A COGNITIVE DIMENSIONS APPROACH FOR THE DESIGN OF AN
INTERACTIVE GENERATIVE SCORE EDITOR

Samuel J. Hunt Tom Mitchell Chris Nash
Creative Technologies Laboratory Creative Technologies Laboratory Creative Technologies Laboratory
UWE Bristol UWE Bristol UWE Bristol

Samuel .hunt@uwe.ac.uk

ABSTRACT

This paper describes how the Cognitive Dimensions of No-

tation can guide the design of algorithmic composition tools.

Prior research has also used the cognitive dimensions for
analysing interaction design for algorithmic composition
software. This work aims to address the shortcomings of
existing algorithmic composition software, by utilising the
more commonly used score notation interfaces, rather than
patch based or code based environments. The paper sets
out design requirements in each dimension and presents
these in the context of a software prototype. These prin-
ciples are also applicable for general music composition
systems.

1. INTRODUCTION

The primary focus of this research is to engage traditional
composers with generative music systems. Existing tools
for generative music composition require that users transi-
tion from traditional score editor workflows [1], into pro-
gramming based environments, either graphical (like Max
[2]) or textual (like Sonic Pi [3]). Little research has ex-
plored how algorithmic music techniques can be integrated
into contemporary digital music composition work-flows
(e.g. score editor-based, and digital audio workstation-
based composition).

This paper discusses an ideal usability profile for a sys-
tem that integrates generative music elements into a score
editing workflow, considering the features required, under
the Cognitive Dimensions of Music Notation framework.
A prototype generative music system called the Interactive
Generative Music Editor (IGME), is presented that consid-
ers the Cognitive Dimensions of Music Notation in its de-
sign in order to support interactive generative music. The
research also shows directions in which digital score edi-
tors might develop to improve general usability.

2. COGNITIVE DIMENSIONS FRAMEWORK

Green and Petre [4] proposed the Cognitive Dimensions
of Notations framework, as an evaluation technique for vi-
sual programming environments, interactive devices and

Copyright: (©2018 S. J. Hunt et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

Tom.mitchell@uwe.ac.uk

Chris.nash@uwe.ac.uk

non-interactive notations. Nash [5] has adapted this frame-
work for use in designing and analyzing music notations
and user interfaces for digital and traditional music prac-
tice and study. Bellingham [6] presents similar work, using
the dimensions approach for analyzing a representative se-
lection of user interfaces for algorithmic composition soft-
ware. Finally, the cognitive dimensions can also be thought
of as discussion tools for designers [6].

3. INTRODUCTION TO IGME

IGME is a score editor-based music sequencer that incor-
porates using generative and algorithmic techniques, de-
signed to promote a human and computer cooperative cre-
ative system. A more detailed overview of IGME (previ-
ously named IGMSE) is given in [1].

The core design principles of IGME are as follows:

o Integrates algorithmic techniques for musical com-
position inside familiar score editing and music se-
quencing workflows.

e Provides full version control, for revisiting and com-
paring material.

e Uses graphical controls (WIMP) rather than code
based interfaces.

e Takes a modular approach to composition, while re-
taining a linear timeline.

e Uses a multi-layered assembly stage that assembles
the final score from individual parts.

IGME considers composition in terms of three distinct
musical parts: human created content, computer generated
content, or a mixture of both. The IGME program is di-
vided into two main views: the arrange view (Figure 1)
and edit view (Figure 2). The arrange view focuses on ar-
ranging and sequencing individual parts, using design prin-
ciples found in other sequencers such as Logic Pro X [7].
The edit view (or detail view) allows the user to edit the
individual music sequences, and/or specify the algorith-
mic effects for each part. A range of algorithmic effects
are implemented by IGME, that can either augment hu-
man composed music, or generate computer created mu-
sic. These are presented using an audio plugin metaphor,
whereby control is given though simple graphical controls
(see figure 4).

mailto:Samuel.hunt@uwe.ac.uk
mailto:Tom.mitchell@uwe.ac.uk
mailto:Chris.nash@uwe.ac.uk
http://creativecommons.org/licenses/by/3.0/

oo e
File Edit

—

Edit

Analyse

Track 1

Piano 1 s

Track 2

O Mute

N a
- o terations v

© Mute ——

el

O Stop | Restart |
«+« I N N I NI RN E2 I NI ECR T
1

IGMSE - 0.9

View Filter

P ‘ Show Score | | Show Dependicies

Scratchpad | Changes Other Library

Iterations List

Load Selected Revision

Preview

Figure 1. The arrange view in IGME.

>
E}
2
:

—

Edit

Analyse

a
Western Score =

Editing Block: 1/1

NI

IGMSE - 0.9

Output

Note Entr a
Manual Step W

0
)V 4 | —
P f | —
—H—e o
J 4 -]
| Swop | Restart] 2:00:00 | Merge
4 ———t—
: ==
_4‘—1.
R 4

Random

@)

——— Range:-5-5

Iterations List Compare

Seed - Param - Result - Score

Key 0

Scale 0

Visualise

Figure 2. The edit view in IGME.

0

s-%nrﬂ§7 e e e o i e e e s e |

’.o 1 .

e ! — T

ott———T
= I

{ TRER
—y
—_

ol

Figure 3. Each of the parts gets concatenated to form a
final score.

Once the individual musical parts have been arranged on
the timeline and any generative systems set up, the final
score can be assembled. This process, referred to as the as-
sembly stage, evaluates all of the computer generated parts
and along with any human parts assembles them into a fi-
nal score that can be auditioned and further inspected (see
Figure 3).

A prominent feature necessary for supporting IGME is
the version control system (Figure 1 & 2). This feature
keeps track of all of the various edits made at both the in-
dividual part level and global level. This encourages exper-
imentation with the generative system as it is not possible
for the user to overwrite or loose material. This feature also
allows the user to revisit previous material at will. Such
a feature was originally proposed by Duignan [8], noting
that such features are non-existent in music composition
systems.

Two related and existing systems worth noting that also
use score interfaces and have similar design themes are In-
Score [9] and OpenMusic [10]. InScore is an environment
for the design of interactive augmented music scores, it
is mainly used for the real-time playback of dynamic mu-
sic. OpenMusic is a visual programming language, that
is a convenient environment for music composition. Al-
though both systems use score interfaces, InScore requires
the learning of syntax, and OpenMusic has many of the
issues associated with patch environments [6].

4. DIMENSIONS OF MUSIC NOTATION

The remainder of the paper takes each of the dimensions
in turn and discusses them in context. The description for
each dimension is taken from Nash’s [5] work.

5. VISIBILITY

“How easy is it to view and find elements or parts of the
music during editing?”

The software presents varying hierarchical levels of vis-
ibility, these can be loosely thought of as the detail view,
arrange view, and global view. The detail view (Figure 2)
shows the individual notes within each part, the processes
attached to them, and the net result. The arrange view (Fig-
ure 1) shows the sequential order between parts, giving an
indication of which parts are human created, or computer

Generative Plugin: [EERVRN)

. Random Basic

O

Key 2

o Scale 6

Range: -4 - 6

Figure 4. Random algorithmic effect, alters the pitch
within a given range, also applies key/scale quantisation.

generated. Finally the global view (Figure 3) shows the fi-
nal output as a score, after all processes have been applied,
and is the musical content auditioned by the user, this is
very similar to the kind of view seen in programs such as
Sibelius ' . There are few steps required to get from the ar-
range view down into the edit view. A criticism of patch
based interfaces as stated by Bellingham [6] is that this
structure is not often clear with many layers often spread
across different windows. Finally selecting an individual
note in the global view will highlight its parent part, so
that it can be edited.

Generative effects in IGME are shown with graphical con-
trols (Figure 4) similar to those found in audio/MIDI plu-
gins, rather than using variables or number boxes. The
values of the plugins are easier to see, compared with pro-
gramming based systems. In programming based genera-
tive systems the value of a variable can sometimes be de-
fined far away from where it is used, thus presenting addi-
tional debugging challenges.

Following design principles in similar programs, differ-
ent tracks can be isolated in the view and shown against
each other, giving great control over what is shown at once.
The program can be split into two windows, one for the ar-
range and edit view and the other for permanently showing
the overall score.

6. JUXTAPOSABILITY

“How easy is it to compare elements within the music?”

Specific iterations can be compared with a dedicated com-
pare command. As each iteration and edit is retained, it
allows different parts to be swapped in and out quickly and
the result auditioned in context with the parts around it.
The included diff tool (Figure 5) shows the explicit differ-
ence between parts. Bellingham et al [6] note that form-
based systems such as Tune Smithy and the Algorithmic
Composition Toolbox do not allow users to see older en-
tries as they are replaced, this having a negative effect on

Uhttp://www.avid.com/sibelius

) Compare

Key: @ -Deletes Modified @ -Ceneratve @ - Added

Iteration - 6 Iteration - 7

L RPIEPoae
] P

These notes are now generative

Result Resuit

These notes are removed from =1

V]

Figure 5. Diff tool comparing two different iterations.

Juxtaposability. Thus users are reliant on either using an
undo, or keeping everything in working memory, increas-
ing hard mental operations. These issues are mitigated by
the version control techniques introduced in IGME.

Nash [5] notes that some musical characteristics are not
obvious purely in the visual domain. For example some
notes are dependent on key and transposition (for certain
instruments) to fully decode, requiring the user to under-
stand these relationships. Two solutions can be proposed
respectively. First, the colour or shape of the note head
could be modified to explicitly show that a note is for ex-
ample not an E but an E flat, however this feature is pos-
sibly only useful for novice composers. Second, by using
the IGME assembly process, transposed instruments can
be notated as a normal instrument, and then be transposed
into the correct transposition for the overall score during
the assembly stage, this does however increase hidden de-
pendencies. Both of these features have been encoded into
IGME but remain optional at this stage.

It may be beneficial to compare elements in the music
in a different domain to assess for example why a gener-
ative part is not suitable. IGME includes built in analysis
tools that allow for the analysis and comparison of musi-
cal elements, showing for example the difference in pitch
distributions between different sections. This may for ex-
ample show quickly that track A is clashing with track B,
because of the increased use of accidentals. This feature
would be useful for normal, purely human compositions,
but increasingly useful for compositions with elements of
computer generated parts. For more information relating to
visualizing musical elements in reference to the cognitive
dimensions see [11].

Using programming based environments for generative
music makes comparing elements in the music especially
difficult. The program would need to be recompiled and
the runtime output recorded into a third-party program for
offline comparison. This issue is also true of environments
such as Max/MSP. The ability for programming based en-
vironments to achieve the same effect in multiple ways can
be prohibitive for this dimension. IGME supports the au-
ditioning of music within the software itself; however the
music can also be output as MIDI for synthesis or analysis

‘ Scratchpad I Changes I Other Library ‘

ﬁ +

Figure 6. Scratchpad for creating musical ideas.

in an external client.

7. HARD MENTAL OPERATIONS

“When writing music, are there difficult things to work out
in your head?”

Existing systems for generative music often require the
user to design and implement algorithmic techniques using
either code or a graphical programming environment (e.g.
Max/MSP), therefore placing a high mental load on the
user. This software provides such techniques out of the
box, focusing on using, rather than designing algorithms
for music composition. A knock on effect is that these
techniques end up being black boxes, where the user has
little knowledge of what each technique is actually doing.
There is a certain trade off between making each technique
internally accessible, and making it simple to use on the
outside.

Scores unlike other forms of notation and music software,
require the user to have a fairly high literacy threshold of
score notation [5]. As this software is designed for com-
posers familiar with western notation, this issues is not a
prominent one. However it is possible to switch from a
score editor to a piano roll editor for those more familiar
with the MIDI editing workflow, although the focus at this
stage is on score editing.

The scratchpad feature of IGME helps reduce the cogni-
tive load further by allowing users to offload their musical
ideas, without needing to think about their final location
in the overall structure. This feature works by simply al-
lowing the user to create musical fragments in a separate
window. These fragments can then later be dropped into
the final arrangement (Figure 6). Finally the rapid entry
methods discussed in section 12 also aid this dimension
even further, allowing users to capture core primitive ele-
ments of the music and focusing later on the exactness of
these elements.

Bellingham et al [6] stress the need for a clear visualiza-
tion showing the signal flow between components. These

issues are a common problem for systems without a clear
indication of a timeline, for example coding, patching and
offline systems. As IGME uses the timeline metaphor con-
trol moves from left to right, therefore the user is not re-
quired to predict control flow, reducing cognitive load.

8. PROGRESSIVE EVALUATION

“How easy is it to stop and check your progress during
editing?”

Individual parts can be rapidly auditioned, however users
of this system are required to manually iterate the assem-
bly process so that individual parts can be heard in the con-
text of other parts, adding a small amount of delay to the
process. The user is able to toggle these arrange level it-
erations to happen automatically, mitigating this delay, but
it must be first explained to each user. Mute and solo con-
trols are present in IGME and have the same usage as the
majority of music software.

Collins [12] states that evaluating the material is obvi-
ously important for music software, as iteration is a pri-
mary concept in composition. A user interacting with any
form of composition software is likely to apply a trial and
error approach, testing many different ideas and combi-
nations. Nash [13] notes that a rapid edit-audition cycle
contributes to having a high state of flow, a desirable men-
tal state for users engaging with creative exercises such as
music. The affordances offered by score editing software
make it very easy to stop and audition parts at any point,
and for the most part make quick edits. Code based envi-
ronments, make such editing processes more complicated,
often due to the need for recompiling. The introduction of
compile time errors, can cause the composition workflow
to stop all together, such compile and run time errors are
prevalent in patch and code based environments. Compile
time errors are eliminated with IGME, as all generative ef-
fects are pre-compiled. Like other non-generative music
software, erroneous data is prevented from being entered
by the restrictions imposed by the Ul The software makes
heavy use of pop-up warnings. These features of IGME
reduce error-proneness and increase provisionality also.

The version control system further aids in this dimension,
as users can not only revisit their previous work, but also
see how there compositions have progressed over time us-
ing the diff tool (Figure 5).

9. HIDDEN DEPENDENCIES

“How explicit are the relationships between related ele-
ments in the notation?”

An important consideration is the relationships between
different musical elements at varying structural levels. A
specific use case of IGME is that the individual parts can
reference other parts. For example part 2 on track 1 can
take its initial content from the output of part 1 on the
same track. This facilities simple repeats, or more com-
plex processed based music. To reduce the complexity
of using reference parts, the specific dependencies can be

Track 1
O Mute
Piano 1 =
Track 2
O Mute
Piano 1 =

Figure 7. Part 1 on track 1 is being repeated (referenced)
by 2 other parts.

Track 1
O Mute

Piano 1 v

Track 2

O Mute

Track 3
O Mute

Piano 1 v

Figure 8. The show dependants features, highlights all
parts that are dependant on part 1 track 1.

highlighted by using unidirectional coloured arrows, an ex-
ample of this is given in Figure 7. This feature is similar to
the patch cable metaphor used in Max/MSP [2] and Rea-
son [14]. Deleting events that have references triggers a
warning ensuring the user is aware of the knock on effect
of doing this.

Generative systems such as Max make dependencies more
explicit by using patch cables [6]. However, the variables
used in code based music systems, have more complex hid-
den dependencies. For example without manually search-
ing for a variable it can be a challenge to see exactly where
it is later used, and what effect changing it has for the over-
all output. Changing the internals of a particular function
or patch can introduce knock-on effects if other parts of
the program are dependant on the original behaviour. Even
though IGME does not use code or patch based workflows,
it can still have dependencies, especially for more complex
arrangements. For example some of the purely generative
effects work by analysing the surrounding musical content,
changing or removing a musical part will alter the output
of such generative processes. By shift clicking on a part in
the arrange view, it will show what other parts are depen-
dent on this part (Figure 8). Furthermore, pop-up warnings
are presented at the point where making an edit would have
a knock-on effect.

10. CONCISENESS / DIFFUSENESS

“How concise is the notation? Does it make good use of
space?”

Nash [5] notes that western scores remain a concise form
of notation interface, with the material shrinking and grow-
ing depending on the number of notes in a bar. How-
ever, issues present themselves in that score notation re-
quires expert knowledge to decode the symbolic encoding
of time. These decoding issues are not an issue for other
forms of digital notation such as a step sequencer or pi-
ano roll; however both of these can take up considerable
amounts of space.

The multiple views offered by IGME allows the represen-
tation of music at different hierarchical levels, improving
the conciseness of the notation, also aiding with visibility.

Bellingham [6] notes that one should increase the ver-
boseness in the language for variable names in coding en-
vironments, even if this has a negative effect on this dimen-
sion. This idea has been incorporated by giving parameter
names more verbose names, for example“num of notes”
gets expanded into “number of notes to be generated”. The
effect on overall user interface space usage is negligible.

11. PROVISIONALITY

“Is it possible to sketch things out and play with ideas with-
out being too precise about the exact result?”

The most prominent idea introduced in IGME is the in-
built version control technologies. This encourages exper-
imentation as ideas cannot fundamentally be overridden or
lost.

The assembly process allows users to rapidly enter note
sequences, without the restrictions imposed by bar lines or
time signatures. For example eliminating bar lines in the
initial note entry process removes the need for tied notes
that cross bars, as notes can simply be displayed as their
absolute length. The later assembly stage takes care of cre-
ating these formalisms (see Figure 2).

A scratchpad feature (Figure 6) is presented in IGME
that supports the user creating parts outside the scope of
the arrange view. In most other software this could only
be achieved by placing content many bars in the future or
creating a new session entirely. This ability to create provi-
sional material is a feature of Presonus . Older iterations
in a given part can be placed into the scratchpad so they
can be later re-purposed.

A prominent feature is the note step option. When en-
tering a new pitch for a selected note the user can switch
between auto and manual step. Manual step means that
entering a new note alters only the selected note, and the
cursor does not increment to the next note. Auto step al-
lows rapid entry as the cursor increments each time a new
note is entered.

Nash [5] states that digital score notation interfaces are
weak for supporting this dimension compared with paper

2 https://www.presonus.com/products/Studio-One

® Rapid Rhythm Entry

Output To Score

1/8 quantisation = Commit

ettty gy |

Figure 9. The Raid Rhythm Entry window allows user to
enter rhythm patterns quickly.

notation which is far more flexible, as it allows for infor-
mal sketching. Programs such as Sibelius are beneficial for
preparing final scores, and not necessarily for rapidly ex-
perimenting with ideas. A feature of IGME is the ability to
rapidly enter notes, and this is supported by providing in-
terfaces supporting a sketching metaphor. See secondary
notation (Section 12) for more information.

Finally, Bellingham [6] notes that Impro-visor’s [15] pre-
set algorithms can be used for quickly creating musical
sketches based on chord progressions. A prominent use
case hypothesis for algorithmic music is that it can be used
to generate new ideas, or to suggest augmentations to ex-
isting ideas, the extent to which such a feature is useful, is
one of the major objectives of planned future research in
evaluating IGME. Bellingham also notes that Logic Pro’s
in-built loops facilitate provisionality, as the content can be
used as a place-holder and replaced later.

12. SECONDARY NOTATION

“How easy is it to make informal notes to capture ideas
outside the formal rules of the notation?”

Nash notes that handwritten scores have an almost un-
limited ability to make informal notes that can be inter-
preted by the user across the score. However, digital scores
make this much harder through limited interaction with the
keyboard and mouse. Staff Pad? offers a trade off be-
tween paper based and digital notation, in that scores can
be sketched on a digital screen using a stylus, and the con-
tent typeset via advanced handwriting recognition, this is
perhaps only useful for those already familiar with hand-
written notation, it is also unclear how high the error rate
would be. A key principle of IGME is providing ways to
quickly enter sequences of notes, as briefly discussed in
the previous dimension (provisionality).

IGME has a range of in-built tools for quickly captur-
ing ideas, that can be formalised at a later stage. Figure
9 shows an example of one of these techniques that use
secondary notation to quickly input material. The “Rapid
Rhythm Entry” window allows user to simply tap a rhythm
in using the space bar. The ascoiated pitches and exact
rhythm can be edited later. These techniques support a

3 https://www.staffpad.net/

kind of sketching [5] metaphor where informal ideas can
be recorded quickly and effortlessly.

Bellingham [6] notes that adding colour to different ele-
ments of the interface can aid the usability of a program.
For example logic pro can display each track as a differ-
ent colour. Max allows different patch cables to be given
different colours which could for example represent differ-
ent types of signal flow (e.g. MIDI, mathematical, GUI
controls). Bellingham [6] and Nash [5] both note that pro-
gramming and patching environments support adding com-
ments that can better explain the program between users
and subsequent uses. Nash emphasises that limited provi-
sion is made in digital audio workstations for annotating
music in any of the sub-notations or views. Both the parts
and generative effects in IGME allow the user to write in-
formal notes about their current choice of arrangement.

13. CONSISTENCY

“Where aspects of the notation mean similar things, is the
similarity clear in the way they appear?”

A key design feature of IGME is that its design elements
are consistent with other music sequencers. For example
the arrange view and edit view are borrowed from similar
elements in Logic Pro X, Cubase and Pro Tools. Editing
music in score notation shares many features with Sibelius
and other notation packages. An important design prin-
ciple is that someone who is familiar with Logic Pro and
Sibelius should find it easy to pick up and use IGME. The
generative effects operate much like plug-ins, with presets
and graphical controls.

Bellingham [6] notes that a consistent interface is easy to
learn, so for IGME it is important that the interface is con-
sistent so the new features introduced are easily picked up,
so they can instead focus on exploring the novel features
of the software. A criticism of many existing generative
music systems is that they require the user to learn a new,
often unfamiliar workflow.

This is one dimension where the changes made for other
dimensions have had a knock on negative affect in this
area. For example offering different forms of input no-
tation to rapidly record new ideas, reduces consistency (as
there are now multiple ways to achieve similar things) for
an improvement in provisionality and closenss of mapping
(to other interfaces more familiar to users).

14. VISCOSITY

“Is it easy to go back and make changes to the music?”

The editing stage in IGME has been designed with low
viscosity in mind. The removal of bar lines for editing
notes, means that users are not required to supply tie lines
for notes that cross bar lines. Attempting to increase the
length of a note in existing score editors, has knock-on
viscosity [5], where the resultant effect will often discard
notes from the end of a bar. Guitar pro* solves this in a

4 https://www.guitar-pro.com/en/index.php?pg=buy-guitar-pro

Figure 10. Part 1 is locked and cannot be moved or edited,
whereas part 2 is open.

novel way, by not removing anything, instead highlighting
the bar as an error (in red), requiring a manual fix from the
user. This suggestion of removing bar lines for speeding up
the edit process is not novel, as it is also used in Dorico 5,

Repetition viscosity [6] becomes an issue where sections
of the music are copy and pasted to create repeats, and the
user wishes to change the initial content. IGME’s refer-
ence feature can mitigate this issue, as changing the initial
part, causes all parts that reference it to update. A down-
side is there is a slight increase in hidden dependencies, al-
though this has been addressed in other ways (see Section
9). By providing users with an easy way to use repeats, it
could have consequences for both the musical quality and
variety. The non-automated method may create happy ac-
cidents, whereas the proposal here may simply encourage
rigid repetition. The exact effects cannot be determined at
this time, but will be considered in future analyses of user
interaction with the software.

The inbuilt source control technologies inside IGME en-
sure that going back to make changes is encouraged. Some
issues can arise whereby the user inserts a note that ex-
pands the part , for example from 1 bar into 2 bars, there-
fore requiring the surrounding parts to be moved around in
context. However sync points can be used to ensure that
future sections are preserved. The lock feature of IGME
(Figure 10) prevents the position or internal content of a
part being modified. These sync points and part locks cre-
ate a trade off between viscosity and provisionality. The
software does not therefore impose either option but hands
over responsibility to the user.

Certain parts of the software have a viscous workflow, for
example the generative plugins have a limited degree of
control. Bellingham [6] notes highly viscous workflows
can improve stability and create well defined use cases.
This is not to say the effects are not powerful but have care-
fully designed user interfaces that facilitate a fluid experi-
ence for the user. Finally, Nash [5] notes increasing vis-
cosity is a trade-off for avoiding hidden dependencies, this
can be observed in patch and code based environments.

15. ROLE EXPRESSIVENESS

“Is it easy to see what each part is for, in the overall format
of the notation?”

A key design requirement of IGME is that each design el-
ement makes use of existing metaphors, including staff no-

3 https://www.steinberg.net/en/products/dorico/start.html

tation (Sibelius), arrange/edit view (digital audio worksta-
tions), graphical controls (plug-ins) and part editing (most
music sequencers). Using metaphors and graphical con-
trols, allows a user to quickly understand the potential uses
of each editor [5] [6].

In general, code and patch based environments are not
as role expressive, unless the user is already familiar with
the system. For a traditional score editor user, transition-
ing into a code/patch based environment presents a con-
siderable learning curve. For example variables replace
graphical controls, and without ensuring these have suit-
able names, confusion can arise in each variable’s role.
This issue can be prominent in MAX/MSP where some
objects appear as text boxes [5].

A key consideration of integrating generative music is en-
suring the user is aware of what notes are going to be al-
tered by any generative process. This is done by chang-
ing the colour of the note, where green is used to indicate
notes that may be processed, and black to show ones that
are fixed (Figure 2). Parts are also coloured depending on
their use, i.e. blue for a normal part or orange for a purely
generative part (Figure 1).

16. PREMATURE COMMITMENT

“Do edits have to be performed in a prescribed order, re-
quiring you to plan or think ahead?”

The timeline metaphor in IGME somewhat encourages a
linear left-to-right workflow. However like score editing
IGME supports various forms of development, including
part-by-part, bar-by-bar or top down arrangements (form)
[5]. The scratchpad (Figure 6) feature allows parts to be
created offline and then placed back into the arrangement
later on. The flexible editing methods offered by not en-
forcing bar lines, ensures that for example notes in the mid-
dle of bar can be edited easily at a later stage.

Bellingham [6] stresses that it should be important to have
an option that states I don’t know what is going here. Many
sequencer based systems including score editors, inher-
ently allow such gaps in the arrangement. More specialised
generative music systems without the concept of a timeline
are weaker in this category, and in general code based sys-
tems are not supportive of more structured or orchestrated
compositions. Nash [5] notes that an advantage of using
an arrange view metaphor, is it allows musical parts to be
easily inserted, moved and copied.

Digital score editors inherently force several commitments
from the outset, for example tempo, key and time signa-
ture. A planned feature of IGME is these can be autocom-
pleted, whereby the user enters a sequence and the soft-
ware analyses the musical features to predict tempo, key
and the time signature. See Temperley [16] for more work
in this area.

17. ERROR PRONENESS

“How easy is it to make annoying mistakes?”

As all generative effects are presented through a graph-
ical UI rather than patching or code, users are generally
protected from doing things that would otherwise break
the underlying generative models. The assembly process
takes care of adding formalisms that might otherwise be
seen as errors, for example fixing bar lines with tied notes,
and ensuring harmonic consistencies.

A feature of any generative music system is that the al-
gorithms themselves can generate annoying musical mis-
takes, or wildly inappropriate musical material. The ver-
sion control tracker features of IGME ensure many itera-
tions can be experimented with, encouraging the user to
tune the model to produce a more desired effect. It is dif-
ficult to appropriately tackle a subjective area such as mu-
sic, as musical qualities deemed annoying mistakes by one
composer, may be wholly appropriate by another.

18. CLOSENESS OF MAPPING

“Does the notation match how you describe the music your-
self?”

A key advantage of the IGME assembly stage, is that dif-
ferent parts can have different notations for representing
the musical material during the editing stage. At the as-
sembly stage these parts can be converted into a single no-
tation format for viewing and performing. Nash [5] notes
that score representation is not an intuitive representation,
but remains widespread especially for performers. It is
therefore important to ensure that whatever notational in-
terfaces are offered by the program it can still produce a
score based output, especially when the programs musical
output is to be performed by musicians. IGME does not
yet support any novel notation interfaces but is considered
for future versions.

As the generative effects are similar in nature to plugins,
the individual effects values are expressed as simple GUI
controls rather than variables or number boxes. For certain
effects, terminology that aligns with how the sound is de-
scribed is used. The use of graphical controls aligns with
the visual metaphors offered by audio plugins and virtual
instruments. Nash [5] notes that DAWSs score highly in
this dimension due to having interaction paradigms based
on recording studio workflows.

19. ABSTRACTION MANAGEMENT

“How can the notation be customised, adapted, or used
beyond its intended use?”

Green and Blackwell [17] describe three classes of soft-
ware; abstraction-hungry systems, abstraction-tolerant sys-
tems and abstraction-hating systems. Programming and
patch based environments rely heavily on abstractions,
which has a negative effect on usability, especially for tra-
ditional composers transitioning into those new types of in-

terfaces. Nash [5] notes that composers using paper scores
are free to invent new notation techniques to describe mu-
sic more concisely, digital score editors tend to be more
limited. In addition Bellingham [6] states that Abstractions
can be used to make software more effectively match the
users mental model of the music they are notating.

Bellingham [6] states that “An effective design would be
for the software to have a low abstraction barrier but be
abstraction-tolerant. Such a design would allow new users
to work with the language without writing new abstrac-
tions, while more advanced users could write abstractions
when appropriate.”

In general IGME’s inbuilt processes for generative music
are abstraction-hating as they cannot be customised inter-
nally, but can only be control through exposed GUI con-
trols. IGME abstracts sequences of events into parts that
can have further processes applied to them, and also refer-
ence and reuse each other. Overall the system is therefore
abstraction tolerant. It is unclear without more conclusive
user studies how powerful IGMEs inbuilt generative fea-
tures and part referencing will be.

20. CONCLUSION

This paper has shown how many of the issues associated

with generative music systems can be mitigated by transi-

tioning into more traditional music sequencing workflows,

eliminating the deficiencies offered by patch and code based
environments. Many of the suggestions made in this paper,

for example the version control system, would be benefi-

cial for different music sequencing and composition soft-

ware in general.

Future work will focus on testing the IGME software with
composers, both in longitudinal studies and shorter work-
shop sessions, then evaluating each cogntive dimension in
a similar way to Nash’s [5] research. Another theme for
future research will be integrating more advance algorith-
mic techniques for music creation, the primary aim of the
overarching research objectives.

21. REFERENCES

[1] S. Hunt, C. Nash, and T. Mitchell, “Thoughts on In-
teractive Generative Music Composition,” in 2nd Con-
ference on Computer Simulation of Musical Creativity,
Milton Keynes, UK, 2017.

[2] V. J. Manzo, Max/MSP/Jitter for Music: A Practical
Guide to Developing Interactive Music Systems for Ed-
ucation and More. Oxford University Press, 2016.

[3] S. Aaron and A. F. Blackwell, “From Sonic Pi to
Overtone: Creative Musical Experiences with Domain-
Specific and Functional Languages,” in Proceedings of
the first ACM SIGPLAN workshop on Functional Art,
Music, Modeling and Design (FARM’13), 2013, pp.
35-46.

[4] T. R. G. Green and M. Petre, “Usability Analysis of

Visual Programming Environments: A ‘Cognitive Di-
mensions’ Framework,” Journal of Visual Languages

& Computing, vol. 7, no. 2, pp. 131-174, 1996.

[5] C. Nash, “The Cognitive Dimensions of Music Nota-
tions,” in Proceedings of the International Conference

on Technologies for Music Notation and Representa-
tion (TENOR’15), Paris, France, 2015.

[6] M. Bellingham, S. Holland, and P. Mulholland, “A
cognitive dimensions analysis of interaction design for
algorithmic composition software,” in Proceedings of
Psychology of Programming Interest Group Annual
Conference, Brighton, UK, 2014.

[7] K. Anker and O. Merton, Logic Pro X Power!: The
Comprehensive Guide. Cengage Learning, 2014.

[8] M. Duignan, J. Noble, and R. Biddle, “Abstraction
and Activity in Computer-Mediated Music Produc-
tion,” Computer Music Journal, vol. 34, no. 4, pp. 22—
33, 2010.

[9] D.Fober, Y. Orlarey, and S. Letz, “Inscore - an environ-
ment for the design of live music scores,” in Proceed-
ings of the Linux Audio Conference, CCRMA, Stanford
University, USA, 2012, pp. 47-54.

[10] J. Bresson, C. Agon, and G. Assayag, “OpenMusic:
Visual Programming Environment for Music Compo-
sition, Analysis and Research,” in Proceedings of the
ACM International Conference on Multimedia: Open-
Source Software Competition, Scottsdale, AZ, USA,
2011, pp. 743-746.

[11] S. Hunt, C. Nash, and T. Mitchell, “How can music vi-
sualization techniques reveal different perspectives on
musical structure,” in Proceedings of the International
Conference on Technologies for Music Notation and
Representation (TENOR’17), A Coruiia, Spain, 2017.

[12] D. Collins, “A synthesis process model of creative
thinking in music composition,” Psychology of music,
vol. 33, no. 2, pp. 193-216, 2005.

[13] C. Nash and A. Blackwell, “Liveness and Flow in No-
tation Use,” in International Conference on New Inter-
faces for Musical Expression (NIME), Ann Arbor, MI,
USA, 2012.

[14] M. Duignan, J. Noble, P. Barr, and R. Biddle,
“Metaphors for Electronic Music Production in Rea-
son,” in Proceedings of the Asia Pacific Conference on
Computer Human Interaction (APCHI), Rotorua, New
Zealand, 2004.

[15] R. M. Keller and D. R. Morrison, “A Grammatical Ap-
proach to Automatic Improvisation,” in Proceedings of
the Sound and Music Computing conference (SMC),
Lefkada, Greece, 2007.

[16] D. Temperley, Music and probability. The MIT Press,
2007.

[17] J. M. Carroll, HCI models, theories, and frameworks:
Toward a multidisciplinary science. ~ Morgan Kauf-
mann, 2003.

	 1. Introduction
	 2. Cognitive Dimensions Framework
	 3. Introduction to IGME
	 4. Dimensions of Music Notation
	 5. Visibility
	 6. Juxtaposability
	 7. Hard mental operations
	 8. Progressive Evaluation
	 9. Hidden dependencies
	 10. Conciseness / Diffuseness
	 11. Provisionality
	 12. Secondary notation
	 13. Consistency
	 14. Viscosity
	 15. Role Expressiveness
	 16. Premature Commitment
	 17. Error Proneness
	 18. Closeness of Mapping
	 19. Abstraction Management
	 20. Conclusion
	 21. References

