly urgent matter, plant imaging,
and particularly 3D plant analysis, is likely to emerge as an
increasingly important technology.
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