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Abstract 

Catheter associated urinary tract infection seriously complicates the care of an already 
vulnerable patient set and has been estimated to cost the UK National Health Service in 
excess of one billion pounds per annum. Approximately 50 % of patients catheterised for 
more than 28 days will experience catheter blockage due to the formation of crystalline 
biofilm on the eye holes, balloon and lumen of the catheter (Getliffe, 1994) as a result of 
colonisation by Proteus mirabilis. Blockage can lead to significant complications such as 
pyelonephritis and septicaemia.  

To date, strategies to reduce or prevent these infections from occurring have met with 
limited success. One potential approach to prevent catheter colonisation and blockage is 
the application of bacteriophages as a catheter coating. Natural parasites of bacteria, 
bacteriophages offer several advantages over conventional antimicrobial treatment 
including replication at the site of infection, specificity and, in some cases, biofilm 
degrading ability.  

Three novel bacteriophages vB_PmiS_NSM6, vB_PmiP_#3 and vB_PmiM_D3 were isolated 
from environmental sources and characterised phenotypically and genetically utilising 
electron microscopy, host range analysis and, for phages vB_PmiS_NSM6 and vB_PmiP_#3, 
genome sequencing via hybrid assembly. The isolated phages belong to the Caudovirales 
order and sequence data analysis indicated that they are lysogenic. They possess the 
characteristic modular architecture of their dsDNA genomes that are densely packed with 
coding sequence. Both phages displayed terminal redundancy which is indicative of a 
headful packaging strategy and both appear to be circularly permuted. Putative function 
was obtained for 63 % of the coding sequences for phage vB_PmiS_NSM6 and 52 % of 
genes identified in phage vB_PmiP_#3. 

The effect of these phages, either individually or as a cocktail, on P. mirabilis colonisation of 
urinary catheters in an in vitro bladder model was investigated. Models were run for 24 h 
and adhered bacteria used as an indicator of phage activity verses untreated control. A 
reduction of greater than 3 log10 was observed for phage vB_PmiS_NSM6 treated catheters 
in comparison to untreated controls across all three sections of catheter analysed. Phage 
vB_PmiP_#3 reduced bacterial adherence by 1 log10 across all sections and a similar 
reduction was observed with phage vB_PmiM_D3 of greater than 1 log10. These data were 
confirmed with scanning electron microscopy (SEM) which showed a significant reduction 
in crystalline deposits on the phage treated catheters. The time taken for the mineralised 
biofilm to occlude the catheter lumen in the presence of bacteriophages was also 
investigated. Time to blockage was extended from 36.2 h to 58.47 h (an increase of 61.49 
%) for phage vBPmiS_NSM6, from 41.17 h to 51.73 h (an increase of 25.67 %) for phage 
vB_PmiP_#3 and from 40.97 h to 62.40 h (an increase of 52.31 %) for phage vB_PmiM_D3.  

Phages vB_PmiS_NSM6 and vB_PmiM_D3 displayed activity against each other’s isolating 
strain. This enabled the assessment of a two phage cocktail. The cocktail increased time to 
blockage by approximately 7 % compared to single phage treatment for both bacterial 
isolates. These data provide some evidence of efficacy of bacteriophage pre-treatment of 
urinary catheters in an in vitro model of P. mirabilis infection of the catheterised bladder, 
despite the lysogenic nature of the phages investigated. As such, this suggests phage 
treatment of catheters warrants further investigation.   
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Chapter 1 Introduction 

1.1 Overview 

The human bladder is an attractive site for bacterial colonisation since it is 

maintained at 37°C, and is supplied by a near constant flow of nutritious liquid 

medium in the form of urine. Bacterial infections of the bladder can lead to fever, 

cystitis and urethritis, however, more severe conditions can manifest, such as acute 

pyelonephritis, calculus formation, renal scarring and bacteraemia. Left untreated 

these conditions can lead to urosepsis and death (Warren, 1997). The healthy 

bladder prevents infection with the cyclical filling and flushing that occurs through 

micturition, however, if this cycle is interrupted, such as through use of an 

indwelling urinary catheter, the likelihood of infection increases. Catheterised 

patients are susceptible to infection at a cumulative rate of 3-7 % per day (Hooton 

et al., 2010) and catheter-associated urinary tract infections (CAUTI) are the most 

frequent nosocomial infections (Jacobsen et al., 2008). The financial burden to 

health care providers is substantial and has been estimated to cost the UK National 

Health Service (NHS) between £1 and £2.5 billion per annum, due to delayed 

patient discharge, increased demand upon staff resources and extended 

antimicrobial treatment (Feneley, Hopley and Wells, 2015). No commercially 

available catheter resists infection (Morris, Stickler and Winters, 1997) and the 

continued increase of antimicrobial resistance is compounding and severely 

complicating the care and treatment of often vulnerable patients. Alternative 

solutions are needed to treat and prevent these infections. One candidate approach 

to address this issue is the use of bacteriophages. The bacteriophages are obligate 

viral parasites of bacteria. A virulent infection results in lysis and therefore the 

death of the bacterial cell. The current AMR crisis is currently driving research into 

phage therapy due to the real possibility of a post-antibiotic future.  

1.2 Urinary incontinence 

Urinary incontinence (UI) as defined by the International Continence Society is the 

“complaint of the involuntary loss of urine” (Haylen et al., 2009).  This condition can 

have a serious impact on the psychological health and the social interactions of the 

afflicted individual (Busby-Whitehead, and Johnson, 1999). UI is more frequent in 
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women than men and becomes more prevalent with age (Irwin et al., 2006). There 

are different types of UI and the causes for their presentation are varied (Table 1).   

 

Table 1. Summary of the types of urinary incontinence and the treatment options. 
Adapted from Abrams et al. (2002). 

Type Description Management 

Stress involuntary leakage on effort or 

exertion, for example coughing 

or sneezing. 

absorbent products, 

behavioural therapy, 

catheterisation, occlusion 

devices, surgeries, 

pharmacologic. 

Urge involuntary leakage 

accompanied by or immediately 

preceded by urgency. 

bladder training, 

anticholinergic drugs, 

Botox, surgery.  

Mixed involuntary leakage associated 

with urgency and also with 

exertion. 

see urge and stress. 

Enuresis/ Nocturnal 

enuresis 

any involuntary loss of urine/ 

loss of urine occurring during 

sleep. 

absorbent products. 

Retention/overflow incomplete emptying of the 

bladder caused by obstruction 

or detrusor underactivity. 

absorbent products, 

intermittent 

catheterisation, indwelling 

catheterisation. 

Continuous urinary 

incontinence 

continuous leakage. absorbent products, 

catheterisation. 

 

Urinary incontinence can arise from functional abnormalities as well as neurological 

disorders including multiple sclerosis, stroke or a spinal cord injury resulting in a 

diverse demographic of patients that undergo long-term bladder catheterisation. 



3 
 

1.3 Urinary catheters  

Urinary catheters are predominantly used for the management of urinary 

incontinence. However, they are also used to accurately measure urine output 

either in post-operative or in critically ill patients, during surgical procedures to 

drain urine and to irrigate the bladder or to administer chemotherapy drugs 

(Feneley, Hopley and Wells, 2015). The modern indwelling Foley catheter (Figure 1) 

consists of a thin flexible tube with a rounded tip and two drainage holes. It is 

retained in the bladder by inflation of the retention balloon with sterile water. A 

funnel for connecting a drainage collection receptacle lies at the basal end of the 

device. This design has not changed significantly since its introduction in 1937 by Dr 

Frederic Foley and is itself an evolution of an idea which dates back 3,500 years 

according to the available records (Feneley, Hopley and Wells, 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Funnel 

Inflation 
connector 

Retention balloon 

Eye holes 

Figure 1. Foley catheter. Indicated are the main features; the eye holes through 
which urine drains, the retention balloon which retains the device in the bladder, 
the funnel through which urine drains and collection equipment is connected, and 
the inflation connector that receives a syringe that is used to inflate/deflate the 
retention balloon with sterile water. 
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These devices can be inserted through the urethra, or a passage is made between 

the lower abdominal wall and the bladder, a procedure termed suprapubic 

catheterisation. Suprapubic insertion is used when the urethra is damaged or 

blocked or for increased comfort and access for patients who are chair bound. Reitz 

et al. (2006) suggest that suprapubic catheterisation allows better patient quality of 

life and satisfaction when compared with urethral catheterisation, however, there 

is a risk of perforating the bowel upon insertion (Ahluwalia et al., 2006).  

Indwelling catheters can be made of rubber, plastic (PVC), silicone and latex. Due to 

allergic complications with latex catheters they are usually covered in a layer of 

silicone (Shenot et al., 1994). The material affects the comfort of the end user and 

material properties also dictate the wall thickness and, therefore, the size of the 

lumen. A catheter made of silicone possesses a wider lumen when compared to 

latex (Feneley, Kunin and Stickler, 2012). A larger lumen is favourable, especially if 

blood clots may be passed. Catheters come in various sizes, measured in Charrière 

(ch) units.  In order to balance function with patient comfort the smallest size is 

used that will still allow adequate drainage (McGill, 1982; Feneley, Hopley and 

Wells, 2015).  

Unfortunately there are a number of flaws with the design and use of catheters 

that carry with them substantial co-morbidities. In men, when inserting a catheter 

uretherally, bends in the urethra and constriction caused by the prostate (Figure 2) 

can lead to damage occurring as the catheter is forced against the urethral wall 

(Willette and Coffield, 2012). Urethral trauma can also occur upon catheter 

removal. When deflated, the retention balloon does not return to the original size 

preceding inflation and forms a cuff. The cuff complicates removal, particularly in 

suprapubic catheterisations as the channel is not flexible (Parkin et al., 2002). The 

retention balloon can occasionally burst and the pieces must be removed as they 

may block successive catheters or act as the seeds of bladder stones (Chrisp and 

Nacey, 1990). Damage to the bladder can occur when the catheter is in place, the 

tip and balloon can abrade the bladder lining. Damage can also occur as the 

catheter drains. Fluid flowing through the lumen causes suction that pulls the 

collapsing bladder into the drainage holes. Over time this can lead to the formation 

of pseudopolyps (Milles, 1965). Damage caused to the bladder lining compromises 
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this usually impermeable layer, allowing bacteria to adhere and invade, giving 

access to the bloodstream which could lead to septicaemia (Feneley, Kunin and 

Stickler, 2012).  

 

 

Figure 2. Diagram showing urethral catheterisation of a male and a female. 
Indicated is the prostate on the male where a bend in the urethra and constriction 
caused by the gland can lead to damage upon catheter insertion. Also depicted in 
both male and female is the sump of urine that remains in the bladder due to the 
position of the drainage holes above the retention balloon. 

 

1.4 Catheter associated urinary tract infection (CAUTI) 

A significant failing associated with the Foley catheter is that they are susceptible to 

bacterial colonisation. Catheters in situ for less or more than 28 days are considered 

short-term or long-term, respectively. The cumulative rate of infection is 3-7 % per 

day (Hooton et al., 2010). At these levels infection becomes almost inevitable in 

those patients who are catheterised for greater than 4 weeks (Stickler, 2008; 

Choong et al., 2001; Warren, 1997; Kunin, 1997). Most of these infections are 

asymptomatic (Tambyah and Maki, 2000) but approximately 10-25 % of patients 

will go on to develop symptomatic urinary tract infection. If these symptoms are 

not rapidly diagnosed and treated, urosepsis and death can occur (Niël-Weise et al., 

2012). Long-term catheterisation is also associated with encrustation and blockage 

in about 50 % of cases (Getliffe, 1994) and can lead to chronic infection, the 

formation of bladder stones, chronic renal inflammation, renal failure and in the 
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longer term, bladder cancer and death (Warren, 1997). Blockage events lead to 

painful distention of the bladder necessitating an emergency procedure to remove 

the offending device. Alternatively, bypassing of the catheter can occur which 

renders the patient incontinent causing distress.  

Urinary catheters are subject to infection because they act as a bridge from the 

highly colonised periurethral region, to the bladder, which is warm, moist and rich 

in nutrients. The act of catheter insertion through the urethra can introduce 

bacteria into the bladder as the first few centimetres of the urethra in both men 

and women are colonised with bacteria (Jacobsen et al., 2008). There are two other 

routes bacteria can take to infect the catheterised bladder. They can ascend 

extraluminally between the catheter and the urethral epithelial cells, assisted by 

hydrostatic forces as a mucoid film develops between the catheter and the urethra 

(Parida and Mishra, 2013), or alternatively, bacteria can gain access intraluminally 

via contamination of the drainage tap and transit to the bladder within the catheter 

lumen (Stamm, 1991; Tambyah, Halvorson and Maki, 1999). Most infections occur 

via the extraluminal route since the introduction of the closed drainage system in 

the 1960s. However, poor practice relating to the care of the closed drainage 

system or when emptying the bag can lead to contamination and intraluminal 

infection (Powers, 2016; Garibaldi et al., 1974; Kunin and McCormack, 1966). The 

presence of a urinary catheter undermines the natural defence mechanism the 

body uses to prevent bacterial ascension to the bladder. In healthy individuals the 

periodic filling and flushing washes out any ascending bacteria and the complete 

emptying of the bladder also assists in preventing infection. Catheters prevent 

complete emptying of the bladder due to the position of the retention balloon 

beneath the drainage holes (Figure 2). The sump of urine that develops acts as a 

refuge for bacteria that enter the bladder (Hashmi et al., 2003). The sump is 

constantly replenished with fresh urine at a rate between 0.55 and 1.38 ml per 

minute in healthy adults (Israni and Kasiske, 2011), and can be compared to a 

chemostat, a device used for the continuous culture of bacteria.  

Some aspects of catheter construction also render it susceptible to bacterial 

colonisation. The surfaces of the lumen are rough and uneven when viewed with an 

electron microscope and present an opportunity for colonisation. Both Latex and 
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Silicone catheters possess uneven topology (Stickler et al., 2003). Latex catheters 

can also possess diatom skeletons (Stickler and Morgan, 2008). Diatomaceous earth 

is used to assist in the removal of the device from the metal moulds, however, they 

offer an attractive site for microbial adherence. To accommodate the inflation tube, 

the lumen is crescent shaped and possesses constrictions at the crescent’s tips that 

trap debris and initiate blockage (Stickler et al., 2003; Cox, 1990). Furthermore, the 

manufacturing process that forms the drainage eye holes produces a very uneven 

topology that favours bacterial colonisation. Micro-colonies can more easily form in 

the deep valleys of this surface and from here can proceed to colonise the entirety 

of the catheter (Stickler et al., 2003). It is notable that most blockage events occur 

at, or just beneath, the eye holes. 

1.4.1 Biofilms 

The bacterial populations that form on catheter surfaces utilise a strategy that is 

thought to be the preferred mode of growth for bacteria in nature; the biofilm. 

Evidence of this mode of growth exists in the fossil record as far back as 3.25 billion 

years (Westall et al., 2001) but it was not until the 1980s that biofilms were 

associated with medical devices (Hall-Stoodley, Costerton and Stoodley, 2004). 

There are key benefits for bacteria when growing associated with a surface. Firstly, 

nutrients concentrate on surfaces in natural environments (Busscher and van der 

Mei, 2012). Secondly, the extracellular polymeric substances (EPS) that are exuded 

by the bacteria when growing on a surface serve to protect them from 

environmental stresses such as desiccation, ultraviolet radiation, antibiotics and 

host immune responses (Delcaru et al., 2016). The EPS has been postulated to act 

as a “recycling centre” by retaining components from lysed cells, nutrients, 

enzymes and DNA which may serve as a pool for horizontal gene transfer 

(Flemming, 2016; Delcaru et al., 2016). Biofilms are associated with indwelling 

medical devices and are a significant cause of chronic infections and device 

rejection (Donlan, 2001). Biofilms are significantly more refractory to antimicrobials 

than planktonic bacteria (Høiby et al., 2010). In addition to providing a physical 

shield from environmental stresses, the EPS matrix can also bind and neutralise 

antimicrobials effectively reducing the agent to sub-lethal concentrations (Nichols 

et al., 1988). Within biofilms different nutrient gradients produce zones of starved 
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or stationary phase microorganisms which are recalcitrant to antibiotics as these 

usually require an active metabolism to be effective (Hall-Stoodley, Costerton and 

Stoodley, 2004). Oxygen concentration gradients can also exist leading to anaerobic 

regions where, for example, aminoglycoside antibiotics would be less effective 

(Tack and Sabath, 1985). Similarly, gradients in pH, nutrients and bacterial waste 

products could all contribute to resistance mechanisms. Another mechanism of 

resistance is the presence of persister cells within the population of the biofilm. 

Persister cells represent a “transient phenotypic variant that is tolerant to 

antimicrobials” (Conlon, Rowe and Lewis, 2015). They are speculated to be low in 

cellular energy (ATP) and, therefore, metabolically inactive which imparts resistance 

(Waters et al., 2016). Their presence contributes to the overall antimicrobial 

resistance of the biofilm, acting as a source for reinfection following a course of 

antibiotics (Stewart and William Costerton, 2001). When growing in vivo, various 

host components can also become incorporated into the biofilm. These 

components can act as a means of evading host immune response; for example in 

cardiac valves, platelets and fibrin encapsulate the biofilm and prevent recognition 

by leukocytes (Durack, 1975). In the case of urinary catheters, the presence of 

urease producing bacteria can lead to the precipitation of calcium and magnesium 

phosphates from urine which become incorporated into the biofilm and eventually 

lead to catheter blockage (Stickler and Feneley, 2010).  

Understanding the process of biofilm formation (Figure 3) can lead to novel 

strategies in tackling these persistent communities. Initially a bacterial cell comes 

into contact with a surface, either through motility or from physical forces. These 

forces contribute collectively at different rates depending on the surface, medium, 

and bacterial properties. They include Van der Waal forces, electrostatic (attractive 

and repulsive), Brownian motion and hydrogen bonding (Donlan, 2002). The 

bacterium recognises its location via mechanotransduction. Mechanical forces are 

sensed by a mechanotransmitting structure, such as flagella, type IV pili or channels 

in the cell envelope. After the force is sensed a response is enacted, for example, 

biofilm formation (Persat, 2017).  
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Figure 3. P. mirabilis biofilm developmental sequence on a urinary catheter. (i) 
Reversible attachment of planktonic bacteria. (ii) Irreversible attachment to surface. 
(iii) Secretion of EPS, yellow cells represent a less metabolically active state than the 
red cells. (iv) Calcium and magnesium phosphate crystals embed in developing 
biofilm. (v) Dispersal of daughter cells. 

 

In the case of a urethral catheter, a conditioning film of host proteins forms on the 

surface facilitating attachment (Lo, Lange and Chew, 2014). Initially reversible 

attachment occurs. Bacterial flagella, fimbriae, and pili anchor the cell against 

hydrodynamic and repulsive forces and subsequently the appendages bond to the 

conditioning film resulting in irreversible attachment. The up- and down-regulation 

of genes was purported to occur to express a biofilm specific phenotype, however, 

it was more recently suggested that biofilm formation progresses by a sequence of 

successive adaptations to environmental and nutritional circumstances rather than 

a programmed mechanism (Bjarnsholt, 2013). Following attachment to a 

substratum, quorum sensing (QS) is thought to occur. QS is a density dependant 

coordination mechanism and can be used to coordinate various activities in biofilm 

and planktonic cultures. QS has been implicated in biofilm development in 

numerous uropathogens (Delcaru et al., 2016). The proliferation of microcolonies in 

the biofilm occurs with a concomitant production of EPS. EPS is responsible for 

cohesion and adhesion and makes up 50 – 90 % of the organic carbon in the biofilm 

(Evans, 2000). The EPS consists of secreted polysaccharides, extracellular DNA 

(eDNA), proteins, surfactants, lipids, glycolipids and membrane vesicles but the 

composition varies according to the constituent bacterial species and environment 

(Bridier et al., 2017). The presence of uronic acids and ketyl linked pyruvates 
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confers an anionic property which allows the association of divalent cations such as 

calcium and magnesium (Donlan, 2002) as seen for urinary catheters.  

Biofilms develop a complex three dimensional structure but the maturation of the 

biofilm and the morphology is dependent on the fluid dynamics near the surface. A 

mature biofilm sheds some cells to disperse the community. Biofilms exhibit 

movement and should not be thought of as static entities. In high shear 

environments they show “creeping activity” and the formation of transitory waves 

and areas of greater detachment exist (Costerton et al., 2003).  

1.4.2 Catheter associated mineralised biofilms 

The majority of the organisms that infect the catheterised urinary tract originate 

from the patient’s own microbiota. They tend to be of periurethral skin or faecal 

origin (Maki and Tambyah, 2001). The bacteria that are first to exploit this new 

niche include Staphylococcus epidermidis, Escherichia coli and Enterococcus 

faecalis. The relative ease at which infections occur means bacterial entry is 

recurrent and the composition changes over time (Liedl, 2001). The organisms that 

seem to persist in patients catheterised for the long term are Pseudomonas 

aeruginosa, Proteus mirabilis, Providencia stuartii, Morganella morganii and 

Klebsiella pneumoniae. Most infections are polymicrobial (Macleod and Stickler, 

2007) which can complicate treatment. Proteus species, P. aeruginosa, some 

Providencia species, M. morganii, K. pneumoniae, Staphylococcus aureus and 

coagulase negative staphylococci all possess urease enzymes that catalyse the 

hydrolysis of urea to ammonia and carbon dioxide.  

(𝑁𝐻2)2𝐶𝑂 + 𝐻2𝑂 → 2𝑁𝐻3 + 𝐶𝑂2 

The increasing concentration of ammonia in the residual volume of urine in the 

bladder and on the catheter surface caused by urease activity raises the pH until a 

threshold, termed the nucleation pH, is reached and calcium phosphate 

(hydroxyapatite) and magnesium ammonium phosphate (struvite) precipitate and 

combine with the developing biofilm (Hedelin et al., 1984). This will eventually lead 

to the mineralisation of the biofilm and blockage of the urinary catheter (Bruce et 

al., 1974). Blockage can have serious repercussions, especially for patients in the 

community with limited access to healthcare professionals. A patient with a blocked 
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catheter might be rendered incontinent as the bladder fills and urine leaks 

extraluminally. Alternatively, the blockage can lead to painful distention of the 

bladder as it fills with urine until medical intervention occurs. If blockage goes 

unnoticed, infected urine can reflux to the kidneys where it can lead to the 

development of kidney stones, and other serious sequeale such as pyelonephritis, 

septicaemia and shock (Stickler and Zimakoff, 1994). The mineralised biofilm can 

break off during catheter removal and these fragments become the seeds of 

bladder stones and a source of bacteria that persist despite catheter changes 

resulting in chronic infections. Up to 50 % of all patients undergoing long-term 

catheterisation will be subject to catheter encrustation and blockage (Kunin, Chin 

and Chambers, 1987). P. mirabilis has been shown to have the most active urease 

enzyme (Jones and Mobley, 1987; Stickler et al., 1998a) and is implicated in 

blockage events in the majority of cases (Mobley and Warren, 1987; Kunin, 1989; 

Stickler et al., 1993). 

1.5 Proteus mirabilis 

First isolated from putrefied meat by Hauser in 1885, P. mirabilis is a gram-negative, 

motile, facultatively anaerobic bacillus of the family Enterobacteriaceae. It can be 

isolated from soil, stagnant water, the intestinal tract of mammals and, as a 

consequence, sewage (Wenner and Rettger, 1919). Named after Proteus from 

Homer’s Odyssey, who was endowed with the “gift of endless transformation” to 

evade his pursuers, P. mirabilis is dimorphic, existing in two distinct morphologies 

and can evade the immune system. P. mirabilis possesses a number of key virulence 

factors that facilitate its infection of the catheterised urinary tract. One such factor 

is P. mirabilis’s ability to swarm, that is, flagella-mediated movement across a 

surface. When plated out onto solid media P. mirabilis differentiates into a distinct 

morphotype and forms concentric rings as it swarms and consolidates across a 

surface (Figure 4). Waves occur in concert producing the archetypical concentric 

rings exhibiting multicellular behaviour. The swarming morphotype is primarily 

concerned with flagellum-mediated motility, the consolidation phase, which was 

thought of as a resting phase, is actually a phase of intense activity during which the 

cell prepares for the subsequent round of swarming (Pearson et al., 2010).  

 



12 
 

 

Figure 4. Swarming morphology of Proteus mirabilis on solid media. Photograph of 
P. mirabilis NSM6 swarming across the surface of a Tryptone soya agar plate. The 
concentric rings form as the bacterium swarms and consolidates before the next 
round of swarming. 

 

The P. mirabilis swarming phenotype is considered a key virulence factor in urethral 

catheter infections as knock-out mutants that were unable to swarm were only able 

to migrate over catheters that were hydrogel coated (Jones et al., 2004). Swarming 

therefore contributes to catheter infection by facilitating the migration of P. 

mirabilis from the catheter entry/exit site to the bladder. The swarming response is 

thought to be triggered by the inhibition of flagella rotation, surface contact and 

cell-cell signalling (Armbruster, Hodges and Mobley, 2013). The metabolic state of 

the cell and environmental conditions it experiences also play a role in swarming 

and the presence of specific amino acids, glutamine and histidine, which are highly 

concentrated in human urine (Tan and Gajra, 2006), seems necessary (Armbruster 

and Mobley, 2012). The differentiated swarmer cells elongate 20-50 fold, become 

multinucleated and can express thousands of flagella (Hoeniger, 1965). The 

swarmer cells align themselves with their flagella coiled together forming rafts 

(Jones et al., 2004). Individual swarmer cells cannot move on their own and must be 

part of a raft, making swarming an obligatory multicellular behaviour (Kearns, 

2010). The movement is facilitated by an extracellular slime that is thought to 

lubricate the movement of the cells (Stahl, Stewart and Williams, 1983). Swarming 

Consolidation 

phase 

Swarming 

cells 
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bacteria are capable of migrating over large distances. Stickler and Hughes (1999) 

demonstrated that P. mirabilis can migrate distances of up to 10 cm in 24 h over 

catheter surfaces, although this rate alters dependent upon the catheter material. 

It has been suggested that P. mirabilis can carry other bacteria with them when 

swarming and thus facilitate ascension to the bladder. Stickler and Hughes, (1999) 

also noted a trail of vegetative cells left in the wake of the migratory swarm and 

postulated that these cells would go on to produce biofilms under appropriate 

conditions, leading to colonisation of the entire catheter. Furthermore, swarming 

cells have been observed emerging from biofilms and it was hypothesised that they 

may facilitate dispersal of the community (Jones et al., 2007). Interestingly, it has 

been noted that swarming must be repressed to allow biofilm formation and to 

allow the continued attachment to surfaces (Liaw, Lai and Wang, 2004) so there 

must clearly be a switch back to the vegetative state to maintain an infection.  

The infection and subsequent blockage of a urinary catheter by the production of 

crystalline deposits might be enhanced by swarming behaviour, as urease activity is 

increased 30-fold in swarmer cells (Allison, Lai and Hughes, 1992). Thus, swarming 

not only contributes to the initial infection of a catheter but also to colonisation and 

eventual blockage, highlighting why this phenotype is considered a key virulence 

factor in CAUTI. Various other factors central to the pathogenicity of P. mirabilis are 

also increased in the swarming morphotype, and the ability to invade cells is 

thought to be limited to swarmers (Allison, Lai and Hughes, 1992).  

The capsular polysaccharides (CPS) of P. mirabilis have been shown to enhance 

crystal formation. The CPS of P. mirabilis are anionic, which enables the binding of 

metallic cations (Mg2+, Ca2+). Dumanski et al. (1994) showed that struvite formation 

occurred at lower pH in the presence of CPS and that a greater number of struvite 

crystals formed at pH 7.5-8.0 with CPS present compared to other experimental 

conditions. They speculated that the anionic nature of the CPS concentrates Mg2+ at 

the LPS, which is readily released to go on and form struvite crystals.  

An interesting phenomenon occurs when two separate strains of swarming P. 

mirabilis meet. The leading edges of both swarms stop, and a clear line forms 

between them (Figure 5), termed a Dienes line (Dienes, 1946). In contrast, the 
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leading edge of colonies of the same strain do not form a clear boundary line and 

merge together. The bacteria are recognising self, versus non-self, and direct 

bacterial contact is required for this to occur (Budding et al., 2009). The dominant 

Dienes type is thought to kill the submissive and the submissive type differentiates 

at the boundary into round cell types, although no precise mechanism has been 

suggested (Budding et al., 2009). This competitive killing only occurs when 

swarming over surfaces, as when different Dienes types are grown in broth, no 

killing occurs. Various attempts have been made to explain the phenomenon and it 

seems it is a complex system with the involvement of multiple genes. One factor is 

the production and secretion of the bacteriocin proticine. Boundaries form 

between strains differing in proticine production and sensitivity, however, there are 

strains that do not produce proticines and still form boundaries even with other 

proticine deficient strains (Senior, 1977). Gibbs, Urbanowski and Greenberg (2008) 

identified a cluster of genes that have roles in self-recognition, calling them the ids 

(identification of self) operon, of which six genes were identified. As a swarm front 

comes into contact with another, a subset of cells express the ids genes and cross 

the boundary with the other swarm. This is sufficient to propagate the signal of self- 

versus non-self. Alteri et al. (2013) identified a type VI secretion system (T6SS) that 

plays a role in interspecies competition and killing. The authors constructed 

targeted mutants in the secretion system, demonstrating that Dienes line formation 

requires cell-cell contact and that killing is dependent upon the T6SS and associated 

primary effectors. Thus, it seems that the T6SS, ids and proticine all play a role in 

the recognition and killing of different strains during the Dienes phenomenon.  
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Figure 5. Dienes lines. The formation of a Dienes line occurs between the leading 
edges when the migratory swarms of two different Dienes types meet. Isolates 
plated on TSA and incubated at 37°C. 

 

Once P. mirabilis gains access to the catheterised urinary tract it must be able to 

withstand the shear forces it might encounter in this new niche. It is able to attach 

itself to various mucosal surfaces, and inert materials, via the utilisation of fimbriae 

(Rocha, Pelayo and Elias, 2007). Fimbriae are thin flexible projections that have 

adhesins at their tips. The P. mirabilis genome contains 17 putative fimbrial 

operons, which is the most observed in any bacterial species (Pearson et al., 2008). 

Five fimbrial types have been described, (Rocha, Pelayo and Elias, 2007) of which 

two have been implicated in adherence to catheters. These are mannose-resistant 

Klebsiella-like fimbriae (MRK) and ambient-temperature fimbriae (ATF). Although 

MRK fimbriae have not directly been observed in catheter attachment in P. 

mirabilis, they have been implicated in catheter attachment by P. stuartii (Mobley 

et al., 1988) and P. penneri (Yakubu, Old and Senior, 1989) therefore it seems likely 

they carry out a similar function in P. mirabilis. ATF were so named as their 

expression is highest at 23°C. Their role in infecting mucosal surfaces in a mouse 

model of ascending urinary tract infection was ruled out by Zunino et al. (2000) as 

no loss of virulence was observed between ATF deficient mutants and wild type. It 

was suggested, therefore, that the ATF could play a role in the environment. 

Scavone et al. (2016) showed that the fimbriae play a role in biofilm formation, and 

also speculated that ATF might have a role in attachment to abiotic surfaces. More 

Dienes line 
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work is required to determine what type of fimbriae play a role in attachment to 

catheter surfaces as its disruption could lead to possible prevention strategies.  

After ascending the urinary tract, and colonising the bladder, P. mirabilis may 

ascend the ureters to the kidneys’ proximal tubular epithelial cells that act as a 

barrier to the parenchyma. In order to infect the kidneys, damage is caused by a 

haemolysin and by urease to the single cell thick epithelium (Mobley et al., 1991). 

Levels of haemolysin production have been shown to correlate to invasive ability in 

laboratory studies using green monkey kidney cells (Peerbooms, Verweij and 

MacLaren, 1984). However, mutants with defective haemolysin activity were still 

able to invade cells at a similar rate to the wild type (Mobley et al., 1996). It 

appears that haemolysin production is not essential but plays a role in cellular 

invasion. Intracellular invasion represents a strategy by which P. mirabilis can avoid 

the immune response of the host. Mathoera et al. (2002) demonstrated that 

invasion offers protection from some antibiotic treatments, although crystals 

formed inside the cells and it was not clear if these crystals provided the protection 

from the antibiotic in a similar manner to how they do in the formation of stones, 

which is another approach P. mirabilis utilises to persist in the bladder or kidneys. P. 

mirabilis also possesses a serralysin metalloproteinase, ZapA, which offers 

protection from the mucosal immune response by cleaving the secretory 

immunoglobulins A1, IgA2, and Ig3 as well as the antimicrobial peptides hBD1 and 

LL-37 (Belas, Manos and Suvanasuthi, 2004). ZapA has been shown to be a key 

virulence factor in the murine model of ascending UTI as significantly fewer ZapA 

deficient mutants were recovered from the urine and bladder compared to wild 

type (Walker et al., 1999).  

It is clear that P. mirabilis is well adapted to proliferating in the catheterised urinary 

tract and is implicated in almost all blockage events in the long-term catheterised 

patient (Mobley and Warren, 1987). The most important virulence factors are 

arguably the potent urease it possesses and its ability to swarm. These factors, 

combined with the failings of the Foley catheter can lead to significant morbidity 

(and mortality) for those catheterised for the long term. Understanding these issues 

might lead to improved catheter design or novel approaches to tackling these 

infections that have a serious effect on an already vulnerable patient group. 
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1.6 Attempts at preventing catheter-associated urinary tract 

infection 

Several strategies have been pursued with the aim of preventing the colonisation of 

urethral catheters. Unfortunately, none so far have been successful at preventing P. 

mirabilis from causing encrustation and blockage. A study conducted by Dance et 

al. (1987), in which an extensive catheter care procedure was followed, highlights a 

major issue encountered when trying to inhibit bacteria with a single antimicrobial; 

the problem of resistance. Chlorhexidine solutions were used to clean the 

periurethral skin prior to catheter insertion and, once the catheter was inserted, 

the same solution was used daily to clean the catheter-meatal junction. An 

antiseptic lubricious gel was used for insertion to prevent bacterial infection upon 

entry. Further chlorohexidine was maintained in the drainage bags and a cream 

containing the antimicrobial was applied daily to the periurethral region. Despite 

the extensive attempt to block all entry points of bacteria, an outbreak of a 

chlorhexidine and multidrug resistant strain of P. mirabilis occurred, affecting more 

than 90 patients. The issue only abated once the policy was ceased. Indeed, using 

any single antimicrobial, especially with decreasing concentrations as in the form of 

a catheter coating, is risking resistance occurring and further complicating the care 

of patients and contributing to the global increase of antibiotic resistance.  

There have been two commercially available “anti-infective” catheters available in 

the UK: a niturofurazone-coated silicone catheter (Rochester Medical, Minnesota, 

USA) and a latex catheter that possesses a silver alloy coating and a hydrogel layer 

(C R Bard, New Jersey, USA). The nitrofurazone catheter is ineffective against P. 

mirabilis, as well as many other urinary pathogens such as C. albicans, E. faecium, K. 

pneumoniae and P. aeruginosa (Johnson, Johnston and Kuskowski, 2012) as they 

are inherently resistant to its mode of action. Nitrofurazone is reduced 

intracellularly to produce reactive intermediates which are thought to damage 

various intracellular targets, such as ribosomes (McOsker and Fitzpatrick, 1994). 

When compared to the silver catheter, nitrofurazone was more effective in 

preventing growth under the conditions tested (Johnson, Johnston and Kuskowski, 

2012) however concerns about developing resistance are warranted (Siddiq and 

Darouiche, 2012). The antimicrobial properties of Silver have been recognised for 

many centuries although its mode of action has only relatively recently been 
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elucidated. Silver blocks the respiratory chain in the cytochrome oxidase and NADH-

succinate-dehydrogenase region and therefore disrupts ion transportation and 

energy generation (Jansen et al., 1994). There is also some evidence that it binds to 

DNA and causes denaturation (Feng et al., 2000). It is the fact that it works on 

multiple processes within the cell that has generated interest amongst researchers, 

however, resistance to silver can still occur (Panáček et al., 2018). Its use has been 

shown to be beneficial in short-term catheterisations (Schumm and Lam, 2008) 

however the cost needs to be carefully considered as short-term asymptomatic 

infections cause minimal harm and cease once the catheter is removed. Silver has 

demonstrated little effect in preventing infections caused by P. mirabilis or, indeed, 

for the long-term catheterised. A meta-analysis of the data revealed insufficient 

evidence for the recommendation of either silver or nitrofurazone for the long-term 

catheterised (Jahn, Beutner and Langer, 2012). In fact, the nitrofurazone catheter 

has now been withdrawn from the market (Fisher et al., 2015). Morgan, Rigby and 

Stickler (2009) investigated encrusted silver catheters and were able to show that 

the antimicrobial effect of silver was masked by crystal formation and deposition on 

catheter surfaces which allowed P. mirabilis to encrust and block the catheters 

unabated. The amount of silver released from the catheters was also tested and 

none was detectable in the run off from the catheters, suggesting that if an 

antimicrobial treatment is to be successful it must elute from the surface at 

appropriate concentrations to prevent the bacterial population from elevating the 

urinary pH and, therefore, suppress crystal deposition.  

1.6.1 Antimicrobial coatings 

Further attempts at bacterial inhibition have been made using antimicrobial 

coatings. One such coating is Gendine; a mixture of gentian violet and 

chlorohexidine. Hachem et al. (2009) had success in using Gendine impregnated 

catheters in a rabbit model, finding it to be more efficacious than a silver-infused 

catheter. Complete eradication did not occur and no information was gathered for 

long-term use as catheters were only in place for four days so it remains to be seen 

if this strategy is appropriate for the longer term. Although the coating was well 

tolerated with no toxicity-related effects noted, resistance is still a concern with this 

approach. Similarly, a prospective, randomised, multi-centre clinical trial of a 
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catheter impregnated with rifampicin and minocycline found that these agents 

significantly reduced the rate of Gram positive bacteriuria but had no effect on 

Gram negative bacteria or yeasts (Darouiche et al., 1999). Whilst this effect is 

partially beneficial, most persistent infections are by Gram negative organisms and 

they need to be tackled as a priority. 

 Triclosan has shown promise as a preventative for P. mirabilis infections and 

infections caused by E. coli, K. pneumoniae, S. aureus and, to a lesser extent, by E. 

faecalis and P. stuartii. It disrupts the cell walls of both Gram positive and Gram 

negative bacteria. When instilled in the inflation balloon of a silicone catheter at a 

concentration of 10 g/L  Jones et al. (2006) could prevent catheter encrustation and 

blockage by P. mirabilis for 7 days. They also speculated that the concentration of 

Triclosan in the urine would be maintained for 12 weeks, which is the maximum 

duration a catheter can be maintained in place. The authors were not concerned 

about resistance to Triclosan occurring as at the time of writing, it had not been 

observed, however, resistance to Triclosan does occur and worryingly, confers 

resistance to other clinically important antimicrobials (Carey and McNamara, 2014; 

Carey et al., 2016; McNamara and Levy, 2016). However, Triclosan is ineffective 

against P. aeruginosa, S. marcescens and M. morganii which while less commonly 

associated with CAUTI, are also urease producing. Lastly, Triclosan has some 

dangerous degradation products (Fiss, Rule and Vikesland, 2007) and 

contamination and accumulation in aquatic environments could lead to hormonal 

effects in humans and aquatic animals (Olaniyan, Mkwetshana and Okoh, 2016). 

Recently the FDA banned the use of Triclosan in soaps, although Triclosan is still 

permitted in medical products and toothpaste. The regulatory authorities in the UK 

were not willing to consider its use in catheters and the approach was not taken 

forward (personal communication with D. Stickler, 2010). 

1.6.2 Modification of surface properties 

Polyvinylpyrrolidone (pvp) is a nonionic water-soluble polymer that is similar to 

hydrogel, in that it increases the lubrication of the catheter making the device more 

comfortable for the patient. Tunney and Gorman (2002) suggested that bacterial 

adherence was less to pvp coated polyurethane than for an uncoated control and 

that crystal formation also decreased. Kazmierska et al. (2010) found that it was 
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ineffective in preventing encrustation and blockage in an in vitro bladder model and 

the addition of iodine had no long-term effect as bacteria and crystals still readily 

adhered. Patient comfort, however, is a significant factor in clinical decision making 

when selecting a catheter type (Vapnek, Maynard and Kim, 2003). 

Heparin has been used in both catheter coatings and urethral stents to prevent 

bacterial adherence. Heparin is antithrombogenic and has strong electro-negative 

charge, thus repels cellular organisms. Tenke et al. (2004) showed a significant 

increase in time to blockage experiments using heparin-treated urethral catheters 

challenged with P. mirabilis in an in vitro model. However, the catheters did 

eventually block. Interestingly, on further analysis the catheters were free from 

encrustation and had blocked via a mucus-like plug. They also conducted a small, 

twenty patient trial in which heparin-coated stents had less encrustation compared 

to controls over 2-6 weeks (Tenke et al., 2004). However, in another study heparin 

was shown not to reduce bacterial adherence in stents (Lange et al., 2009). It seems 

that Heparin is most beneficial in vascular settings and that the interaction of 

components found in the urinary tract make it less effective. 

The previous examples of surface modification have been in the form of coatings to 

enhance lubricity and prevent adherence.  An alternative biomimetic approach is 

currently undergoing clinical trial (NCT02669342) in Canada using a catheter with a 

micro-patterned surface. The Sharklet catheter’s surface is modified to mimic the 

dermal denticles of shark skin, which appear to be immune to marine fouling 

organisms. The creators speculate that the structure inhibits attachment and 

biofilm formation, although no precise mechanism is yet understood. Reddy et al. 

(2011) demonstrated a reduction in adherence by E. coli and noted smaller colonies 

when compared to a smooth control. Whether this approach will prevent crystalline 

deposits has not yet been determined.  

Cranberry extract, a long-suggested preventative for UTIs, has also been 

investigated as a means to prevent adhesion of bacteria to surfaces. 

Proanthocyanidin trimers in extracts of the fruit act as anti-adhesion agents against 

uropathogenic E. coli (Foo et al., 2000). The precise mode of action is unclear, 

although there is speculation that proanthocyanidin acts as a receptor analogue 
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and bind to the fimbrial tips, preventing adhesion to epithelial cells (Howell, 2007). 

Another suggested mode of action is via conformational changes in the fimbriae, 

reducing length and density (Liu et al., 2006). Despite positive reports in the 

literature over the years, a Cochrane review  (Jepson, Williams and Craig, 2012) 

concluded that the use of cranberry extract for preventing UTIs cannot be 

recommended. 

1.6.3 Dietary modification 

The long held recommendation of increasing fluid intake has been shown to be 

beneficial by diluting the urine, increasing the point at which precipitation of metal 

ions occurs, termed the nucleation pH (pHn) (Suller et al., 2005). A further increase 

in pHn has been achieved by the addition of citrated drinks to the patients’ fluid 

consumption. Citrate is a natural chelating agent of Mg2+ and Ca2+. This approach 

has been shown to prevent the encrustation and blockage of urinary catheters by P. 

mirabilis (Stickler and Morgan, 2006). This approach is beneficial as it seems to have 

no negative effect on the patients, is active against a range of urease producing 

organisms, It does not, however, prevent bacterial infection, only the formation of 

crystalline deposits. Contrary to these findings, however, Bibby and Hukins, (1993) 

found that the acidification of urine was countered in the presence of urease, as 

further urea was hydrolysed raising the urinary pH. The authors suggested that 

acidic washouts could dissolve deposits but that the acidification of urine could not 

be recommended for preventing catheter encrustation. Therefore the consensus is 

not complete on this, compounded by the fact that it is quite difficult to change 

patient habits. 

1.6.4 Plant-based antimicrobials   

In searching for alternatives to traditional antimicrobials, increasing interest in 

plant-based antimicrobial extracts has arisen. These compounds often act on 

multiple sites and are, therefore, less prone to selecting for resistance. Malic et al. 

(2014) conducted preliminary trials to assess the ability of some of these extracts to 

reduce planktonic and biofilm populations of some common urease producing 

uropathogens. Cineole, eugenol, terpinen, and tea tree oil were trialled, with 

eugenol giving the best result against planktonic and biofilm populations. Biofilms 

proved much more resistant to the activity of the agents tested, presumably due to 



22 
 

the protective properties of biofilms as discussed previously (1.4.1). Sufficient effect 

was noted and the authors recommended further study to discern if eugenol could 

prevent CAUTI, either as a bladder washout or incorporated into a catheter coating. 

1.6.5 Iontophoresis  

Iontophoresis is a physical process by which ions flow diffusively in a medium 

driven by an electric field. Chakravarti et al. (2005) explored this process by passing 

silver wires through and next to the lumen of catheters and applied an electric 

potential of 9 V at a steady current of 150 µA. The authors postulated that this 

caused the release of silver ions into the lumen, which prevented bacterial growth. 

Other suggested mechanisms of action have been put forward including the 

production of hypochlorous acid via electrolysis, superior repulsive forces between 

the microorganisms and the surfaces, oxidative stress and changes in pH (Voegele 

et al., 2015). A statistically significant increase in time to blockage was observed 

from 22 h to 156 h for the control and iontophoresis catheters, respectively 

(Chakravarti et al., 2005). This method was unable to completely eradicate the 

bacteria and further studies in vitro and in vivo are warranted. 

1.6.6 Enzyme inhibitors 

The enzyme urease has become a target for manipulation as without the activity of 

this enzyme, catheter blockage would not occur. Morris and Stickler (1998) used 

the inhibitors acetohydroxamic acid and fluorofamide in an in vitro model of the 

catheterised urinary tract. They found that at concentrations of 1 µg/ml both 

agents prevented the urinary pH from rising above pH 7.6 and levels of encrustation 

were reduced in the treated catheters. However, Acetohydroxamic acid is toxic and 

must not be systemically absorbed. Fluorofamide poses a reduced risk to health 

and was 1000-fold more effective in preventing encrustation. As expected, bacterial 

numbers were not affected with this intervention. This result has been repeated 

with other inhibitors that also possess bactericidal and bacteriostatic properties 

depending on concentration. These compounds are plant derived; for example the 

phenolic, vanillic acid (Torzewska and Rozalski, 2014), germa-γ-lactones (Amtul et 

al., 2007), and plum juice (Zhu et al., 2012).     
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1.6.7 Quorum sensing inhibitors 

Quorum sensing is an attractive target for developing novel preventative strategies. 

Quorum sensing has been implicated in the formation and dispersal of biofilms in 

some species (Solano, Echeverz and Lasa, 2014), and it is this that has been the 

focus of the majority of attempts at disrupting quorum sensing to prevent catheter 

infections. N-acyl homoserine lactones (AHLs) have been shown to be produced by 

bacteria as they colonise the surface of catheters Stickler et al. (1998b) and Hentzer 

et al. (2003) were able to inhibit virulence factor expression by P. aeruginosa 

utilising a naturally inspired Furanone. Interestingly, the authors reported enhanced 

efficacy of antibiotic and dispersal via SDS treatment, which offers prospects of this 

therapy being used as an adjuvant to more traditional treatments. Unfortunately, 

due to toxicity, clinical use of Furanones is limited. Similar to the AHL system, 

diketopiperazines (DKPs) have been implicated in quorum sensing in P. mirabilis. 

Jones, Dang and Martinuzzi (2009) were able to show reduced bacterial numbers 

when using the antagonists tannic acid and p-nitrophenyl glycerol. Furthermore, 

the authors demonstrated a reduction in urease activity which resulted in lower pH 

and less crystal formation.  Further work is required to determine a delivery 

method for this type of treatment and to discern if this approach is sufficient alone 

or if it is used in combination with antibiotics to enhance their efficacy. A major 

benefit of QS inhibitors is that as they are not involved in bacterial growth, 

therefore their inhibition should not apply strong selective pressures which usually 

result in resistance occurring. 

1.6.8 Bacterial interference 

Bacterial interference utilises benign bacteria to prevent the colonisation of the 

catheter by virulent pathogens, thereby exploiting antagonism between bacterial 

species and competition for resources. One study in which the bladder of patients 

with spinal cord injuries was inoculated with a strain of E. coli following targeted 

antibiotic treatment (Darouiche et al., 2005) demonstrated the safety of this 

approach and showed a reduction in UTIs in the year following colonisation. 

However, this methodology was problematic as antibiotic treatment was ineffective 

in clearing the organisms infecting the bladder prior to installation and, as a result, 

the success rate of colonising with the benign strain was poor (Trautner, Hull and 

Darouiche, 2003). To counter this, catheters were colonised prior to the exposure 
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of urological pathogens in vitro (Trautner, Hull and Darouiche, 2003). The results 

showed a significant reduction in the uropathogens tested and the modified E. coli 

numbers remained stable, indicating this organism may persist. The success of this 

approach is in selecting an appropriate strain that is benign. The previous study 

utilised E. coli 83972, an isolate that caused persistent asymptomatic infection 

during a 3-year period of observation. It was then mutated by deleting a 800-base 

pair region in the papG gene which rendered it unable to make p fimbriae, which 

are implicated in the ability to cause pyelonephritis and bacteraemia. Subsequently 

the authors trialled this approach in a group of spinal cord injury patients and found 

the rate of symptomatic UTI decreased from 2.72 to 0.15 cases per 100 patient 

days. There are some problems with this approach. It could never be used on an 

immunocompromised patient and P. mirabilis tends to eliminate the benign strain 

(Trautner et al., 2007; Prasad et al., 2009) limiting effectiveness. In order to 

enhance the efficacy of this technique the bacterial interference was combined 

with bacteriophage therapy (Liao et al., 2012). Bacteriophages are natural 

predators of bacteria and a virulent infection results in the killing of the host. The 

synergistic effect of combining the two treatment types produced the best 

reduction in P. aeruginosa biofilms under test conditions and represents a viable 

option for shifting the ecological balance in favour of the benign strain thus 

preventing the uropathogen from proliferating.  

Despite the considerable attention the problem of CAUTI has had, a solution to this 

problem appears to be no closer. The current guidelines suggest removal of a 

catheter as soon as is feasible, and to prevent unnecessary catheterisations. Whilst 

this approach will reduce the overall infection burden on the patient population, it 

does not offer any solution to the often vulnerable, long term catheterised for 

whom a urinary catheter is a necessity.  

1.7 Bacteriophages 

Bacteriophages are obligatory intracellular parasites that hijack the bacterial 

cellular machinery to propagate themselves. Phage, derived from the Greek 

‘phagos’ means ‘a thing that devours’, therefore, bacteriophages are ‘eaters of 

bacteria’.  
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Bacteriophages were first described by Twort in 1915. He noticed a “glassy 

transformation” in micrococci colonies that were contaminating his attempts at 

propagating the vaccinia virus on cell-free agar plates. These plaques were dead 

bacteria and Twort demonstrated that these zones were transmissible via a sterile 

needle, and specific to the bacteria from which they were isolated. Independently 

of Twort, D’Herelle isolated what he later called ‘bacteriophages’ whilst working 

with soldiers suffering an outbreak of dysentery in 1917. It is D’Herelle who is 

credited with the discovery of bacteriophages and he proposed that they were an 

“ultravirus” that infected bacteria (D’Herelle, 1917). In fact, D’Herelle not only 

identified the nature of bacteriophages, he also recognised their therapeutic 

potential.  

To test his theory D’Herelle conducted experiments in rabbits in which phages 

provided protection against Shigella. The old adage of “the enemy of my enemy is 

my friend”, holds true with phages, however, in Western Europe and the United 

States their use eventually fell out of favour due to a lack of understanding about 

their basic biology, that lead to a number of unfavourable results. This prompted 

the American Medical Association’s council on pharmacy and chemistry’s review of 

the phage literature. Their conclusions did not support the therapeutic use of 

phages and called for more work to be conducted (Eaton and Bayne-Jones, 1934a). 

The final compounding factor that caused phage therapy to fall out of favour was 

the discovery of antibiotics, with a broad, reliable spectrum of activity. Phages were 

still pursued therapeutically in the Soviet Union, and Eastern Europe, such as 

Georgia and Poland, and centres were set up that still exist today i.e Eliava Institute 

in Tbilisi, Georgia.  

In the West, the study of a few model phages revealed the central dogma of 

molecular biology (Salmond and Fineran, 2015). Phages lend themselves to this task 

because of their relatively simple genomes, in fact the first sequenced organism 

was phage MS2 (ssRNA) (Fiers et al., 1976). Phages then revealed their ubiquity in 

nature through work concerning marine environments. It was shown that phages 

can be present in levels up to 2.5 x 108 PFU/ml of sea water (Bergh et al., 1989) 

which highlighted their role in the turnover of microorganisms. In fact, phage are 

estimated to halve the bacterial population every 48 h (Rohwer, Prangishvili and 
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Lindell, 2009) and hence have a significant impact on carbon cycling in the southern 

ocean and an important role in the structure and function of oceanic food webs 

where nitrogen, phosphorous, and carbon, amongst other elements, are made 

available to other microorganisms in a process termed the “viral shunt” (Wilhelm et 

al., 1999). 

Phages have a significant influence on the evolution and diversity of bacteria both 

through predation and horizontal gene transfer. Phages and bacteria are locked in 

an evolutionary arms race best described as antagonistic co-evolution. A concept 

called “killing the winner” proposed by Thingstad and Lignell (1997) suggests that 

diversity is maintained within a bacterial community as the species that dominates, 

due to a selective advantage, will be killed by phages allowing less competitive 

species to be sustained. Phage infection does indeed seem to be dependent on the 

density of the bacterial population (Hennes, Suttle and Chan, 1995; Kunin et al., 

2008) adding further weight to this theory.  

As well as phages accelerating bacterial mutation rates that drive the evolution and 

adaptability of bacteria (Pal et al., 2007), other mechanisms exist that result in 

phage mediated changes in bacterial genomes. Horizontal gene transfer can occur 

through a process termed generalised transduction. Another mechanism that 

benefits bacteria, termed lysogenic conversion, has been observed where 

integration of a temperate phage genome provides genes that affect the host cell 

fitness. An example of this is the conversion of diarrheagenic Escherichia coli to a 

more virulent strain that can potentially cause haemolytic uremic syndrome when 

infected with a lamboid phage that possesses the Shiga toxin (Schmidt, 2001). The 

lysogeny of a bacterial cell also offers immunity from further infection by phages 

that utilise the same receptors, further benefiting the lysogenised host (Labrie, 

Samson and Moineau, 2010). 

Phages are currently the focus of renewed interest due to the rise of antibiotic 

resistance. It is hoped that, with improved understanding of the fundamental 

biology of infection and sufficiently controlled trials, phages might become useful 

tools in the treatment of bacterial infections. 
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1.7.1 Bacteriophage morphology 

A bacteriophage particle consists of genetic material encapsulated by a protein 

coat. The genetic material can be single or double stranded DNA or RNA, and for 

some families the protein coat contains lipids which render the particle sensitive to 

chloroform. The most striking feature of bacteriophage morphology is the sheer 

diversity that exists amongst them. This is hardly surprising considering 1031 are 

thought to exist in the biosphere (Hendrix et al., 1999). The International 

Committee on Taxonomy of Viruses (ICTV) recognises 19 families of phages that 

infect bacteria (Adams et al., 2017). Over 6,300 bacterial viruses have been 

examined by electron microscopy since 1959 (Ackermann and Prangishvili, 2012). 

The most abundant group are the dsDNA tailed phages of the Order Caudovirales, 

which account for 96.3 % of those observed (Ackermann and Prangishvili, 2012). 

The classification system utilised by the ICTV is polythetic meaning that a species is 

defined by a “set of properties that may or may not be present in any individual” 

(Van Regenmortel, 1990). Virion morphology is taken into consideration as well as 

nucleic acid type and structure, nucleotide sequence identity and gene content. 

With advances in DNA and protein sequence analysis tools, more detailed 

relationships are being defined (Grose and Casjens, 2014). The fact that similarities 

exist between tailed bacterial and archaeal viruses suggests that phages existed 

before the divergence of those two groups and are therefore very ancient 

(Ackermann, 2009b).   

The Caudovirales are currently divided into three families, distinguished by their 

distinct tail morphologies: Siphoviridae possess long, flexible non-contractile tails; 

Myoviridae are endowed with contractile tails; and Podoviridae have short, stubby 

tails (Figure 6).  
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Figure 6. The three families of the Order Caudovirales from left to right 
representatives of Myoviridae (T4), Podoviridae (P22) and Siphoviridae (p2). Image 
adapted from Veesler and Cambillau (2011) with permission.  

 

The Siphoviridae are the most abundant observed, accounting for 61 %, followed by 

the Myoviridae (25 %) and Podoviridae (14 %) (Ackermann, 2007). Capsids are 

isometric consisting of hexa-, icosa-, octa- and dodecahedra or can be elongated by 

the addition of a ring of capsomers, the units that makes up the capsid, between 

the two icosahedral end pieces to make a prolate head (Aksyuk and Rossmann, 

2011). The formation of a capsid is not unique to bacteriophages and HK97-like 

protein fold, named after Escherichia phage HK97 (Wikoff et al., 2000), is also 

present in herpesviruses, further providing evidence of an ancient common 

ancestor. The capsid size is proportional to the quantity of genetic material it 

contains as a result the DNA is packaged very densely. 

The DNA is translocated into the procapsid during the assembly process. Scaffold 

proteins may still be supporting the procapsid structure at this point in assembly. 

The terminase molecule that cleaves the DNA interacts with the portal protein and 

DNA is delivered into the capsid. Scaffold proteins are then released if they have 

not been already, which provides space for the DNA. The capsid then takes on a 
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more angular form as it expands to its final shape (Hendrix and Garcea, 1994). In 

some phages, decoration proteins now bind to the capsid (Casjens and Hendrix, 

1988) which are sometimes required for infectivity or stability of the structure in 

extreme conditions. The terminase then cleaves the DNA and the terminase-DNA 

complex unbinds and it is thought that this complex then moves on to the next 

capsid to be assembled. Meanwhile, head completion proteins bind to the portal to 

prevent premature leakage of the DNA. The tail is now attached to the completed 

head. For Podoviridae, the tail, which is largely recognition and attachment 

machinery, is sequentially attached to the capsid (Lander et al., 2009) but for 

Siphoviridae and Myoviridae the tails are assembled in a separate step and bind to 

the completed capsids via the neck proteins (Casjens and Hendrix, 1988).  

Tail assembly begins with the initiator complex, an intermediary which forms, in 

phage λ, the conical tip and protruding terminal fibre of the mature tail (Katsura 

and Kühl, 1975). This structure initiates the polymerisation of the major tail protein 

(MTP) which forms the tube that acts as the conduit for DNA. In the Siphoviridae 

this forms the tail, whereas in the Myoviridae this tube is covered by an outer 

sheath which contracts upon host binding and DNA injection. The length of the tail 

is determined by a protein called the tape measure protein (TMP). This protein has 

been shown to be directly proportional to the length of the tail and acts as a 

scaffold during polymerisation (Katsura, 1987). It sits within the lumen of the tail 

and, in addition to its role in length determination, is thought to play a role in 

infection where it is ejected prior to DNA and assists in DNA entry into the cell 

(Scandella and Arber, 1976). The tail terminator protein then binds to the tube, 

halting polymerisation and completing the tail. This protein then interacts with the 

head completion proteins to join the head and tails together (Pell et al., 2009).  

1.7.2 Bacteriophage life cycles 

As obligate parasites, bacteriophages lack the cellular machinery required to 

propagate themselves. As a result they are reliant on their hosts. Phage life cycles 

begin with adsorption, followed by infection, and finally complete with the release 

of daughter viruses. There are two main types of life cycle observed in the 

Caudovirales, virulent and temperate (Figure 7). A virulent phage can only replicate 

by a lytic cycle in which phages infect and rapidly kill their host cells via lysis of the 
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cell and release of daughter viruses. Temperate phages appear to have a choice 

when infecting a new cell; they can enter the lytic cycle or the lysogenic, in which 

the genome assumes a quiescent state termed a prophage, and integrates into the 

host’s genome. Alternatively it can be maintained as a plasmid such as observed in 

T4 under nutrient limited conditions (Kutter et al., 1994). This state can be 

maintained indefinitely and, if integrated, the phages genome is copied along with 

the host chromosome.  

 

 

Figure 7. Diagrammatic representation of the life cycle of the tailed 
bacteriophages. A free phage encounters a susceptible bacterium, attaches to the 
bacterial cell and injects its DNA. Lysogenic cycle can occur with integration of 
phage DNA followed by cellular replication. Continuation of lytic cycle, hijack of 
cellular machinery to produce phages, phages are assembled, lysis occurs releasing 
daughter phages and killing the bacterial cell. 
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Infection begins with a phage locating a suitable host. Specific sites on the bacterial 

cell surface are used for recognition and at this point the phage is only loosely 

associated with the surface. When a target receptor is recognised the phage 

irreversibly binds and ejects its DNA into the cell (Hyman and Abedon, 2010). 

Different phages will utilise different methods for translocating DNA to the 

cytoplasm and phages have developed certain adaptations to avoid enzymatic 

degradation once there. Some phage DNA has a modified base, such as that of T4 

and SP01, which possess a hydroxymethyldeoxycytidine (hmdC) and a 

hydroxymethyldeoxyuridine (hmdU), respectively. These bases are resistant to host 

restriction enzymes (Warren, 1980). Other phages have evolved over time to not 

possess sites that would be recognised by the restriction enzymes of their common 

hosts. One tactic is the avoidance of palindromic sequences, as type II restriction 

endonucleases often recognise symmetrical (palindromic) sequences (Rocha, 

Danchin and Viari, 2001). Further mechanisms exist to escape degradation including 

rapid circularization of phage DNA upon entry by means of single stranded genomic 

termini.  

Once the DNA has reached the cytoplasm and avoided bacterial defence 

mechanisms, it transcribes into messenger RNAs that are then used to direct the 

cell’s ribosomes to produce copies of the viral DNA and produce proteins. These 

assemble into complete phages then an enzymatic process, mediated by phage 

proteins, causes the lysis of the bacterial cell and release of progeny virions. The 

period from infection to when completed virions are detectable inside the bacterial 

cell is termed the eclipse period and the duration from infection to the release of 

virions via lysis is referred to as the latent period (Ellis and Delbrück, 1939).  

Lysogenic phage infection follows the same initial steps for delivery of DNA to the 

cytoplasm, then a decision is made to enter into the lytic cycle or to integrate its 

genome into the bacteria’s. Alternatively, the phage can exist as a plasmid within 

the cell and remain stable and protected through successive bacterial generations 

(Echols, 1972). The life cycle the phage enters into, at least in the case of phage λ, is 

based on nutrient availability, high multiplicities of phage absorption and 

temperature (Ptashne, 2004). In instances of high phage absorption it is relatively 

safe to assume that other local bacteria are experiencing a similar situation. 
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Susceptible bacteria are, therefore, declining in the environment. It is not in the 

phage’s interest to completely eradicate its host, and under these conditions, λ 

enters the lysogenic life cycle. A similar situation exists when a bacterium 

experiences low nutrient levels; the phage will again enter into the lysogenic life 

cycle to ‘weather the storm’ until a point which favours the production of progeny 

and the likelihood of further hosts being available for those progeny. The genetic 

switch that controls the decision is mediated by the levels and stability of a protein 

called cII, a transcriptional activator (Court, Oppenheim and Adhya, 2007).  Briefly, 

high levels of cII result in high levels of production of the λ repressor (cI) and, 

consequently, PL and PR (promoters) are repressed and the recombination genes 

are transcribed resulting in integration and therefore the lysogenic cycle. 

Alternatively, lower levels of cII prevent λ repressor production via the action of cro 

(a repressor) and the phage enters into the lytic phase as PL and PR are not 

repressed resulting in the production of N and Q. N causes the genes for viral DNA 

replication to be transcribed (by preventing termination). Q then activates the 

expression of head, tail and lysis genes. cIII also helps establish lysogeny by 

protecting cII from degradation. Host cell proteases break down cII and are present 

in greater numbers in high nutrient conditions, this has the effect of low cII and 

therefore the lytic cycle is selected. When greater numbers of phages enter a cell, 

higher quantities of cII exist which results in lysogeny. In the laboratory lysis 

dominates, primarily due to the high nutrient conditions used in the culture of 

bacteria. This can be problematic as temperate phages may be assumed to be 

virulent. 

Lysogeny is maintained by the presence of cI (Figure 8). It represses transcription 

from PL and PR whilst upregulating its own expression, it’s the only phage protein 

expressed by a lysogenised bacterium and in so doing also provides immunity to 

superinfection by other lambda phages by repressing transcription of PL and PR. A 

process termed lysogenic conversion has also been shown to provide resistance to 

superinfection to phage that act on the same receptor by causing conformational 

changes that prevent phage binding or the loss of the receptor altogether (Chung et 

al., 2014). 
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Figure 8. Diagrammatic representation of the maintenance and exit from 
lysogeny. The lambda repressor (cI) represses transcription from PL and PR 
preventing lytic genes from being transcribed, it also up-regulates its own 
expression. DNA damage causes the exit from lysogeny as the SOS response is 
activated. Rec A cleaves the cI repressor, PL and PR are no longer repressed and the 
lytic genes are sequentially switched on. 

 

The exit from lysogeny is brought about by the bacterial SOS response (Figure 8), 

commonly induced in the laboratory through DNA damage by mitomycin C or UV 

irradiation. The SOS response aims to repair DNA damage by arresting the cell cycle 

and inducing mutagenesis and DNA repair. LexA is a repressor that represses the 

SOS response genes under normal growth. When DNA damage occurs RecA 

activates and cleaves LexA preventing it from functioning, decreasing amounts of 

LexA then sequentially switches on the SOS genes (d’Ari, 1985). In exiting from 

lysogeny RecA is commandeered and brings about the cleavage of the λ repressor 

as its structure is similar to LexA. With no λ repressor available to repress 

transcription, the cell begins the lytic cycle (Ptashne, 2004).  
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Finally, another facet of bacteriophage life cycles is that of pseudolysogeny. This is 

where the phage DNA enters into the bacterial cell but does not integrate in a 

stable way nor initiates the lytic life cycle; instead it remains in this intermediate 

mode until conditions occur that induce either the temperate or virulent life cycle 

(Ripp and Miller, 1997). This phage carrier state might confer a number of 

conditional advantages to the phage, for example it shelters the phage from 

potentially harsh conditions outside the host. Furthermore it might be an 

adaptation to overcome a nutrient limited host by preventing an abortive 

replication or integration event due to the limited nutrients (Łoś and Węgrzyn, 

2012). In addition, it might function as a means for a temperate phage to not be 

entirely reliant on the host’s SOS response to escape lysogeny.   

1.7.3 Phage therapy 

Phage therapy is the “reduction or elimination of pathogenic or undesirable 

bacteria by the application of bacteria-specific viruses” (Abedon and Thomas-

Abedon, 2010). The use of phages to treat human infections has been practiced 

since just after their discovery. However, the lack of understanding about phage 

biology and the widespread use of antibiotics in the 1940s resulted in a decline in 

interest in this potentially useful approach, in the West. Currently, the rise in multi-

antibiotic resistant bacteria, and the consequent need for effective alternatives, has 

led to renewed interest in bacteriophages as therapeutic agents. In 2014 the 

European parliament proposed a motion for the resolution of antibiotic resistance 

requesting that member states prioritise phage therapy to complement antibiotic 

therapy (Parliamentary Assembly, 2014). 

1.7.4 Advantages over traditional antimicrobial agents 

Bacteriophage therapy has many advantages when compared to conventional 

antibiotic therapy and should not be overlooked despite difficulties regarding 

regulatory approval (Section 1.7.6).  

As long as virulent phages are used, phages are bactericidal. The same cannot be 

said for all antibiotics as some are bacteriostatic. If bacteria are not killed they 

retain the ability to develop resistance or those that have developed resistance are 

selected for (Stratton, 2003). Additionally, phages increase in number at the site of 

the infection. This auto dosing is an advantage as numbers increase in the presence 
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of the bacterial host. The opposite is true for traditional antimicrobial agents where 

the concentration decreases between doses and potentially reaches sub-inhibitory 

concentrations depending on how they are employed. This can again lead to the 

development of resistance.  

Another benefit of phages as antimicrobials is specificity. In contrast to 

conventional antibiotics, phages are species or genus specific. This means that the 

normal flora of the host is left intact as the pathogen of interest is targeted. This is 

beneficial to patients as there is less risk of infections from problematic organisms 

such as Clostridium difficile or Candida albicans. However, the specificity of the 

interaction between bacteria and phage can be seen as a disadvantage as well 

when considering presumptive treatment of infections. This problem can be 

somewhat overcome with the use of a cocktail of phages with different host ranges 

or recognition targets. This allows for the coverage of a much wider range of 

organisms and can contribute to preventing resistance from occurring if there is 

some overlap in host range. 

The FDA (food and drug administration (USA)) considers bacteriophages as 

generally safe for use in humans (Kutter and Sulakvelidze, 2005). Over the last 

century there have been no reports of significant adverse reactions from the 

countries where phage therapy has consistently been practised (Abedon et al., 

2011). Considering the abundance of phages in the environment, as well as in and 

on the human body, they will have been presented to the immune system, for 

instance, 11 % of healthy controls and 23 % of patients had antibodies against a 

Staphylococcus phage prior to its administration (Kucharewicz-Krukowska and 

Slopek, 1987). Although humans are exposed to phages on a daily basis concern 

exists regarding their immunogenicity as high doses of phage proteins has been 

observed to elicit side effects from immune system stimulation (Dabrowska et al., 

2014). Regarding treatment, the concern is that the administered phages will be 

removed from systemic circulation which would make it difficult to maintain an 

effective concentration (Goodridge, 2010). However, the emergence of anti-phage 

antibodies does not exclude a favourable treatment result (Łusiak-Szelachowska et 

al., 2014), and a couple of studies have reported no adverse effects from 

administering phage cocktails either topically (Rhoads et al., 2009) or ingesting 
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them (Bruttin and Brüssow, 2005) so perhaps application needs to be carefully 

considered.  

When compared to traditional antimicrobials, resistance to phages is considered 

less problematic as many other phages exist that could be utilised that the bacteria 

are not yet resistant to. Another benefit of phage is that some mutations for 

resistance negatively impact bacterial fitness or virulence due to the loss or 

modification of pathogenicity related phage receptors (Skurnik and Strauch, 2006). 

Antibiotic resistance also does not translate to phage resistance due to the 

different mechanisms that phages and antibiotics use. As a result phages could be 

employed to treat antibiotic-resistant bacterial infections (Carlton, 1999; 

Kaźmierczak, Górski and Dąbrowska, 2014).  

In the last 30 years the discovery of new classes of antibiotics has stagnated (Silver, 

2011). In contrast, the discovery of novel phages has increased. The advances in 

high-throughput sequencing technologies has greatly reduced the cost of phage 

characterisation therefore phages can be obtained for a much reduced cost when 

compared to the discovery of new antimicrobials (Skurnik, Pajunen and Kiljunen, 

2007).  

Finally, an advantage of phages is their apparent ability to be able to disrupt and 

eradicate biofilms. Some phages possess carbohydrate degrading enzymes which 

have the ability to degrade the EPS of the biofilm, or capsule and O-antigen (Latka 

et al., 2017). They can be attached to the particles tail spikes, tail fibres or base 

plates and facilitate access to the bacterial cell for initiating an infection. Presence 

of this activity is demonstrated by a halo surrounding a plaque that expands upon 

further incubation. Either phage associated or free dpolymerases display this 

feature (Adams and Park, 1956). The depolymerase enzymes tend to show 

specificity to a lesser extent than the phages they were derived from (Son et al., 

2010). Phage derived depolymerases can be divided into two classes based on their 

mechanism, lyases and hydrolases. Their ability to disrupt medically relevant 

biofilms is beneficial as minimal effect should occur on host microbiota as well as 

human cells. This approach might increase the efficacy of chemical antimicrobial 

therapy giving the agents access to the bacterial cells, indeed Lu and Collins (2009) 
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demonstrated enhanced antimicrobial activity utilising engineered temperate 

phages and Verma, Harjai and Chhibber (2009, 2010) utilised native phages to a 

similar effect. 

1.7.5 Requirements for phage therapy  

Phages should ideally be obligately lytic, stable under the chosen storage 

conditions, subjected to safety and efficacy studies and fully sequenced before 

being used in phage therapy (Gill and Hyman, 2010). Additionally, they ideally 

should have good killing potential, be able to evade bacterial defences and survive 

well within the environment in which they are to be placed. Temperate phages are 

avoided as they do not kill their hosts and a lysogenic infection can make the 

bacteria immune to superinfection by another phage which may have been able to 

kill them otherwise. They may also provide genes that encode toxins or otherwise 

modify the bacterial genome, enhancing virulence, these are strong arguments for 

avoiding temperate phages. Skurnik and Strauch (2006) put forward a number of 

criteria that should ideally be met before phage therapy is attempted; 

1. The phage should be well characterised. 

2. Phage preparations should comply with all regulatory requirements; 

specifically such preparations should not contain any bacterial components 

(e.g. endotoxins) by undertaking adequate purification processes. 

3. Phages in the preparation should be viable; stability under storage 

conditions should be confirmed. 

4. The interaction between phage and bacteria should be understood; 

identification of the receptor and if its loss results in loss of bacterial 

virulence. 

5. The phage should be tested in an animal model as efficacy in vitro does not 

predict efficacy in vivo. 

Clearly, compliance with these prerequisites requires substantial work and this 

would not guarantee approval by the regulatory authorities, so further hurdles may 

exist. This bar to approval of phage therapy is perhaps one reason why it is not yet 

available in mainstream Western medicine. 
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1.7.6 Regulatory issues surrounding phage therapy 

The problem of regulatory approval of phage therapy, at least in Europe, is the 

desire for adequately designed and registered clinical trials that include safety 

assessments and good manufacturing practice (GMP) in regard to phage 

production. The vast amount of literature that has built up since phage discovery is 

not considered because these data have not been validated under current 

regulatory standards. Mullard (2014) estimated the cost of bringing a new drug to 

market at US$2.6 billion therefore the ability is limited to organisations which 

possess the financial resources.  

The nature of the phage product can by problematic from a regulatory perspective. 

Treatment can be derived from a bank of well-defined phages that are tested 

against the patient’s specific pathogen, then a bespoke formulation is produced. 

This has some similarities to autologous cell-based products (Pelfrene et al., 2016) 

however the production and characterisation of vast phage libraries are beyond the 

financial capabilities of most researchers and should ideally be undertaken by 

government agencies. Alternatively, cocktails against common pathogens can be 

prepared, however, experience from the Eliava institute, where this has been 

practiced for a century, has shown that these formulations need to be updated to 

the current relevant pathogens on a regular basis (Kutter et al., 2010). The 

regulations that this product would fall under do not allow changes in formulation, 

especially the introduction of a new phage as it would be considered a new 

medicinal product and would require separate authorization, a costly and time-

consuming endeavour. There is, however, precedence for medical products being 

allowed an accelerated development pathway circumventing clinical trials for each 

revision, with the influenza vaccine changing annually, however, the process is still 

complex (Pelfrene et al., 2016). Additionally, no current guidelines exist for the 

quality of phages produced for phage therapy (Verbeken et al., 2012). As a result, 

manufacturers have reverted to existing guidelines for biotechnology products. 

Clearly, advice is needed to ensure compliance with regulations.  

Despite these hurdles, trials are underway with a view to demonstrate efficacy and 

safety. Clearance for future clinical use, however, may require a new category of 
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drug licencing to allow for the biological nature of phage products and their 

requirements for rapid updating.  

The issue remains, would pharmaceutical companies be willing to commit to 

regularly updating their phage preparations, especially as these products would be 

in direct competition to their other antibiotic products. Furthermore, intellectual 

property (IP) rights surrounding phages are problematic for companies since this 

technology has been in the public sphere since the 1920s so is, therefore, un-

patentable (Thiel, 2004). Also, natural entities consisting of protein and DNA cannot 

be patented. This does, however, pave the way for genetically modified phages but 

significant public scepticism exists surrounding the application of genetically 

modified organisms (GMOs). 

1.7.7 Phage treatment of uropathogens  

Relatively few examples of phage use in the treatment of infections of the 

urogenital tract or of Proteus mirabilis exist in the literature. The first mention in 

English language literature is in the reviews of Eaton and Bayne-Jones (1934b, 

1934a, 1934c, 1934d). In these works the authors support the use of phage therapy 

for the treatment of cystitis despite their critical opinion of phage therapy in 

general. A later review (Slopek et al., 1987) reported 92.9 % positive outcomes for 

phage treatment of 42 diseases of the genitourinary tract between 1981 and 1986.  

In vitro assessment of a number of phage cocktail products (Pyo, Intesti, Ses and 

Enko) obtained from the Eliava institute has been reported (Sybesma et al., 2016) 

and their activity assessed against a library of clinical urinary tract isolates. Good 

coverage of the clinical isolates was observed (93 %) which, as the authors report, 

warrants further study.  

Phages have been shown to be successful in treating infections in murine models, 

the seminal work of Smith and Huggins (1982) showed that bacteriophages could 

be at least as effective as antibiotics at preventing mortality with capsulated E. coli 

K1 infections. Tóthová et al. (2011) showed that Injection of phages into the 

peritoneal cavity of mice resulted in the distribution of phages to all internal organs 

and titres remained high for 24 h post administration. No adverse reactions 
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attributed to the administration of phages were noted, providing preliminary data 

on the safety and efficacy of phage therapy. 

Several reports in the literature describe the use of phage therapy in humans. 

Letkiewicz et al. (2009) successfully treated 3 patients suffering E. faecalis infections 

of the prostate. Khawaldeh et al. (2011) undertook the treatment of a patient who 

was suffering a persistent Pseudomonas aeruginosa urinary tract infection. Six 

phage types were selected against the infecting bacterium and instilled into the 

bladder every 12 h for 10 days. Meropenem and Colistin were administered from 

day 6 of phage treatment. The patient’s urine remained pathogen free for 6 months 

post treatment, highlighting the benefit of phages as an adjuvant to traditional 

antimicrobial therapy. However, caution should be exercised, as noted by Torres-

Barceló and Hochberg (2016), that double-resistant variants do not develop. 

Caution is also advised in considering the above results, as so few patients were 

treated. 

Finally, the use of phages to prevent catheter infection has been investigated and is 

discussed in more detail in Chapter 4. Briefly, Curtin and Donlan (2006) applied 

phages to hydrogel urinary catheters to prevent Staphylococcus epidermidis, often 

implicated in central venous catheter infections. Fu et al. (2010) attempted to 

prevent infections caused by P. aeruginosa in the same model system utilising a 

cocktail of five phages. The same group subsequently presents work tackling a dual 

species biofilm consisting of P. aeruginosa and P. mirabilis (Lehman and Donlan, 

2015). Two cocktails, consisting of six and four phages active against P. aeruginosa 

and P. mirabilis, respectively, were combined and the activity against dual species 

biofilms assayed. Melo et al. (2016) present data on two phages against P. mirabilis 

isolates in the same model system described by Curtin and Donlan, (2006).  

Carson, Gorman and Gilmore (2010) report the use of phages to treat infections 

caused by E. coli, and less successfully, P. mirabilis. Nzakizwanayo et al. (2015) used 

a phage bolus to successfully eradicate P. mirabilis infections cultured on catheters 

in an in vitro bladder model system. Finally, Milo et al. (2017) utilised the previous 

researchers’ phage and incorporated it into a pH sensitive catheter coating, 

assessed in an in vitro bladder model system.  
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1.7.8 Foreign language literature 

A vast amount of Russian, Polish and Georgian language literature exists as phage 

therapy has been practised in these countries since the 1920s. It has been 

summarised by Chanishvili and Sharp (2009) however, again, there are relatively 

few examples of the use of phages in urology. Tsulukidze (1938) describes the 

application of phage therapy to treat acute and chronic cystitis, pyelocystitis, and 

purulent paranephritis. Treatment took the form of individual phages or a cocktail 

called Pio-bacteriophage that contained phages against E. coli, S. aureus, and S. 

epidermidis. They were administered directly to the bladder or into the pelvis and 

kidneys. In cases of acute cystitis an effect was observed after 4-5 hours and 

resulted in relief of pain, a decrease in frequency of urination and a normalisation 

of the composition of the urine. Full recovery of the 13 patients was observed in 1-3 

days, however, in chronic cases of cystitis only moderate improvement was 

observed. In the treatment of 5 patients with pyelocystitis the authors reported 

complete cure of 4 patients, however the fifth succumbed to re-infection. For the 

treatment of four patients with paranephritis, phages were sprayed onto the 

connective tissues surrounding the kidneys and, after surgery, sprayed onto the 

wounds; all patients recovered after 2-3 days. 

The next reported use of phage was by Tsiskarishvili (1957) who describes 22 cases 

of paranephritis that were treated with bacteriophage. In 12 cases surgery was not 

necessary, and in these patients, pus was evacuated by puncture followed by the 

administration of phages into the site. Additionally 20 ml of phages were 

administered intramuscularly. Success was measured by duration of hospital stay 

and this group stayed, on average, 19.5 days. The remaining 10 patients for whom 

surgery was necessary also received phages in the infective site; their duration was 

24.2 days. This compares favourably to the control group, who received the 

standard treatment of lumbar therapy and tramponization. Their stay was 31.7 days 

on average. 

Pio-bacteriophage preparation was used in the treatment of urinary tract infections 

against P. aeruginosa, Proteus sp, Staphylococcus sp, and E. coli by Perepanova et 

al. (1995). Prior to patient treatment the authors tested the cocktail against 295 

isolates from patients. They found that 68.9 % of the isolates tested were lysed. 
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They managed to enhance this preparation by passage through their bacterial 

collection and increased efficacy to 84 %. This adapted preparation was then 

administered orally and locally to patients, and a reported cure was achieved in 92 

% of patients. 

A review by Voroshilova et al. (2000) describes the use of phages to treat cystitis 

and pyelonephritis. The phages were administered via bladder installations and 

orally. Infection was eliminated in 88.4 ± 0.9 % for cystitis and 92.2 ± 0.7 % for 

pyelonephritis. The control group received antibiotics and fared less well, with cure 

achieved in 39 ± 9.2 % and 58.5 ± 5.5 % for cystitis and pyelonephritis, respectively. 

Interestingly, the authors monitored immune response and noted that phage 

treatment caused elevated levels in their markers which was not seen in the 

antibiotic treated group.  

In conclusion, despite a limited number of examples, there is evidence in the 

literature for safe, efficacious treatment of urinary tract infections by phage 

therapy. Limitations in experimental design, however, highlight the need for more 

extensive laboratory investigations and randomised, controlled, clinical trials.  

1.8 Study aims 

The aim of this study was to assess bacteriophage therapy as a treatment for the 

infection and eventual blockage of urinary catheters infected with Proteus mirabilis. 

In order to achieve this, the specific aims were: 

1. To isolate bacteriophages from environmental samples against clinical P. 

mirabilis isolates. 

2. To select the most appropriate phages to take forward for analysis. 

3. To characterise the selected phages. 

4. To apply the phages as a coating to catheters and assess their impact on 

infection and blockage in an in vitro model system. 

5. To investigate if a cocktail of bacteriophages enhances the antimicrobial 

effect. 

 

 



43 
 

Chapter 2 Materials and Methods 

2.1 Bacterial strains and growth media 

The bacterial isolates used in this study (Table 2) were obtained from the Bristol 

Urological Institute (BUI) (Bristol, UK), Southmead Hospital (Bristol, UK), and the 

University of the West of England (Bristol, UK). Isolates obtained from the BUI were 

of clinical origin from various projects kindly donated by Professor David Stickler of 

Cardiff University; the isolates were from different geographical locations and 

chronological time points. Southmead Hospital provided current clinical isolates 

from infected urines submitted for analysis. Stock bacterial cultures were stored at -

80°C in Microbank™ (ProLab Diagnostics, Neston, Cheshire, UK) cryopreservation 

bead filled tubes. Nutrient media were provided by Oxoid Ltd (Basingstoke, UK) 

unless stated otherwise. Working cultures were maintained on Cystine-Lactose-

Electrolyte-Deficient (CLED) agar and liquid cultures in Tryptone Soya Broth (TSB). 

Lennox Luria Broth (LB) (Sigma-Aldrich Ltd, Poole, UK) with the addition of 0.6 % 

w/v Bacteriological Agar for soft media or 1.5 % w/v for solid were used for 

bacteriophage experiments. 

Table 2. Bacterial isolates used in this study. Isolates are numbered according to 
the original institutions naming scheme. 

No. Isolate Source 

1 Proteus mirabilis D1 Bristol Urological Institute  

2 Proteus mirabilis D2 Bristol Urological Institute 

3 Proteus mirabilis D3 Bristol Urological Institute 

4 Proteus mirabilis D4 Bristol Urological Institute 

5 Proteus mirabilis D5 Bristol Urological Institute 

6 Proteus mirabilis D7 Bristol Urological Institute 

7 Proteus mirabilis D12 Bristol Urological Institute 

8 Proteus mirabilis D13 Bristol Urological Institute 

9 Proteus mirabilis D15 Bristol Urological Institute 

10 Proteus mirabilis D19 Bristol Urological Institute 

11 Proteus mirabilis D14 Bristol Urological Institute 

12 Proteus mirabilis D17 Bristol Urological Institute 

13 Proteus mirabilis D18 Bristol Urological Institute 

14 Proteus mirabilis D23 Bristol Urological Institute 

15 Proteus mirabilis D24 Bristol Urological Institute 

16 Proteus mirabilis D25 Bristol Urological Institute 

17 Proteus mirabilis D28 Bristol Urological Institute 
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No. Isolate Source 

18 Proteus mirabilis D32 Bristol Urological Institute 

19 Proteus mirabilis D33 Bristol Urological Institute 

20 Proteus mirabilis D35 Bristol Urological Institute 

21 Proteus mirabilis D36 Bristol Urological Institute 

22 Proteus mirabilis D37 Bristol Urological Institute 

23 Proteus mirabilis D41 Bristol Urological Institute 

24 Proteus mirabilis Releen 18 Bristol Urological Institute 

25 Proteus mirabilis H24  Bristol Urological Institute 

26 Proteus mirabilis H25 Bristol Urological Institute 

27 Proteus mirabilis H26 Bristol Urological Institute 

28 Proteus mirabilis GS12 Bristol Urological Institute 

29 Proteus mirabilis GS13 Bristol Urological Institute 

30 Proteus mirabilis GS14 Bristol Urological Institute 

31 Proteus mirabilis #3 Bristol Urological Institute 

32 Proteus mirabilis #10 Bristol Urological Institute 

33 Proteus mirabilis HI4320 Bristol Urological Institute 

34 Proteus mirabilis NSM2 Bristol Urological Institute 

35 Proteus mirabilis NSM 6 Bristol Urological Institute 

36 Proteus mirabilis NSM 25 Bristol Urological Institute 

37 Proteus mirabilis NSM 39 Bristol Urological Institute 

38 Proteus mirabilis NSM 42 Bristol Urological Institute 

39 Proteus mirabilis NSM 59 Bristol Urological Institute 

40 Proteus mirabilis NSM 60 Bristol Urological Institute 

41 Proteus mirabilis 45967 Southmead Hospital 

42 Proteus mirabilis 46126 Southmead Hospital 

43 Proteus mirabilis 46453 Southmead Hospital 

44 Proteus mirabilis 46500 Southmead Hospital 

45 Proteus mirabilis 46511 Southmead Hospital 

46 Proteus mirabilis 46546 Southmead Hospital 

47 Proteus mirabilis 46564 Southmead Hospital 

48 Proteus mirabilis 46670 Southmead Hospital 

49 Proteus mirabilis 46708 Southmead Hospital 

50 Proteus mirabilis 46736 Southmead Hospital 

51 Proteus mirabilis NCIMB 701880 University of the West of England 

 Other Gram-negative bacteria  

1 Enterococcus faecalis NCIMB 775 University of the West of England 

2 Klebsiella pneumoniae cc242 University of the West of England 

3 Serratia marcescens cc12 University of the West of England 

4 Staphylococcus aureus RN4220 University of the West of England 

5 Pseudomonas aeruginosa ATCC 15442 University of the West of England 

6 Salmonella enteritidis PT4 University of the West of England 

7 Escherichia coli ATCC 15036 University of the West of England 

8 Acinetobacter baumanii ATCC BAA-1710 University of the West of England 
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2.2 Determination of bacterial numbers 

Enumeration of bacteria was achieved by either the drop plate method, the spread 

plate method or by use of a spiral plating device (WASP, Don Whitley Scientific, 

Shipley, UK). 

2.2.1 Drop plate method  

The bacterial suspension was serially diluted in a 1:10 dilution series using ¼ 

strength Ringers solution (Oxoid Ltd., Basingstoke, UK) as diluent. Ten µL of the well 

mixed dilutions were plated out in triplicate onto suitable agar plates (see section 

2.1) divided into 6 equal sections. Suspensions were pipetted without touching the 

agar and left to spread and dry before being inverted and incubated overnight at 

37°C. Colony forming units (CFU) per ml were calculated by;                                                                           

 CFU/ml = average number of colonies x 100 x reciprocal of counted dilution 

2.2.2 Spread plate method 

The bacterial suspension was diluted as in 2.2.1. In triplicate, 100 µL of the vortexed 

suspension was pipetted onto the surface of an agar plate and spread uniformly 

using an ethanol sterilised glass hockey stick. Plates were allowed to dry before 

inversion and subsequent incubation over night at 37°C. Colony forming units (CFU) 

per ml was calculated by;                                                                        

CFU/ml = average number of colonies from 3 plates x 10 x reciprocal of 

counted dilution 

2.2.3 Spiral plating device 

Dilutions of the bacterial suspension were carried out in 10 mL volumes of Ringers 

solution. Fifty µL was plated by the device (WASP, Don Whitley Scientific, Shipley, 

UK). Triplicate plating was carried out and plates dried before incubation overnight 

at 37°C. The bacterial suspension was enumerated following the manufacturer’s 

instructions. 
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2.3 Pulsed-Field Gel Electrophoresis (PFGE) on bacterial 

isolates 

PFGE is a technique for separating large (> 15 kb) DNA molecules by periodically 

changing the angle of the electronic field in relation to the agarose gel on which the 

samples are loaded.  

The method was adapted from pulseNet CDC PFGE SOP (Anomyous, 2013). Cultures 

of the bacterial isolates were grown on NA. The bacteria were collected using a 

sterile swab, and suspended in 2 mL cell suspension buffer (100 mmol Tris: 100 

mmol EDTA, pH8). The optical density of the suspension was modified to 1.0 at 

600nm. Suspensions were warmed to 45°C and 200 µL added to an equal volume of 

molten 2% w/v Agarose (Sigma-Aldrich Ltd, Poole, UK) with 10 µL of Proteinase K 

(20 mg/mL) (New England Biolabs, Hitchin, UK). The mixtures were aspirated 

thoroughly and 75 µL transferred to a plug mould (BioRad, Hemel Hempstead, UK). 

Upon setting, plugs were transferred to 15 mL centrifuge tubes with 5 mL of cell 

lysis buffer (50 mmol Tris: 50 mmol EDTA, pH 8 + 1 % sarcosyl) with 25 µL of 

proteinase K (20 mg/ml) (New England Biolabs, Hitchin, UK) and incubated at 55°C 

for 2 h with vigorous agitation (150 rpm). Sterile ultra-pure water was heated to 

55°C and plugs were washed twice for 15 min followed by a further four 15 min 

washes in TE buffer (10 mmol Tris: 1 mmol EDTA, pH8) that was warmed to 50°C. 

Slices (approximately 2 mm thick) of the plugs were subjected to restriction digest 

by 5 U of Not 1 HF (New England Biolabs, Hitchin, UK) in 200 µL digestion mixture, 

prepared following the manufacturer’s recommendations, for 16 h at 37°C. To 

cease the reaction the digest mixture was removed and replaced with cold TE 

buffer. Slices were then loaded onto a 1 % (w/v) agarose gel made with 0.5 X TBE 

(Sigma-Aldrich Ltd, Poole, UK) and wells sealed with the same agarose. Lambda 

DNA ladder (New England Biolabs, Hitchin, UK) was included as a size standard and 

digested genomic DNA from strain HI4320 was loaded onto every gel to check the 

running efficiency and the accuracy of post-run processing. Macrorestricted DNA 

was separated (Figure 9) using the CHEF-DR II system (BioRad, Hemel Hempstead, 

UK) at 6 V/cm with a switch time of 5-50 s for 22 h at 14°C using 0.5 X TBE running 

buffer. DNA was stained with ethidium bromide (1 µg/ml) for 1 h followed by de-

staining with deionised H2O for 30 min. Bands were visualised under UV light 
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(FluorChem Q, ProteinSimple, California, USA) and banding patterns analysed with 

the GelCompair II software package (Applied Maths, Austin, USA) using the Dice 

similarity coefficient and the UPGMA clustering method.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Diagrammatic representation of Pulsed Field Gel 
Electrophoresis. Large DNA molecules (> 15 kb) are separated by altering 
the electronic field by 60° from centre (total 120°). The DNA does not move 
in a straight line through the gel but in a net forward direction depicted by 
the arrows. The change of direction allows fragments to separate as 
realignment takes longer for larger fragments. Over the course of the run 
(22 h) the consistent change of electric field separates the fragments. 
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2.4 Determination of bacteriophage titres 

Enumeration of phage titre was achieved using the double agar overlay plaque 

assay technique (Kropinski et al., 2009; Adams, 1959). A 100 µL sample of a log-fold 

dilution of bacteriophage was added to 100 µL of early exponential phase host 

bacteria (OD600 0.1) and allowed to adsorb for 5 min. A 4 ml aliquot of soft LB agar 

(0.6 % w/v bacteriological agar supplemented with 8 mmol/L MgSO4 and 4 mmol/L 

CaCl2) was added and subsequently poured on to a 90 mm LB agar plate 

(supplemented with 8 mmol/L MgSO4 and 4 mmol/L CaCl2) ensuring even coverage 

was achieved. Prior to inversion and incubation at 37°C for 18-24 h, plates were set 

for 10 min on the bench. Following incubation, zones of clearing in the bacterial 

lawn (plaques) were counted on triplicate plates and, where possible, on two 

consecutive dilutions. The titre of the phage suspension was calculated by; 

PFU/ml = average number of plaques from 3 plates x 10 x reciprocal of 

counted dilution 

2.5 Isolation of bacteriophages 

Raw influent or activated sludge was acquired from various sewage treatment 

works within the catchment of Wessex Water. Following the enrichment protocol 

of Van Twest and Koprinski (2009) sewage samples were centrifuged at 10,000 x g 

(Beckman Coulter, Allegra X-30r, High Wycombe, UK) for 10 min followed by 

filtration (0.2 µm pore size). A 10 mL aliquot of the filtered sewage was added to an 

equal volume of double strength NB (Oxoid Ltd., Basingstoke, UK) supplemented 

with 20 mmol/L MgSO4 and 4 mmol/L CaCl2. A 100 µL aliquot of a stationary phase 

culture of each bacterial clinical isolate was added to separate tubes and the 

enrichments incubated at 37°C for 24 h with gentle mixing (50 rpm). Following 

incubation, the contents of the enrichments were centrifuged at 10,000 x g for 10 

min, 2.5 % (v/v) of chloroform was added and samples were plated using method 

2.4. Any resulting plaques were then excised and suspended in Sodium Magnesium 

buffer (100 mmol/L Tris-Cl, 8 mmol/L MgSO4, 100 mmol/L NaCl, pH 7.5) at 4°C for 

24 h to allow phages to elute. Each excised plaque was plated and excised a further 

two times to ensure purity. 
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2.6 Propagation and purification of bacteriophages 

Overnight liquid preparations of host bacteria were used to inoculate 1 L of LB 

(Sigma-Aldrich Ltd, Poole, UK) supplemented with 8 mmol/L MgSO4 and 4 mmol/L 

CaCl2. The optical density (600nm) was monitored until it reached 0.1, at which 

point titrated plaque suspension was added to achieve an approximate multiplicity 

of infection (MOI) of 0.1. The propagation was incubated at 37°C with shaking (150 

rpm) until post lysis re-growth was observed, which was determined by hourly 

optical density measurements. Bacterial growth was halted by the addition of 

chloroform (1 % v/v). The cultures were cooled to room temperature and DNase I 

and RNase A (1 µg/mL) added and incubated for 30 min. Sodium Chloride (NaCl) 

was also added to the cultures to a concentration of 1 M and, when dissolved, 

debris was removed by centrifugation at 11,000 x g for 10 min at 4°C. The clarified 

lysate was transferred to a sterile Duran which contained a magnetic stirrer. PEG 

8000 was added (10% w/v) and gently stirred until the powder had dissolved. 

Lysates were stored at 4°C for 24 h to precipitate bacteriophages prior to their 

recovery by centrifugation in a fixed angle rotor at 4°C for 10 min at 11,000 x g. The 

pellet was re-suspended in SM buffer (100 mmol/L Tris-Cl, 8 mmol/L MgSO4, 100 

mmol/L NaCl, pH 7.5), 16 mL for every litre of clarified lysate. Re-suspended pellets 

were mixed by inversion for a minimum of 30 s with an equal volume of chloroform 

before being centrifuged at 3000 x g for 15 min at 4°C. The aqueous phase was 

retained and the process repeated until no PEG was visible at the interface between 

the aqueous and organic phases. A two-step Caesium Chloride (CsCl) density-

gradient centrifugation was employed (Sambrook and Russell, 2001) to purify 

phages. Briefly, solid CsCl was added to the phage preparation at a final 

concentration of 0.5 g/mL and gently agitated. A step gradient was prepared in 

ultra-clear centrifuge tubes (Beckman Coulter, High Wycombe, UK) by under-laying 

solutions of higher densities. Solutions were prepared in SM buffer (100 mmol/L 

Tris-Cl, 8 mmol/L MgSO4, 100 mmol/L NaCl, pH 7.5) and added as follows; 2 mL of p 

= 1.3, 3 mL of p = 1.4, 3 mL of p = 1.5, and 2 mL of p = 1.7. The phage preparation 

was carefully layered on top of the gradient before centrifugation using an SW40 

rotor in an Optima LX-P ultra-centrifuge (Beckman Coulter, High Wycombe, UK) at 

87,000 x g for 2 h at 4°C. Bacteriophages formed a bluish white band between the p 
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= 1.4 and p = 1.5 and were collected by puncturing the side of the ultra-clear tube 

with a 21 G needle attached to a 5 mL syringe (Figure 10). Scotch tape was used to 

prevent leaks and phages were collected by moving the needle back and forth 

below the band. A further round of equilibrium centrifugation was carried out. The 

phage preparation was carefully added to 6 mL of p = 1.5 g/mL CsCl in SM and 

centrifuged at 160,000 x g for 24 h at 4°C. Bands were recovered as before, and the 

sample transferred to a Slide-A-Lyzer (Thermo Scientific, Loughborough, UK) dialysis 

cassette with a 100 kDa molecular weight cut off to diafiltrate the sample against 

three 500-fold volume changes of SM buffer at 4°C. Bacteriophages were then 

titrated and stored at 4°C. 

 

 

 

 

 

 

 

Figure 10. Diagram depicting side puncture method for collecting bacteriophages 
from CsCl density and equilibrium gradients. 
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2.7 Transmission electron microscopy 

Transmission electron microscopy utilises an accelerated beam of electrons 

generated by a tungsten filament to acquire an image. Thin samples are negatively 

stained with heavy metal salts which interact with the electron beam to produce a 

phase contrast image. The wavelength of the focused electron beam is much 

shorter than that of light, as a result, higher resolution is achieved when compared 

to light microscopy.  

Morphological examination of bacteriophages was accomplished following the 

method outlined by Ackermann (2009). Purified bacteriophages were sedimented 

by centrifugation at 25,000 x g for 60 min in the Optima LX-P ultra-centrifuge using 

the 70Ti rotor (Beckman Coulter, High Wycombe, UK). The supernatant was 

discarded and phage pellets were re-suspended in 0.1 M ammonium acetate (pH 

7.0) a total of two times. Formvar carbon-coated 400-mesh TEM grids (TAAB 

Laboratory Equipment Ltd, Aldermaston, UK) were prepared by the addition of a 

drop of bacteriophage suspension which was left to absorb for 1 min. Uranyl 

acetate (1 % v/v, 4.5 pH) was then added for 30 s to stain the particles before being 

drained off with filter paper. Dry grids were then examined using the CM10 

transmission electron microscope (Philips, Eindhoven, NL) at 60 KV. Magnification 

control was achieved by measuring T4 bacteriophage tails and virion dimensions 

revealed by measuring at least 20 well preserved intact particles. Phages were 

attributed to families according to the International Committee on Taxonomy of 

Viruses (ICTV) recommendations (Anon, 2005). 

2.8 Host range 

Determination of host range was achieved by following the protocol of Kutter 

(2009). Square 120 mm plates were prepared with LB (Sigma-Aldrich Ltd, Poole, UK) 

1.5 % w/v bacteriological agar (Oxoid Ltd., Basingstoke, UK) supplemented with 8 

mmol/L MgSO4 and 4 mmol/L CaCl2. A soft agar overlay was (0.6 % bacteriological 

agar) mixed with 200 µL of 0.1 OD600 culture and poured over the plates to create a 

lawn of bacteria. Phage stocks were adjusted to yield 5x109 PFU/mL and a 10-fold 

dilution series was carried out. The dilutions were then spotted on to each host in 5 

µL aliquots and permitted to absorb (Figure 11). Plates were incubated overnight at 
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37°C. Phage activity was quantified using a ranking system where; +4 = complete 

clearing, +3 = clearing throughout but with faintly hazy background, +2 = substantial 

turbidity throughout the cleared zone, +1 = a few individual plaques, and – = no 

clearing. A total of 42 Proteus mirabilis isolates were tested along with 8 other 

Gram negative species. 

 

 

  

 

 

 

 

 

 

 

 

 

2.9 Adsorption rate constant 

The adsorption rate constant describes the likelihood of a phage adsorbing to a 

bacterium over time. Here, it was estimated by measuring free phage loss over time 

when known quantities of phages and bacteria were mixed. 

Measurement of the rate of attachment of bacteriophages to bacterial cells was 

carried out following the method of Kropinski (2009). Micro-centrifuge tubes were 

prepared by adding 950 µL of ¼ strength Ringers solution (Oxoid Ltd., Basingstoke, 

UK) to 50 µL of Chloroform and cooled by placing on ice 10 min prior to the 

commencement of the procedure. Host bacterial strains were grown to an OD600 of 

Phage 1 

Phage 2  

Phage 3  

Figure 11. Organisation of bacteriophage dilutions for host range spot plate assay. 

 



53 
 

0.1 and titrated using method 2.2.1. The approximate cell density was 5 X 107 

CFU/mL. A phage suspension was then prepared so that it contained 5 X 105 

PFU/mL and pre-warmed to 37°C in a water bath. One mL of phages was then 

added to 9 mL of bacteria, immediately after, 1 mL of phages was added to 9 mL of 

broth to provide a means of measuring the number of phages added. At 1 min 

intervals, 50 µL aliquots from the phage-bacteria suspension were transferred to 

the micro-centrifuge tubes and retained on ice. The sampling period was 20 min for 

vB_PmiS_NSM6, and 10 min for vB_PmiP_#3 and vB_PmiM_D3. Immediately on 

completion of sampling, 100 µL from each time point was plated out via the double 

agar overlay method (2.4) in triplicate to assess unabsorbed phage numbers. Plates 

were incubated for 16-24 h at 37°C and absorption rate (K) determined by; 

K= 
−𝑚

𝑁
 

where m is the slope of the linear regression of the measured free phage titre over 

time and N is the initial bacterial density.  

2.10 One step growth 

One step growth experiments are a means by which the phage growth cycle can be 

characterised. The method was first described by Ellis and Delbrück (1939) who 

showed that phage growth is fundamentally different to that of bacteria. Viral 

infection must be synchronised for efficient measurements in one step growth 

experiments and measurements of intracellular and extracellular virions are 

obtained by treating samples with chloroform to lyse bacterial cells. This allows the 

determination of the eclipse period, which is the time from adsorption until the first 

daughter virion is assembled, the latent period, which is the time from adsorption 

until the release of daughter virions, and the burst size, which is the number of 

daughter virions released per infected cell. 

The procedure for one step growth was adapted from the method described by 

Carlson (2005). Bacteria were grown to 5 X 108 CFU/mL by monitoring optical 

density (600 nm). A sample was removed and placed on ice, and titrated by plating 

triplicate spread plates (2.2.2) of the 10-5 and 10-6 10-fold dilution series. 

Bacteriophages were added to the bacteria so that a MOI of 0.1 was achieved. The 
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mixture was left for 5 min to allow the phage adsorption. A 1 mL sample was then 

removed and centrifuged at 13,000 x g for 1 min, the supernatant was discarded 

and the pellet re-suspended in an equal volume of LB broth. This was then diluted 

10,000 fold by adding 100 µL to 9.9 mL of pre-warmed broth and then transferring 

200 µL of the previous dilution to 19.8 mL pre-warmed broth. Immediately, 100 µL 

was removed and placed in 900 µL SM buffer on ice for infective centre analysis. 

Every 3 min for 30 min two 100 µL samples were removed simultaneously and 

added to 900 µL SM buffer, either containing 50 µL chloroform at room 

temperature, for intra- and extra-cellular quantification, or on ice for extra-cellular 

quantification. The tubes on ice were plated during the sampling process and the 

tubes containing chloroform were plated after 30 min incubation post sampling, to 

allow bacterial cells to lyse. Samples from each time-point were plated in triplicate 

on double agar overlay plates and plaques counted following overnight incubation 

at 37°C. 

2.11 Extraction of bacteriophage genomic DNA 

Bacteriophage genomic DNA was extracted from the product of PEG precipitation 

Propagation and purification of bacteriophages (2.6). The method was adapted 

from Phage hunters (Anon, n.d.). Briefly, to 1 mL samples of bacteriophages, 12.5 

µL of 1 M MgCl2 was added and gently mixed. To remove exogenous DNA and RNA, 

DNAse I and RNAse A were added to a final concentration of 100 mg/mL. The 

preparations were incubated at 37°C for 2 h. The digestion was then halted with the 

addition of 0.5 M EDTA (concentration 20 mmol/L) after which Proteinase K (New 

England Biolabs, Hitchin, UK; 50 µg/mL in 10 mmol/L Tris pH 8 and 50 mmol/L 

EDTA) and 10 % SDS (0.5 % final concentration) was added prior to incubation at 

56°C for 1 h. Subsequently, 500 µL of the samples were transferred to micro-

centrifuge tubes and an equal volume of Phenol:Chloroform:Isoamyl Alcohol 

(25:24:1) (Sigma-Aldrich Ltd, Poole, UK) was added and thoroughly mixed by 

inversion. The phases were separated by centrifugation at 13,000 x g for 5 min and 

the top aqueous layer removed avoiding any white material at the interphase. This 

process was repeated until no white material was seen at the interphase, then the 

process was repeated once in a 1:1 mixture of equilibrated phenol:chloroform and 

then in chloroform alone. Bacteriophage DNA was then precipitated by the addition 
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of two volumes of 100 % ice cold ethanol with Sodium acetate at 0.3 M/L and 

stored at -20°C overnight. Samples were thawed on ice prior to centrifugation at 

15,000 x g at 4°C for 30 min to pellet the DNA. The resulting pellets were washed 

twice with 70 % (v/v) ethanol by carefully running 500 µL through the pellet 

followed by centrifugation at 15,000 x g at 4°C for 10 min. Pellets were air dried in a 

laminar flow cabinet before being re-suspended in TE buffer and stored at -20°C.  

2.11.1 Concentration and yield of DNA 

Concentration and inferences about purity were achieved by ultraviolet 

spectroscopy using the Nanodrop 1000 (Thermo Scientific, Loughborough, UK). 

Upon thorough cleaning of the pedestals of the device with ultra-pure water and 

lint-free cloth, the machine was blanked with TE buffer prior to a reading. 

Measurements were carried out in triplicate and the average used to obtain the 

total yield of DNA; 

DNA yield (µg) = Sample concentration (average of 3 measurements) x 

sample volume 

Significant absorbance at 270 nm indicated Phenol contamination and repeating 

chloroform extraction and re-precipitating was employed to remedy this. High 

concentration DNA samples were heated briefly at 55°C for 10 min to de-aggregate 

prior to measuring DNA quantity. The accuracy of this method is questionable as it 

is an indirect means of measuring DNA, it is susceptible to interference from 

contamination, this however can be controlled by scrutinising the trace that is 

produced. 

2.12 Genome size estimation by pulsed field gel 

electrophoresis   

In order to estimate the size of the bacteriophages’ genomes, PFGE was employed 

following the method of Lingohr et al. (2009). Caesium chloride purified phages 

(2.6) whose titre was modified to approximately 5 x 1010, were immobilised in 1.2 % 

(w/v) agarose plugs. The plugs were transferred to 15 mL centrifuge tubes and the 

immobilised phages lysed by treatment with Proteinase k (New England Biolabs, 

Hitchin, UK; 20 mg/mL in Phage Lysis Buffer; 50 mmol/L Tris, 50 mmol/L EDTA and 1 
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% w/v SDS) at 54°C for 2 h.  Following lysis, plugs were washed in TE buffer warmed 

to 54°C, three times for 15 min. Slivers (approx. 2 mm) were cut from the plugs and 

loaded onto a 1 % (w/v) agarose gel made with 0.5 X TBE buffer (Sigma-Aldrich Ltd, 

Poole, UK). Care was taken to ensure the slivers contacted the front and bottom of 

the wells. Low range PFGE ladder (New England Biolabs, Hitchin, UK) was used as a 

size standard and all wells were sealed with the same agarose from which the gel 

was made. Gels were run in 0.5 X TBE buffer at 6 V/cm for 15 h at 14°C with pulses 

of 2.2 to 54.2 s using a CHEF-DR II electrophoresis system (BioRad, Hemel 

Hempstead, UK). DNA was stained with ethidium bromide (1 µg/mL) for 1 h 

followed by de-staining with deionised H2O for 30 min. Bands were visualised under 

UV light (FluorChem Q, ProteinSimple, California USA) and analysed with 

GelAnalyzer 2010a. 

2.13 Restriction digest of genomic DNA 

Bacteriophage DNA (2.11) was digested with 10 U of restriction endonuclease; 

BamHI, EcoRV, HindIII, NdeI, NotI HF, SmaI and XbaI for 1 h at 37°C, with the 

exception of SmaI which was incubated at 25°C, following the manufacture’s 

recommendations (New England Biolabs, Hitchin, UK). Reactions were ceased by 

heat inactivation, 65°C for 20 min prior to being loaded onto a 0.8 % (w/v) agarose 

gel, supplemented with 0.5 µg/mL EtBr. Fragments were separated at 5 V/cm in 

TAE buffer (40 mmol/L Tris-HCL, 20 mmol/L sodium acetate and 50 mmol/L EDTA at 

pH7.2). To provide size standard a 2-log DNA ladder (New England Biolabs, Hitchin, 

UK) was run with the samples. Bands were visualized under UV light (FluorChem Q, 

ProteinSimple, California USA). 

2.14 Genomic termini elucidation  

2.14.1 Cohesive ends 

In order to determine if phage DNA possessed cohesive ends, 1 µg of DNA was 

digested with EcoRV (New England Biolabs, Hitchin, UK). Upon completion of 

digestion, the samples were heated to 80°C for 15 min in a heating block before 

being divided equally and cooled by one of two methods either, slowly, by leaving 

the tube in the heating block to cool to room temperature, or, by placing on wet ice 

to rapidly cool. The resulting fragments were then separated by gel electrophoresis, 
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5 V/cm in a 1 % (w/v) agarose gel made with TE buffer (10 mmol/L Tris: 1 mmol/L 

EDTA, pH 8) and stained with SYBR® safe (Thermo Scientific, Loughborough, UK). 

2.14.2 Terminal specificity 

To discern weather the genomic termini were fixed or circularly permuted, purified 

DNA (2.11) was subjected to a time limited digestion with exonuclease BAL-31 (1 U 

per µg (New England Biolabs, Hitchin, UK)). Reactions were carried out as per 

manufacturer’s recommendations and samples withdrawn at 10, 20, 40 and 60 min. 

The DNA was immediately precipitated with EtOH and stored on ice. Samples were 

centrifuged, 13,000 x g for 10 min to recover the DNA which was re-suspended in 

TE buffer. Following resuspension, the DNA was subject to complete digestion by 

EcoRV before being run on a 1 % agarose gel containing SYBR® safe (Thermo 

Scientific, Loughborough, UK) made with TAE buffer at 5 V/cm. The 2-log ladder was 

used as a size standard (New England Biolabs, Hitchin, UK) and gels were visualised 

under UV light (FluorChem Q, ProteinSimple, California USA). 

2.15 Genome sequencing and annotation 

Bacteriophages DNA were extracted (2.11) and assessed (2.11.1) to determine yield 

and purity. Samples were then sent to The Genome Analysis Centre (TGAC, 

Norwich, UK) for sequencing, utilising p5-c3 chemistry in the PAC Bio RS II 

sequencer. Severn gaps in the vB_PmiS_NSM6 assembly were closed by targeted 

Sanger sequencing using the Applied Biosystems 3730 DNA Analyser (Thermo Fisher 

Scientific, Massachusetts, USA) externally, by the Genomics and Proteomics Facility, 

University of Birmingham (Birmingham, UK). Primers for Sanger sequencing were 

designed using New England Biolabs TM calculator 

(http://tmcalculator.neb.com/#!/) and supplied by Eurofins MWG Synthesis GmbH 

(Ebersberg, Germany). UGENE (Unipro, Russia) (Okonechnikov et al., 2012) was 

then employed to trim, filter and align the Sanger reads. Gaps in Phage vB_PmiP_#3 

sequence were closed by creating a hybrid assembly. Purified genomic DNA was re-

sequenced externally by the Genomic Services and Development unit at Public 

Health England by Illumina HiSeq paired-end sequencing. SPAdes (Bankevich et al., 

2012) was then used to create the hybrid assembly with the following assembly 

parameters: k:[27, 31, 33, 42, 53, 63, 73], repeat resolution enabled, mismatch 
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careful mode turned on, mismatch corrector used and coverage cutoff turned off. 

Consensus sequences were then opened upstream of the small terminase subunit 

in accordance with convention. Artemis (Rutherford et al., 2000) was used to 

visualise the sequence features. 

Protein coding regions were identified using Genemark.hmm for viruses, phages 

and plasmids (Besemer and Borodovsky, 1999) and Prodigal (Prokaryotic Dynamic 

Programming Genefinding Algorithm) (Hyatt et al., 2010). Each predicted open 

reading frame (ORF) was then scrutinised for the presence of an initiation codon 

with the association of a credible ribosome-binding site (RBS). Size, location and 

proximity to other ORFs were taken into consideration when assessing predictions. 

Translated sequences from the predicted ORFs were submitted to BLASTP to look 

for homology within the extant database and for the presence of conserved 

domains. These data, combined with results from querying the ORFs with HHpred 

(Söding, Biegert and Lupas, 2005), enabled the prediction of the function of gene 

products. Isoelectric point and molecular weight for each putative ORF were 

predicted with the ExPASy tool: Compute pI/MW (Gasteiger et al., 2005). Regions, 

200 bp up-stream from all ORFs were probed using MEME (Bailey and Elkan, 1994) 

to look for putative promotor sequences and intragenic motifs. ARNold (Lesnik et 

al., 2001), TranstermHP (Kingsford, Ayanbule and Salzberg, 2007) and WebGESTer 

(Mitra et al., 2011) were used to look for putative rho-independent terminators. 

The proximity, presence of poly U tails and the secondary structure as predicted by 

M-fold (Zuker, 2003) were considered when assessing the predictions. If the 

stability of the secondary structure was greater than the cut-off, derived by the 

equation; ∆𝐺𝑐𝑢𝑡−𝑜𝑓𝑓=(12 10.5) ×[−0.294 ×(𝐺𝐶%) +4.441]⁄   predictions were considered. 

Lipo-proteins, signal-peptides and transmembrane helices were predicted with 

LipoP (Rahman et al., 2008), SignalP (Petersen et al., 2011) and TMHMM 2.0 (Krogh 

et al., 2001) respectively. Finally, the presence of tRNAs was assessed with 

tRNAScan-SE (Schattner, Brooks and Lowe, 2005).  
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2.16 Structural proteins 

2.16.1 Bradford assay 

Utilising bovine serum albumen (BSA), a series of protein standards were produced 

(2,000 µg/mL – 125 µg/mL). Absorbance at 595nm was acquired for the standards 

and phage samples in triplicate employing a microplate reader (Genios Pro, Tecan, 

Männedorf, Switzerland). The data was plotted to produce a standard curve for 

which the linear regression line was calculated. Re-arranging the equation of the 

linear regression enabled concentration to be calculated from absorbance readings 

from phage samples (Bradford, 1976).  

2.16.2 SDS-PAGE 

SDS-PAGE is a means of separating proteins electrophoretically through a 

discontinuous polyacrylamide gel. This method allows the estimation of relative 

molecular mass. Proteins must be denatured with sodium dodecyl sulphate so that 

their intrinsic charges are masked and therefore separate based on mass alone. 

In order to analyse the proteins within CsCl purified phage preparations, proteins 

were denatured and reduced by the addition of NuPAGE® LDS sample buffer and 

reducing agent dithiothreitol (DTT) following the manufacturer’s recommendations 

(Thermo Scientific, Loughborough, UK). Samples were heated for 10 min at 70°C, 

allowed to cool, and loaded onto the pre cast NuPAGE® bis-tris mini gel 

immediately. MES SDS running buffer was used, to the upper chamber of the mini 

cell apparatus, 0.5 mL antioxidant was added to keep the samples reduced. Gels 

were run for 35 min at 200 V with Novex® sharp unstained protein standard marker 

(Thermo Scientific, Loughborough, UK). Gels were washed three times for 15 min in 

deionised water prior to staining with SimplyBlue™ safeStain (Thermo Scientific, 

Loughborough, UK) for 1 h with gentle agitation. Gels were then washed with 

deionised water for 1 h before visualisation (FluorChem Q, ProteinSimple, California 

USA). 

2.17 Adherence of bacteriophages to catheter surfaces 

Following the method of Curtin and Donlan (Curtin and Donlan, 2006; Carson, 

Gorman and Gilmore, 2010; Fu et al., 2010; Lehman and Donlan, 2015) phages were 
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immobilised on to hydrogel coated catheters, 14 ch (lubri-sil™, Bard, Crawley, UK) 

by incubation with high titre liquid preparations for 2 h at room temperature or for 

1 h at 37°C for whole catheter and catheter section experiments, respectively. For 

whole catheter experiments, catheter syringes were used to supply 6 mL of phage 

suspension to the inverted catheter whose tip was contained so that it could be 

immersed, allowing the phages to contact the exterior balloon as well as the 

interior surfaces. 

2.18 Assessment of removal of viable adherent organisms 

from catheters 

Catheter sections 1 cm in length were exposed to 10 mL of approx. 5 x 103 CFU/mL 

of the three host strains of bacteria for 24 h, shaking 150 rpm at 37°C. Catheter 

sections were removed from the culture and gently rinsed in phosphate-buffered 

saline (PBS) to remove planktonic and loosely adhered cells. To remove adhered 

cells, the method outlined by Curtin and Donlan (2006) was followed with some 

modifications. Briefly, sections were transferred to universal containers containing 

10 mL PBS and subjected to vortex mixing for 30 s, followed by sonication for 10 

min. Sections were vortexed for a further 30 s, sonicated for 5 min and finally 

vortexed for 30 s before a 1 mL aliquot was removed and analysed for viable cells 

by completing a 10-fold dilution series and plating as per method 2.2.2. The 

catheter sections were rinsed gently with PBS and transferred to a fresh tube 

containing 10 mL PBS and subjected to the same sonicating and vortexing 

procedure as before. A total of 4 rounds of the removal process were completed to 

test its efficacy.  

2.19 Sectioned-catheter suspension tests 

Hydrogel coated catheters, 14 ch (lubri-sil™, Bard, Crawley, UK) were exposed to 

phage suspensions containing 103, 106 and 109 PFU/mL following method 2.17. The 

catheter sections in triplicate were added to 10 mL of approx. 5 x 103 CFU/mL of 

their respective host strain and incubated at 37°C for 24 h with 150 rpm shaking. 

Following incubation, catheter sections were analysed by removing adherent 

organisms and enumerated by carrying out 2 rounds of the sonicating and vortexing 

procedure outlined in 2.18. 
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2.20 In vitro bladder model experiment 

A modified version of the model described by Stickler et al. (1999) was developed 

for in vitro assessment of bacteriophages ability to prevent the encrustation and 

blockage of urinary catheters, see  

Figure 12. The model consisted of a jacketed glass chamber which was maintained 

at 37°C by a re-circulating water-bath (ED, JULABO Gmbh, Seelbach, Germany). 

Artificial Urine (AU) was prepared consisting of sodium disulphate (2.3g/litre), 

magnesium chloride (hexahydrate) (0.65 g/litre), sodium chloride (4.6 g/litre), 

trisodium citrate (0.65 g/litre), sodium oxalate (0.02 g/litre), potassium dihydrogen 

orthophosphate (2.8 g/litre), potassium chloride (1.6 g/litre), ammonium chloride 

(1 g/litre), calcium chloride dihydrate (0.65 g/litre), urea (25 g/litre), gelatine (5 

g/litre), the pH was then adjusted to 6.1 using sodium hydroxide. The preparation 

was then filter sterilised with a 0.2 µm capsule filter (Sartorius Sartobran, 

Göttingen, Germany). Sterilised TSB (1 g/litre) was added to the urine prior to the 

commencement of the experiment. AU was supplied to models via a peristaltic 

pump (323S, Watson-Marlow, Falmouth, UK) with two pumpheads (314MC) at 0.5 

mL/min. AU was contained in a sterile glass vessel with an outlet at the bottom. The 

top was vented with a Millex® (Millipore Ltd, Watford, UK) air filter to maintain the 

sterility of the vessel and prevent pressure locks. Bladder models were sterilised by 

autoclaving (121°C, 15 min) and transferred to a laminar flow cabinet. A catheter 

was inserted into the bottom of the glass chamber through the attached length of 

silicone tubing, which simulates the urethra and assists in preventing contamination 

of the model. The catheter’s retention balloon was then inflated with the supplied 

syringe containing 10 mL of sterile water. The taper of the model and the tension 

applied to the catheter seal the “bladder” chamber preventing leaks. A bed bag 

(Bard, Crawley, UK) with a 2 L capacity was attached to the catheter to collect run-

off and close the sterile drainage system. Six models were set up and run 

simultaneously. Prior to the commencement of testing, the re-circulating water-

bath was operated to ensure experimental temperature was reached. Bacterial 

inoculum was prepared from overnight cultures in AU and adjusted to 5 x 105 

CFU/ml before 10 mL was added directly to the ‘bladder’ of the model with a 

sample being plated (2.2.1) to confirm viable numbers. The supply of AU 
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commenced immediately and samples for zero time point analysis collected from 

the drainage bag. All successive sampling was achieved by dis-connecting the 

catheter from the drainage bag and collecting the run-off directly from the 

catheter’s funnel.  

 

 

 

Figure 12. A diagrammatic representation of the in vitro bladder model. 1. The 
jacketed vessel is maintained at 37°C by a re-circulating water bath. 2. Media is 
supplied to the bladder at a constant flow rate; controlled by a peristaltic pump. 3. 
The model is vented to allow pressure equalisation, the vent is filtered to prevent 
contamination. 4. The catheter is inserted into the inner chamber and retained with 
the inflation of the balloon. 

3. Filtered air vent 

to prevent 
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to the bladder by a 

peristaltic pump at 

a constant flow rate 
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water at 37°C 
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2.21 24 h in vitro bladder model experiment 

Hydrogel catheters were prepared (2.17) with phage preparations numbering 

approx. 5 x 1010 PFU. Control catheters were incubated with SM buffer for 2 h at 

room temperature. Models were set up as 2.20 and run for 24 h. Samples, approx. 

5 mL, were collected at 0, 2, 4, 6, and 24 h and assessed for viable bacterial 

numbers (2.2.1), phages present (2.4) and pH (HI 110, Hanna Instruments Ltd, 

Leighton Buzzard, UK). Upon completion of the run, catheters were carefully 

removed from the models and 1 cm sections cut, as shown in Figure 13, before 

being sliced longitudinally to expose internal surfaces. The sections were assessed 

for adhered cells as per 2.18 with two repeats of the sonicating and vortexing 

process. Testing was carried out in triplicate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 i 

 ii 

 iii 

1 cm 

1 cm 

1 cm 

3 cm 

3 cm 

Figure 13. Diagram depicting the sections of Foley catheter excised and examined 
following the 24 h experiment in the in vitro bladder model system. 
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2.22 Assessment of time to catheter blockage 

Hydrogel catheters were prepared (2.17) with phage preparations numbering 

approx. 5 x 1010 PFU. Control catheters were incubated with SM buffer for 2 h at 

room temperature. Models were set up as 2.20 and run until the formation of 

crystalline biofilm occluded the flow of AU. Samples were collected at 24 h intervals 

and assessed for viable bacterial numbers (2.2.1), phages present (2.4) and pH. 

Upon blockage the residual volume of AU in the drainage bag was measured and 

used to calculate the time at which blockage occurred. Models were run in 

triplicate.  

2.23 Scanning electron microscopy of catheter sections 

Catheters and models were set up and run (2.21) with assessment of the phage 

preparation used on the catheters and the bacterial inoculum. Upon completion of 

the 24 h experiment, catheters were removed from the models and sectioned as in 

Figure 14, with sections i, iii and iv being sliced longitudinally. Catheter sections 

were then gently rinsed with PBS, 5 mL for 5 min before fixation in 4 % (v/v) 

glutaraldehyde (Fisher BioReagents®, Loughborough, UK) in 0.1 M Sorenson’s 

phosphate buffer (0.2 M; 19 mL of 200 mmol/L NaH2PO4.2H2O, 81 mL of 200 

mmol/L Na2HPO4, pH 7.4) for 24 h at 4°C. Sections were washed three times in 0.1 

M Sorenson’s phosphate buffer for 1 h at room temperature before dehydration 

through a series of ethanol solutions (20, 30, 50, 70, 80, 90, 100, 100 and 100 % 

(w/v) for 5 min). Sections were then air-dried before mounting on aluminium stubs 

with self-adhesive carbon discs (TAAB Laboratory Equipment Ltd, Reading, UK). 

Sections were gold sputter coated (SC500A, EMscope Laboratories Ltd, Ashford, UK) 

and viewed with Philips XL30 microscope at 20 KV using the BSE detector at 0.4 

Torr. 
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iv 

Figure 14. Diagram depicting the sections i to iv of Foley catheter excised and 
examined by SEM following 24 h exposure to bacteria in the in vitro bladder model 
system. 
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Chapter 3 Characterisation of the isolated 

Bacteriophages 

3.1 Introduction  

In order to investigate the ability of bacteriophages to prevent Catheter Associated 

Urinary Tract Infections (CAUTI) it was first necessary to isolate distinct 

bacteriophages against clinically relevant isolates of P. mirabilis. Bacteriophages are 

ubiquitous in nature and their numbers are estimated at 1031 (Bergh et al., 1989). 

Whilst aquatic environments, including their sediments, are where phages are most 

abundant (Whitman, Coleman and Wiebe, 1998) considerable numbers exist 

terrestrially in diverse environments. As bacteriophages are obligate parasites, their 

distribution is likely to be based on that of their hosts. Humans offer unique niches 

for bacteria where commensalism, as well as mutualism, occurs. The most densely 

populated area in humans is the gut (Quigley, 2013). Phages infecting gut bacteria 

will be released from the gut either as free phages, or as prophages, by defaecation. 

The waste is then processed by the sewage system making sewage a good source 

for phages that infect enteric bacteria. Proteus species are part of the normal flora 

of the gut, therefore, sewage should potentially be a good source of Proteus-

infecting phages.   

Any phages intended for therapeutic use must be fully characterised to provide 

information to select the most appropriate phages for the task, and to ensure that 

they will not introduce any benefit to the bacteria they infect. Bacteriophages have 

been shown to be agents of horizontal gene transfer (Boyd and Brüssow, 2002). 

Phage lysogenic conversion can convert a non-virulent bacterium into a virulent 

one. This selective advantage will result in clonal expansion (Ikebe et al., 2002). This 

also imparts an advantage upon the lysogen increasing its fitness in a mutually 

beneficial manner. Broadly speaking, there are two types of transduction that 

lysogenic bacteriophages participate in, specialised and generalised. Specialised 

transduction is the packaging of small segments of bacterial DNA along with the 

phage DNA. These segments can contain genes that are then transferred upon a 

subsequent infection of another bacterial host. Examples of traits acquired through 

specialised transduction are the acquisition of bacterial toxins, such as the 
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Diphtheria, Shiga and Cholera toxins of Corynebacterium diphtheriae, Escherichia 

coli and Vibrio cholera, respectively (Freeman, 1951; O’Brien et al., 1984; Waldor 

and Mekalanos, 1996). Generalised transduction occurs when, instead of packaging 

phage DNA, a headfull of host DNA is packaged. This has been shown to occur in 

phages P22 and Mu (Canchaya et al. 2003). The bacterial DNA is then incorporated 

into the bacterial chromosome if regions of homology are shared in a similar manor 

to bacterial recombination. Alternatively, if it was a plasmid in the initial host, it will 

re-circularise and become a plasmid again or finally, the DNA is not incorporated 

and is used as spare parts. 

Understanding the growth characteristics also enables prediction and control of 

experimental outcomes; a broad host range and a rapidly lytic phage with high 

burst size would be an ideal candidate for phage therapy.  

This chapter details the results from problematic initial isolations, their 

characterisation, the re-isolation and the microbiological characterisation, including 

bioinformatic analysis of the subsequently isolated phages. 
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3.2 Results 

3.2.1 Isolating Bacteriophages 

Initially, only isolate NSM 6 was used for phage isolations. The presence of Proteus 

species was crudely confirmed by inoculating an agar plate with a loop full of raw 

sewage. Swarming behaviour was then used as conformation of Proteus species 

presence. Following the method of Van Twest and Kropinski (2009), raw influent 

sewage, activated sewage sludge and sea water were utilised as source material. 

Multiple plaque types were obtained, often from the same enrichment.  

 

Table 3. Bacteriophages isolated in the first phase of enrichments 

Phage Date isolated Source 

vB_Pmi?_1 12/10/10 Saltford raw influent 

vB_Pmi?_2 12/10/10 Saltford raw influent 

vB_PmiS_3 13/01/11 Cam Valley activated sludge 

vB_PmiS_4 13/01/11 Cam Valley activated sludge 

vB_PmiS_5 13/01/11 Cam Valley activated sludge 

vB_PmiS_6 22/02/11 Avon Mouth activated sludge 

vB_PmiS_7 24/03/11 Sea water –Woolacombe, 

North Devon 

 

Phages vB_Pmi?_1 and vB_Pmi?_2  were not taken forward following experimental 

analysis for lytic or lysogenic behaviour (data not shown) as they appeared to follow 

temperate life cycles. The remaining isolated phages were propagated and purified 

prior to electron microscopy and molecular analysis of their extracted DNA. 

Figure 15 and Figure 16 detail the restriction profiles obtained utilising EcoRV, XBaI 

and HindIII. The isolated phages displayed the same profiles for the restriction 

endonucleases used. This in conjunction with the electron microscopy observations 

(not shown) suggest the phages are in all likelihood the same.  
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Figure 15. Restriction endonuclease digest of bacteriophages vB_rmiS_3, 
vB_PmiS_5, vB_PmiS_7. Lane M, 2-Log ladder molecular size marker; Lane 1, 
vB_PmiS_3 EcoRV; Lane 2, vB_PmiS_3 XBaI; Lane3, vB_PmiS_3 HindIII; Lane 4, 
vB_PmiS_5 EcoRV; Lane 5, vB_PmiS_5 XBaI; Lane6, vB_PmiS_5 HindIII; Lane 7, 
vB_PmiS_7 EcoRV; Lane 8, vB_PmiS_7 XBaI; Lane9, vB_PmiS_7 HindIII. 

 

 

Figure 16. Restriction endonuclease digest of bacteriophages vB_PmiS_4 and 
vB_PmiS_6. Lane M, 2-Log ladder molecular size marker; Lane 1, vB_PmiS_4 EcoRV; 
Lane 2, vB_PmiS_4 XBaI; Lane3, vB_PmiS_4 HindIII; Lane 4, vB_PmiS_6 EcoRV; Lane 
5, vB_PmiS_6 XBaI; Lane6, vB_PmiS_6 HindIII. 
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Phage PFGE profiles on the whole genome (Figure 17) shows bands at the same 

position, approx. 46750 bp in length. This data further supports the assumption 

that the same phage has been isolated or induced on five separate occasions. It, 

therefore, became necessary to isolate more phages.     

 

 

Figure 17. PFGE on whole DNA from the five isolated bacteriophages. Lane M, low 
range PFG marker; Lane 1, vB_PmiS_3; Lane 2, vB_PmiS_4; Lane 3, vB_PmiS_5; Lane 
4, vB_PmiS_6; Lane 5, vB_PmiS_7. 

 

Following a lengthy period of failed isolations, two more bacteriophages were 

isolated from sewage (Table 4). Instead of using one isolate of P. mirabilis, all 

isolates (42) were used. This approach yielded two phages that were isolated on 

different isolates, potentially increasing the likelihood of a broader host range. 

Unfortunately, selection of the most appropriate phages with the broadest host 

range and most potent lytic activity was not possible with so few phages isolated.  
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Table 4. Bacteriophages isolated from the second phase of enrichments. 

  

 

 

 

 

When plated, the isolated phages produced distinct plaques (Figure 18). 

vB_PmiS_NSM6 produced two morphologies of plaque, a large hazy plaque 6.0 mm 

(n=15) in diameter when given a longer adsorption than normal, but when 

adsorbed for 5 min, small turbid plaques were produced that measured 2.15 mm 

(n=15) (Figure 18, (A)). Phage vB_ PmiP_#3 produces bull’s eye plaques, often with 

some resistant micro-colonies in the centre. They were 4.02 mm (n=15) in diameter 

under the conditions tested (0.6 % top agar, 37°C). Interestingly the plaques had a 

halo around them (Figure 18, (B)) and this halo continued to expand upon further 

incubation of the plate at 37°C (Figure 18, (D)). Halos are the consequence of the 

diffusion and subsequent action of phage produced EPS degrading enzymes, being 

much smaller than phages, they can diffuse further through the bacterial lawn. The 

halo was tested for the presence of phages, but none were found, indicating that it 

is most likely due to an EPS degrading enzyme as opposed to a phage particle, 

either as an integral part of the virion or released during bacterial cell lysis (Adams 

and Park, 1956). Phage vB_PmiM_D3 produced relatively large bulls’ eye plaques 

measuring 4.69 mm on average (Figure 18, (C)). 

 

 

 

 

 

 

Phage Date Isolated Source 

vB_PmiP_#3 04/05/13 Raw sewage pooled 

from 4 STWs 

vB_PmiM_D3 12/04/13 Cam Valley activated 

sludge 
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Figure 18. Photograph’s of plaques formed by (A), vB_PmiS_NSM6, (B), vB_ 
PmiP_#3, (C) vB_PmiM_D3, (D), vB_ PmiP_#3. 0.6 % top agar, incubated at 37°C for 
24 h (A),(B) and (C), and 48 h (D). Scale bar represents 10 mm, dashed red circles 
outline the observed halos.  

 

3.2.2 Restriction analysis and genome size estimation of phages 

vB_PmiS_NSM6 and vB_PmiP_#3 

To ensure the phages were in fact different from one another, restriction analysis 

and PFGE were carried out on extracted genomic DNA. Unfortunately, it was not 

possible to purify and extract DNA from phage vB_PmiM_D3. Upon centrifugation, 

necessary for purification, phage particles would aggregate and not re-dissolve 

despite many methods and attempts. Procedures were modified to only 

concentrate and purify with polyethylene glycol to avoid the need for 

centrifugation. Unfortunately, CsCl density gradients failed as phages did not band 

at densities near 1.5 g/ml, presumably due to the capsid being impermeable to Cs+ 

ions similar to that of Phage ES18 (Casjens and Gilcrease, 2009). Attempts were 

made to extract the DNA from vB_PmiM_D3 but it only yielded very low quantities 

that were insufficient to work with. Again, many attempts and modifications of the 

B A 

C D 

1 2 
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method were trialled unsuccessfully so the decision was made to omit 

vB_PmiM_D3 from genetic analysis.  

The restriction profiles (Figure 19  and Figure 20) are distinct for each phage tested; 

both phages appear to be resistant to SmaI. PFGE (Figure 21) show the genomes 

have different sizes of approx. 47537 bp and approx. 41900 bp for vB_rmiS_NSM6 

and vB_PmiP_#3 respectively, as identified by GelAnalyzer 2010a (Lazar, 2010).   

 

Figure 19. Restriction endonuclease digests of bacteriophage vB_PmiS_NSM6. 
Lane M, 2-Log ladder molecular size marker. 
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Figure 20. Restriction endonuclease digests of bacteriophage vB_PmiP_#3. Lane 
M, 2-Log ladder molecular size marker. 

 

 

 

Figure 21. Pulsed field gel electrophoresis of bacteriophages extracted genomic 
DNA. Lane M, low range molecular size marker; Lane 1, vB_PmiS_NSM6; Lane 2, 
vB_PmiP_#3. 
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3.2.3 Transmission electron microscopy of the isolated phages 

The virion morphology observed following transmission electron microscopy (Figure 

22) revealed that phage vB_PmiS_NSM6 is a member of the Siphoviridiae family. It 

has an icosahedral head measuring 64 nm between opposite apices (n=25) and a 

flexible non-contractile tail that is 165 nm in length and 9.6 nm in width which 

appears to have horizontal striations and also possesses terminal tail spikes. Phage 

vB_PmiP_#3 belongs to the Podoviridiae family of dsDNA bacteriophages. Its head 

measures 57 nm and it has a short non contractile tail 16 nm in length and 10.6 nm 

(n=25) wide with terminal tail spikes. Phage vB_PmiM_D3 is a Myoviridiae family 

member. It possesses a ridged contractile tail 64 nm in length and 10 nm in width. 

Its head is 33.5 nm in diameter (n=11).  

 

Figure 22. Transmission electron micrographs of A) vB_PmiS_NSM6, B) 
vB_PmiP_#3, C) vB_PmiM_D3 stained using 2 % uranyl acetate. Scale bars represent 
100 nm. 

 

3.2.4 Host range analysis and host library assessment 

For host range analyses and bacteriophage isolations, a collection of clinical P. 

mirabilis isolates was required. To ensure no duplicates existed within the 

collection and to gain an insight into the relatedness and diversity of the group, 

pulsed field gel electrophoresis typing was employed.  
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Figure 23. PFGE profiles of P. mirabilis isolates digested with NotI. Lane M, 
molecular size markers; lane 1, HI4320; lane 2, D18; lane 3, D23; lane 4, D24; lane 5, 
D25; lane 6, D28; lane 7, D32; lane 8, D33; lane 9, D35; lane 10, D36; lane 11, D37; 
lane 12, D41.  

 

Figure 24. PFGE profiles of P. mirabilis isolates digested with NotI. Lane M, 
molecular size markers; lane 1, HI4320; lane 2, D1; lane 3, D2; lane 4, D3; lane 5, 
D4; lane 6, D5; lane 7, D7; lane 8, D12; lane 9, D14; lane 10, D17; lane 11, Releen 
18; lane 12, 701880. 
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Figure 25. PFGE profiles of P. mirabilis isolates digested with NotI. Lane M, 
molecular size markers; lane 1, HI4320; lane 2, D13; lane 3, D15; lane 4, D19; lane 5, 
H24; lane 6, H25; lane 7, H26; lane 8, GS12; lane 9, GS13; lane 10, GS14; lane 11, #3; 
lane 12, #10.  

 

Figure 26. PFGE profiles of P. mirabilis isolates digested with NotI. Lane M, 
molecular size markers; lane 1, HI4320; lane 2, 45967; lane 3, 46126; lane 4, 46453; 
lane 5, 46500; lane 6, 46511; lane 7, 46546; lane 8, 46564; lane 9, 46670; lane 10, 
46708; lane 11, 46736; lane 12, NSM 2. 
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Figure 27. PFGE profiles of P. mirabilis isolates digested with NotI. Lane M, 
molecular size markers; lane 1, HI4320; lane 2, NSM 6; lane 3, NSM 25; lane 4, NSM 
39; lane 5, NSM 42; lane 6, NSM 59; lane 7, NSM 60.  

 

The restriction fragments generated from digestion with NotI-HF restriction 

endonuclease from each isolate obtained are shown in Figure 23, Figure 24, Figure 

25, Figure 26, and Figure 27. Strain HI4320 was added to lane 1 on each gel to act as 

a control for the clustering parameters applied to the data, molecular size 

standards were used for band size determination and normalisation across gels. As 

is common with PFGE, some distortion is apparent at the edges of the gels. Analysis 

is not affected as it can easily be resolved with computational calibrations. The 

profiles on Figure 23, lanes 10 and 11, show the same number and size of bands. 

These isolates, D36 and D37, were from the same study indicating they are 

epidemiologically related so were designated genetically indistinguishable from one 

another. The isolates shown on Figure 25, lanes 8, 9 and 10 produced no 

distinguishable profiles, presumably due to degradation. This produced a smear of 

DNA that has run off the gel therefore no conclusions can be drawn. 

UPGMA analysis (Figure 28) of the profiles using Dice percent coefficient of 

similarity (at 2 % band tolerance) resulted in 4 clusters being identified. Six pairs of 

profiles were genetically indistinguishable from each other (indicated with circles) 
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which resulted in a representative of that type being chosen for further work and 

the duplicate being removed from the library. The grouping of the 5 profiles of 

strain HI4320 from separate gels as 100 % similar gives confidence in the 

reproducibility of the technique across gels. 
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Figure 28. Dendrogram obtained using the Dice similarity coefficient (calculated 
with a band tolerance of 2 %) and UPGMA analysis (Applied Maths). PFGE profiles 
of P. mirabilis isolates utilising NotI. Isolate names are indicated to the right of the 
profiles.  
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The 42 isolates of P. mirabilis obtained were used for host range analysis. Spots of 

log fold dilutions of bacteriophage preparations were ranked for their ability to 

form plaques on lawns of the bacterial isolates. Table 5 details the results obtained. 

Phage vB_pmiS_NSM6 infected 9.5 % of the P. mirabilis isolates. Of the 4 it 

successfully infected, 3 isolates; NSM 6, D3 and, Releen 18 clustered together on 

the dendrogram produced from PFGE (Figure 28). NSM 59 was in a different cluster 

but the difference in profiles is only 3 bands indicating they are closely related 

(Tenover et al., 1995). Phage vB-PmiP_#3 infected 4 isolates of the library (9.5 %). 

The most successful infection was in isolates that clustered differently. Phage 

vB_PmiM_D3 showed the broadest host range, infecting 8 isolates (19 %). Phages 

vB_PmiS_NSM6 and vB_PmiM_D3 showed good activity against each other’s 

isolating strain enabling a two phage cocktail to be investigated. It is worth noting 

that isolate D3 and NSM 59 were susceptible to all the isolated phages indicating 

some common feature and, they would potentially make good isolating strains. No 

activity was observed in the 8 other Gram-negative bacterial species tested. 

 

Table 5. Host range analysis. Plaque formation was scored visually where; ++++, 
complete clearing; +++, clearing throughout but with faintly hazy background; ++, 
substantial turbidity throughout the cleared zone; +, a few individual plaques; –, no 
clearing.  

Isolate vB_rmiS_NSM6 vB_PmiP_#3 vB_PmiM_D3 

P. mirabilis,  #3 - ++++ Host - 

P. mirabilis,  701880 - - ++ 

P. mirabilis,  D2 - - +++ 

P. mirabilis,  D3 +++ + ++++ Host 

P. mirabilis,  D13 - - + 

P. mirabilis,  D17 - - + 

P. mirabilis,  D18 - - ++ 

P. mirabilis,  D28 - ++++ - 

P. mirabilis,  NSM 6 ++++ Host - ++++ 

P. mirabilis,  NSM 59 + + ++++ 

P. mirabilis,  Releen 18 + - - 

P. mirabilis,  #10 - - - 

P. mirabilis,  45967 - - - 

P. mirabilis,  46126 - - - 

P. mirabilis,  46453 - - - 
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Isolate vB_rmiS_NSM6 vB_PmiP_#3 vB_PmiM_D3 

P. mirabilis,  46500 - - - 

P. mirabilis,  46511 - - - 

P. mirabilis,  46546 - - - 

P. mirabilis,  46564 - - - 

P. mirabilis,  46708 - - - 

P. mirabilis,  46736 - - - 

P. mirabilis,  D4 - - - 

P. mirabilis,  D5 - - - 

P. mirabilis,  D7 - - - 

P. mirabilis,  D14 - - - 

P. mirabilis,  D15 - - - 

P. mirabilis,  D19 - - - 

P. mirabilis,  D23 - - - 

P. mirabilis,  D25 - - - 

P. mirabilis,  D32 - - - 

P. mirabilis,  D33 - - - 

P. mirabilis,  D35 - - - 

P. mirabilis,  D36 - - - 

P. mirabilis,  GS12 - - - 

P. mirabilis,  GS13 - - - 

P. mirabilis,  GS14 - - - 

P. mirabilis,  H24 - - - 

P. mirabilis,  H25 - - - 

P. mirabilis,  H26 - - - 

P. mirabilis,  HI4320 - - - 

P. mirabilis,  N88 - - - 

P. mirabilis,  NSM 25 - - - 

P. mirabilis,  NSM 39 - - - 

P. mirabilis,  NSM 60 - - - 

P. mirabilis,  NSM 2  - - - 

E. faecalis, NCIMB 775 - - - 

K. pneumoniae, cc242 - - - 

S. marcescens, cc12 - - - 

S. aureus, RN4220 - - - 

P. aeruginosa, ATCC 

15442 

- - - 

S. enteritidis, PT4 - - - 

E. coli, ATCC 15036 - - - 

A. baumannii, ATCC 

BAA-1710 

- - - 
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3.2.5 Adsorption rate determination and one step growth 

To determine the adsorption rate of the isolated bacteriophages free phage loss 

was measured as a function of time. Individual experiments were repeated three 

times under identical conditions. Phage vB_PmiS_NSM6 has an adsorption rate at 

37°C of 6.21 X 10-9 ml/min-1 (R2= 0.989). Phage vB_PmiP_#3 and vB_PmiM_D3 have 

similar rates of 8.90 X 10-9 ml/min-1 (R2= 0.977) and 6.80 X 10-9 ml/min-1 (R2= 0.986), 

respectively (Figure 29).  
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Figure 29. Adsorption rate constant for; A, vB_PmiS_NSM6; B, vB_PmiP_#3; C, 
vB_rmiM_D3. The results represent the natural log of the mean and standard 
deviation of three independent experiments.  
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One step growth analysis (Figure 30) showed that phage vB_PmiS_NSM6 has an 

eclipse period of 12.5 min and a latent period of 15 min. The rise period 

commenced after 12 min and host cell lysis completed after 35 min. The burst size 

was 250 progeny virions per infected cell. Phage vB_PmiP_#3 had an eclipse of 7.5 

min and a latent period of 20 min. Its rise period began after 20 min and host cell 

lysis was complete after 32.5 min releasing 322 progeny virions per infected cell. 

Phage vB_PmiM_D3 had an eclipse period of 24.5 min with a latent period of 26 

min. The rise period began after 27 min and lysis was complete after 55 min 

releasing 126 progeny virions per infected cell.  
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Figure 30. One step growth curve for; A, vB_PmiS_NSM6; B, vB_PmiP_#3; C, 
vB_PmiM_D3. The results represent the log10 of the mean and standard deviation 
of three independent experiments.  
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3.2.6 Genomic sequencing and analysis phage vB_PmiS_NSM6 

Genomic DNA from phage vB_PmiS_NSM6 was sequenced by PacBio RS using p5-c3 

chemistry. De novo assembly was performed using HGAP, followed by polishing 

using Quiver and resulted in a single contig of 215 x coverage. The contig was 

apparently circular, consisting of the whole phage NSM6 genome and a large 

duplication. Comparisons performed between the duplicated regions led to the 

identification of 7 gaps that were closed with targeted Sanger sequencing. Phage 

NSM6 has a double stranded DNA genome of 47745 bp in length. Circular phage 

genome assemblies indicate that the genome is either circularly permuted or has a 

non-permuted terminal redundancy (e.g. direct terminal repeats).  

The length of the sequenced genome agrees with the genome size estimation of 

47.5 kb realised by PFGE (Figure 21). The G+C content is 39.72 % which is similar to 

that of its host P. mirabilis at 38.88 % (Pearson et al., 2008). A total of 79 open 

reading frames (ORFs) were predicted, with an average length of 555 bp and a 

coding density of 1.675 genes per kb. The coding potential was calculated to be 93 

%. High coding potential has been repeatedly observed in bacteriophage genomes; 

structural constraints of the capsid limit the size of the genetic material that they 

can contain so genomes must be efficient (Chirico, Vianelli and Belshaw, 2010; 

Fiddes, 1977). A total of 50 ORFs (63.3%) exhibited some homology to proteins in 

the extant sequence databases which allowed assignment of putative protein 

function (Appendix, Table 1). The remaining 36 % are unique, exhibiting no 

sequence similarity to known proteins. The majority of the ORFs have an ATG start 

codon (69 ORFs, 86.25 %), whereas 9 (11.4 %) start with GTG and 2 (2.5 %) with 

TTG. No tRNAs were detected. 

Phage vB_PmiS_NSM6 exhibits a modular genomic architecture (Figure 31), a 

characteristic common among members of the Siphoviridae. The high degree of 

conservation of gene order among members of the Siphoviridae, particularly within 

the module encoding virion structural and assembly genes, allows for the 

identification of gene products by syntenic organisation (Veesler and Cambillau, 

2011). The NSM6 genome is comprised of four main modules that consist of genes 

involved in DNA replication/regulation, virion structural and morphogenesis, 

genome packaging and lysis. Phage NSM6 also possesses an integration cassette 
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that is located to the right of the packaging, structure and assembly genes, a 

common position for such elements (Hatfull, 2008). The putative attP site was 

identified as a 111 bp sequence located downstream of the putative integrase in 

this region. This sequence was also located at the boundaries of putative prophages 

in the genomes of P. mirabilis strains BB2000, AOUC-100, CYPM1 and HI4320. The 

presence of an integrase indicates that vB_PmiS_NSM6 could be a temperate 

bacteriophage.  

 

Figure 31. Genome map of vB_PmiS_NSM6. The outer ring illustrates the CDS, 
coloured according to their putative protein function as shown in the key. Some 
genes are labelled, TerS = small terminase subunit, TerL = large terminase subunit, 
Ptl = portal, MCP = major capsid protein, MTP = major tail protein, TMP = tape 
measure protein, Int = integrase, Xis = excisionase, cI-like = similar to the lambda 
repressor, Hol = holin, End = endolysin, Rz and Rz1 are not shortened. GC content is 
depicted in black, whilst positive skew is depicted in green and negative skew in 
purple. 
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Purified viral structural proteins were separated by 1D SDS-PAGE (Figure 32). A total 

of eight bands were observed, consisting of three major bands at 204 115 and 52 

kDa and five minor bands of 98, 87, 72, 35 and 17 kDa. The sizes of proteins 

resolved by 1D SDS-PAGE were compared to the in silico predicted molecular mass 

for structural proteins and the predicted function inferred from protein homologs 

identified using BLASTP and HHpred.  

 

 

Figure 32. vB_PmiS_NSM6 structural proteins resolved by 1D SDS PAGE.  

 

3.2.7 Genes involved in genome packaging, virion structure and 

morphogenesis 

The NSM6 phage genome was opened at the predicted small terminase subunit, a 

convention first seen in P22 and Lambda. Gp01 contains a conserved domain, 

GP3_package (Pfam: PF16677) and exhibits 91 % amino acid sequence identity to 

the putative small terminase subunit of Acinetobacter phage YMC-13-01-C62 using 
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BLASTP. Gp02 was identified as the large terminase subunit with a good match in 

the database to Enterobacteria phage ES18 (100%). This ORF contains a 

Terminase_3 (Pfam: PF04466) superfamily domain. These gene products are 

concerned with packaging the DNA into the prohead. The small terminase forms a 

nucleoprotein that aligns the large terminase at the packaging initiation site (Black, 

1988). Gp03 was assigned as the portal vertex protein and it usually follows the 

terminase enzymes as it acts as a recognition site for them. It also acts as a duct for 

DNA passage and as the site of tail attachment. Database searches showed 

similarity to the portal vertex protein of Salmonella phage vB_SosS_Oslo and 1D 

SDS-PAGE identified a protein of 52 kDa which is close to the predicted 50 kDa 

molecular weight of the product.  

Continuing downstream, genes concerned with structure and morphology are 

encountered. Gp04 was putatively identified as a head morphogenesis protein, and 

contains a conserved domain, Phage_Mu_F. These minor head proteins are thought 

to be essential for infectivity (Aksyuk and Rossmann, 2011)  as is the case for gpD in 

phage lambda, capsid expansion creates openings in the lattice structure of the 

capsid. GpD is required to strengthen the structure allowing for the packaging of 

the complete chromosome. Mutants deficient in gpD have capsid failure due to the 

pressure exerted by the packaged DNA (Fuller et al., 2007). A minor band identified 

on the SDS PAGE gel of 35 kDa could represent this product. No function could be 

assigned for either gp05 or gp06. Gp06 did, however, exhibit similarity to gene 

products 06, 0006, and gp08 of Salmonella phages vB_SosS_Oslo, SPN3UB and 

ES18, respectively. Gp07 was assigned as the major capsid protein based on 

sequence similarity to the capsid protein of Cronobacter phage ES2 (100% query 

cover) and structural similarity to the major capsid protein of HK97 (Pfam: 

PF05065). No band could be identified on SDS PAGE gels that matched the 

predicted molecular weight of 39 kDa but a much larger band exists that is un-

identified, and it is possible the individual proteins have formed a trimer or another 

complex and appear larger on the gel. Gp08 and gp09 could not be assigned a 

putative function, gp10-12 are concerned with head to tail joining. Gp13 was 

designated as the major tail protein due to the presence of three conserved 

domains; Big_2, Phage_tail_2 and YjdB. Big_2 represents bacterial immunoglobulin-
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like domain that has been suggested to facilitate weak bonds between 

carbohydrates on the cell surface that keeps the phage associated with the cell 

before final attachment occurs (Fraser, Maxwell and Davidson, 2007). The 

Phage_tail_2 is a family of proteins whose characterised members are major tail 

tube proteins. YjdB has Immunoglobulin like domains which probably function in a 

similar manor to Big_2. Gp14 is likely to be a tail assembly chaperone based on its 

position between the tail tube and tape measure proteins, a common location for 

such elements (Pell et al., 2013), however, no structural or sequence similarity was 

observed. The presence of a conserved SmpA OmlA domain and LipoP results 

suggest that Gp15 is a lipoprotein. It possesses a single transmembrane helix 

(confirmed by TMHMM and HMMTOP). Gp15 is predicted to be a ribosomal binding 

site and is followed by a terminator (Ter04). It has similar characteristics to moron 

elements, such as that seen in phage HK97 (Cumby et al., 2012). These elements 

are only seen in temperate phages and it is suggested they either infer some 

benefit to the host bacterium (i.e. moron = more on). For example, the temperate 

Salmonella phage GIFSY-2 possess an moron that encodes a superoxide dismutase 

which provides lysogenised Salmonella cells with increased resistance against 

reactive oxygen species produced by the mammalian host (Figueroa-Bossi and 

Bossi, 1999). A further example includes genes involved in lysogenic conversion, 

whereby the host cell receptor is modified by genes encoded by a resident 

prophage conferring resistance to further phage infection. Examples of lipoproteins 

are superinfection exclusion (sie) elements whose action is proposed to prevent 

injection of DNA into a lysogenised cell, thus preventing prophage destruction 

(Donnelly-Wu, Jacobs and Hatfull, 1993). It is possible that gp15 might represent a 

sie element but further experimental work would be required to confirm this 

hypothesis.  

The tape-measure protein (TMP) is encoded by Gp16; 95 % query coverage at 40 % 

identity with that of phage ES18 was observed. It contains conserved domain; 

phage_HK97_TLTM (Pfam: PF06120) which is the tape-measure protein first 

identified in phage HK97. Studies performed with Enterobacteria phage Lambda 

demonstrated that the length of this gene correlated precisely to the actual length 

of the tail (Katsura and Hendrix, 1984). In phage NSM6, the TMP is the longest gene 
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in the genome. For some phages, it has been suggested that the TMP might also be 

involved with genome translocation by forming a conduit that spans the bacterial 

cell envelope. Interaction with host proteins is essential for this role as TMPs are 

not predicted to form transmembrane proteins on their own (Cumby et al., 2015). 

Gp17 was ascribed as the minor tail protein due to structural similarities between 

that of GpM from phage lambda (Interpro: IPR010265), however little sequence 

similarity was observed. Gp18 contains the conserved domain DUF1833 (Pfam: 

PF08875), NlpC peptidase and ubiquitin domain containing genes exist in close 

association to this domain and their function has been predicted to be involved 

with tail assembly. Gp19 was putatively identified as a virion-associated 

peptidoglycan hydrolase (InterPro: IPR008044). The proposed mechanism of action 

is to facilitate degradation of the peptidoglycan cell wall, allowing the injection of 

DNA (Rodríguez-Rubio et al., 2013; Lehnherr, Hansen and Ilyina, 1998). Conserved 

domain NlpC_P60 is present. Gp20 encodes a tail tip or baseplate structural 

protein. A conserved domain COG4733 is present which is identified as a tail 

component of bacteriophages, it exists at the N-terminal of the protein and 

homology was observed across varying phages which suggests it is phage binding. 

Similarity was seen with the tail tip protein gpJ of lambda (InterPro: IPR032876) 

when searched against the Pfam database using HHsearch. In Lambda gpJ initiates 

distal tail tip assembly through interactions with gpI, gpL and gpK. When interacting 

with the host, gpJ binds irreversibly to a host receptor which induces structural 

changes in the tail that leads to DNA ejection (Roessner and Ihler, 1984). Gp21 

contains a conserved domain; DUF3359 no known functional information is 

available for this domain. Structural similarity was observed with phage phi297 tail 

spike protein and many glycoside hydrolase enzymes. It would seem probable, 

therefore, that gp21 is a tail spike that possesses some enzymatic activity 

concerned with degrading carbohydrates. 

3.2.8 Genes involved in Lysogeny 

Gp22 is encoded on the complimentary strand and represents the beginning of a 

new module of genes concerned with recombination and integration. Gp22 itself 

codes for an acetyl transferase and contains a conserved OafA domain, which is 

involved with Peptidoglycan/LPS O-acetylase OafA/YrhL activity, and a SGNH-
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hydrolase domain which is involved with Cell wall/membrane/envelope biogenesis. 

Good similarity was seen with that of Enterobacter phage Tyrion but limited 

functional information is available on this seemingly bacterial enzyme. If Gp22 is 

involved in the modification of a component of the bacterial cell surface, there is a 

possibility that it might be happening for phage immunity from superinfection, 

although further work would be required to test this hypothesis. Gp23 encodes a 

homologue for the theta subunit of DNA polymerase III. This replicative protein has 

good similarity (HHpred) to HOT from phage P1. It has been suggested that the HOT 

homologue to theta binds more tightly in the DNA polymerase III complex and is 

more thermally stable as a result (Derose et al., 2004). A 111 bp sequence (5’-

CTCGTTATATCCATTTAACTAAGGGAACATTTTGCGAGAGGGTGCTTAACTGTTTCTCAGTG

TCCGTATAGTACCGTTTTTGTGGTGAATGAATCAAGTTGTTAGTTCATT-3’), representing 

the predicted attP site, was identified just upstream from gp24. Searches of 

complete P. mirabilis genomes using BLASTN identified this sequence to be 

duplicated at the right and left boundaries of putative prophages. The attP site is 

the location where site specific recombination occurs. The int and xis encoding 

regions usually occur immediately downstream of their site of action and this is the 

case for phage NSM6. Gp24, transcribed in the opposite direction, is the integrase. 

In Lambda, the product of int catalyses the integration of the phage genome into 

the bacterial chromosome if conditions in the cell allow cII to achieve a high enough 

concentration to activate its promotors. As there is only one specific attB site, only 

one copy can be contained within the bacterial genome (Bushman et al., 1985).   

Exit from lysogeny is carried out by an excisionase. Gp25 has been identified as the 

excisionase with good structural similarity to phage Lambda and sequence similarity 

to coliphage vB_EcoP_24B. It contains a conserved domain, AlpA, that is a DNA-

binding transcriptional regulator. Again, in Lambda Xis initiates excision by 

organising the assembly of a higher-order complex called the excisive intrasome 

(Abbani et al., 2007). This structure excises the phage genome allowing lytic 

development to follow. Xis also inhibits reintegration by altering the attP site into a 

catalytically inactive structure (Moitoso de Vargas and Landy, 1991). The control of 

these processes, in phage Lambda, is carried out in part by the cI repressor. Gp47 

was identified as a cI-like repressor. The cI repressor prevents lytic growth by 
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repressing two promotors necessary for lysis to occur. Interestingly, cI can 

autoregulate its synthesis, up-regulating when in low concentration and down-

regulating when high. It forms loops in the DNA, binding dimers attached to distant 

operators, termed long-range cooperativity. These loops are thought to enhance 

autoactivation and autorepression (Lewis et al., 2011) allowing for more efficient 

prophage induction. Mirroring the control region of Lambda, gp48 encodes a Cro-

like protein on the rightward strand. Cro blocks the promotor of cI allowing lysis to 

occur. The expression of cI and Cro is controlled by the concentration of bacterial 

proteases present in the cell. Proteases degrade a transcriptional activator cII; cII 

activates transcription of cI and int. GP49 encodes a cII-like transcriptional 

activator. When high concentrations of proteases are present under favourable 

growing conditions (e.g. high nutrients), cII is degraded, cI is not produced and the 

phage undergoes a lytic life cycle. Low concentrations of proteases result in 

lysogeny as cI is active. So the decision to enter the lysogenic lifecycle or lytic is due, 

ultimately, to environmental factors. Continuing rightward, no significant matches 

could be detected for gp50. Gp51 has good sequence similarity to O-like replication 

proteins. In Lambda, the O and P proteins initiate replication of the phage 

chromosome as part of the lytic life cycle. O binds at the Ori site and P binds the 

DnaB subunit of the host replication machinery; this allows the phage to use the 

host DNA polymerase and rolling circle replication initiates (Ptashne, 2004).  

3.2.9 Nin-like gene cassette 

Gene products 53-58 exhibited no similarity in the databases but fall within a 4.9 kb 

Nin-like region. Nin seems to control N-dependant transcriptional terminations and 

temporal expression of the late genes (Leason and Friedman, 1988). Gp 57 contains 

DUF551 (Pfam: PF04448), found in dsDNA viruses with no tRNAs like Lambda and 

P22, no function has been determined. Gp58 had no homologues in BlastP or 

HHsuite searches but gp59 was identified as Lar-like protein and contains conserved 

domain Lar_restr_allev (Pfam: PF14354). This protein modulates the activity of the 

hosts restriction and modification system (Toothman, 1981). Gp60 had no similarity 

in the databases but GP61 had similarity to NinB protein from Escherichia phage 

HK639 and contains conserved domain NinB (Pfam: PF05772). In Lambda, NinB is 

involved when the RecF and RecBCD recombination pathways operate (Tarkowski 
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et al., 2002). No function could be determined for gp62. Gp63 contains a domain of 

unknown function, DUF3310 (Pfam: PF11753) which is bacteriophage specific and 

conserved. Gp64 has low similarity in the databases so no function could be 

inferred. Gp65 has no sequence similarity in the databases but structural similarity 

to DNA binding proteins that have a transcriptional regulatory role. The product of 

gp66 has sequence similarity to NinF-like proteins from Salmonella phage ES18, 

Salmonella phage SEN22 and vB_SemP_Emek. No known function has been 

reported for this protein. A NinG-like protein has been identified as the product of 

gp67. Conserved domain NinG (Pfam: PF05766) is present. In Lambda it participates 

in the RecBCD homologous recombination pathway, NinG is a DNA structure 

specific endonuclease that cleaves Holliday junction branch points (Casjens and 

Hendrix, 2015). No similarity was observed for gp68. Gp69 had significant similarity 

to antiterminator Q and contains a conserved domain of unknown function, 

DUF1133 (Pfam: PF06576) which consists of a range of unknown proteins from E. 

coli 0157:H7 and S. enterica serovar typhi. In Lambda, antiterminator Q positively 

regulates expression of the phage early and late gene operons. It modifies host RNA 

polymerases so they transcribe through termination sites that would otherwise 

prevent expression (Yarnell and Roberts, 1992).  

3.2.10 Lysis Cassette 

Genes 70-74 represent phage NSM6s lysis cassette, ORFs gp70-74, follows an 

organisation typical of dsDNA phages. It possesses a holin inhibitor (anti-holin; 

gp70), holin (gp71), endolysin (gp72) which is followed by RZ (gp73) and RZ1 (gp74) 

homologues. RZ and RZ1 are unique genes in that the RZ1 cistron is embedded 

within the RZ coding sequence, albeit in the +1 reading frame (Berry et al., 2008) 

which is the case in phage NSM6. The anti-holin is thought to act as a specific 

negative regulator of holin function. In T4 this is achieved by the binding of the anti-

holin to the holin upon superinfection. The anti-holin blocks holins from triggering 

and prolongs the infection cycle. This allows phages to build up intracellularly and 

demonstrates how environmental conditions can influence the infection cycle 

(Moussa et al., 2012). Holins are characterised by the presence of transmembrane 

domains and function to form a pore in the inner cytoplasmic membrane, allowing 

endolysin access to the peptidoglycan substrate. Holins have been demonstrated to 
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play a role in scheduling the lysis event, ensuring a programed release of virions at 

the optimal time (Young, 2014). Phage NSM6 encodes a class I holin due to the 

presence of three transmembrane domains predicted by TMHMM, alongside a low 

probability of the N-terminal being on the cytoplasmic side (Young, 2002). A 

function for RZ and RZ1 has been proposed by Berry et al. (2008) who postulate 

that the gene products form a complex with each other and fuse the inner and 

outer membranes, allowing phages to be released without barrier. The proposed RZ 

and RZ1 coding genes have similarity to criteria set out by Berry et al. (2008) that 

the RZ has an N-terminal transmembrane domain and a C-terminal periplasmic 

domain that is rich in acidic and basic residues (39 of 155 total) although not quite 

as rich as observed, 25 % vs 37 %. The RZ1 protein is slightly longer (58 vs 41) with 

less Pro (6 vs 10) residues but is devoid of secondary structure.   

3.2.11 Regulatory Sequences: Promoters and Terminators 

Regions 150 bp upstream of the ORFs were tested for the presence of statistically 

over-represented motifs using MEME (Bailey et al., 2006). None were observed 

with the parameters used so identification of promotor sequences was not 

possible. 

The presence of rho-independent terminators was assessed by use of three 

programs, ARNold (Naville et al., 2011), Transterm HP (Kingsford, Ayanbule and 

Salzberg, 2007) and GeSTer (Mitra et al., 2011). Agreement between the predicted 

locations, presence of appropriate characteristics and the stability of the folded 

structure were considered when assessing predictions. A ΔG cut off of -8.27 

kcal/mol of the stability of the stem loop structure as calculated by MFold 

(Markham and Zuker, 2008) was used for terminator predictions. A total of eleven 

rho-independent terminators were identified in the NSM6 genome that satisfied 

these criteria (Table 6). Four terminators are located in the structural and 

morphogenesis gene module. Between gp20 and gp21 on the boundary between 

recombination and the structure and morphogenesis modules is a convergent, or x-

type terminator, structure where complementary terminators exist on opposite 

strands to each other. Three terminators are then present in the recombination 

region and one at the end of the Nin region within the replication genes before the 
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lysis cassette. The final terminator was predicted to reside at the end of the lysis 

cassette after the sequence encoding the putative RZ protein. 

 

Table 6. The position and sequence of the putative rho independent terminators 

Name Coordinates Strand Sequence Stability (ΔG) 

(kcal/mol) 

TORF8 6903..6923 + AGCCGCGAAAGCGGTTTTTTT -9.05  

TORF12 8456..8478 + AGGTCGCTTATGCGGCCTTTTTT -11.91  

TORF13 9266..9297 + AAGGGTGCTTTCGAGTGCCCTTGATAATATTC -10.73  

TORF15 10470..10500 + AACCCTGCCAACTGGCGGGGTTTTTCATTTT -15.14  

TORF22 20458..20488 - AAGGCATCTATATGATGCCTTTAAAAATTAA -10.80  

TORF21 20468..20496 + AAGGCATCATATAGATGCCTTTATTTTTT -10.70  

TORF31 26854..26895 - GGATATGTATTACTGCTTGTAATACAGGGTTCTGCTGTACCT -9.58  

TORF33 27438..27460 - ACCCTGCACTAGCAGGGTTTTTT -10.63  

TORF47 34857..34885 - AGCCCTCTACATGAGGGTTATCTCATACA -9.88  

TORF69 43860..43886 + GACCTCGCTACGGCGGGGTTTTTTGTT -13.04  

TORF73 45876..45900 + GCCTCGCTCAATAGCGGGGCTTTTT -12.63  

 

 

3.2.12 Determination of physical genome ends/termini 

Several forms of termini have been observed in dsDNA bacteriophage genomes. 

These include cohesive ends, circularly permuted direct terminal repeats, short or 

long direct terminal repeats, covalently bound terminal proteins or terminal host 

DNA sequence. The genome ends of vB_PmiS_NSM6 do not appear to be cohesive, 

since the restriction profiles generated by EcoRV were not altered after exposure to 

heat followed by either fast or slow cooling (Figure 33). If COS ends were present, 

the slow cooled sample would have one larger band in place of two smaller ones 

expected in the fast cooled gel as when cooled slowly the cohesive ends have time 

to anneal together (Casjens and Gilcrease, 2009). The genome appears to be 

circularly permuted as time-limited digestion with exonuclease BAL-31 (Figure 34) 

followed by restriction enzyme digestion showed an even, simultaneous 

degradation across all fragments. This agrees with the circular genome assemblies 

produced during sequencing. If the NSM6 chromosome were flanked by exact 

repeats (defined ends), the restriction fragments containing these repeats would be 

expected to decrease in size concomitantly with the time exposed to BAL-31 

The underlined nucleotides form the stem of the structure. 
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exonuclease activity. Casjens et al. (2005) and Casjens and Gilcrease (2009) 

demonstrated that comparative sequence analysis of the large terminase subunit 

can be used as a basis to predict packaging strategy and, therefore, the genome 

ends as similar functionalities cluster together. This approach has been confirmed 

with phages whose genomic termini have been experimentally validated. Multiple 

sequence alignment of the large Terminase subunit of NSM6 and other phages, 

demonstrates that the NSM6 large terminase subunit forms a clade with the Sf6-

like headful packing (Figure 35). These data strongly suggest that the NSM6 genome 

is circularly permuted and terminally redundant. A headful packing strategy 

perhaps explains the diffuse band observed in PFGE (Figure 21) as packaging is 

imprecise so different lengths of DNA are packaged (Tavares et al., 1996). 

 

Figure 33. Assay for the determination of cohesive genome termini. Phage 
genomic DNA was cut with the restriction enzyme EcoRV, denatured and 
subsequently cooled rapidly or slowly. Samples are denoted above each lane. M 
represents the size standard in kb. 
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Figure 34. Time dependant digestion of genomic DNA with exonuclease BAL-31. M 
is the size standard and the numerical values refer to the length of exposure to BAL-
31 in minutes. 
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T7 like direct terminal repeats 

T4-like headful 

λ-like 5’- extended cos ends 

P2-like 5’- extended cos ends 

3’- extended cos ends 

P22-like headful 

Sf6-like headful 

Mu-like headful/host ends 

Figure 35. Neighbour-joining tree of large terminase sub unit amino acid sequences. The numbers near 
bifurcations are bootstrap values for 1000 trials. Major related groups of packaging strategy are highlighted with 
coloured boxes and the prototype is written to the right.   
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3.2.13 Genomic sequencing and analysis phage vB_PmiP_#3 

The complete consensus sequence for phage vB_PmiP_#3 was obtained by a hybrid 

assembly approach utilising both Pac-Bio RS sequencing and Illumina HiSeq. The 

hybrid assembly was performed using SPAdes (Bankevich et al., 2012) and resulted 

in a single contig of 627 x coverage. Phage vB_PmiP_#3 has a double stranded DNA 

genome of 41184 bp in length that is circularly permuted. This is only slightly less 

than the result seen in PFGE of ~41,900 bp (Figure 21). The G+C content is 40.28 % 

which is slightly higher than its host which is 38.88 % (Pearson et al., 2008). A single 

tRNA was detected therefore slightly reducing the reliance on host translational 

machinery, possibly allowing for the greater G+C content. The tRNA was identified 

as an initiator. These tRNAs carry a methionine at the N terminal of the protein and 

differ from elongation tRNAs. They bind directly to the P site on the ribosome 

causing conformational changes that allow translation to occur. The genome 

encodes 75 ORFs with an average length of 508 bp and a density of 1.821 genes per 

kb. A total of 92.6 % of the genome has coding potential with 52 % of the predicted 

ORFs exhibiting some likeness to proteins in the extant sequence databases. Phage 

genomes are constrained by the size of the capsid they must package their DNA into 

therefore coding tends to be dense. Similarity to sequences deposited in the extant 

sequence databases allowed prediction of putative protein function (appendix table 

2). The remaining 41.33 % were assigned as hypothetical proteins of unknown 

function. The predominant start codon is ATG with 68 genes (90.67 %) whereas 6 

genes start with GTG (8 %) and one with TTG (1.33 %).  
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Figure 36. Genome map of vB_PmiP_#3. The outer ring illustrates the CDS, 
coloured according to their putative protein function as shown in the key. Some 
genes are labelled, TerS = small terminase subunit, TerL = large terminase subunit, 
Ptl = portal, Tsp = tail spike, Int = integrase, Xis = excisionase, cI-like = similar to the 
lambda repressor, Cro-like = similar to lambdas Cro transcriptional repressor, cII-like 
= similar to lambdas cII transcriptional activator, Hol = holin, End = endolysin, Rz and 
Rz1 are not shortened. GC content is depicted in black, whilst positive skew is 
depicted in green and negative skew in purple. 

 

The vB_PmiP_#3 genome (Figure 36) exhibits the same modular architecture as 

vB_PmiS_NSM6. It comprises four discrete regions that can be assigned as 

replication and regulation, structure and morphogenesis, packaging, and lysis 

according to the functional annotation of gene products. vB_PmiP_#3 also 

possesses an integration cassette located to the right of the packaging, structure 

and assembly genes, again, a similar position to vB_PmiS_NSM6 and a common 
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location for dsDNA viruses. The presence of such genes would indicate that 

vB_PmiP_#3 may also be a temperate bacteriophage. 

Purified viral structural proteins were separated by SDS-PAGE (Figure 37). Three 

bands were observed, with one band, at 47 kDa being more dense than the others. 

The other two bands were 84 and 65 kDa. Predicted molecular mass was then used 

in corroboration with protein homologues from BLASTP and HHpred to annotate 

the predicted ORFs based on similarity of amino acid sequence, and secondary 

protein structure, respectively.  

BlastP searches of gp01 returned similarity to the small terminase subunit of 

Salmonella phage vB_SemP_Emek and HHpred returned structural similarity to the 

small terminase subunit of P22 (pdb: 3p9a). A GP3_package conserved domain 

(Pfam: PF16677), a bacteriophage DNA packaging protein, was also predicted, 

lending further weight to this assignment. Gp02 was assigned as the large terminase 

subunit. Structural and sequence likeness was observed with Shigella phage SF6 and 

Salmonella phage AT64T, respectively. The COG5565 conserved domain, a member 

of Terminase_6 superfamily, was present in this ORF. The small and large 

terminases are often adjacent to one another in phage genomes (Casjens, 2011). 

Gp03 putatively encodes the portal protein, identified by the presence of the 

P22_portal conserved domain (Pfam: PF16510) as well as by sequence and 

structural similarity (pdb: 3lj5) to phage P22. The portal is a dodecameric structure 

situated at the vertex between the capsid and tail and acts as a channel for the 

phage DNA to enter upon assembly by attaching to the terminase complex, and 

allows the linear dsDNA to leave upon ejection. The portal forms a tube-like 

structure that extends into the capsid (Casjens et al., 1992). This structure assists 

with efficient packaging of the DNA, prevents circularisation and stabilises the 

pressure driven exit of DNA ensuring accurate delivery (Olia et al., 2011). The 

molecular weight of the portal vertex is 79 kDa and is likely to be the uppermost 

band whose weight was determined to be 84 kDa on the SDS PAGE gel (Figure 37).  
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Figure 37. vB_PmiP_#3 structural proteins resolved by 1D SDS PAGE. 

 

3.2.14 Structure and Morphogenesis Module 

Genes comprising virion structural proteins and those involved in virion 

morphogenesis are encoded immediately downstream from the packaging genes. 

There are 15 genes in this module of which 13 were putatively assigned a function. 

Gp04 putatively encodes a scaffold protein. The top search results for HHpred and 

BlastP are with P22 and a conserved domain, phage-scaffold (Pfam: PF09306) is 

present that is found in many bacteriophages. Scaffold proteins catalyse the 

assembly of the capsid and bind to the capsid proteins forming an intermediate 

structure called the procapsid. Scaffold proteins are released around the time DNA 

is packaged into the capsid, leaving a structure that could not have formed alone 

(Sun et al., 2000). Scaffold proteins are recycled and catalyse capsid formation up to 

five times (Casjens and King, 1974). The major capsid protein is encoded by gp05. 

Again, sequence and structural homology are similar to phage P22, and, in addition, 

this protein contains a conserved domain, P22_coatprotein (cl22542). In P22, the 

major capsid protein consists of two protease stable domains connected by a 

flexible loop region. The loop region is susceptible to protolytic enzymes when in a 
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procapsid but not in mature capsids. This suggests hinge bending can occur which 

accounts for the morphological changes that happen during construction and 

maturation of the capsid (Lanman, Tuma and Prevelige, 1999; Teschke and Parent, 

2010). No putative function could be determined for either gp06 or gp07. Gp08 

encodes a tail accessory protein and has conserved domain P22_tail-4 (Pfam: 

PF11650). In P22 this protein is essential and is the first protein to bind to the tail 

structure after DNA is packaged. Its function, along with two others (gp10 and 

gp26), is to stabilise the portal vertex protein and prevent chromosomal leakage 

(Strauss and King, 1984). A conserved phage stabilisation domain (Pfam:PF11134) is 

present in gp09 and sequence similarity was present (66 % amino acid identity) with 

gp10 from P22, which further emphasises the structural similarity between 

vB_PmiP_#3 and phage P22. HHpred returns a match for gp10 with P22 gp26 at 

high probability. So the function, in part, is to retain DNA in the capsid by 

completing the portal vertex. The structure of gp26 has been shown to be a trimeric 

coiled-coil and due to the similarity to viral membrane fusion proteins is suggested 

to be a thin needle-like fibre emanating from the centre of the tail that may play a 

role in piercing the outer membrane (Andrews et al., 2005).  

Gp11 is predicted to encode a Gcn5-related N-acetyltransferase (Pfam: PF13420) 

and gp12 a DNA injection protein which has similarity to gene 11 from phage Sf6 (63 

% identity). Gp13 has conserved domain inj_translocase (Pfam: PF16928) which is 

involved in the injectosome mechanism/assembly. This protein has similarity to 

gp20 in P22 which is one of the four E proteins that are ejected into the cell upon 

infection. It is hypothesised that gp20 forms a complex within the bacteria that is 

essential for effective infection. It is not required for DNA ejection or E protein 

ejection and may help the DNA cross the plasma membrane or protect it from 

degrading enzymes (Israel, 1977). Gp14 also appears to be an E protein and is 

similar to gp16 in P22. In P22 gp16 seems to be necessary for ejection of some of 

the other E proteins and in the active transport of DNA across the cytoplasmic 

membrane (Perez et al., 2009).  

No putative function could be identified for gp15 which occurs on the opposite 

strand along with gp16. Gp16, 17 and 18 show homologies to mnt, arc and ant, 

respectively. These proteins are concerned with the maintenance of lysogeny and 
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superinfection immunity in P22 and termed the immI region (Sauer et al., 1983). 

The control of lysogeny is conducted by a similar set of genes as seen in 

vB_PmiS_NSM6 and phage Lambda (immC), the cI repressor binds to operators to 

prevent the transcription of early genes. However, the cI repressor (termed cII in 

P22) is inactivated by ant which would lead to prophage induction. To maintain 

lysogeny, the product of mnt is continuously required to repress the ant gene. Arc 

similarly acts to repress ant, binding to the promotor and repressing its synthesis 

(Susskind and Botstein, 1978).  

The product of gp19 is predicted to encode an HNH homing endonuclease and 

contains the conserved domain HNH_3 (Pfam: PF13392). These genes are efficient 

parasitic elements and utilise host break-repair mechanisms for their propagation 

(Chevalier and Stoddard, 2001). Homing is the lateral transfer of an intervening 

sequence to a homologous allele that lacks the sequence, and this allows 

propagation and maintenance within the population as they appear to confer no 

selective advantage. They can splice within introns or inteins and therefore do not 

affect host phenotype. They have also been shown to be free standing and can 

tolerate changes in the specific homing sequence (Bonocora and Shub, 2009).  

The putative tail spike protein is encoded by gp20 and is a candidate for the middle 

band estimated to be 68.8 kDa on the SDS-PAGE gel (Figure 37). It possesses a 

conserved domain associated with P22 called head_binding (Pfam: PF09008). In P22 

the tailspike is comprised of a trimer of the product of gp09 and recognises the 

repeating units of the O antigen of the hosts lipopolysaccharide (Israel, Anderson 

and Levine, 1967). The P22 tailspike possesses enzymatic activity (Baxa et al., 1996). 

The kinetics of the binding have been shown to be fast and reversible which 

suggests the phage can scan over the surface of the cell searching for its receptor 

(Baxa et al., 1996; Steinbacher et al., 1997).  

Gp21 is encoded immediately downstream of the putative tailspike on the opposite 

strand. This gene encodes a product exhibiting similarity to a DNA polymerase III 

theta subunit present in Escherichia phage HK639. Chikova and Schaaper (2007) 

postulated that the phage encoded theta subunit enhances the activity of the 
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polymerase complex for optimal phage replication. However, no loss in virulence 

was observed in mutants where this gene was knocked out.  

A candidate attP site was identified at position 18447 on the #3 genome, spanning 

53 bases on the forward strand, located just upstream of gp22, a predicted tyrosine 

family integrase. It possesses conserved domain INT_P4_C (cd00801) which is a P4-

like integrase (Nunes-Düby et al., 1998). Integrases function to integrate the phage 

genome into the bacterial chromosome at the attB site, a region of homology 

shared with the attP site. Integrases are classified into two major families 

depending on the amino acid sequence similarity and catalytic residues, either 

tyrosine or serine (Groth and Carlos, 2004). A putative excisionase (gp23) is 

encoded immediately downstream of the integrase.  

Gp24 had no likeness in the databases. Gp25 putatively encodes a DNA (N-6-

adenine)-methyltransferase, with similarity to that of phage Lahn2. Orphan 

methyltransferases are utilised by phages to methylate their DNA so that it is not 

susceptible to restriction enzymes thereby avoiding this form of host defence 

(Murphy et al., 2013). Gp26 encodes a Nin X-like protein with greatest similarity to 

Serratia phage Sta. No function is currently known for this product (Denyes et al., 

2014). No putative function could be identified for gene products 27-33. Gp34 

encodes a protein with similarity to a single stranded DNA binding protein. 

Concerned with recombination, replication and repair, single stranded DNA binding 

proteins (ssb) prevent annealing from occurring prematurely, protect against 

nuclease digestion and prevent the formation of secondary structures from forming 

thus enabling the effective function of other enzymes (Marceau, 2012). Ssb 

conserved domain is present within this CDS (cog0629). The product of gp35 could 

not be determined through similarity in the databases but gp36 showed good 

likeness to exodeoxyribonuclease VIII, a 5’-3’ linear exonuclease. No functions could 

be assigned to gp37-44. 

3.2.15 Genes Involved in Lysogeny 

No significant matches were observed for gp45-6 but gp47 was putatively identified 

as an N-like regulatory protein and is the first gene encountered in the immediate 

early replication segment of the genome. In phage Lambda, N along with cro are 
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expressed early in infection (Calendar, 2006). Gp50 has insufficient similarity to 

identify a function, however, it is likely to be similar to a cro-like repressor due to 

structural likeness. No putative function could be determined for gp48. Gp49 was 

putatively identified as a cI-like repressor, due to high sequence similarity observed 

by searches using BLASTp. Continuing downstream gp51 putatively encodes a cII-

like transcriptional activator. Gp52 is predicted to be involved with the decision 

between lysogeny and lysis. It contains two conserved domains, phage_pRha (Pfam: 

PF09669) and KilAC (COG3645). Phage_pRha containing genes are dependent on 

integration host factor (IHF) for their regulation and in hosts deficient in IHF, phage 

growth does not occur (Iyer, Koonin and Aravind, 2002). KilAC is an auxiliary 

repressor of cI, controlled by the cI promotor and is not essential for replication and 

lytic development (Hansen, 1989).  

The genomic module encoding genes involved in DNA replication begins at gp53, a 

putative O-like replication protein. In lambda, the O protein along with the P protein 

hijack the host DNA polymerase initiating replication that will ultimately end in lysis 

(Zylicz et al., 1984). Gp54 is a P-like regulatory protein containing a conserved DnaB 

domain (InterPro: IPR007692).  

3.2.16 Nin-like Region 

Proteins encoded by gp55-60 could not be identified by database searches. Gp61 

putatively encodes a NinB like protein and represents the beginning of the Nin 

region of the genome. NinB binds to single stranded DNA and has roles in the 

hijacking of the recombination pathways of the bacterial host (Tarkowski et al., 

2002). Structural similarity (HHpred) was seen with that of phage Lambda’s NinB 

and conserved domain NinB (Pfam: PF05772) is present. Gp64 was putatively 

identified as NinF-like although the nucleotide and amino acid sequence similarity is 

weak. A NinG–like product has been predicted from the sequence for gp65 due to 

the presence of a conserved NinG domain (Pfam: PF05766) and similarity within the 

extant sequence databases. In Lambda, NinG plays a role in the Red recombination 

pathway (Tarkowski et al., 2002). Gene products 66-8 could not be identified. 
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3.2.17 Lysis Cassette 

Gene products 69-72 were identified as the lysis cluster and represent the holin, 

endolysin, Rz and Rz1, respectively. The holin proteins oligomerise to form a pore in 

the inner cell membrane, allowing the endolysin access to the periplasm and 

exposing the cell wall to endolysin-mediated degradation. RZ and RZ1 then 

complete the lysis process allowing the release of progeny virions.  

Downstream from the lysis cassette is gp63 which putatively encodes a gp63-like 

protein seen in phiKO2, which has no known function. No homologues were 

identified for gp74 and gp75 in the extant sequence database.  

3.2.18 Regulatory Sequences: Promotors and Terminators 

As for vB_PmiS_NSM6, regions 150 bp upstream of the ORFs were analysed for the 

presence of over represented motifs. No over-represented motifs with high 

significance were detected with the parameters used so identification of promotor 

sequences was, again, not possible. 

The presence and location of rho independent terminators was predicted by the use 

of three programs, ARNold, Transterm HP and GeSTer. Agreement between the 

programs predictions, location, presence of appropriate characteristics and the 

stability of the folded structure were considered when assessing predictions. A ΔG 

cutoff of 8.46 kcal/mol of the stability of the stem loop structure as calculated by 

QuickFold (Markham and Zuker, 2008) was employed for terminator predictions. 

However, on two occasions (TORF48 and TORF71) the ΔG fell below the cut-off but, due 

to convincing predicted secondary structures, these putative terminators were 

retained in the annotation. A total of eleven terminators were identified that 

satisfied the criteria (Table 7). Five are present in the structure morphogenesis 

region of the genome. Between gp14 and gp15 within the structure and 

morphogenesis region is a convergent, or x-type, terminator structure where 

complementary terminators exist on opposite strands to each other. One 

terminator was predicted immediately downstream of the integrase, three in the 

replication region with one after the lysis cassette and finally one after gp73. 
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Table 7. The position and sequence of the putative rho independent terminators 

Name Coordinates Strand Sequence Stability (ΔG) 

(kcal/mol) 

TORF5 6285..6306 + GGGAGCTTCGGCTCCCTTTTTT -12.27 

TORF15 14231..14257 - GAAGGGCTATTGCCCTTCCTTTTATTT -10.94 

TORF14 14240..14265 + GAAGGGCAATAGCCCTTCTTTAATAT -11.20 

TORF19 15258..15300 + GAAGCCCCAACTACTTGCGATAGTCAGGGCTTCTAGTTTAGTT -11.80 

TORF19 16089..16114 + AAGGTCACTTAATGTGACCTTTTTTT -11.96 

TORF22 19835..19875 + AGGGCAACGAGCATTATTAATTCGTTGCTCTATCCATTCAT -12.98 

TORF43 27101..27138 + AGAGCGAGCAAGTTCTTCTGCTTGCTCTTTATCTGGAT -14.72 

TORF45 27665..27704 + GCGGAACTAATTCCATAATGGTTGTTCCGCAATTTAGAGT -9.81 

TORF48 28565..28589 - ATCCCTCTTTAATGAGGGATTTTTT -5.58 

TORF71 39856..39884 + AGCCTCTAAGTAATTAGGGGCTTTTTTTT -7.40 

TORF72 40312..40334 + GCCTCGCAATAGCGGGGCTTTTT -12.00 

 

 

3.2.19 Packaging strategy 

To ascertain if the genomic termini possess cohesive ends or not, vB_PmiP_#3’s 

DNA was digested with EcoRI then denatured by heating at 80°C followed by rapid 

or slow cooling (Figure 38). If the genome has cohesive ends, the two restriction 

fragments possessing those ends will anneal in the slow cooled sample and form a 

single larger fragment (Casjens and Gilcrease, 2009). No difference to the restriction 

profile was observed between the rapid and slow cooled samples ruling out 

cohesive ends. To determine if the genomic termini are fixed or variable, time 

limited digestion with the exonuclease BAL-31 followed by digestion with restriction 

endonuclease was carried out. This resulted in an even, simultaneous degradation 

of all restriction fragments (Figure 39). This result discounts the presence of fixed 

termini, where a progressive shortening of two restriction fragments that contain 

the fixed termini would have occurred (Loessner et al., 2000). Circularly permuted 

genomes are indicative of a head-full packaging strategy. The packaged DNA length 

can be between 102 and 110% of the total genome length, resulting in terminal 

redundancy (Casjens and Gilcrease, 2009). To confirm the experimental 

observations the amino acid sequence of the large terminase subunit was 

compared to phages with experimentally confirmed packaging strategies. Casjens et 

al. (2005) revealed that packaging strategies cluster together and therefore can be 

used to predict the genomic termini. Figure 35 shows the neighbour-joining tree of 

The underlined nucleotides form the stem of the structure. 
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the amino acid sequences produced by ClustalW2. vB_PmiP_#3 clusters with the 

terminases of the P22-like headful packing group, corroborating what was observed 

experimentally, that the genome of vB_PmiP_#3 is circularly permuted and 

terminally redundant. 

 

Figure 38. Assay for the determination of cohesive genome termini. Phage 
vB_PmiP_#3 genomic DNA was cut with the restriction enzyme EcoRV, denatured 
and subsequently cooled rapidly or slowly. Samples are denoted above each lane. M 
represents the size standard. 
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Figure 39. Time dependant digestion of genomic DNA with exonuclease BAL-31. M 
is the size standard and the numerical values refer to the length of exposure to BAL-
31 in minutes. 

 

3.3 Discussion 

The aims of the work described in this chapter were to isolate distinct phages lytic 

against clinical isolates of P. mirabilis and to characterise them, both 

microbiologically and genetically.  

Three distinct viruses were isolated and characterised. A representative of each 

family from the Caudovirales (i.e. Siphoviridae, Myoviridae and Podoviridae) were 

obtained ( 

Figure 22). There was significant difficulty experienced when isolating 

bacteriophages against P. mirabilis for this study. The number of phages reported in 

the literature for Proteus species is comparatively small, possibly due to their 

scarcity in nature. Initially only a single bacterial isolate was used to obtain phages. 

Although this approach is acceptable, it would limit the number of phages acquired 

due to host range constraints, especially considering the narrow host ranges of the 
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phages presented in this study. Experimental methods were scrutinised to 

determine if error was occurring, however, when E. coli was used with the 

techniques and environmental samples, many phages were isolated. If funds had 

allowed, tangential flow filtration would have been employed to concentrate any 

viruses present in the environmental samples allowing the processing of greater 

quantities of raw influent sewage. The isolation technique used biases the results to 

rapidly propagating lytic phages that produce visible plaques with the concentration 

of top agar used. Whilst biasing rapidly propagating phages selects for the most 

lytic, an attribute beneficial for phage therapy, other phages that do not produce so 

many plaques are being missed. The visibility of the plaques is associated with the 

phage capsid size; larger phages only produce tiny plaques due to their inability to 

migrate through the agarose matrix. This bias is shown in the prevalence of phages 

with genomes between 30-50 kb in the sequence database (50 %) as the largest 

genomes are 100-200 kb and only marginally represented (6 %) (Hatfull, 2008; 

Serwer et al., 2007).  

The finding that the 5 initial phages were indistinguishable from one another was 

unfortunate. Differences in plaques observed and culture kinetics lead to a false 

assumption of uniqueness. On the second round of isolations, performing DNA 

extraction from crude lysates and restriction digests on the extracted DNA was a 

priority before any further analyses were carried out. This was done to ensure they 

were different before commencing with purification and the other time consuming 

characterisation techniques.  

The second round of isolations was labour intensive due to using every isolate (42) 

in the host library. Despite this considerable increase in potential hosts, very few 

phages were isolated indicating low numbers with the ability to infect members of 

the library being present in the environmental samples or perhaps a low diversity of 

the host library. This supports the presumption that P. mirabilis phages are 

relatively scarce in the environmental samples processed.      

The collection of P. mirabilis isolates was acquired from diverse sources, separated 

geographically and chronologically. Detailed epidemiological analysis was not the 

aim of this piece of work. Pulsed Field Gel Electrophoresis adequately characterised 
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the library, removing duplicates, necessary for the isolation of bacteriophages as 

well as host range determination of the isolated bacteriophages. The library was 

originally populated with 51 isolates; 10 were obtained from Southmead Hospital at 

the time of experimentation from infected urine samples. After analysis, 42 strains 

remained with varying degrees of relatedness. Interestingly, the duplicates which 

existed were often from the same studies, however, one pair that was genetically 

indistinguishable was 46736 and D1, a current clinical isolate and a isolate from a 

previous study, respectively. The discriminatory power of PFGE is reported as being 

high when compared to other commonly used typing methods (Olive and Bean, 

1999) so it was assumed the isolates were very closely related despite their 

geographical and chronological separation. 

PFGE using restriction endonuclease NotI produced between 4 – 15 bands for the 

isolates in the library. NotI was used because an infrequent cutter is required for 

PFGE and Sabbuba et al. (2003) found it to produce profiles that were readily 

interpretable. At the time of experimentation PFGE was considered the “gold 

standard” for strain typing. Its discriminatory power surpasses phenotypic methods 

and, although technically demanding, labour-intensive and time-consuming (Sabat 

et al., 2013) it is relatively cheap to perform. Modern whole genome sequencing 

(WGS) technology has surpassed PFGE in terms of accuracy but bioinformatic 

analysis of the sequences produced requires specialist knowledge. The cost and lack 

of standardised protocols has prevented the widespread application of this 

technique, however, over the course of this project the cost has already 

dramatically reduced and automation of bioinformatics will result in this method 

becoming the new “gold standard” (Salipante et al., 2015).  

The failure of attempts to purify phage vB_PmiM_D3 and for its DNA to be 

extracted was a hindrance that would have prevented the phage from being taken 

forward if it were not so difficult to isolate phages against P. mirabilis isolates. Many 

attempts were made to purify and extract the DNA but finally a decision was made 

to pursue this no further. The phage was not able to be re-suspended following 

centrifugation; instead it aggregated into a distinct pellet that could only be broken 

up. This prevented purification by CsCl gradients as individual phages are required 

to go through the gradient and band at the appropriate location. Purifying with 
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polyethylene glycol was still possible and re-suspending in smaller volumes of SM 

buffer enabled concentration of the samples to a point sufficient for the completed 

works. High titre preparations were put through CsCl density gradients but they 

produced no band at the expected density, just debris at the top and bottom of the 

gradient. Similarly, extracting the DNA was not possible using the methods detailed 

in chapter 2. The DNA containing phase of the extractions was almost completely 

devoid of DNA and what was there was fragmented, as when the result of many 

isolations were combined and run on a gel (not shown), smeared profiles with no 

discrete bands resulted. Casjens et al. (2005) describe a similar situation with phage 

ES18; it would not form a discrete band in CsCl equilibrium gradients at or near the 

expect density of 1.5 g/ml. They proposed that the capsid was impermeable to Cs+ 

ions and overcame the issue by partial purification by differential centrifugation 

utilising sucrose gradients, therefore separating based on size. If time had permitted 

this alternative approach may have provided a means of purifying phage D3, 

although experimentation would be necessary to confirm if this approach is viable 

in this instance.  

Despite the ability of the isolated bacteriophages to lyse liquid cultures and titrate 

as expected on solid media, genetic sequencing of vB_PmiS_NSM6 and vB_PmiP_#3 

have shown them to contain elements only associated with temperate phages. This 

would omit these phages from being used therapeutically as temperate phages 

could act as a means of transduction between bacteria, potentially allowing the 

spread of antibiotic resistance genes or virulence factors leading to enhanced 

pathogenicity (Abedon et al., 2011). Additionally, lysogenised bacteria do not die as 

a result of a temperate infection and the infection may make the bacterial host 

resistant to superinfection which might have otherwise led to lysis by a virulent 

phage utilising the same cellular receptor. This result highlights the importance of 

genetic characterisation for any potential therapeutic bacteriophages. This result 

was not obtained until after all laboratory testing was complete and no indication 

was present that hinted that this might be the case. It has been shown by Reyes et 

al. (2010) through metagenomic analysis that the majority of phages present in the 

human gut are temperate, therefore it is reasonable to assume temperate phages 

are more prevalent in sewage as well. It is not currently clear if the phages isolated 
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in this study were isolated from the sewage samples or induced from the bacteria 

as a by-product of the enrichment process. Testing resistant colonies from the 

centre of plaques for resistance to reinfection gave conflicting results (data not 

shown) partly due to the uncertainty in picking the tiny resistant colonies. A 

preferable method of determining the source would be to probe the bacterial hosts’ 

DNA for the presence of the phages’ DNA contained within as a prophage or 

plasmid. This could be achieved with PCR using primers designed from important 

genes in the known phage sequence. Many attempts at phage isolations were 

carried out, particularly with isolate NSM 6. If the technique was inducing a 

prophage, it is estimated that it would have appeared more than it did. Prophage 

induction usually comes about through DNA damage eliciting the SOS response and 

it is possible some component of the raw sewage brought this about.   

No sequences were observed in the databases with greater than or equal to 95 % 

similarity indicating that the phages sequenced in this work are novel. The genome 

sequencing of the phages vB_PmiS_NSM6 and vB_PmiP_#3 was conducted 

externally. Gaps in the sequence occurred due to the nature of PacBio RSII 

sequencing and, to close the gaps, other sequencing approaches were used. For the 

vB_PmiS_NSM6 assembly, targeted Sanger sequencing was undertaken and for 

vB_PmiP_#3, Illumina hiseq was utilised. Both methods effectively closed the gaps 

in the sequence, however, Illumina provided much more detailed information 

confirming the PacBio data, additionally, it was a simpler process to undertake. 

Hybrid assembly allows the shortcomings of second and third generation 

sequencing technologies to be controlled. For example, resolving repeated regions 

in assemblies becomes possible as PacBio often provides long reads that span the 

suspect regions. Accuracy is provided by second generation approaches that often 

produce short reads thereby the two approaches complement each other.  

The presence of homologues to genes from Lambda’s Red recombination pathway 

(NinB and NinR) in vB_PmiS_NSM6 is interesting as they could be utilised as tools to 

recombine genes in P. mirabilis or other similar bacteria. The Lambda 

recombineering pathway is a powerful tool for making targeted genetic changes in 

the form of insertions, deletions and point mutations (Mosberg, Lajoie and Church, 

2010). No virulence factors or antibiotic resistance genes were identified in either 
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phage, which is a key factor in selecting phages for phage therapy. It is worth 

noting, however, that not all the genes had a putative function identified and, until 

all genes are identified in a therapeutic phage, caution should be exercised in its 

use. The identification of these gene products might lead to the discovery of novel 

proteins with medical relevance or further the understanding of phage-host 

interactions (Lima-Mendez, Toussaint and Leplae, 2011).  
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Chapter 4 Phage therapy in an in vitro model 

system  

4.1 Introduction 

The assessment of bacteriophages’ utility in preventing the encrustation and 

eventual blockage of urinary catheters presents a number of experimental 

challenges that require validation prior to testing the approach in an in vitro bladder 

model system. For example, the removal of adhered bacteria from catheter 

surfaces, required to measure the reduction of viable counts following exposure to 

bacteriophages, is one such method that requires validation. Methods for the 

removal of biofilm and enumeration were modified from Fu et al. (2010) where a 

series of vortexing and sonication steps were employed to remove adherent cells 

from sections of catheters. 

Another challenge was to develop a method of delivery for the bacteriophages. 

Curtin and Donlan (2006) presented a method of adhering bacteriophages to 

catheters manufactured with a hydrogel coating, by incubating the catheters with 

high titre phage preparations. It was suggested that the phages embed in the gel 

matrix on the catheters’ surface. This method was trialled as a convenient, if slightly 

crude, method of delivery for the phages as it mimics a coating which would 

otherwise be difficult to produce, yet represents ideal placement for the phages.   

In order to test the phage-coated catheters, a model system is required that 

challenges the approach in a way that mimics the situation in vivo as closely as 

possible. The in vitro bladder model first described by Stickler et al. (1999) provides 

a model of the catheterised urinary tract used extensively within the literature. The 

benefits of this system are that it tests whole urinary catheters connected to the 

closed drainage system that is used in the real world, providing a closer 

approximation of the pressures and fluid flow observed in vivo. Furthermore, this 

system allows a sump of urine to build up in the “bladder” that is akin to what is 
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observed in patients due to the design of the catheters placing the eye holes above 

the retention balloon.  

This chapter details the proof of principle of these techniques and their utilisation in 

assessing the isolated phages’ ability to prevent infection and the eventual blockage 

of the catheters in the in vitro bladder model system.  

4.2 Results 

4.2.1 Assessment of biofilm removal 

To assess the method of viable biofilm recovery, four rounds of the washing 

procedure described in section 2.18 were carried out in triplicate. Figure 40 shows 

the percentage of bacteria recovered from each of the four rounds of the removal 

process on hydrogel coated catheters.  
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Figure 40. Viable recovered bacteria as a percentage of the total recovered 
following four rounds of the removal process from 1 cm catheter sections. (A) = 
bacterial isolate NSM 6, (B) = bacterial isolate #3, and, (C) = bacterial isolate D3. 
Error bars represent the standard deviation of the mean of three independent 
experiments. 
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These data demonstrate that the majority of the biofilm is recovered from the first 

round of the removal process corresponding to 97.49 %, 98.84 % and 99.32 % for 

total viable counts of P. mirabilis isolates NSM 6, #3 and D3, respectively. Upon 

completion of the second round of the removal process >99% of the total recovered 

viable organisms were obtained. Further rounds of removal did not result in a 

significant gain in recovery, and two rounds of the process were employed within 

future experiments.  

4.2.2 Catheter section suspension tests 

To assess the ability of bacteriophages to prevent bacterial attachment and biofilm 

formation, catheter section suspension testing was performed by pre-treating 

catheters with bacteriophages at three different concentrations. Figure 41 (A) 

shows the recovered bacteria for host NSM 6 treated with phage vB_PmiS_NSM6. 

Despite the 109 phage pre-treatment resulting in a 2 log reduction in adhered 

recovered bacteria, none of these data are statistically significant (P= 0.2132). 

Bacterial isolate #3 and vB_PmiP_#3 showed no discernible difference in recovered 

bacteria with phage pre-treatment, compared to control. D3 with phage 

vB_PmiM_D3 however, showed a statistically significant difference between the 

control treatment and 109 phage treatment (P=0.0160), but with more bacteria 

being recovered from the phage treated catheter, all other treatments showed no 

statistically significant difference.    
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Figure 41. Catheter section suspension tests. One cm sections of hydrogel coated 
catheters were exposed to different phage concentrations before submersion in ~5 
x 103 CFU/ml of host bacteria for 24 h at 37 °C. (A) isolate NSM 6, catheters treated 
with vB_PmiS_NSM6. (B) isolate #3, catheters treated with vB_PmiP_#3. (C) isolate 
D3, catheters treated  with vB_PmiM_D3. The results represent the mean and 
standard deviation of 3 independent experiments that have been log transformed. 
(**, P<0.01). 
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4.2.3 Quantification of phages adhered to catheters 

Since the number of phages adhering to the catheters could not be directly 

measured an indirect quantification method was employed to estimate the fraction 

of phages that had adsorbed to the catheter surface. The adsorbed fraction was 

calculated as the difference between the titres measured before and after 

incubation in the presence of catheters. Adhered numbers ranged between 108 and 

1010 PFU, and they were distributed along the whole internal length of the catheter 

and externally on the tip and inflation balloon (Figure 42).  

 

Figure 42. Adhered phages. Phage preparations were titrated and instilled into 
hydrogel catheters (Bard Hydrosil, ch 14) at approx. 5 x 1010 PFU/ml. After 
incubation, the solution was removed and titrated, the difference between applied 
and recovered being what was embedded in the hydrogel. The data represent two 
independent replicates, error bars are standard deviation.      = Applied,       = 
Recovered,      = Remains. 
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4.2.4 In vitro bladder models, 24 h experiment, P. mirabilis NSM 6 

Phage vB_PmiS_NSM6 was embedded in the hydrogel of the catheters as described 

previously. Models were set up (Figure 43) with bacterial loads of approximately 5 x 

105 CFU per ml, corresponding to the concentration of bacteria designated as the 

threshold of a clinically diagnosed UTI (Wilson and Gaido, 2004). It was revealed 

that there were, on average 3.99 x 1010 phages on the catheter distributed 

throughout its internal lumen, on the inflation balloon and tip. The multiplicity of 

infection is, therefore, not exact but approximately 8,000:1 phage to bacteria.  

 

Figure 43. Photograph of the bladder model set up. (A) The re-circulating water 
bath that aimed to retain the models at 37°C, (B) the peristaltic pump that supplied 
the models (C) with artificial urine stored in the vented bottles (D). 

 

After 24 h the supply of urine to the model was arrested, and following removal of 

the catheters, three sections were excised; from the top just above the retention 

balloon, immediately below the retention balloon and 3 cm beneath the retention 

balloon (2.21). Each section was assessed for adherent viable bacteria. All sections 

showed a reduction in the average numbers of recovered viable adherent bacteria 

on the phage treated catheters compared to the untreated control (Figure 44 (A)). 

Section i experienced a reduction of 3.65 log10, section ii a 3.9 log10 reduction, and 

section iii a reduction of 3.44 log10. All these data are significant with p=<0.0001, 
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p=<0.0001 and p=0.0001 for sections i, ii, and iii, respectively. Viable counts of both 

bacterial cells and phages in the effluent over the course of the experiment were 

determined (Figure 44 (B)). Counts of both bacteria and phages decreased after 

commencement of the experiment. Phage-treated catheters consistently showed 

reduced numbers of colony forming units in the effluent. The concentration of 

viable phages in the effluent increased after 4 hours, providing an indication that 

productive infection was occurring. At 24 h, the difference between planktonic 

bacterial numbers in the effluent of phage-treated and control catheters was 

significantly different (p = 0.0092). Despite the application of phages, bacterial 

numbers did increase after the initial drop. A possible explanation for this 

observation is that the continual perfusion of the model with artificial urine washed 

out some of the planktonic bacteria and time was then required for the bacteria to 

adhere to the catheter surfaces and proliferate.  

The pH of the effluent was monitored at time points throughout the experiment 

(Figure 44 (C)). An initial drop in pH was observed after 2 h, presumably due to the 

dilution of the culture that remained in the residual volume in the bladder. The pH 

then remained relatively stable for the first 6 h despite bacterial numbers increasing 

after the first 4 h. The pH of the control models rose to pH 8 by 24 h whereas the pH 

of the phage-treated catheters remained stable at around pH 6.1 indicating that no 

crystal formation could have occurred. This assumption was confirmed by the 

images obtained by scanning electron microscopy (Figure 45). The phage-treated 

catheters have significantly less visible encrustation compared to control catheters. 

There is a clear difference around the eye hole, an area that typically becomes 

encrusted due to the flow of urine through it and its uneven topology, which is due, 

in part, to how the holes are stamped out from the material (Stickler et al., 2003). 

The greatest differences in encrustation, after the tip of the catheters, are seen 

from the images of the internal lumens in sections iii and iv (Figure 45). A large 

quantity of mineral deposits formed in the control catheters whereas the phage-

treated catheters appeared almost entirely free from encrustation.      
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Figure 44. Impact of phage pre-treatment on bacterial biofilm formation by P. 
mirabilis NSM6. (A) Bacteria recovered from each section i, ii, and, iii.      = control 
and       = phage treated. (B) Viable bacteria and phages in the effluent of the 
models,      = bacteria from control models,        = bacteria from phage treated 
models, and,       = phages from phage treated models. (C) pH of the effluent of the 
models.       = control models,      = phage treated models. Data points represent the 
average of three experiments, error bars are standard deviation. Statistical analysis 
was performed by one way ANOVA with the Bonferroni post hoc test, (*** = P ≤ 
0.001, and **** = P ≤ 0.0001). 
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Figure 45. Scanning electron micrographs of un-treated and phage treated catheters 
removed from the in vitro bladder model system after 24 h. The models were 
challenged with P. mirabilis NSM6 at 5 x 106 CFU. The control models show the 
encrustation that formed as a result of urease activity elevating the urinary pH, 
leading to the formation of mineral deposits. Section i shows the eye hole of the 
catheter. Section ii is a cross section, distal to section i. Section iii is from 3 cm below 
section i and section iv is from 3 cm below section iii. Arbitrary regions were chosen 
for visualisation.   
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4.2.5 In vitro bladder models, 24 h experiment, P. mirabilis #3 

Phage vB_PmiP_#3 was embedded in the hydrogel coating of the catheters and 

models were set up with the same concentration of bacteria as previously described 

at an approximate concentration of Ca. 5 x 105 CFU/ml determined by optical 

density and viable counts. Approximately 4.11 x 1010 phages were attached to the 

catheter surface, giving a MOI of 8,220:1 phages to bacteria, slightly greater than 

numbers achieved for vB_PmiS_NSM6. 

Figure 46 details the results obtained from removal and analysis of the adhered 

bacteria on sections i – iii of the catheters. Analysis of the viable counts of adherent 

bacteria revealed a 0.92 log10 reduction in viable adhered bacteria for section i 

when compared to control. Section ii, from below the retention balloon therefore 

only the internal lumen was exposed to both phages and bacteria, experienced a 

1.97 log10 reduction vs the control catheters. Section iii reduced by 1.53 log10 

compared to controls. When these data were analysed with Bonferroni’s post hoc 

analysis none of the reductions were statistically significant between the control 

and their respective test sections.  

The effluent was monitored at 0, 2, 4, 6 and 24 h for both bacteria and phages. 

There was an initial drop in numbers for both bacteria and phages as seen in the 

previous tests. Interestingly, there was an increase of phages at 4 h that presumably 

was due to a release of progeny virions overcoming the dilution effect of the 

continually perfused model. Phage numbers exhibited a reduction at 6 h but then 

increased by 24 h, finishing at 1.66 x 107 which is a 1.18 log10 reduction compared to 

time 0. The numbers of bacteria in the effluent were significantly reduced in the 

phage treated models. After 24 h, viable counts were 9.33 x 106 CFU/ml in phage 

treated catheters compared to 1.24 x 108 CFU/ml in untreated control catheters, 

representing a statistically significant (p=0.0204) 1.12 log10 reduction. The pH of the 

models remained very similar between the treated verses control until the end of 

the experiment when pH raised marginally in the treated, from pH 6.08 to pH 6.55 

at 24 h. In contrast the pH in the untreated models rose to pH 7.98 after 24 h. 

Again, this is consistent with what was observed with electron microscopy and what 

is expected as crystal formation has been shown to occur in patients at pHs above 

7.58 (Choong et al., 2001). Scanning electron micrographs (Figure 47) for 
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vB_PmiP_#3 exposed catheters show minimal crystal formation in the control 

catheter that was further reduced in the phage treated catheter. The eye hole 

which typically collects some crystalline biofilm, appears comparable to the control 

and the only observable difference was seen in section iv where deposits had 

started to form in the lumen of the control catheter.  
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Figure 46. Impact of phage pre-treatment on bacterial biofilm formation by P. 
mirabilis #3. (A) Bacteria recovered from each section i, ii, and, iii.          = control 
and       = phage treated. (B) Viable bacteria and phages in the effluent of the 
models,       = bacteria from control models,        = bacteria from phage treated 
models, and,       = phages from phage treated models. (C) pH of the effluent of the 
models.        = control models,        = phage treated models. Data points represent 
the average of three experiments, error bars are standard deviation. Statistical 
analysis was performed by one way ANOVA with the Bonferroni post hoc test. 
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Figure 47. Scanning electron micrographs of un-treated and phage treated catheters 
removed from the in vitro bladder model system after 24 h. Models challenged with 
P. mirabilis #3 at 5 x 106 CFU. The control models show the encrustation that formed 
as a result of urease activity elevating the urinary pH leading to the formation of 
mineral deposits. Section i shows the eye hole of the catheter. Section ii is a cross 
section, distal to section i. Section iii is from 3 cm below section i and section iv is from 
3 cm below section iii. Arbitrary regions were chosen for visualisation.   
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4.2.6 In vitro bladder models, 24 h experiment, P. mirabilis D3 

Phage vB_PmiM_D3 was embedded in the hydrogel coating of the catheters prior to 

challenge with 5 x 106 CFU. Approximately 1.30 x 1011 PFU were associated with the 

catheter surfaces giving a MOI of 26,000:1 phages to bacteria, greater than titres 

obtained for vB_PmiS_NSM6 and vB_PmiP_#3 which were approximately 8,000:1. 

After 24 h there was a 1.32 log10 reduction in bacterial numbers as seen on section i 

from the tip of the catheter, compared to the control. Section ii experienced a 1.71 

log10 reduction, and section iii a 1.92 log10 reduction in adhered bacteria (Figure 48). 

Bonferroni’s post hoc analysis revealed that between sections from the same 

regions the differences observed were not statistically significant. 

As observed for the models using the different phages, numbers of bacteria 

dropped initially and then increased from 4 h in the control models, but was 

delayed until 6 h in the phage treated models. Initial numbers of bacteria differed in 

the phage treated models with fewer bacteria being present in the effluent at the 

time of plating, despite the same homogenised culture being used for all models. 

Presumably lysis had begun before numbers could be analysed. From 6 h numbers 

of bacteria increased until 24h where the numbers of bacteria for both phage 

treated and control were similar with 2.97 x 107 CFU/ml and 2.99 x 107 CFU/ml 

respectively. The concentration of phages in the effluent of phage treated catheters 

reduced from the start of the experiment, suggesting that a proportion might be 

eluting from the hydrogel. After 2 h, the numbers in the effluent plateaued and 

from 6 h onwards numbers increased indicating productive infections releasing 

progeny virions. The numbers of phages at 24 h roughly equalled the numbers in 

the effluent at commencement with 1.89 x 108 PFU at the start and 2.69 x 108 PFU 

at the end of the experiments. The pH of the effluent was very similar for both 

phage treated and the control catheters, with only a marginal difference in the final 

pH of 8.53 and 8.31 for the control and phage treated, respectively.  

The scanning electron micrographs obtained (Figure 49) show a clear difference 

between phage treated and control. Section i had very little encrustation forming 

round the eyehole of the catheter whereas the control has large amounts of 

mineralised deposits. Unfortunately some of the deposits at the base of the eye 
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hole broke off during the processing of the sample, but it is possible to see the 

depth of the deposit in the cross-section. In the transverse section of the catheter 

(section ii) encrustation is clearly visible on the control catheter but absent on the 

phage treated catheter. The difference between sections iii and iv is similarly 

pronounced, with the control catheter having substantial amounts of mineralised 

deposits that are lacking for the phage-treated sections. 
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Figure 48. Impact of phage pre-treatment on bacterial biofilm formation by P. 
mirabilis D3. (A) Bacteria recovered from each section i, ii, and, iii.         = control 
and        = phage treated. (B) Viable bacteria and phages in the effluent of the 
models,       = bacteria from control models,       = bacteria from phage treated 
models, and,       = phages from phage treated models. (C) pH of the effluent of the 
models,         = Control models,         = phage treated models. Data points represent 
the average of three experiments, error bars are standard deviation. Statistical 
analysis was performed by one way ANOVA with the Bonferroni post hoc test. 
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Figure 49. Scanning electron micrographs of un-treated and phage treated catheters 
removed from the in vitro bladder model system after 24 h. Models challenged with 
P. mirabilis D3 at 5 x 106 CFU. The control models show the encrustation that formed 
as a result of urease activity elevating the urinary pH leading to the formation of 
mineral deposits. Section i shows the eye hole of the catheter. Section ii is a cross 
section, distal to section i. Section iii is from 3 cm below section i and section iv is 
from 3 cm below section iii. Arbitrary regions were chosen for visualisation.   
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4.2.7 In vitro bladder models: Time to blockage experiments 

In order to determine time to blockage, the model system (2.21) was inoculated 

and perfused until urine flow to the drainage bag ceased due to the formation of 

crystalline biofilm causing occlusion of the catheter lumen (Figure 50).  

 

 

Figure 50. Photograph of a blocked catheter removed from the in vitro bladder 
model system. Crystalline deposits have completely occluded the eye hole and are 
visible on the tip and balloon. Cuffing, the creases and ridges that form as the 
retention balloon fails to return to its original size, is also evident.  

 

The volume of urine in the drainage bag was used to determine the time the 

blockage event occurred as the peristaltic pump provided a constant flow rate. 

Bacteria were added to the models at a density of 1.43 x 106 CFU and phage 

numbers embedded in the catheter were approximately 4 x 1010 PFU giving a MOI 

of 28,000:1. The phages were embedded throughout the catheter, however, the 

bacteria were only added to the residual volume of the model’s bladder therefore 

not all phages initially could come into contact with the bacteria. Bacteria, phages 

and pH were quantified at 24 hourly intervals. The time to blockage was 

significantly extended (p=0.0069) in the vB_PmiS_NSM6 phage treated models by 

61.49 % from 36.2 h for the control to 58.47 h for phage-treated (Figure 51 (A)). The 

number of bacteria in the effluent appeared to slightly reduce for the phage-treated 

catheters over the first 24 h, whilst rising in the control to 0.75 log10 higher than at 

t=0. Bacterial numbers in the phage treated models increased after 48 h. Phage 

numbers in the effluent were similar to the start after 24 h, then, by 48 h their 

numbers decreased in line with the blockage event occurring. The rise in pH of the 

effluent corresponds to the blockage event, and elevated pH occurred sooner in the 
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control models than in the phage treated models (Figure 51(C)) which maintained a 

relatively stable pH for the first 24 h. The pH of the phage-treated models became 

elevated prior to blockage events. 
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Figure 51. Impact of phage vB_PmiS_NSM6 pre-treatment on time to blockage by 
P. mirabilis NSM6. (A) Time taken for control (       ) and phage treated (       ) models 
to block. (B) Viable bacteria and phages in the effluent of the models,         = bacteria 
from control models,        = bacteria from phage treated models, and,         = phages 
from phage treated models. (C) pH of the effluent of the models,         = control 
models,      = phage treated models. Data points represent the average of three 
experiments, error bars are standard deviation. Statistical analysis was performed 
by two way student’s t test, (** = P ≤ 0.01). 
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For Phage vB_PmiP_#3, the time to blockage for treated catheters was 51.73 h 

compared to 41.17 h in the control catheters, representing an increase of 25.67 % 

(Figure 52) but was not statistically significant when analysed with a two way 

student’s t test. Compared to vB_PmiS_NSM6, the bacterial counts in the effluent 

for phage treated catheters increased during the first 24 h and were only marginally 

(0.33 log10) less than the control. After 48 h, bacterial counts in the effluent had 

risen slightly to 2.37 x 107 CFU/ml, however one replicate model had blocked at 

44.57 h. As previously observed, the numbers of phages decreased by 24 h from 

initiation, then dramatically increased and by 48 h were 3.89 x 109 PFU/ml, 1.34 

log10 above starting titres. Despite bacterial numbers increasing throughout the 

experiment for phage-treated catheters, the pH remained relatively stable for the 

first 24 h but reached pH 9 by the end of the experiment. 
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Figure 52. Impact of phage vB_PmiP_#3 pre-treatment on time to blockage by P. 
mirabilis #3. (A) Time taken for control (     ) and phage treated (     ) models to 
block. (B) Viable bacteria and phages in the effluent of the models,        = bacteria 
from control models,       = bacteria from phage treated models, and,       = phages 
from phage treated models. (C) pH of the effluent of the models,       = control 
models,       = phage treated models. Data points represent the average of three 
experiments, error bars are standard deviation. Statistical analysis was performed 
by two way student’s t test. 
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Treatment of catheters with phage vB_PmiP_D3 increased the time to blockage by 

52.31 %, from 40.97 h for the control models to 62.40 h for the phage-treated 

models (Figure 53). This increase is statistically significant (p=0.0029). The bacterial 

numbers in the effluent remained relatively stable throughout the course of the 

experiment with a 0.26 log increase in the control models after 24 h. Effluent from 

the phage-treated catheters contained fewer bacteria than controls (0.22 log10) at 

24 h, but numbers then increased slightly by 48 h to 0.11 log10 greater than at t=0. 

The numbers of phages in the effluent of phage-treated models increased 0.77 log10 

at 24 h, but had reduced by 48 h, albeit still 0.44 log10 greater than at time 0. The pH 

of the control and phage-treated models rose steadily in line with the blockage 

event, the pH in the phage treated models was lower at 6.9 at 24 h in comparison to 

8.16 for the controls. It then rose to pH 8.13 on average after 48 h.    
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Figure 53. Impact of phage vB_PmiP_D3 pre-treatment on time to blockage by P. 
mirabilis D3. (A) Time taken for control (     ) and phage treated (     ) models to 
block. (B) Viable bacteria and phages in the effluent of the models,       = bacteria 
from control models,       = bacteria from phage treated models, and,       = phages 
from phage treated models. (C) pH of the effluent of the models,      = control 
models,      = phage treated models. Data points represent the average of three 
experiments, error bars are standard deviation. Statistical analysis was performed 
by two way student’s t test, (** = P ≤ 0.01). 
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4.2.8 24 hour In vitro bladder models utilising a two phage cocktail 

From the host range analysis, it was noted that phages vB_PmiS_NSM6 and 

vB_PmiM_D3 exhibit lytic activity on each of the propagating strains. This 

characteristic allowed for the assessment of a two-phage cocktail on the prevention 

of crystalline biofilm formation in the whole urinary catheter model. The cocktail 

consisted of a 1:1 ratio of phage and the same total titre was achieved as in the 24 h 

tests with single phages, in order to allow for direct comparison. As described 

previously, models were run for 24 h at which point the catheters were removed, 

and sections excised to quantify adhered bacteria.  

For models inoculated with P. mirabilis isolate NSM6, a reduction in adhered 

organisms compared to control sections from untreated models was observed. 

Section i experienced a 1.43 log10 reduction, section ii a 3.89 log10 reduction and 

section iii a 2.41 log10 reduction (Figure 54). High error was observed rendering the 

section ii result the only result that was statically significant. For two replicates of 

section ii and one of section iii no bacteria were recovered. This, combined with the 

detection limit of the counting method accounts for the large variability in the 

observed counts. The pH of the effluent was monitored and followed a similar trend 

to that seen in single phage 24 h testing. After 6 h the pH of the control models rose 

with a concomitant rise in viable counts in the effluent. Phages in the effluent of the 

control models also rose towards the end of the experiment, roughly equivalent to 

the concentrations observed in the effluent at the beginning of the experiment, 

indicating that active infection had occurred. Phage treated models had consistently 

fewer bacteria in the effluent compared to an untreated control, suggesting a phage 

mediated antimicrobial effect. 
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Figure 54. Impact of phage cocktail pre-treatment on bacterial biofilm formation 
by P. mirabilis NSM6. (A) Bacteria recovered from each section i, ii, and, iii.      = 
control and      = phage treated. (B) Viable bacteria and phages in the effluent of the 
models.        = bacteria from control models,       = bacteria from phage treated 
models, and,       = phages from phage treated models. (C) pH of the effluent of the 
models,        = control models,       = phage treated models. Data points represent 
the average of three experiments, error bars are standard deviation. Statistical 
analysis was performed by one way ANOVA with the Bonferroni post hoc test, (** = 
P ≤ 0.01). 
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For models challenged with P. mirabilis D3, the phage treated catheters consistently 

returned fewer adhered bacteria for the three sections cut from the catheters at 

the conclusion of the experiments (Figure 55). Section i had a reduction of 2.06 

log10, section ii a reduction of 2.12 log10 and section iii a 2.03 log10 reduction. These 

data are significant with p = 0.0050, 0.0199 and 0.0329 for sections i, ii and iii, 

respectively. The pH of the effluent was lower at the end of the test compared to 

the control but exhibit a rise to pH 6.91 from the initial reading of pH 6.36, 

correlating with a rise in bacterial numbers in the effluent of the control from 1.84 x 

104 CFU/ml at 6 h to 3.00 x 105 CFU/ml at 24 h. These data indicate that the phage 

treatment was not as effective at reducing bacterial numbers especially when 

compared with the untreated control which only had a marginally higher count of 

1.12 x 106 CFU/ml at the conclusion of the experiment. The numbers of phages 

increased during the experiment indicating a successful continuing infection. 
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Figure 55. Impact of phage cocktail pre-treatment on bacterial biofilm formation 
by P. mirabilis D3. (A) Bacteria recovered from each section i, ii, and, iii.       = 
control and        = phage treated. (B) Viable bacteria and phages in the effluent of 
the models,        = bacteria from control models,        = bacteria from phage treated 
models, and,        = phages from phage treated models. (C) pH of the effluent of the 
models,        = control models,        = phage treated models. Data points represent 
the average of three experiments, error bars are standard deviation. Statistical 
analysis was performed by one way ANOVA with the Bonferroni post hoc test, (* = P 
≤ 0.05, and, ** = P ≤ 0.01). 

A 

B 

C 



147 
 

It was important to determine the relative activity of each phage in the cocktail 

individually in order to assess the activity seen in concert. Phage vB_PmiS_NSM6 

was therefore challenged with isolate D3. The sections obtained from the 24 h 

experiment indicate a very low activity or ability to prevent biofilm formation as 

sections of phage treated catheters returned greater numbers of adhered bacteria 

compared to the control (Figure 56(A)). None of these data display a statistically 

significant difference between phage treated and control. The result for the effluent 

monitoring tells the same story, with pH (Figure 56(C)) being almost exactly the 

same over the course of the experiment and bacterial numbers (Figure 56(B)) being 

almost equal as well.  
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Figure 56. Impact of vB_PmiS_NSM6 pre-treatment on bacterial biofilm formation 
by P. mirabilis D3. (A) Bacteria recovered from each section i, ii, and, iii.       = 
control and        = phage treated. (B) Viable bacteria in the effluent of the models, 
no data for phages are available,        = bacteria from control models,       = bacteria 
from phage treated models. (C) pH of the effluent of the models,      = control 
models, and,       = phage treated models. Data points represent the average of 
three experiments, error bars are standard deviation. Statistical analysis was 
performed by one way ANOVA with the Bonferroni post hoc test. 
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For models where phage vB_PmiM_D3 was challenged with isolate NSM 6 (Figure 

57) fewer adherent bacteria were recovered from excised catheter sections after 24 

h. Section i yielded 1.96 log10 fewer bacterial cells than control (p = 0.0039), for 

section ii viable counts were 2.81 log10 less than the control (p = 0.0002) and a 1.83 

log10 reduction was observed for section iii (p = 0.0075). The pH of the effluent 

remained stable in the phage treated models in contrast to control catheters where 

it increased to > pH 8. The bacteria in the effluent of the phage treated models 

were reduced overall by 0.13 log10 after 24 h. However, viable counts at 24 h were 

greater than those quantified at 6 h reading, indicating the bacteria could be 

overcoming the phage’s activity. Indeed, phages in the effluent decreased initially 

by 2 h, increased to near original levels then slowly reduced by 24 h to marginally 

less than at the commencement of the experiment.  
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Figure 57. Impact of vB_PmiM_D3 pre-treatment on bacterial biofilm formation 
by P. mirabilis NSM6. (A) Bacteria recovered from each section i, ii, and, iii.      = 
control and        = phage treated. (B) Viable bacteria and phages in the effluent of 
the models,        = bacteria from control models,       = bacteria from phage treated 
models, and,       = phages from phage treated models. (C) pH of the effluent of the 
models.      = control,       = phage treated. Data points represent the average of 
three experiments, error bars are standard deviation. Statistical analysis was 
performed by one way ANOVA with the Bonferroni post hoc test, (** = P ≤ 0.01, 
and, *** = P ≤ 0.001). 

A 

B 

C 



151 
 

4.2.9 Time to blockage experiments for In vitro bladder models 

treated with a two phage cocktail 

Time to blockage experiments were set up as previously described. The model was 

challenged with approximately 5 x 106 CFU of isolate NSM6 added directly to the 

bladder. The un-treated control models blocked after 34.8 h in contrast to the 

phage treated catheters which blocked after 62.92 h (Figure 58). This equates to an 

increase in time to blockage of 80.81 % and is statistically significant (p= 0.0008). 

The viable bacteria in the effluent marginally decreased in the phage treated 

models by 0.28 log10 after 24 h, but were increased to 1.41 log10 greater than at 

time 0 after 48 h. The number of bacteria in the control models effluent increased 

0.76 log10 at 24 h. The concentration of phages was slightly increased in the phage 

treated models after 24 h but decreased by 1.32 log10 at 48 h. The pH of the effluent 

for the control model steadily increased over the duration of the experiment and by 

24 h post inoculation reached pH 8.32, up 1.81 units from the beginning of the 

experiment. The pH of the phage treated models remained relatively stable for the 

first 24 h of the experiment, exhibiting a slight decrease from pH 6.5 to pH 6.37. 

After 48 h the pH had risen to pH 8.57, but despite this, blockage did not occur for a 

further 14.92 h. 
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Figure 58. Impact of phage cocktail pre-treatment on time to blockage by P. 
mirabilis NSM6. (A) Time taken for control (     ) and phage treated (     ) models to 
block. (B) Viable bacteria and phages in the effluent of the models.        = bacteria 
from control models,       = bacteria from phage treated models, and,       = phages 
from phage treated models. (C) pH of the effluent of the models,      = control 
models,       = phage treated models. Data points represent the average of three 
experiments, error bars are standard deviation. Statistical analysis was performed 
by two way student’s t test, (*** = P ≤ 0.001). 
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The same cocktail was then trialled against isolate D3 (Figure 59) using the same 

titre of phages and bacteria as before. The time to blockage showed a statistically 

significant increase (p= 0.0011) of 64.61 % from 40.65 h for the control models to 

66.92 h for the phage treated catheters. The concentration of viable bacteria in the 

effluent exhibited a similar trend to that observed previously for the different 

combinations of phage and host. Viable counts rose for the control model after 24 

by 0.31 log10, the viable bacteria in the effluent of the phage treated models 

showed an initial decrease of 0.32 log10 compared to t=0, but showed a slight 

increase of 0.01 log10 after 48 h. The concentration of phages in the effluent of the 

phage treated models increased after 24 h by 1.04 log10 and then remained 

relatively stable and reduced only slightly by 0.02 log10 at 48 h compared to at 24 h. 

The pH of the effluent increased from pH 6.45 to 7.78 at 24 h for the control models 

whereas for the phage treated models it increased from pH 6.33 to 6.95 after 24h 

and rose to pH 7.75 by 48 h.  
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Figure 59. Impact of phage cocktail pre-treatment on time to blockage by P. 
mirabilis D3. (A) Time taken for control (     ) and phage treated (     ) models to 
block. (B) Viable bacteria and phages in the effluent of the models,       = bacteria 
from control models,        = bacteria from phage treated models, and,        = phages 
from phage treated models. (C) pH of the effluent of the models,      = control 
models,       = phage treated models. Data points represent the average of three 
experiments, error bars are standard deviation. Statistical analysis was performed 
by two way student’s t test, (** = P ≤ 0.01). 
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4.3 Discussion 

The aims of this work were to validate methods for removing and quantifying 

adherent bacteria from catheter sections and to assess the use of an in vitro bladder 

model for investigating the use of bacteriophages to prevent the encrustation and 

eventual blockage of urinary catheters. 

In order to remove adhered organisms a method was adapted from Curtin and 

Donlan, (2006) and Fu et al. (2010). The method effectively removed the majority of 

adhered organisms within two rounds of the process. When removing adhered 

organisms, a fine balance must be struck between recovery and maintaining 

viability. It was interesting to note that, in contrast to results presented by other 

researchers, it was not possible to remove all the bacteria present using this 

technique (Curtin and Donlan, 2006; Fu et al., 2010). This observation might be 

explained by the adhesion characteristics of Proteus mirabilis (highlighting why this 

is such a problematic bacterium). Differences in equipment and organisms could 

explain the differences observed between the reported results of this removal 

procedure. Whilst it was not possible to remove all the adhered organisms, a 

consistent approach that removed greater than 99% of the adhered bacteria was 

sufficient to act as a measure of adhered organisms. [Some researchers (Holling et 

al., 2014; Melo et al., 2016) have utilised a staining procedure in order to quantify 

the adherent bacteria by measurements of absorbance. This approach was not 

considered here due to unacceptable error and reproducibility experienced with 

this technique at our institution.] 

As a delivery method for bacteriophages in a commercial product, immobilisation 

within a coating is a rational solution. It would require no extra intervention from 

healthcare professionals and would place the phages where they need to be to 

prevent the migration of bacteria over the catheter surface. The advent of the 

closed drainage system has ensured that bacteria initially gain access to the bladder 

extra-luminally, unless the bladder is already contaminated from a previous CAUTI. 

Placing the antimicrobial at the site of initial infection should, in theory, improve the 

chances of tackling the infection before it reaches the bladder and proliferates. 

Following the procedure of Curtin and Donlan (2006) phages were immobilised in 
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the hydrogel coating of the lubri-sli catheter (C R BARD™). BARD designed the 

catheter to be more lubricious to ease insertion and removal, an issue associated 

with all designs of silicone catheters. Whilst allowing phages to embed in the 

matrix, it also improves the ability of bacteria to adhere to the catheter surface 

reducing time to blockage (Morris, Stickler and Winters, 1997). This method was 

utilised to adhere phages to the catheter surfaces as it is convenient and has proven 

to be effective. It was necessary to know the quantity of phages that were 

immobilised within the catheter hydrogel coating so phage PFU/ml was determined 

for the solutions that were applied and after application, the difference between 

the two measures being what was left on the catheters’ surfaces. Whilst some 

phages are lost to the stripettes, syringe and the container that held the inverted 

catheter, this loss was assumed to be minimal and unavoidable. The approach was 

considered the only option available as any attempt to remove the phages from the 

surfaces using sonication or vortex mixing would result in shearing of the tails of 

phage rendering them non-infective (Schatten and Eisenstark, 2007). It would also 

be quite difficult to ensure all virions were removed by the processes described 

here, as no direct means of visualisation is easily possible. It is interesting to note 

that the numbers of adhered phages differed for each phage type and those 

possessing shorter tails obtained higher levels of immobilisation. The reasons for 

this remain undetermined and would require a lot more variation in virion sizes to 

enable testing. A potential drawback of the passive immobilisation approach 

employed here is that the orientation of the phages is not known nor controlled in 

any way. This would not be an issue when phages elute from the surface but when 

bacteria come into contact with the surface, a “tails up” orientation might make 

their presence more effective. Hosseinidoust et al. (2011) showed that efficacy of 

infection is reduced for asymmetric (tailed) phages immobilised onto surfaces and 

postulated it was due to the orientation of the phages preventing the recognition 

machinery coming into contact with the host cell receptor. Enhanced efficacy of 

immobilisation has been demonstrated by Pearson et al. (2013) through the use of 

microwave plasma reactions in the presence of maleic anhydride to bind phages to 

polyethylene (PE) and polytetrafluoroethylene (PTFE) surfaces. The orientation of 

the phages was favourable and phage activity was maintained. Whilst this approach 

is attractive, in the catheter environment the release of free phages is beneficial, as 
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infection could be tackled more rapidly than waiting for bacteria to reach the 

catheter, therefore, a combined approach would represent an ideal delivery 

method.  

Prior to the use of the in vitro bladder model system testing was undertaken 

utilising a method adapted from Carson, Gorman and Gilmore (2010) on sections of 

catheters suspended in broth that were incubated for 24 h at 37°C. The results 

obtained indicated that phage pre-treatment of catheter sections was not effective 

in reducing biofilm formation. In fact, in many instances the use of phages was 

associated with increased numbers of adhered viable organisms verses a control, as 

was seen for the statically significant result using bacterial isolate D3, with its 

respective phage at 109 PFU/ml. Whilst the data for isolate NSM6 seemed to show 

reduced adhered bacterial numbers, none of these data are statistically significant. 

The problem with this approach was that the numbers of phages were too low to be 

able to prevent bacterial growth in the 10 ml of culture in which the sections were 

suspended. A small proportion of the phages would have eluted from the surface 

but they would have not been sufficiently numerous to exert an effect over the 

planktonic bacteria. It is possible that resistance occurred to the phages but more 

likely they were overwhelmed by the volume of the media and the quantity of 

bacteria that grew within it. The fact that the results for #3 and D3 show greater 

numbers of adhered bacteria could be due to a conditioning film of lysed bacterial 

cells masking any phage effect and providing a stickier surface to adhere to. In fact, 

lysed cells formed a sticky mass in the bottoms of the tubes and the constant 

rotation of the vessels kept this mass in contact with the catheter sections. Despite 

the result observed from this analysis, due to the perceived issues with the test, it 

was still deemed worthwhile to continue with testing the phage-treated catheters 

in the in vitro bladder model system as it provides a more realistic challenge.  

The bacteriophage vB_PmiS_NSM6 displayed an ability in the 24 h in vitro bladder 

model tests to reduce bacterial numbers adhered to the catheter sections. The 

three sections, i, ii, and iii, had reduced counts by 3.65 log10, 3.9 log10, and, 3.44 

log10, respectively. This result compares favourably to what other researchers have 

reported for P. mirabilis. Carson et al. (2010) and Melo et al. (2016) observed a 1 

log10 reduction with their respective methods and organisms used. A slightly better 
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reduction was obtained by Lehman and Donlan (2015) of 2.5 log10, however, this 

result was from a four phage cocktail after 48 h, as no difference was observed after 

24 h. For other bacterial species, better-phage mediated reductions on catheter 

surfaces are reported in the literature. Fu et al. (2010) observed a 4.03 log10 

reduction by pre-treating a catheter with phage M4 and challenging it with P. 

aeruginosa. Similarly, Curtin and Donlan (2006) saw a reduction in S. epidermidis 

biofilms of 4.47 log10 when supplementing the media with divalent cations, and 2.34 

log10 without. Divalent cations appear to be essential for adsorption by a number of 

phages. It is worthwhile noting that the catheter experiments in the above 

examples did not use whole catheters and therefore cannot be directly compared. 

Instead, the tip and funnel were removed from the catheters leaving just the tube 

and fluids were passed directly through the tube allowing biofilms to form on the 

internal surfaces. This approach is relevant and can provide useful information but 

does not take into consideration some of the challenges faced in the real world 

setting. Specifically, there is no sump of urine in the bladder to act as a reservoir for 

the bacteria and potentially phages. Similarly, there is no eye hole which usually sits 

in the sump of urine, which has been shown to be the site of blockage events and 

significant bacterial attachment due to its irregular topology (Stickler et al., 2003). 

The fluid flow is likely to be different in the cut catheter models as a solid column of 

fluid slowly advances whereas in the in vitro bladder model the flow is in fits and 

starts due, in part, to the surface tension of the urine around the eye hole, and the 

closed drainage system causing a pressure lock. The other main difference with 

some of the reported experiments is the medium used to perfuse the models. 

Proteus biofilms have been shown to form differently with different media (Jones et 

al., 2007). Biofilms grown in artificial urine are structurally less well organised, 

contain crystalline deposits and more swarmer cells are present, when compared to 

biofilms grown with LB. It was obvious that urea would be required to produce the 

crystalline deposits indicative of a Proteus infection in vivo. The exact composition 

of the artificial urines used differs; some researchers have utilised a composition 

described by Brooks and Keevil (1997) that contains lactate and citrate as the 

carbon source and it is thought that this is the reason the biofilms are flatter than 

with LB. For the work detailed here, an artificial urine recipe was used following 

that of Griffith, Musher and Itin (1976) formulated to mimic the concentrated urine 
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of an elderly patient (Stickler and Morgan, 2006). It differs quite significantly from 

the Brooks and Keevil artificial urine and causes encrustation to occur at a faster 

rate as there is almost double the concentration of urea. The pH of the Griffith 

formulation was lower at pH 6.1 versus pH 6.8 for the Brooks and Keevil formation, 

which may have an effect on the rate of mineral formation.  

Monitoring the effluent for the duration of the 24 h experiments has given an 

insight into the dynamics of bacterial and bacteriophage interactions. For the NSM6 

24 h models, numbers of bacteria and phages reduce for the first 4 h of the 

experiment. This observation can be attributed to the washing out of the catheters 

with artificial urine that flowed at 0.5 ml/min through the models. Whilst large 

numbers of phages appeared in the effluent, it does not seem reasonable that they 

just were washed out but, rather, represent a combination of elution and 

productive infection. A similar situation was observed for the bacteria. The bacterial 

inoculum was directly placed in the bladder of the models and a similar 

concentration was eluted at t=0 to that which was initially added to the models. 

Numbers of viable bacteria in the effluent then decreased due to the constant 

perfusion of the model diluting the residual volume in the bladder. The bacteria 

would require some time to form biofilms on the surfaces and numbers increased 

from 4 h. A similar increase was seen in phages after the 4 h sample, indicating 

productive infection and that they were controlling bacterial populations, albeit not 

completely eradicating them. It is interesting to compare the pH of the effluent with 

the above data. The pH of the control models increased after 6 h and finished the 

experiment at pH 8.22 on average. The phage treated models maintained the pH at 

levels not too dissimilar to the media supplied. This ability to maintain a lower pH, 

presumably due to the reduced numbers of bacteria, prevented the formation of 

crystals and, therefore, the mineralisation of the biofilm that had formed on the 

catheters’ surfaces. This finding is corroborated with the scanning electron 

micrographs obtained (Figure 45) as no mineralised deposits are present on the 

phage treated catheters. This is directly a result of the pH as crystals only form once 

the nucleation pH of the urine is achieved. Bacteria had still adhered to the 

catheters’ surfaces but had not begun the process that would eventually lead to 

blockage.  
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Models that were challenged with isolate #3 and its phage vB_PmiP_#3, showed no 

statistically significant reduction in bacterial adherence to the sections after 24 h, 

although there were consistently fewer adhered bacteria on the catheter sections 

pre-treated with phages. One reason for this is that this isolate’s ability to produce 

mineralised biofilm is not as effective as NSM6 and D3. This can be seen in the 

scanning electron micrographs (Figure 47). Only a small amount of crystal formation 

had occurred in section iv of the control model but only to a minimal degree. 

Different Proteus strains do have different potencies of urease activity and, 

therefore, varying abilities to cause blockage of a urinary catheter. Whilst some 

isolates can be deficient, #3 is able to utilise urea and eventually block the catheter. 

The results obtained for sections i-iii (Figure 46) show > 1 log10 reductions versus 

control. This is not too dissimilar to the experience of other researchers’ attempts 

to reduce P. mirabilis on catheters (Carson, Gorman and Gilmore, 2010; Melo et al., 

2016). When monitoring the effluent the effect of phage was clear. The control 

models’ numbers of bacteria increased after 2 h and continued to do so until the 

end of the experiment. The bacteria in the effluent of the phage-treated models 

only increases after 4 h and at 6 h was only marginally higher. An increase in phages 

in the effluent at 4 h was observed (Figure 46 (C)) in line with the reduction of 

bacteria. Again, no increase in effluent pH was seen in the phage-treated model 

therefore preventing the precipitation of calcium and magnesium phosphates. The 

control models’ pH increased but not to the extent seen with models challenged 

with NSM6 or D3, perhaps highlighting the isolates lack of ability to form 

mineralisation as rapidly as some of the other isolates.  

For 24 h experiments with bacterial isolate D3 and phage vB_PmiM_D3, a 

statistically significant difference was seen with the numbers of adhered bacteria on 

section i versus a control. The other sections did not return a statistically significant 

difference despite > 1 log10 reductions for section ii and iii across the three repeats. 

Presumably this is due to the variation observed with these results as a high 

standard deviation of measurements was observed. Perhaps further repeats of the 

experiment would reduce the standard deviation. The results of the effluent 

monitoring detail a different story as seen with the other P. mirabilis strains. Phage 

treated models did not produce significantly fewer bacteria in the effluent when 
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compared to the control and pH was not vastly different compared to the control 

either. This is interesting as > 1 log reductions in bacterial numbers were occurring 

after 24 h and the scanning electron micrographs show a clear difference between 

the phage treated and control models (Figure 48). Phages in the effluent did 

increase after the initial drop in numbers so productive infections were occurring 

just not at a rate fast enough to reduce bacterial numbers in the effluent. It is 

possible that the phages were exerting an effect on the surfaces of the catheter but 

the residual volume in the bladder was supplying the effluent with the bacterial 

numbers observed. The pH increase is more difficult to explain; the scanning 

electron micrographs show that no encrustation had formed in the phage treated 

models but the pH was not dissimilar to the control models. It is possible that a 

phage resistant mutant arose that was less able to form biofilm and this could be 

the reason for the observed results, but without confirming this hypothesis no real 

conclusions can be drawn. Another possibility is the action of EPS degrading 

enzymes disrupting the biofilms, thus leading to less surface growth and 

attachment. Whilst this phage did not show the halos around plaques on semi-solid 

media, EPS degrading enzymes could still be present on the tail/attachment 

machinery of the phage, or released during lysis, and it is possible that these may be 

responsible for the reduced mineralised biofilm formation.  

The application of bacteriophages significantly increased the time to catheter 

blockage by 61.49 %, 25.67 %, and, 52.31 % for catheters treated with 

vB_PmiS_NSM6, vB_PmiP_#3, and, vB_PmiM_D3, respectively. This represents a 

significant increase in the time a catheter could be in place, especially considering 

only one phage type was utilised against the isolates. It is worth noting that the 

model system used here represents a worst case scenario, with highly concentrated 

urine being supplied at a slow rate and a reasonably high initial bacterial challenge 

delivered directly to the bladder. In the clinical setting, patient catheters typically 

block in weeks, not days. Nzakizwanayo et al. (2015) investigated the effect of 

bacteriophage treatment, with time to blockage as a therapeutic end point in a very 

similar bladder model system. They observed a 3 fold increase in time to blockage 

when modelling a late-stage infection and complete eradication of bacteria in an 

early-stage infection. Some key differences might explain the enhanced activity. 
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Firstly, they were using a three phage cocktail in their model system. This should 

give enhanced efficacy as resistance can be overcome if it arises if members of the 

cocktail utilise different bacterial receptors. It was not reported if their three phages 

targeted different receptors but this cannot be ruled out. Secondly, the delivery 

method and quantity of phages were different. They simply supplied 

bacteriophages to the bladder, which would ensure a high initial MOI. The way the 

models were infected also differed as, after adding the bacteria to the residual 

volume of the bladder, they allowed 45 min for the bacteria to establish. Following 

the establishment period, they added phages and then waited 15 min before 

beginning the flow of urine. This would allow the phages time to infect the bacteria 

and prevent any washout, further enhancing the effects of the phages. Two 

scenarios, early and established infection, were investigated. It is not clear how they 

decided upon the numbers of bacteria to add to simulate these infections, but they 

chose 1010, and, 103 CFU for established and early phase, respectively. They added 

1010 PFU of the three phage cocktail thus achieving a 1:1 MOI for established 

infection and 1:10-7 MOI for early. At such a high MOI It is clear why the early model 

was so effective with very high numbers of phages present and a period of phage-

bacterial absorption, lysis from without would almost certainly be occurring, adding 

another mechanism to the approach’s success. It is unfortunate the effluent was 

not monitored as it would be interesting to know if viable bacteria existed after the 

initial incubation period. Whilst these approaches differed from the ones detailed in 

this study, the data is still valid and shows the potential of this treatment in tackling 

CAUTI.  

A significant issue with the work detailed in this study is the finding that the phages 

employed here are predicted to encode genes involved in lysogeny. This would have 

an effect on the infection dynamics as lysogeny does not kill the bacteria. Despite 

the lytic behaviour of the phages they should not be utilised in an in vivo setting due 

to the possibility of reduced efficacy and of horizontal gene transfer imparting some 

benefit onto the bacteria. With the exception of Melo et al. (2016) none of the 

other researchers discussed above sequenced the genomes of the phages they 

used, best practise in the West suggests that this is a requirement to prevent 

unintended consequences occurring from phage therapy. The result obtained in this 
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work was surprising, especially for phage vB_PmiP_#3 as it showed no sign of being 

temperate. This really highlights the need to determine as much as possible about 

any phage used therapeutically, including a detailed study of life cycle 

characteristics.  

The activity of vB_PmiS_NSM6 and vB_PmiM_D3 on each other’s isolating strain 

warranted investigation of the phages activity as a two phage cocktail to determine 

if a longer lasting antimicrobial effect could be enacted. Clear reductions in 

adherent bacteria on the treated catheters were observed after 24 h. The 

reductions were not as great as the reductions observed for vB_PmiS_NSM6 alone. 

One problem encountered is that the control sections did not return as high counts 

as for single phage treatment, so the reductions do not seem as great. In some 

instances, no bacteria were recovered for phage treated sections and, in these 

instances, the limit of detection causes the data have a large standard deviation 

which affects the statistics. In retrospect, samples with low counts should have 

been plated by a more accurate means. Whilst there is always a detection limit, 

pour plates could have been conducted using greater volumes of sample. This 

would have provided greater accuracy for samples that fell below the detection 

limit used in this study. 

The cocktail was also used to challenge P. mirabilis D3. Phage cocktail pre-treatment 

lead to a statistically significant reduction in adhered bacteria after 24 h across all 

catheter sections. The results compare favourably to results using a single phage. 

It was necessary to test the phages against the bacterial isolates that they were not 

isolated against to gain an understanding of the effect they have in the cocktail. 

When phage vB_PmiM_D3 was used with isolate NSM6 (Figure 57) statistically 

significant reductions, not too dissimilar from when the phage was used with its 

isolating strain were obtained across all catheter sections. The pH stayed relatively 

stable and effluent counts confirmed that productive infections were occurring. The 

same cannot be said for phage vB_PmiS_NSM6 and isolate D3 (Figure 56). No 

statistically significant difference was observed in the catheter sections and, in fact, 

phage treated catheters had increased numbers in some instances. This is 

unexpected as the cocktail seemed to have a better effect than the single phage 
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alone but it is clear the other phage cannot have been contributing to this effect 

from the results obtained. As this could only be carried out on one occasion, it is not 

possible to draw firm conclusions from the outcome of the experiment.  

Time to blockage experiments utilising the two phage cocktail show an increase in 

the time it takes for the blockage event to occur. For strain NSM6 the increase is 

from 61.49 % for individual phage treatment to 80.81 % for the cocktail. For isolate 

D3 the time to blockage again increased slightly from 52.3 % with a single phage to 

64.61 % for the two phage cocktail. It is clear that the cocktail is not preventing the 

blockage event from occurring. Phage treatment did prevent crystal formation for a 

time but eventually the bacteria overcome this and blockage occurred. Whilst this is 

not due to resistance occurring as high counts of phages are apparent in the 

effluent, the bacteria are overcoming the phages’ effect. The numbers and, 

therefore MOI are an important issue when tackling an infection with phages. Work 

by other researchers has shown phages’ efficacy when used in excess. In a real-

world setting phages could be useful in preventing or significantly slowing an 

infection, although clinical trials would be required to confirm this hypothesis.  
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Chapter 5 Discussion 

The objective of this project was to assess the ability of novel bacteriophages, 

applied as a catheter coating, to prevent the mineralisation and eventual blockage 

of urinary catheters in an in vitro bladder model system. To fulfil this aim it was 

necessary to characterise the isolated phages fully. Three novel phages were 

isolated and their antimicrobial ability was assessed.  

An essential step in this work was to have a well-defined bacterial collection to 

facilitate the isolation of phages, and, to allow host range analysis. All the P. 

mirabilis strains used in this study were of clinical origin; a proportion (20.83 %) 

were collected from Southmead Hospital, to provide current isolates, and the 

remainder were from previous studies from different places at different points in 

time. The aim was to obtain a diverse, representative group of strains to act as a 

panel which, in theory, should increase the diversity of the bacteriophages isolated, 

to cover a greater range of strains that are of clinical interest. To gain an 

understanding of the strains compiled for this work it was decided to carry out PFGE 

RFLP analysis as, at the time of experimentation, it was considered the gold 

standard. The information that was gained allowed the removal of duplicates from 

the library and the formation of clusters that could inform which strains to use for 

isolations. The best method of choosing different representative bacterial “phage 

types” is to submit the bacterial library to a set of typing phages. This would contain 

phages that act on different receptors, therefore ensuring a bacterial representative 

of each “type” is present in the isolations to facilitate obtaining phages with a 

diverse receptor targets. Unfortunately, no set of typing phages was available so the 

only means of defining the library was via the properties of the bacteria. With 

hindsight, the method was probably too involved and time consuming. It provided 

more information than is required to remove duplicates from the library, as a 

simple Dienes reaction should have given similar results, albeit with less 

discriminatory power (Sabbuba, Mahenthiralingam and Stickler, 2003). Other 

researchers investigating phage prevention of catheter infections (Curtin and 

Donlan, 2006; Carson, Gorman and Gilmore, 2010; Fu et al., 2010; Nzakizwanayo et 

al., 2015) made no attempt to define the host range of their phages therefore 
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limiting the scope of the treatment. Melo et al. (2016) did attempt host range 

analysis; 11 strains were obtained from culture collections (CECT) and 7 obtained 

from infected urine samples. No analysis was made of the collection. It is reasonably 

safe to assume strains purchased from culture collections were distinct but the 

strains isolated from urines could be similar or identical. This invalidates the host 

range analysis and could lead to a false assumption of broad coverage. A similar 

situation was observed in the work of Lehman and Donlan (2015). Ten isolates of P. 

mirabilis were obtained from the CDC and used in mixed strain enrichments. Strains 

were selected for bacteriophage isolations based on their ability to form biofilms in 

microtiter plates. The host range of the isolated phages, that was likely to contain 

duplications, was assessed and used to remove duplicate phages from the library. 

Whilst this approach is legitimate, basing the decision on the ability to form 

consistent biofilms rather than phage type could limit the breadth of the isolated 

phages. Proof of principle laboratory testing does not require the same approach as 

isolating phages for a phage therapy; nonetheless, best practises should be followed 

to increase diversity. 

Isolations were often unsuccessful and ultimately only 3 phages were obtained, 

preventing selections to be made of the most appropriate phage. For an effective 

phage, factors that can enhance efficacy are a broad host range and sufficient 

virulence so that they replicate at a rate faster than they are removed from their 

site of action. It is also helpful if they are amenable in the laboratory. The lack of a 

broad host range can be overcome by the application of a phage cocktail, and 

through various techniques such as Appelmans passage (Appelmans, 1921), but no 

method exists for improving virulence. The method used in this study to isolate 

phages from environmental samples is known to introduce a bias in the types of 

phages that are isolated (Gill and Hyman, 2010). The enrichment technique tends to 

result in phages that are virulent, as rapidly propagating phages become dominant 

in the preparations. Moreover, phages tend to have a narrow host range. These 

characteristics are beneficial when considering phage therapy but prevent the 

isolation of broader host range or polyvalent phages. One of the purported benefits 

of phage therapy is the specificity of the interaction, leaving normal flora intact 

therefore limiting the risks of secondary infections caused by Candida or Clostridium 
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difficile for example. A broader host range would still maintain this benefit as, 

compared to chemical antimicrobials, phages are still very specific. The above 

observations were experienced with the phages isolated for this study. The host 

ranges were very narrow. The approach of this study was to isolate phages against a 

library of strains, whilst the approach in institutions that have practised phage 

therapy for decades seems to be the maintenance of a well described bank of 

phages from which bespoke preparations can be constructed (i.e. the Hirszfeld 

institute) (Kutter et al., 2010). The latter approach would be much quicker, once the 

library is in place, but the commencement and maintenance of a phage bank was 

beyond the scope of this project.  

For the work detailed here, sewage was used as the environmental source for 

phages. A great many phages have been isolated from sewage and any source that 

contains the pathogen of interest should contain phages that infect it (Chibani-

Chennoufi et al., 2004). Difficulty was experienced when isolating phages. Initially 

only strain NSM6 was used for isolations but this approach failed to yield sufficient 

viruses. Using a panel of isolating strains should have provided more diversity 

amongst the isolated phages. Every isolate was utilised from the bacterial library in 

an attempt to increase the likelihood of isolating phages, but this approach still 

proved to be problematic. One approach that yielded a phage was to pool the 

samples of sewage from different STWs. Pooling the sample should increase the 

diversity of the material and increase the numbers of phages present. This resulted 

in the isolation of vB_PmiP_#3. Using every strain from the library was very labour 

intensive and required considerable amounts of raw sample. An approach by 

Lehman and Donlan (2015) and Melo et al. (2016) was to combine bacterial strains, 

10 and 13 respectively, into single enrichments. This had the effect of widening the 

diversity of potential hosts within the enrichment although the isolating strain is not 

known immediately. Another modification that may have yielded more phages 

could have been to use a greater volume of sewage in the reactions. Nzakizwanayo 

et al. (2015) used 100 ml of sewage in 490 ml total reaction volume and incubated 

statically, resulting in the isolation of three phages. Lehman and Donlan (2015) and 

Melo et al. (2016) used 50 ml in their enrichment reactions. Unfortunately, the 

amount of sample available was limited as it had to be supplied by a trained worker 
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who supplied 500 ml bottles on a bi-weekly basis. Activated sewage sludge was 

used as a source for enrichments with some success with the isolation of 

vB_PmiM_D3, however, a great many attempts were made as this material is 

further along in the processing of sewage and phages may have been removed or 

rendered avirulent. Curtin and Donlan (2006) and Fu et al. (2010) chose to obtain 

their phages from outside sources (Colindale, HPA) and Carson, Gorman and 

Gilmore (2010) used LGC standards and isolated phages from a commercially 

available preparation, Bacteriofag coli-proteic (microgen pharma, Russia). This is a 

much more convenient approach as no isolation is required and some information is 

available about the phages to enable selecting the most suitable, however, pre-

existing phages would be considered “prior art” and therefore not be patentable. 

There appear to be few Proteus phages described in the literature and only a 

relatively small number of sequences deposited in the databases; whether this is 

due to a genuine scarcity in nature, inherent difficulties in their isolation, or a lack of 

interest experimentally remains to be seen.  

The isolated phages that were subject to genetic analysis possessed genes 

associated with lysogeny, a characteristic that would usually omit phages from 

further consideration for bio-control or phage therapy. This information was not 

obtained until after the work utilising the phages as catheter coatings had been 

completed. This highlights the importance of conducting detailed characterisation 

prior to any further work. Monitoring the propagation the phages did not hint at 

lysogenic behaviour, as it is notoriously difficult to identify under standard 

laboratory conditions. vB_PmiS_NSM6 did produce turbid plaques but not initially 

and they seemed to be a feature of adsorption time rather than being due to 

temperate infection. Figure 18 (chapter 3) displays the two plaque types observed 

after a short (<5 min) and long (10 min) absorption. Temperate phages are omitted 

from therapeutic formulations due to the risk of lysogenic conversion, which could 

confer enhanced virulence upon the bacteria, generalised transduction, where large 

amounts of DNA are copied across and could potentially transfer genes detrimental 

to treatment, and, also because they do not lyse their hosts and render them 

immune to superinfection by similarly acting phages. No bias towards lysogeny was 

observed with the phages in this study at high MOIs and growth seems to continue 
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in a lytic manner. This is expected when phages are parasitizing bacteria that are 

grown in high nutrient conditions as host cell proteases are present in high amount 

and degrade repressors that control the lytic or lysogenic decision (Ptashne, 2004). 

Alternatively, it could be possible that the phages are defective mutants that 

renders them obligatorily virulent, or perhaps they are temperate on a different 

strain. Further investigation would be required to elucidate their true nature. 

The sequence analysis of the phages did not highlight any known antibiotic 

resistance genes or virulence factors, which is important for considering phages for 

therapeutic use. Whilst virulent phages are the preferred choice for phage therapy, 

some success has been observed in laboratory trials with temperate phages. A 

cocktail that contains different phage types and possesses a tendency towards lytic 

growth could prevent the prospect of lysogeny not killing the bacteria as another 

phage that the bacteria are not resistant to is included in the mixture. Matsuzaki et 

al. (2003) and Capparelli et al. (2007) both utilised temperate phages successfully in 

treating S. aureus infections in a murine model. The phages were acquired by 

induction with mitomycin C. It was postulated that it would be possible to render 

temperate phages virulent by the artificial modification of elements necessary for 

the integration of phage DNA into the host cell, providing a means of obtaining 

virulant phages from bacteria for which it is difficult to isolate phages. 

Phage vB_PmiM_D3 proved recalcitrant in attempts at purification and DNA 

extraction. It would not have been taken forward for further study if more phages 

had been isolated but it was deemed worthwhile as it had a broader host range 

than the other isolated phages and facilitated the production of a two phage 

cocktail. As no information is available as to the lifecycle of the phage it would be 

precluded from therapeutic use until such information was available. It showed no 

signs of lysogeny when grown in the lab, but this is to be expected in the high 

nutrient conditions in which it was propagated. A different approach would be 

required to purify and extract DNA from this phage but potentially useful phages 

should not be discounted due to difficulty with standard laboratory techniques.  

The genetic analysis of the two amenable phages yielded information about their 

composition and allowed comparisons to be made with similarly described phages. 
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The method of finding similarity in the sequence/protein databases and inferring 

function is a standard approach in this field although to date there are few (8) 

comparable P. mirabilis phage genomes deposited in the sequence database. It 

would be beneficial to confirm the predictions experimentally although this can be 

labour intensive. Knock out mutations can be created by various approaches, and 

the effects on infection monitored to assess the possible function. Whilst many 

genes’ functions were determined, many had no match in the sequence databases 

and remained “hypothetical”. The function of these genes might lead to useful 

discoveries that could have wide ranging applications and provide further 

information on phage lifecycles.  

Catheter-associated urinary tract infection (CAUTI) is the most common healthcare-

associated infection globally and accounts for approximately 150–250 million cases per 

year (Zowawi et al., 2015).  The most severe CAUTI complications occur as a result of an 

infection by P. mirabilis. A range of approaches have been evaluated to prevent bacterial 

colonisation of the catheter, however, all preventative measures have been 

unsuccessful in clinical use (Morris, Stickler and Winters, 1997; Morgan, Rigby and 

Stickler, 2009). CAUTIs respond poorly to traditional antimicrobial therapy (Zowawi et 

al., 2015) and the increase in antimicrobial resistance is exacerbating the problem 

(Wang et al., 2014). A solution must be sought that can effectively control catheter 

infection and encrustation. Bacteriophages were selected as a potential 

antimicrobial agent due to the benefits they are purported to possess. For example, 

they replicate at the site of infection, are specific and possess low toxicity (Loc-

Carrillo and Abedon, 2011).  

In this study, whole natural phages were isolated and, after characterisation, used 

as a catheter coating following the procedure of Curtin and Donlan (2006). Testing 

the isolated bacteriophages’ ability to prevent infection in the in vitro bladder 

model system provided a convenient measure of efficacy in a system that closely 

mimics the conditions experienced in vivo. The phages used in this study showed 

varying abilities in preventing bacterial colonisation of the catheter surfaces and 

their use resulted in a reduction in crystal formation after 24 h. Complete 

eradication of P. mirabilis was not observed, mirroring the results of other 

published work (Carson, Gorman and Gilmore, 2010; Lehman and Donlan, 2015; 
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Melo et al., 2016; Milo et al., 2017). Only one study to date has achieved complete 

eradication in a catheter model utilising bacteriophages. Nzakizwanayo et al. (2015) 

achieved this by adding a very high MOI of phages and incubated with no flow for 

15 min, allowing for phage adsorption/action. This eradicated the bacteria present 

and shows that phages might be better at controlling infections initially before 

numbers of bacteria increase, taking advantage of high MOIs. Utilising lysis from 

without as a control method negates the issue of resistance occurring which, with 

single phage treatment, is beneficial. Using phages vB_PmiS_NSM6 and 

vB_PmiP_#3, the pH of the AU remained around 6.1 for the duration of the 24 h 

experiments despite numbers of bacteria increasing steadily after 6 hours. The 

relative suppression of bacterial numbers presumably resulted in less urease 

production and, consequently, a slower increase in pH. This is corroborated by the 

SEM images that show little to no crystal formation in the phage treated models. 

The use of Phage vB_PmiM_D3, however, resulted in only marginally fewer bacteria 

in the effluent and, therefore, pH increased nearly in line with control models. 

Despite this rise in pH, the SEM images showed only scant crystal aggregation on 

the catheter surfaces when compared to control models. This is not easy to explain 

as crystal formation should have been comparable at the pHs reached. It is possible 

phage infection led to the emergence of a bacterial strain that had decreased 

biofilm forming ability and, therefore, fewer crystals formed on the catheter 

surfaces. It is also possible a component of phage or a product released during lysis 

had some effect on biofilm. Between 1.32 and 1.92 log10 reductions were observed 

in phage treated models but these reductions were not statistically significant.  

In time to blockage experiments, increase in catheter lifespan was observed with all 

phages used in this study. The ability to delay the blockage of catheters is beneficial 

and worthy of further study. Whilst these phages had an effect, bacterial 

dominance did ultimately occur and, for this reason, other phages active on 

different receptors would be required to prolong the effect. A two phage cocktail 

was tested to determine whether resistance could be avoided, but this did not 

prevent the eventual blockage of the catheter. It is possible that the two phages 

utilise the same receptor, however further investigation would be required to 

confirm this assumption. Again, a broader cocktail containing more phages may 
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overcome this limitation. One factor to consider is that P. mirabilis has two distinct 

physiologies (Jones and Park, 1967) and it is possible that the phages are only active 

on one type and the conformational changes that occur make the other type 

resistant to infection. Phage isolations were carried out in liquid culture so it is 

possible that the swarmer form of the cells are resistant to the phages. Resistance 

has been reported previously in similar experiments (Fu et al., 2010) and could 

result from alterations or loss of the cell surface receptor, restriction modification, 

or other mechanisms of abortive infection such as the presence of clustered 

regularly interspaced short palindromic repeats (CRISPRs) within the bacterial 

genome (Labrie, Samson and Moineau, 2010). Resistant bacteria are usually less 

virulent than the wild type (León and Bastías, 2015) and this is beneficial to 

treatment outcomes. The other factor to consider is the phages used in this study 

possessed lysogenic genes therefore it is possible they were entering into the 

lysogenic lifecycle due to environmental conditions and this could be the reason for 

the eventual blockage of the catheters.  

The investigation of phages has shed light on some important components that 

might be utilised as antimicrobial agents. Phage vB_PmiP_#3 displayed an 

expanding halo around plaques formed on agar plates (Figure 18, chapter 3). It has 

been suggested that these halos can be due to a depolymerase enzyme that can 

potentially degrade the EPS matrix of the biofilm to facilitate infections (Adams and 

Park, 1956). Indeed, the lack of crystal formation in bladder models, despite 

relatively high numbers of bacteria present, hints at some other factor preventing 

the formation of mineralised biofilm despite P. mirabilis #3’s comparatively reduced 

urease activity. The presence of halos was first noted in 1956 by Adams and Park 

but it was not until work carried out by Hughes, Sutherland and Jones (1998) that 

the effect was tested on biofilms grown in the laboratory. Depolymerase enzymes 

facilitate bacteriophage infection by either degrading structural or capsular 

polysaccharides on the bacterial surface or the EPS in bacterial biofilms. So far 160 

putative depolymerases have been identified from 143 phages in the extant 

databases (Pires et al., 2016). It has been suggested that these enzymes could be 

used as an adjuvant to traditional antimicrobial therapy, facilitating contact with 

cells previously encased within the biofilm. Endolysins, holins and spanins have also 
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been suggested as bactericidal agents (Roach and Donovan, 2015). This approach is 

perhaps more suited to gram positive bacteria due to the ability to directly access 

the peptidoglycan layer that the endolysin acts on, but the use of spanins or 

peptides with outer-membrane disrupting abilities may allow this approach in the 

gram negative bacteria. There have been some endolysins reported in the literature 

that are able to permeate the outer membrane, due to the possession of highly 

cationic or amphipathic regions that interact with lipid polysaccharides in the outer 

membrane (Carvalho et al., 2017). The aforementioned elements can be used to 

disrupt the cell wall causing osmotic lysis and cell death. Nelson, Loomis and 

Fischetti (2001) demonstrated that it was possible, in a mouse model, to reduce 

carriage of group A streptococci using the endolysin PlyC from phage C1. Due to the 

specificity of the enzyme, the commensal community was left intact. Wide ranging 

applications exist for this technology and the relative ease of production make this 

an attractive alternative to traditional antimicrobials. 

Not all phages possess EPS degrading abilities and it has been postulated that 

possession of these enzymes may enhance their antimicrobial activity. Lu and 

Collins (2007) engineered phage T7 to express dispersin B. The engineered phage 

performed better than the wild type at reducing bacterial biofilms. Indeed, 

advances in molecular techniques have made it possible to modify phages to 

perform wide ranging tasks. Technologies seem to focus on using the phage as a 

delivery vehicle or to tackle a perceived negative aspect of phage infections. For 

example, Matsuda et al. (2005) utilised an engineered phage, LyD, a mutant of T4 

that produces a defective holin. An infection still results in cell death but lysis does 

not occur, limiting endotoxin release. When tested in mice, survival was enhanced. 

Another approach has been to redirect the host range of bacteriophages. Pouillot, 

Blois and Iris (2010) introduced point mutations in the receptor binding domain 

genes of T4. This lead to a shift in hosts from Escherichia coli to Pseudomonas 

aeruginosa and Yersinia ruckeri. Phages have been modified to act as carriers of 

antimicrobial agents, usually bound to the phage capsid. For example, Yacoby, Bar 

and Benhar (2007) attached chloramphenicol to filamentous phage fUSE5-ZZ. This 

approach allowed targeted use of an antimicrobial that is generally not used 

systemically. The authors reported an improvement factor of 20,000 in growth 
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inhibition when compared to the free drug in vitro. In a similar vein, phages have 

been trialled as carriers of antigens in the field of vaccinology, a technique termed 

phage display. The capsid is modified so components that elicit an immune 

response are displayed. The phages are then administered in the same way as 

standard vaccines. Sathaliyawala et al. (2006) modified T4 phage to display multiple 

HIV antigens on its capsid. In mice, a strong immune response, both humoral and 

cellular, was observed. The benefit of this approach is that no HIV genomic 

sequences are present in the immunogen.  

Recombinant phages have also been used in an attempt to increase bacterial 

susceptibility to antimicrobial agents. Lu and Collins (2009) engineered filamentous 

phage M13 to overexpress a repressor (lexA3) that represses the SOS response in 

bacteria. Challenge of E. coli EMG2 with fluoroquinolones, thought to exert their 

bactericidal effect via damage of DNA (Kohanski et al., 2007) was more effective in 

the presence of engineered phages. An interesting finding of this study was that, 

when testing the approach against a bacterium that already had resistance to 

quinolones, the application of phages as an adjuvant improved response by 3.5 

orders of magnitude and, the authors proposed, could restore obsolete antibiotics 

back into clinical use (Lu and Collins, 2009). Some concern, however, exists with the 

use/release of genetically modified phages, in particular that the modified genes 

will be released and affect the natural population of both phages and bacteria. This 

problem could be abated by modifying phages to be non-replicative (Paul et al., 

2011). However, Gladstone, Molineux and Bull (2012) noted that engineered phages 

with a gain of function lost the ability to compete with natural phages on the same 

host as the engineered advantage benefited other genomes and therefore was 

selected against. This suggests that engineered genomes might not persist in the 

wild.  

A clear benefit of engineered phages is that they can be the subject of patents. 

Utilising natural phages as antimicrobials is not considered patentable due to being 

an approach that has been widely used for about a hundred year (Thiel, 2004). 

Individual phages that have been completely characterised can be patented but the 

prospect of another similar phage being isolated with better characteristics is likely 

with so many phages in the biosphere. This, along with other issues, has acted as a 
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barrier to phage therapy being adopted widely. The regulatory issues around the 

use of bacteriophages also inhibit the development and implementation of this 

technology in the therapeutic field. The regulatory framework in the West is largely 

built around the development of chemical drugs, such as antibiotics. Bacteriophages 

as self-replicating and self-limiting natural entities are not comparable to single 

chemical molecules and thus do not fit into the scope of the existing framework. 

The European Medical Association has been consulted in regard to making a new 

category for phages, however they expressed only a desire to apply existing 

regulations (Verbeken et al., 2012). Contradictions exist relative to phages within 

the existing regulations that further complicate the matter, for example exemptions 

exist for DNA products but not proteins and polypeptides. Phages contain both. A 

few trials have been granted permission, usually under the auspices of medical 

ethical committees, so it seems that there is some hope. Furthermore, the FDA in 

the USA has designated phages as GRAS (Generally Regarded as Safe) (Kutter et al., 

2010). Despite the study of therapeutic applications of phages since shortly after 

their discovery, there is a lack of high quality scientific studies into their efficacy. 

This is partly due to the majority of the work being conducted in Georgia and 

Poland, where emphasis was not placed on double blind clinical trials with the 

standards considered necessary in the West. There is also concern that the general 

public might misconstrue the term virus and think that it could cause harm to 

humans. This may be an issue if this approach is taken up and used more widely, 

however, it is of benefit that the viruses of bacteria are known as bacteriophages 

(Loc-Carrillo and Abedon, 2011).   

Despite the challenges faced, in a world of increasing antimicrobial resistance, 

alternatives to traditional antibiotics must be utilised. The work detailed within this 

thesis offers an insight into the prevention of CAUTI, however, much more work 

would be required to improve, refine and validate the method. Bacteriophages 

potentially represent a good option for treating urinary tract infections due to fewer 

immunological interactions in the bladder than elsewhere in the body (e.g. 

circulatory system) and the relative ease of delivery. However, the problems 

inherent with catheter design may not be overcome with the use of any 

antimicrobial. Phages may be able to reduce the frequency of blockage events, 
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especially utilising phages as an adjuvant to traditional antimicrobial therapy. If we 

are to face a post antibiotic future it might be worth remembering the proverb “the 

enemy of my enemy, is my friend”. 

  

5.2 Further work 

Some unanswered questions exist regarding the origin of the phages obtained in 

this work. As the two sequenced phages are temperate, it is possible that they were 

induced rather than isolated from the environment. This is especially true for phage 

vB_PmiS_NSM6, as the same phage was isolated on different occasions during the 

initial round of enrichment experiments. Therefore, it should be determined 

whether they are lysogens of the isolating strains by identifying the presence of 

their genetic material in the bacterial cell. The genomic analysis of the phages 

yielded the full genetic sequence for two of them, therefore this information could 

be used to generate PCR primers for conserved regions within the phage genome. If 

PCR products correspond to the size of the predicted product, then the phages 

were most likely induced. There are reports in the literature of the isolation of 

virulent phages against P. mirabilis (Melo et al. 2016; Nzakizwanayo et al. 2015) so 

further attempts at isolation are warranted. Perhaps the use of virulent phages that 

are selected for their ability to lyse cultures and infect a wide range of clinical 

isolates would produce a better result. This hypothesis should be tested to develop 

this approach further.  

The recalcitrant nature of phage vB_PmiP_D3 to purification and DNA extraction is 

something that could be addressed with further work. The implementation of a 

sucrose gradient and cushion could be trialled as a means of obtaining a pure 

sample (Casjens et al. 2005). An alternative method of DNA extraction should be 

sought that does not utilise phenol or chloroform in case these chemicals are 

preventing DNA extraction. There exists commercially available kits that extract 

with a spin column format that might be successful. Running samples on gels from 

each stage of the process could determine if degradation is occurring and if DNA is 

indeed present. 
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Further comparative analysis of the phage genomes should be conducted to acquire 

more information about where they should be placed in the family tree of viruses 

and potentially find out more information about their life styles. The sequences 

should be submitted to the database.  

The method of attaching phages to catheters used in this work requires further 

development and refinement. Utilising the hydrogel layer already deposited on 

catheters was convenient but a coating applied that embeds the phages in a 

desirable orientation and in a manner that releases phages at a consistent rate, at a 

sufficiently high titre, would be preferable. It was noticed during electron 

microscopy that phages aligned in the same orientation when the grids were pre-

charged, perhaps offering insight into how orientation could be controlled. 

Bacteriophages have been bonded to polymeric surfaces in a tails up orientation 

that retains biological viability (Pearson et al., 2013). This is another option that 

should be assessed in a catheter model system; although no phages are released, an 

active infection would produce daughter virions that would be released into the 

system. Recently Milo et al. (2017) described a coating that degrades when alkaline 

pH occurs. This is an interesting concept, however, arguably, releasing phages when 

bacteria have reached a high enough titre to alter pH is too late in the infection 

process and perhaps a coating that just degrades from insertion represents a better 

approach to tackling infection before it establishes.  

Further work regarding the application of this technology should be undertaken to 

assess its ability to prevent the colonisation of catheters. There exists scope to 

investigate the ready to use, cocktail strategy verses made to measure approach 

with the latter representing a favourable method despite the regulatory difficulties, 

and the need for large phage banks that require characterising and updating on a 

constant basis. When considering the ready to use cocktail approach detailed in this 

study, once a cocktail has been assembled that infects a majority of clinically 

relevant isolates, work should be undertaken to assess the optimum concentration 

for the cocktail. Using the in vitro bladder model, a method of infecting the model 

could be developed that more closely mimics how an infection occurs in patients 

rather than the high titre bolus added directly to the bladder as described in this 

work. The drainage bag of the assembled model system could be infected, allowing 
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the bacteria the opportunity to migrate to the bladder. Alternatively as extraluminal 

contamination tends to be the more common source of infection in patients, a 

method to simulate this should be developed. 

Using the phage cocktail as an antimicrobial lock should be investigated to assess if 

this approach extends catheter longevity. This would be straight forward to test in 

the model system and analysis could be carried out on the catheters to visualise 

biofilm removal. Clearly this approach would benefit from phages that possess 

degradative enzymes that may facilitate removal of the biofilm.  

Once a cocktail of phages and a delivery method have been determined for optimal 

activity, the work could progress to in vivo pre-clinical trials using an animal model, 

such as a murine model, to assess phage activity in vivo. Rigorous assessment of 

immune response and phage resistance, as well as overall efficacy and safety would 

be required before proceeding to human clinical trials. Clearly, if phages can be 

used to prevent or inhibit P. mirabilis colonisation of urinary catheters, a similar 

approach would be warranted with respect to the other significant urological 

pathogens as infections are often multispecies. A catheter that inhibits the most 

common bacterial urinary pathogens would be beneficial to both patients and 

healthcare providers. 

Finally, the presence of EPS-degrading ability, evidenced by phage vB_PmiP_#3’s 

expanding halos (Pires et al., 2016), warrants further study. The presumptive 

depolymerase enzyme must first be isolated and purified. Alternatively, if the gene 

could be identified and then expressed in a suitable host, the resultant enzyme 

could be assessed in the model of the catheterised bladder, either as a preventative 

coating or as an antimicrobial lock approach where the enzyme would be instilled 

into the catheter to clear biofilm. The host range of the enzyme should be assessed 

on Proteus strains and other closely related bacteria. Depolymerase enzymes have 

been shown to increase the effectiveness of antibiotic (Bansal, Harjai and Chhibber, 

2014) therapies, therefore, enzyme-antibiotic combinations could be investigated 

using the in vitro bladder model to determine the potential of depolymerases as 

adjuncts to conventional treatment of catheter-associated infection.  
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Table 8. Functional annotation of the predicted coding sequences of phage vB_PmiS_NSM6 

Gene Coordinates Strand Length 

(nt) 

Length 

(aa) 

pI MW Putative Product Best homologue E-value 

1 1..426 + 426 141 4.95 15205.1 terminase, small subunit Acinetobacter phage YMC-13-01-C62 YP_009055422 3e-45 

2 410..1660 + 1251 416 8.03 47915.7 terminase, large subunit Enterobacteria phage ES18 YP_224140 0.0 

3 1660..3015 + 1356 451 4.9 50499.8 portal vertex protein Salmonella phage vB_SosS_Oslo YP_006560809 0.0 

4 2966..3895 + 930 309 9.39 35183.2 minor capsid protein Salmonella phage vB_SosS_Oslo YP_006560810 4e-124 

5 3899..5173 + 1275 424 4.99 45948 prohead protease Cronobacter phage ES2 AEM24695 0.0 

6 5173.. 5610 + 438 145 5.84 15344.3 DUF2190 domain protein Salmonella phage vB_SosS_Oslo YP_006560812 1e-61 

7 5627.. 6721 + 1095 364 5.77 39674.8 major capsid protein Cronobacter phage ES2 AEM24696 0.0 

8 6731.. 6904 + 174 57 6.72 6342.28 - Cronobacter phage ES2 AEM24717 8e-16 

9 6961..7359 + 399 132 6.81 14277.4 - Salmonella phage vB_SosS_Oslo YP_006560815 2e-73 

10 7359..7700 + 342 113 5.27 12624.3 head-tail joining protein Mannheimia phage vB_MhS_587AP2 YP_009193561 4e-28 

11 7702..8073 + 372 123 10.18 13699.9 tail component Cronobacter phage ES2 AEM24713 1e-55 

12 8070..8438 + 369 122 4.46 13871.6 head-tail connector protein Cronobacter phage ENT47670 YP_007237612 5e-14 

13 8503..9258 + 756 251 4.47 26878.1 major tail protein Cronobacter phage ES2 AEM24699 1e-46 

14 9308..10000 + 693 230 8.98 26534.8 tail assembly chaperone Cronobacter phage ES2 AEM24701 8e-76 

15 10070..10450 + 381 126 7.91 14365.4 lipoprotein No significant database matches 

16 10514..13921 + 3408 1135 7.59 121863 tape-measure protein Enterobacteria phage ES18 YP_224159 0.0 

17 13925..14401 + 477 158 4.58 18258.7 minor tail protein Cronobacter phage ENT47670 YP_007237618 9e-75 

18 14401..14871 + 471 156 9.16 18256.9 DUF1833 domain protein Cronobacter phage ENT47670 YP_007237619 7e-55 

19 14868..15260 + 393 130 6.51 15048.2 tail associated peptidoglycan Cronobacter phage ENT47670 YP_007237620 9e-58 
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Gene Coordinates Strand Length 

(nt) 

Length 

(aa) 

pI MW Putative Product Best homologue E-value 

20 15247..17715 + 2469 822 4.91 93446.8 tail tip protein/baseplate 

structural 

Cronobacter phage ENT47670 YP_007237575 0.0 

21 17834..20461 + 2628 875 5.72 95941.3 tail spike protein No significant database matches 

22 20495..22339 - 1845 614 9.12 70439.3 acetyl transferase Enterobacter phage Tyrion ANN86195 0.0 

23 22410..22640 - 231 76 8.01 8769.91 DNA polymerase small 

subunit 

Escherichia phage HK639 YP_004934090 3e-28 

24 23027..24202 + 1176 391 9.53 45261.4 integrase Stx2-converting phage 86 YP_794083 0.0 

25 24180..24371 - 192 63 9.78 7232.44 excisionase Stx2 converting phage vB_EcoP_24B YP_009168094 6e-16 

26 24381..24575 - 195 64 6.03 7155.02 zinc-finger domain protein No significant database matches 

27 24660..25205 - 546 181 5.92 20552.4 DNA N-6-adenine-

methyltransferase 

Enterobacteria phage HK97 NP_037744 1e-70 

28 25195..25527 - 333 110 4.13 12530.3 NinX-like protein Enterobacteria phage P22 NP_059615 2e-11 

29 25520..25693 - 174 57 4.42 6740.69 - No significant database matches 

30 25753..26781 - 1029 342 9.16 40009.7 DNA N-6-adenine-

methyltransferase 

Enterobacteria phage phi50 B47029 5e-70 

31 26913..27167 - 255 84 7.82 9820.51 - No significant database matches 

32 27160..27414 - 255 84 9.39 9794.98 - Enterobacteria phage Phi1 YP_001469347 4e-07 

33 27449..28168 - 720 239 5.46 27646.9 - No significant database matches 

34 2823128509 - 279 92 9.3 10055.5 - No significant database matches 

35 28572..29027 - 456 151 4.6 16970.2 ASCH domain Enterobacteria phage P7 AAQ07560 5e-14 

36 29030..29203 - 174 57 4.13 6670.35 antitermination protein No significant database matches 

37 29254..29793 - 540 179 6.83 19750.2 single-strand DNA binding 

protein 

Enterobacteria phage IME_EC2 AGZ17812 7e-76 
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Gene Coordinates Strand Length 

(nt) 

Length 

(aa) 

pI MW Putative Product Best homologue E-value 

38 29793..30347 - 555 184 7.89 20795.7 - Salmonella phage SEN22 YP_009191483 2e-83 

39 30347..31171 - 825 274 4.9 31616.9 exodeoxyribonuclease VIII Salmonella phage SEN22 YP_009191484 7e-138 

40 31168..31422 - 255 84 4.38 9500.79 - No significant database matches 

41 31419..31694 - 276 91 5.31 10553.8 - No significant database matches 

42 31685..31861 - 177 58 10.3 6649.94 - No significant database matches 

43 31917..32858 - 942 313 5.61 36441 - Edwardsiella phage GF-2 YP_009126656 4e-49 

44 32922..33209 - 288 95 4.64 10604 - Enterobacterial phage mEp213 YP_007112392 1e-25 

45 33936..34109 - 174 57 4.73 6288.16 - No significant database matches 

46 34119..34391 - 273 90 10.13 10163.8 antitermination peptide-RNA-

complex 

No significant database matches 

47 34890..35585 - 696 231 6.34 25551.4 repressor; like phage lambda 

CI 

Escherichia phage 434 S32822 1e-73 

48 35646..35873 + 228 75 9.52 8291.75 Cro-like regulatory protein Enterobacteria phage 933W NP_049486 5e-32 

49 36003..36329 + 327 108 7.89 12390.2 transcriptional regulator No significant database matches 

50 36447..36623 + 177 58 10.08 6973.99 DUF2740 domain protein No significant database matches 

51 36616..37452 + 837 278 9.61 31344.6 O-like transcriptional 

regulator 

Enterobacteria phage HK97 NP_037739 2e-89 

52 37453..38823 + 1371 456 5.55 49862.6 DnaB-like replicative DNA 

helicase 

Salmonella phage vB_SemP_Emek YP_006560600 0.0 

53 38843..39046 + 204 67 4.89 7639.54 - No significant database matches 

54 39030..39344 + 315 104 6.75 12194.9 - Enterobacteria phage N15 NP_046939 2e-08 

55 39344..39577 + 234 77 9.51 9144.62 - No significant database matches 

56 39603..39884 + 282 93 9.74 10957.6 - No significant database matches 
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Gene Coordinates Strand Length 

(nt) 

Length 

(aa) 

pI MW Putative Product Best homologue E-value 

57 39871..40119 + 249 82 4.39 9881.05 DUF551 domain protein Stx2-converting phage Stx2a_1447 BAT32382 0.001 

58 40119..40328 + 210 69 9.99 8459.33 - No significant database matches 

59 40330..40512 + 183 60 7.56 6809.64 Lar-like protein Escherichia phage Rac-SA53 ALP46925 2e-05 

60 40505..40726 + 222 73 9.91 8895.35 - No significant database matches 

61 40728..41174 + 447 148 9.24 17094.6 NinB-like recombinase Escherichia phage HK639 YP_004934092 4e-52 

62 41195..41554 + 360 119 8.39 14126 - Edwardsiella phage GF-2 YP_009126670 9e-12 

63 41551..41775 + 225 74 6.57 8748.05 DUF3310 domain protein Enterobacter phage phiKDA1 AFE86127 8e-35 

64 41772..41900 + 129 42 7.9 5279.04 - Klebsiella phage JD001 YP_007392874 2e-04 

65 41897..42355 + 459 152 9.73 17552.4 DNA-binding protein No significant database matches 

66 42333..42449 + 117 38 5.05 4337.96 NinF-like protein No significant database matches 

67 42449..43069 + 621 206 10.05 24161.9 NinG-like recombination 

protein 

Salmonella phage FSL SP-016 AGF88105 2e-59 

68 43069..43284 + 216 71 9.44 8244.58 - No significant database matches 

69 43281..43784 + 504 167 9.56 19493.5 antiterminator Q protein Enterobacteria phage SfI YP_009147507 9e-72 

70 44437..44826 + 390 129 6.54 13235.4 antiholin Salmonella phage FSL SP-076 YP_008240201 2e-16 

71 44823..45116 + 294 97 9.44 11153.3 holin Escherichia phage TL-2011b YP_007002002 2e-10 

72 45103..45435 + 333 110 6.91 12451.9 endolysin Cronobacter phage ESSI-2 ADX32406 2e-46 

73 45422..45889 + 468 155 5.06 17745.9 RZ lysis protein Enterobacteria phage P21 P27358 2e-16 

74 45645..45821 + 177 58 10.02 6547.9 RZ1 lysis protein No significant database matches 

75 45864..46217 - 354 117 6.57 13045 - No significant database matches 

76 46238..46801 + 564 187 8.8 21148.3 DNA-binding protein Acinetobacter bacteriophage AP22 YP_006383824 4e-27 

77 46791..47210 + 420 139 5.91 15928.1 - No significant database matches 

78 47372..47554 + 183 60 8.9 7133.52 - No significant database matches 
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Gene Coordinates Strand Length 

(nt) 

Length 

(aa) 

pI MW Putative Product Best homologue E-value 

79 47547..47729 + 183 60 5.09 6659.59 - No significant database matches 
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Table 9. Functional annotation of the predicted coding sequences of phage vB_PmiP_#3 

Gene Coordinates Strand Length 

(nt) 

Length 

(aa) 

pI MW Putative Product Best homologue E-value 

1 1..492 + 492 163 6.18 18841.3 terminase, small subunit Salmonella phage vB_SemP_Emek YP_006560551 2e-95 

2 467..1963 + 1497 498 5.69 57968.1 terminase, large subunit Salmonella phage ST64T NP_720326 0.0 

3 1966..4056 + 2091 696 4.78 79386.7 portal vertex protein Enterobacteria phage P22 YP_063735 0.0 

4 4071..4985 + 915 304 4.89 33421 scaffolding protein Enterobacteria phage P22 YP_063736 1e-117 

5 4985..6268 + 1284 427 5.01 46382.3 capsid protein Enterobacteria phage IME10 YP_007004324 0.0 

6 6320..6520 + 201 66 4.77 7314.4 - No significant database matches 

7 6517..6720 + 204 67 7.81 7683.73 - Salmonella phage SPN9CC YP_006383892 3e-08 

8 6698..7195 + 498 165 6.59 18316.7 tail connector protein Enterobacteria phage IME10 YP_007004325 8e-64 

9 7167..8948 + 1782 593 6.09 66484.2 DNA stabilisation protein Endosymbiont phage APSE-1 NP_050989 0.0 

10 8945..9646 + 702 233 4.72 25596.5 tail needle protein Enterobacteria phage Sf101 YP_009153083 1e-75 

11 9646..10107 + 462 153 6.07 17533.2 acetyltransferase Sodalis phage phiSG1 YP_516196 3e-79 

12 10101..10760 + 660 219 4.83 22597.2 DNA injection protein Enterobacteria phage Sf6 NP_958187 3e-72 

13 10770..12215 + 1446 481 5.41 51800.3 translocase Enterobacteria phage ST104 YP_006416 7e-120 

14 12215..14236 + 2022 673 8.53 72453.3 DNA injection protein Enterobacteria phage Sf6 NP_958189 0.0 

15 14259..14735 - 477 158 7.56 17809.3 - No significant database matches 

16 14753..15004 - 252 83 9.19 9756.24 Mnt-like repressor protein Enterobacteria phage P22 NP_059641 6e-35 

17 15092..15256 + 165 54 9.7 6374.36 ARC-like repressor protein Salmonella phage epsilon34 YP_002533476 4e-10 

18 15323..15514 + 192 63 9.04 7023.19 Ant-like antirepressor protein Enterobacteria phage CUS-3 ABQ88384 7e-27 

19 15516..16067 + 552 183 9.72 21559.2 HNH homing endonuclease Pseudomonas phage PPpW-3 YP_008873228 3e-25 

20 16128..18005 + 1878 625 5.51 68808.5 tail spike protein Enterobacteria phage Sf101 YP_009153089 1e-61 

21 17944..18237 - 294 97 9.07 11466.2 DNA polymerase III theta Escherichia phage HK639 YP_004934090 6e-28 



216 
 

Gene Coordinates Strand Length 

(nt) 

Length 

(aa) 

pI MW Putative Product Best homologue E-value 

subunit 

22 18629..19813 + 1185 394 9.53 45907.9 integrase Erwinia phage phiEt88 YP_004327334 2e-135 

23 19817..20023 - 207 68 6.25 8137.24 excisionase Enterobacteria phage P4 2211375A 1e-11 

24 20033..20227 - 195 64 5.53 7314.17 - No significant database matches 

25 20235..20780 - 546 181 6.73 20530.4 DNA N-6-adenine-

methyltransferase 

Enterobacteria phage Lahn2 CAJ26400 9e-72 

26 20770..21084 - 315 104 4.59 11828.3 NinX-like protein Serratia phage Eta YP_008130327 8e-13 

27 21081..21290 - 210 69 4.39 8066.94 - No significant database matches 

28 21280..21444 - 165 54 7.77 6074.24 - No significant database matches 

29 21447..21683 - 237 78 7.82 9096.62 - No significant database matches 

30 21676..21867 - 192 63 6.71 7243.13 - Enterobacteria phage Phi1 YP_001469347 9e-08 

31 21990..22184 - 195 64 10.07 7703.08 - No significant database matches 

32 22189..22605 - 417 138 5.70 15343.84 - No significant database matches 

33 22652..22930 - 279 92 4.36 10488 - No significant database matches 

34 22946..23482 - 537 178 7.9 19733 single-stranded DNA binding 

protein 

Enterobacteria phage CP-1639 CAC83134 5e-67 

35 23475..24035 - 561 186 9.05 20698.6 - Salmonella phage SEN22 YP_009191483 6e-79 

36 24035..24859 - 825 274 5.08 31309.7 exodeoxyribonuclease VIII Salmonella phage SEN22 YP_009191484 3e-139 

37 24856..25110 - 255 84 4.25 9583.88 - No significant database matches 

38 25107..25382 - 276 91 5.31 10539.8 - No significant database matches 

39 25373..25549 - 177 58 10.38 6721.92 - No significant database matches 

40 25603..25863 - 261 86 9.94 9999.58 - No significant database matches 

41 25926..26090 - 165 54 4.72 6234.18 - Enterobacteria phage CUS-3 ABQ88443 1e-08 
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Gene Coordinates Strand Length 

(nt) 

Length 

(aa) 

pI MW Putative Product Best homologue E-value 

42 26125..26715 - 591 196 6.34 22310.4 - Enterobacteria phage P22 YP_063720 1e-30 

43 26880..27065 + 186 61 5.66 6794.8 - No significant database matches 

44 27062..27214 - 153 50 4.56 5651.45 - No significant database matches 

45 27400..27615 + 216 71 5.32 7959.34 - No significant database matches 

46 27612..27827 - 216 71 7.87 8363.85 - No significant database matches 

47 27836..28108 - 273 90 10.06 10134.8 N-like antitermination 

protein 

No significant database matches 

48 28615..28920 - 306 101 4.86 11431 - No significant database matches 

49 28951..29652 - 702 233 5.25 26658.4 CI-like repressor protein Escherichia phage HK75 YP_004934144 3e-62 

50 29760..29945 + 186 61 9.9 6886.08 - No significant database matches 

51 30077..30415 + 339 112 9.25 12670.5 CII-like transcriptional 

activator 

Cronobacter phage phiES15 YP_006590017 2e-18 

52 30437..31120 + 684 227 9.02 25868.1 Roi-like DNA-binding protein Cronobacter phage ENT47670 YP_007237602 1e-75 

53 31117..32202 + 1086 361 9.29 41531.6 O-like transcriptional 

regulatory protein 

Erwinia phage phiEt88 YP_004327353 9e-105 

54 32202..33578 + 1377 458 5.39 50390.3 DnaB-like replicative helicase Erwinia phage phiEt88 YP_004327354 0.0 

55 33598..33801 + 204 67 4.89 7600.5 - No significant database matches 

56 33812..34099 + 288 95 7.97 11188.8 - No significant database matches 

57 34099..34416 + 318 105 10.85 12292.3 - No significant database matches 

58 34403..34651 + 249 82 4.39 9840.97 DUF551-like protein No significant database matches 

59 34651..34743 + 93 30 9.52 3829.52 - No significant database matches 

60 34869..35132 + 237 78 10.19 8937.75 - No significant database matches 

61 35142..35585 + 444 147 8.98 17455.1 NinB-like protein Cronobacter phage phiES15 YP_006590021 1e-40 
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Gene Coordinates Strand Length 

(nt) 

Length 

(aa) 

pI MW Putative Product Best homologue E-value 

62 35578..35784 + 207 68 7.71 7627.92 - Klebsiella phage JD001 YP_007392845 4e-28 

63 35781..36230 + 450 149 9.96 16855.7 - No significant database matches 

64 36208..36351 + 144 47 4.45 5211.83 NinF-like protein No significant database matches 

65 36323..36916 + 594 197 9.43 23709.9 NinG-like protein Edwardsiella phage GF-2 YP_009126676 5e-86 

66 36906..37079 + 174 57 10.54 7008.3 - No significant database matches 

67 37069..37269 + 201 66 9.05 7580.76 - No significant database matches 

68 37266..37904 + 639 212 9.22 24713.3 - Salmonella phage ST64B NP_700422 4e-40 

69 38622..38927 + 306 101 8.82 11183.9 holin Salmonella phage ST64T NP_720319 2e-26 

70 38924..39328 + 405 134 8.72 14941.8 Endolysin / structural protein Escherichia phage Seurat YP_009152030 7e-35 

71 39325..39726 + 402 133 9 14993.2 RZ lysis protein No significant database matches 

72 39641..39868 + 228 75 5.55 8503.93 RZ1 lysis protein Bacteriophage APSE-7 ACJ10113 1e-18 

73 39910..40302 + 393 130 4.68 14791.8 GP63 like protein Klebsiella phage phiKO2 YP_006643 1e-29 

74 40535..40762 + 228 75 4.76 8455.64 - Salmonella phage SPN9CC YP_006383885 3e-17 

75 40817..41176 + 360 119 5.8 13298.2 - Serratia phage Eta YP_008130342 9e-27 

 

 

 


