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Abstract

There is a flaw with some of the most commonly performed sta-
tistical tests. A paradox of the one sample t-test is the contrariwise
decrease in the p-value as the value of an outlier increases in the direc-
tion of the overall effect. Demonstration of this paradox is extended
to the equal variances assumed and Welch’s unrestricted to equal vari-
ances independent samples t-test. The phenomenon is explored using
Monte-Carlo simulation, and compared with alternative two sample
tests; the Mann-Whitney U test, and the Yuen-Welch t-test with 10%
trimming per tail. Scenarios where the overall effect is concordant or
discordant with the direction of the aberrant observation are consid-
ered.

Sample data is generated under normality, with the subsequent
inclusion of an aberrant observation in one sample. The aberrant
observation is systematically varied. The total sample sizes for each
of the two samples within a factorial design are {10, 15, 20}. The
variances within the factorial design are {1, 4}. For each parame-
ter combination, the proportion of 10,000 iterations where the null
hypothesis is rejected is calculated at the 5% significance level, two
sided.

It is evidenced that the paradox for both forms of the independent
samples t-test is exacerbated when the smaller sample size with the
higher variance includes the aberrant observation, and as the imbal-
ance between the sample sizes increases. Results also indicate that
when the sample with the lower variance includes the aberrant obser-
vation, Welch’s t-test and the Yuen-Welch t-test most closely retain
Type I error robustness.

Recommendations on choice of test for independent samples de-
signs are given, ending with discussion on how these results impact
analyses for partially overlapping samples designs.
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Introduction
An outlier is an observation that apparently deviates from other observations
(Grubbs, 1969). An outlier can cause serious problems in statistical analyses.
An outlier increases the variability within a sample, increasing the probability
of making a Type II error, an issue that is exacerbated for small sample sizes
(Cousineau and Chartier, 2010).

Zumbo and Jennings (2002) identify two types of non-normality: (i) sam-
ples from non-normal distributions, and (ii) samples from inherently normal
distributions, but with outliers. The latter is considered here.

A paradox of the one sample t-test is the contrariwise decrease in the
p-value as the value of an outlier increases in the direction of the overall
effect (Derrick et al., 2017a). The paired samples t-test is also effected by
the paradox, this is because the paired samples t-test is equivalent to the one
sample t-test performed on sample differences. This phenomenon is referred
to as as the extreme observation paradox (Derrick et al., 2017a).

An observation that may appear to be an outlier, may represent a location
shift (Walfish, 2006). This location shift may be masked when performing
the one sample t-test due to the increase in variability (Derrick et al., 2017a).

It follows that the independent samples t-test may also exhibit the ex-
treme observation paradox. The form of the independent samples t-test with
the assumption of equal variances relaxed is referred to as Welch’s test, and
is robust under normality (Derrick, Toher, and White, 2016; Ruxton, 2006),
but may not be robust when outliers are present.

Other tests based on the t-test may also be subject to the same paradox.
This includes the partially overlapping samples t-tests by Derrick (2017),
Derrick et al. (2017b), and Derrick, White, and Toher (n.d.). These tests are
used when there is a combination of independent observations and paired
observations. For example, in a paired samples design where experimental
error creates a scenario where both paired observations and independent
observations are present. This example scenario can be considered as data
missing by design, and therefore the assumption of missing completely at
random (MCAR) holds (Kang, 2013). The partially overlapping samples
t-test is an interpolation between the independent samples t-test and the
paired samples t-test, so may be an appropriate alternative test under the
conditions of normality and MCAR (Derrick, Toher, and White, 2017). Thus
the properties of the independent samples t-test will impact the partially
overlapping samples t-test.

Focus is on relatively small sample sizes, these are situations in which
potentially extreme observations may have the greatest practical impact.

In this paper, simulation methodology for exploring the performance of
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tests for a two independent samples designs is given. This is followed by
results of the simulation. The extension to partially overlapping samples
scenarios is finally considered.

Simulation methodology
The approach is to generate two independent samples under the normality
assumption, then include one aberrant observation in one sample. This ad-
ditional observation will systematically change in its observed value. Thus
one observation is directly manipulated to create an extreme observation
with otherwise normally distributed data. This aberrant observation may
be compounded with outliers due to inherent variability within the other
observations (Anscombe, 1960).

The tests performed are the independent samples t-test (equal variances
assumed), Welch’s test, the Mann-Whitney test, and the Yuen-Welch test.
Under a nil-null hypothesis; the independent samples t-test and Welch’s test
are used to test a distribution mean difference of zero; the Yuen-Welch test
is used to test the distribution of the trimmed means equal to zero. Under
the same conditions, the Mann-Whitney test is used to test a null hypothesis
of distribution differences symmetrically distributed around zero.

The Yuen-Welch test is performed using the R package ‘PairedData’ with
10% trimming per tail as outlined by (Wilcox, 2012), the other tests are
performed using the ‘stats’ package.

Specifically, in Sample 1, na Standard Normal deviates are generated, and
in Sample 2, nb−1 Standard Normal deviates are generated. The Mersenne-
Twister algorithm (Matsumoto and Nishimura, 1998) generates uniform ran-
dom deviates, then the Paley and Wiener (1934) transformation is applied
to obtain Standard Normal deviates.

A fixed aberrant observation, xb, is appended to the x1, x2 · · · , xb−1 ob-
servations to give a total sample size of nb. For each simulated sample, the
value of xb is systematically varied from -8 to 8 in increments of 0.1. It is this
value, xb, which is referred to as the ‘marching observation’. The values of
xb approximately range between ±8 standard deviations from the mean and
would therefore cover limits likely encountered in a practical environment.

If x̄a − x̄b−1 < 0 then the observations in Sample 2 are multiplied by -1
to ensure a non-negative sample mean. This change of sign does not affect
the validity of a two-sided test of a nil-null hypothesis for these data. This
condition is to ensure that the concordance of effects (x̄a − x̄b−1 > 0, xb > 0)
or discordance of effects (x̄a − x̄b−1 > 0, xb < 0) can be established.

The sample sizes of na and nb that are varied within a factorial design
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are {10, 15, 20}. The values of σ1 and σ2 that are varied within the factorial
design are {1, 2}. The simulation is run 10,000 times for each parameter
combination of na, nb, xb, σ1, σ2.

For each parameter combination and each test statistic, the interest is in
the proportion of 10,000 iterations where the null hypothesis is rejected at
the 5% significance level, two sided. This gives the Null Hypothesis Rejec-
tion Rate (NHRR). Note that the terminology NHRR is used rather than
Type I error rate, because the inclusion of the marching observation strictly
invalidate the underpinning assumptions.

The marching observation demonstrates the impact on the test statistics
when the aberrant observations is close to a mean difference of zero, as well
as what happens when extreme observations are included in a sample with
a non-negative mean. The effect of gradually increasing the marching obser-
vation is to gradually violate the assumption of the nil-null hypothesis, large
positive values of the marching observation would increase the NHRR. Neg-
ative values of xb would cancel out the overall positive difference observed
within the sample differences and decrease the NHRR.

Results
For illustrative purposes, the impact of the marching observation for a se-
lection of parameter combinations from the independent samples simulation
design are given.

As per the methodology outlined above, an aberrant observation is in-
cluded in Sample 2.

Each scenario consists of a total sample size of 30. Scenarios 1-3 represent
have equal sample sizes. Scenarios 4-6 have an imbalance in sample size. The
six scenarios are as follows:

1. na = 15, nb−1 = 14, σ1 = 1, σ2 = 1

2. na = 10, nb−1 = 19, σ1 = 1, σ2 = 1

3. na = 20, nb−1 = 9, σ1 = 1, σ2 = 1

4. na = 15, nb−1 = 14, σ1 = 1, σ2 = 2

5. na = 10, nb−1 = 19, σ1 = 1, σ2 = 2

6. na = 20, nb−1 = 9, σ1 = 1, σ2 = 2
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Figure 1: NHRR when performing the independent samples t-test

For each of the six scenarios; Figure 1 gives the NHRR when performing
the independent samples t-test, Figure 2 gives the NHRR when performing
Welch’s test, Figure 3 gives the NHRR when performing the Yuen-welch test
and Figure 4 gives the NHRR when performing the Mann-Whitney test.

Figure 1 shows that for Scenarios 1-4, when xb = 0, the NHRR is approx-
imately equal to the nominal Type I error rate of 5%. However, the extreme
observation paradox can be observed through the contrariwise decrease in
the NHRR as the value of an extreme observation increases in the direction
of the overall effect. For positive sample means, as the value of xb starts
to increase above zero, the independent samples t-test has an increasingly
higher NHRR, until a turning point is reached. This turning point has the
effect that in some circumstances an extremely large aberrant observation
becomes extreme enough to result in the null hypothesis being rejected (e.g.
Scenario 1). For scenarios 5-6, when xb = 0, the NHRR is not approximately
equal to the nominal Type I error rate. This is due to the non-robustness of
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Figure 2: NHRR when performing Welch’s test

the independent samples t-test under unequal variances.
Figure 2 shows that for each scenario, when xb = 0 the NHRR is approx-

imately equal to the nominal Type I error rate of 5%. This is anticipated
given the known robustness of Welch’s test. However, Figure 2 indicates that
for increasing values of xb, the paradox is also observed for Welch’s test.

The only design difference between Scenario 2 and Scenario 3 is that the
aberrant observation is in the larger sample for Scenario 2, and the smaller
sample for Scenario 3. Figure 2 indicates that the test maintains closer ro-
bustness when the aberrant observation is in the larger sample. Likewise,
The only design difference between Scenario 5 and Scenario 6 is the aberrant
observation is in the larger sample for Scenario 5, and the smaller sample
for Scenario 6. Figure 2 indicates that the paradox is exacerbated when the
smaller sample size has the higher variance and includes the aberrant obser-
vation. Balanced samples sizes (Scenario 1, Scenario 4) are also preferable.

Figure 3 and Figure 4 show that the Mann-Whitney test and the Yuen-
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Figure 3: NHRR when performing the Yuen-Welch test

Welch test are liberal for positive values of the marching observation, and
are conservative for negative values of the marching observation. The Mann-
Whitney test and the Yuen-Welch test maintain NHRR close to the nominal
significance level when sample sizes are equal or the larger sample size in-
cludes the marching observation. Both tests tend to a fixed value as xb →∞,
and both tests tend to a fixed value close to zero as xb → −∞. Due to the use
of rank values, the Mann-Whitney test is not greatly affected by the magni-
tude of the extreme observation. Similarly due to trimming, the Yuen-Welch
test is not greatly affected by the magnitude of the extreme observation.

For independent samples, Bakker and Wicherts (2014) recommend pro-
ceeding with the Mann-Whitney test or the Yuen-Welch when outliers are
present. However, Figure 3 and Figure 4 show that the fixed NHRR these
tests tend to is dependent on sample size and variance. For Scenario 5 it can
be seen that the NHRR when performing the Mann-Whitney test remains
below the nominal significance level for all values of xb. The results corrob-
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Figure 4: NHRR when performing the Mann-Whitney test

orate findings by Zimmerman (1998) that the Mann-Whitney test does not
universally provide a robust alternative approach when an outlier is present.

Extension: partially overlapping samples
The simulation design is extended to the partially overlapping samples frame-
work. The partially overlapping samples t-test assuming equal variances,
Tnew1, is assessed. This is compared against TRNK1, substituting rank values
into the test statistic as proposed by Derrick, White, and Toher (n.d.)

Under a two sided nil-null hypothesis; the parametric partially overlap-
ping samples t-tests, Tnew1 is used to test for a distribution mean difference
of zero. Under the same conditions, the non-parametric partially overlap-
ping samples t-tests TRNK1 is used to test for a distribution of differences
symmetrically distributed around zero.
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Figure 5: NHRR when performing Tnew1

The approach is to simulate two groups of Normal deviates for a com-
pletely paired design with n = 15, ρ = 0.5. with σ1 = {1, 2} and σ2 = {1, 2}.

Observations are deleted at random from the paired samples design with
constraints so that remaining sample sizes are as per the scenario under
consideration. The six scenarios are as follows:

1. na = 5, nb−1 = 4, nc = 5, σ1 = 1, σ2 = 1

2. na = 5, nb−1 = 4, nc = 5, σ1 = 1, σ2 = 2

3. na = 5, nb−1 = 4, nc = 5, σ1 = 2, σ2 = 1

4. na = 10, nb−1 = 3, nc = 2, σ1 = 1, σ2 = 1

5. na = 10, nb−1 = 3, nc = 2, σ1 = 1, σ2 = 2

6. na = 10, nb−1 = 3, nc = 2, σ1 = 2, σ2 = 1
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Figure 6: NHRR when performing TRNK1

where na is the number of independent observations in Sample 1, nb is the
number of independent observations in Sample 2, and nc is the number of
pairs.

As previously, As previously, if x̄a − x̄b−1 < 0 then the observations in
Sample 2 are multiplied by -1 to ensure a non-negative sample mean. An
additional observation, xb, is appended to the nb−1. For each simulated
sample, the value of xb is systematically varied from -8 to 8 in increments
of 0.1. Again, it is this value, xb, which is referred to as the ‘marching
observation’.

The six scenarios displayed are for indicative purposes of the behaviour of
Tnew1 and TRNK1. Scenarios 1-3 represent have equal sample sizes. Scenarios
4-6 have an imbalance in sample size. Figure 5 - Figure 6 display the NHRR
for Tnew1 and TRNK1 respectively

The extreme observation paradox identified for the independent samples
t-test is also observed in Figure 5. However, under unequal sample sizes
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and unequal variances, further undesirable patterns are also observed. This
can be explained by the non-robustness of the equal variances assumed test
statistic in these conditions (Derrick et al., 2017b).

The poor outcomes for the parametric test are unsurprising following the
conclusions based on paired samples tests and independent samples tests on
which these tests are based.

Figure 6 show that the statistics TRNK1 tends to a fixed value for the
NHRR. However, the fixed NHRR value is inflated when the smaller sample
size is associated with the larger variance.

Summary
Given the debate in the literature regarding the removal of an outlier, it is
important to be aware of the impact of an outlier on commonly used tests.

The results show that a single aberrant observation can potentially either
mask true effects or show phantom significant effects.

There is a counter-intuitive decrease in the NHRR as the value of an
extreme observation increases in the direction of the overall effect. This phe-
nomenon is observed for the independent samples t-test and Welch’s test.
As a consequence, this paradox is also observed for the parametric partially
overlapping samples t-test. Parametric tests display behaviour strongly de-
pendent on the magnitude of the outlier.

Fagerland (2012) suggest that the problem is not the t-test itself, moreover
it may be that in the presence of an outlier, the mean may be a poor measure
of central location, and other measures of location may be more appropriate.

In contrast, test statistics making use of trimmed means or rank values
do not suffer from the extreme observation paradox, and are not impacted
by the magnitude of the outlier. However they are not necessarily robust for
small sample sizes.

Typically the natural desire of a researcher is to prove significant effects,
the researcher will often consider the removal of outliers in order to conclude
a significant effect. It is demonstrated that the removal of an outlier may in
fact produce the opposite outcome. The decision not to remove an outlier
might be taken so that a significant effect is observed. Usually it is the
removal of an outlier that requires justification, but in this respect a decision
not to remove an observation should be considered with just as much vigour
as the decision to remove an observation.

In textbooks listing the assumptions of the t-test, the assumption of no
significant outliers is sometimes listed, but sometimes not. Given the results
above, the assumption should be listed. The question of how to identify
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a ‘significant outlier’ has no answer that is applied universally (Hodge and
Austin, 2004), an extensive list is given by Bamnett and Lewis (1994), and
is therefore an area of much debate that will continue.
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Example 



Simulation study  
Distribution: N(0,1) N(0,4) 

 

‘marching observation’, additional observation within 

Sample 2, from -8 to 8 (increments of 1).  

 

• Independent samples t-test (pooled variances) 

• Welch’s test 

• Mann-Whitney test 

 

5% significance level, two sided 

 

Sample sizes:  10, 15, 20 

 

10,000 iterations.  



Results, Equal variances 

-Independent samples t-test 



Results, Equal variances 

-Welch’s test 



Results, Equal variances – 
Mann Whitney test 



Sample 2 larger variance 

 – Independent samples t-test 



Sample 2 larger variance 

 – Welch’s test 



Sample 2 larger variance 

 – Mann Whitney test 



Extension: 

Partially overlapping samples 



Extension: Simulation 
methodology 

Paired samples design with observations deleted 

(MCAR) 

 

Distribution: N(0,1) N(0,4) 

 

‘marching observation’, additional observation within 

the sample, from -8 to 8 (increments of 1).  

 

• Partially overlapping samples t-test 

• Ranks applied to partially overlapping t-statistic 

 

 



Partially overlapping samples, 
Equal sample size, equal variance 



Conclusion 

• extreme observation paradox, mask true effects or 

show phantom significant effects 

 

• parametric tests, no outliers assumption of test 

 

• Outlier detection methods subjective, decision not 

to remove ‘outlier’ should be considered with same 

vigour as decision to remove 
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