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Tests for equality of variances between two samples which contain both paired 

observations and independent observations 

 

Abstract 

Tests for equality of variances between two samples which contain both paired observations 

and independent observations are explored using simulation. New solutions which make use 

of all of the available data are put forward. These new approaches are compared against 

standard approaches that discard either the paired observations or the independent 

observations. The approaches are assessed under equal variances and unequal variances, for 

two samples taken from the same distribution. The results show that the newly proposed 

solutions offer Type I error robust alternatives for the comparison of variances, when both 

samples are taken from the same distribution. 

 

Keywords Brown-Forsythe test; Equal variances; Partially overlapping samples; Pitman-

Morgan test; Simulation; Robustness 

 

 

1. Introduction 

An equality of variances test is often performed as a preliminary test to inform the most 

appropriate statistical test for a comparison of means Mirtagioğlu et al. (2017). The pitfalls of 

this process are well documented (Zimmerman, 2004; Zimmerman and Zumbo, 2009; Rasch 

et al., 2011; Rochon et al., 2012). This paper considers tests for equality of variances where it 
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is the equality of variances that is of importance in their own right. Examples include a 

comparison of two treatments that have a similar mean efficacy, or a comparison of products 

in quality control, or a comparison of variances in human populations. Tests for equal 

variances have wide ranging applications including areas in archaeology, environmental 

science, business and medical research (Gastwirth et al., 2009).   

Numerous tests for the comparisons of variances for two independent samples have been 

documented (Conover, et al., 1981). The Pitman-Morgan test is widely regarded as the 

optimum test of equal variances with two paired samples under normality (Mudholkar et al., 

2003). However, situations may arise where there are two samples which contain both 

independent observations and paired observations (Derrick et al., 2015). For example, when 

some experimental data in a paired samples design is missing due to an error or accident. 

This paper is concerned with the direct comparison of variances between two samples, which 

contain both paired observations and independent observations. For simplicity, these 

scenarios are referred to as partially overlapping samples (Martinez-Camblor et al., 2013; 

Derrick et al., 2017). The conditions of Missing Completely at Random (MCAR) are 

assumed.  

In the two partially overlapping samples scenario, if the number of paired observations is 

relatively large and the number of independent observations is relatively small, a solution 

may be to discard independent observations and perform a test for equal variances on the 

paired observations. The standard F-test is not appropriate for paired samples (Kenny, 1953). 

For the comparison of variances for paired data, the Pitman-Morgan test can be performed 

(Pitman 1938; Morgan 1939). However, the Pitman-Morgan test is not robust to violations of 

the assumption of normality (Mudholkar et al., 2003; Grambsch, 2015). For heavy tailed 
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distributions the Type I error rate of the Pitman-Morgan test is larger than nominal Type I 

error rate (McCulloch, 1987; Wilcox, 2015).  

Alternatively, if the number of independent observations is relatively large and the number of 

paired observations is relatively small, a solution may be to discard paired observations and 

perform one of numerous established tests for the comparison of variances with independent 

observations.  

When the normality assumption is met, the standard F-test is the uniformly most powerful 

test for two independent samples. However, the standard F-test is not robust to deviations 

from normality (Marozzi, 2011).  

Levene (1960) proposed that for two independent groups, the differences between the 

absolute deviations from the group means could be used to assess equality of variances. In the 

two sample case, this test is equivalent to Student’s t-test applied to absolute deviations from 

the group means. This version of Levene’s test, fails to control the Type I error rate when the 

population distribution is skewed (Carroll and Schneider, 1985; Nordstokke and Zumbo, 

2007).  

Brown and Forsythe (1974) proposed alternatives to Levene’s test when data are not 

normally distributed. These alternatives use deviations from the median or trimmed mean. 

These variations are also often referred to as “Levene’s test” (Carroll and Schneider, 1985; 

Gastwirth et al., 2009). For the avoidance of doubt, in this paper the convention followed is 

that assessing equality of variances using deviations from the mean is referred to as Levene’s 

test. Assessing equality of variances using deviations from the median is referred to as the 

Brown-Forsythe test.  
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Conover et al. (1981) explored 56 tests for equal variances for two independent groups and 

noted that the five tests that are Type I error robust use deviations from the median rather 

than deviations from the mean. Conover et al. (1981) found that the only test that consistently 

meets Bradley’s (1978) liberal Type I error robustness criteria is the Brown-Forsythe test, 

using absolute deviations from the median. There is no uniformly robust and most powerful 

test applicable for all distributions and sample sizes. The general consensus is praise of the 

Brown-Forsythe test using deviations from the median (Carroll and Schneider, 1985; 

Nordstokke and Zumbo, 2007; Mirtagioğlu et al., 2017). However, it should be noted that 

this test can be conservative with small sample sizes (Loh, 1987; Lim and Loh, 1995). The 

use of absolute deviations rather than squared deviations better maintains Type I error 

robustness (Cody and Smith, 1997). 

Performing a test using either only the independent observations or only the paired 

observations may result in loss of power. The discarding of data is particularly problematic if 

the overall total sample size is small. In addition, if the assumption of MCAR is not 

reasonable, the discarding of data is likely to cause bias. 

Bhoj (1979, 1984) and Ekbohm (1981, 1982) debated methods using all of the available data 

for testing the equality of variances in scenarios that they refer to as “incomplete data”. In 

this debate the authors do not recognise that a combination of independent observations and 

paired observations may occur by design and not only by accident. Bhoj (1979)  and Ekbohm 

(1981, 1982) independently considered a weighted combination of existing independent sum 

of squares techniques to create a new test statistic. Other solutions such as ignoring the 

pairing and performing the F-test on all of the available data were considered by Ekbohm 

(1982). Bhoj (1984) concluded that his test statistic is the most powerful if the correlation is 

negative or small. Otherwise, performing the F-test on all of the available data is more 

powerful than the solutions put forward by either of the authors (Ekbolm, 1982; Bhoj 1984). 
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The simulations performed by these authors were on a relatively small scale, with only 1,000 

replicates at each point in their design space. No solution was comprehensively agreed upon 

for all scenarios, and this is likely to contribute to them not being well established. 

Furthermore the non-robustness of the Pitman-Morgan test has a detrimental impact on their 

weighted tests. A solution that uses all available data without a complex weighting structure, 

or the discarding of valuable information about the pairing, may therefore be advantageous. 

For the comparison of means when both independent observations and paired observations 

are present, partially overlapping samples t-tests are given by Derrick, et al. (2017). These 

solutions are generalised forms of the t-test and are Type I error robust under normality. 

These solutions are also robust in the comparison of two ordinal samples where the scale 

represents interval data (Derrick and White, 2018)  

We propose that as an alternative test of equal variances when there is a combination of 

paired observations and independent observations, the partially overlapping samples t-test 

can be performed, using deviations from the group medians, as outlined below. 

Let jiX  denote the i-th observation in group j for j = {Sample1, Sample 2}, and jX~  denote 

the sample median, so that jjiji XXY ~
−= , then 
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where =an  number of unpaired observations exclusive to Sample 1, =bn  number of 

unpaired observations exclusive to Sample 2, =cn  number of pairs, =jn  total number of 

observations in Sample j, =2
jS  variance of Sample j based on the jiY  observations. 

For the comparison of variances, Loh (1987) suggested adapting the unequal variances t-test 

using deviations from the medians.  For the comparison of means, Student’s t-test is sensitive 

to deviations from the equal variances assumption (Ruxton, 2006; Derrick, Toher and White, 

2016). As a result of this Derrick et al. (2017) additionally proposed the partially overlapping 

samples t-test for unequal variances. We propose that the partially overlapping samples test 

statistic unconstrained to equal variances can be similarly modified to provide a test for 

equality of variances so that: 
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The test statistic var2T  is referenced against the t-distribution with degrees of freedom:  
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Methodology for assessing the Type I error rate of these proposals is given in Section 2, with 

an example application given in Section 3.  
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2. Methodology 

 

For two samples containing both independent observations and paired observations, 

approaches for the comparison of variances are assessed using simulation. The approaches 

considered are the Brown-Forsythe test, the Pitman-Morgan test, and the proposed var1T  and 

var2T . Type I error robustness is assessed using Bradley’s (1978) liberal robustness criteria. 

Power is assessed for test statistics that do not violate Bradley’s liberal criteria. 

Within the simulation design, the sizes of an , bn , cn  are {5, 10, 30, 50}. The correlation 

coefficients ρ  are {0.00, 0.25, 0.50, 0.75}. Simulations for each possible parameter 

combination of an , bn , cn , ρ  are performed in a factorial design. Standard Normal deviates 

are calculated using the Box-Muller (1958) transformation. For the cn  observations, 

correlated Standard Normal deviates are obtained as per Kenney and Keeping (1951) 

In Section 4.1, the comparison of variances is performed for normally distributed data. Under 

the null hypothesis, 1X  ~ N(0,1) and 2X  ~ N(0,1). Under the alternative hypothesis, the 

observations in Sample 2 are multiplied by two, thus 1X  ~ N(0,1) and 2X  ~ N(0,4).  

In Section 4.2, the comparison of variances is performed for skewed distributions. Under the 

null hypothesis, Normal deviates are first generated as above, and then the exponential of 

each value is calculated. Under the alternative hypothesis this process is repeated, and each of 

the observations in Sample 2 are multiplied by two to create unequal variances.  

For each parameter combination, the data generating process is repeated 10,000 times, and 

each of the statistical tests to be evaluated is performed on each replicate. Under the null 

hypothesis, the proportion of the replicates where the null hypothesis is rejected represents 
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the Type I error rate. Under the alternative hypothesis, the proportion of the replicates where 

the null hypothesis is rejected, represents the power of the test, assuming Type I error rates 

can be reasonably compared. The simulations and tests are performed in R, at the 5% 

significance level, two-sided. 

The simulation design allows that the conditions of MCAR can be assumed. 

 

3. Example 

 

In the assessment of an undergraduate university module, two lecturers share the marking of 

32 student submissions. As part of the marking regulations, at random six of the submissions 

are independently assessed by both lecturers. The remaining submissions are randomly split 

between the two lecturers, ensuring that both have an equal number to assess. Thus Lecturer 

1 has one sample comprising of six paired observations and 13 independent observations. 

Likewise, Lecturer 2 has a sample of equal size. The samples are partially overlapping by 

design, thus MCAR can be reasonably assumed.  

There is concern that the lecturers do not allocate marks at the top end and the bottom end of 

the marking scale in the same way. Tests for equal variances are performed on the 

independent observations (Table 1), the paired observations (Table 2), and all observations. 

 

Table 1. Marks awarded to the 26 students randomly allocated to the lecturers. 

Lecturer 1 55 56 58 60 60 60 61 61 62 62 64 65 67 
Lecturer 2 40 50 51 60 60 60 60 60 61 66 69 72 82 
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Table 2. Marks awarded by each lecturer for the six students that are marked by both. 

Student  A B C D E F 
Lecturer 1 54 55 60 63 65 70 
Lecturer 2 50 56 60 61 67 73 

 

The Brown-Forsythe test is performed on the data in Table 1 using the R package “lawstat” 

(Gastwirth et al., 2015). This shows no evidence to reject the null hypothesis of equal 

variances (t = -1.9673, v  = 24, p = 0.061). 

The Pitman-Morgan test is performed on the data in Table 2 using the R package 

“PairedData” (Champely, 2013). This shows no evidence to reject the null hypothesis of 

equal variances (t = -2.352, v  = 4, p = 0.078). 

In order to perform the tests for equal variances using all of the available data, for each 

submission marked my Lecturer 1 the absolute deviation from the median mark given by 

Lecturer 1 is calculated. Similarly, the absolute deviations for Lecturer 2 are calculated. 

The partially overlapping samples t-test is performed on the absolute deviations using the R 

package “Partiallyoverlapping” (Derrick, 2017). The null hypothesis of equal variances is 

rejected at the 5% significance level for both the equal variances assumed variant ( var1t = -

2.324, 1v = 26.211, p = 0.028) and the equal variances not assumed variant ( var2t  = -2.183, 2v  

= 17.488, p = 0.043). It would appear that Lecturer 2 is making greater use of the full range 

of potential marks relative to Lecturer 1. 
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4.1  Comparison of variances for two samples from the Normal distribution 

 

Type I error rates and power are summarised for each of; the Brown-Forsythe test, BF, the 

Pitman-Morgan test, PM, and the partially overlapping samples tests, var1T  and var2T . 

Each of the test statistics are assessed under the null hypothesis where 1X  ~ N (0,1) and 2X  

~ N (0,1). The Type I error robustness for each of the parameter combinations within the 

simulation design are summarised in Figure 1. 

 

Figure 1. Type I error robustness for each parameter combination, assessed against Bradley’s 

liberal criteria, samples from Standard Normal distribution  
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Figure 1 shows that the Pitman-Morgan test and the proposed test statistics are Type I error 

robust throughout the simulation design, with var1T  being more conservative than var2T . For 

the smallest sample sizes within the design, the Brown-Forsyth test is very conservative. 

 

Relative power comparisons for each of the test statistics are assessed where 1X  ~ N (0,1) 

and 2X ~ N (0,4). The power averaged across the simulation design for increasing ρ  is given 

in Figure 2. 

 

Figure 2. Relative power, averaged across the simulation design for increasing ρ , samples 

from Normal distributions. 
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Figure 2 shows that the proposed test statistics var1T  and var2T  perform similarly to each other 

under normality, and they have superior power qualities to the standard tests which discard 

data. 

 

4.2  Comparison of variances for two samples from skewed distributions 

Each of the test statistics are assessed when both samples are taken from skewed but identical 

distributions. The Type I error robustness for each of the parameter combinations within the 

simulation design are summarised in Figure 3. 

 

Figure 3. Type I error robustness for each parameter combination, assessed against Bradley’s 

liberal criteria, samples from skewed distribution.  
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Figure 3 shows that the Pitman-Morgan test is not Type I error robust when the samples are 

taken from identical heavy tailed distributions. This supports the findings by McCulloch 

(1987) and Wilcox (2015). In addition it can be seen that var2T  does not fully maintain Type I 

error robustness. Further investigation shows that var2T  is liberal when one of the samples is 

more dominant in terms of size, and when there is a large imbalance between the number of 

independent observations and the number of pairs. 

Relative power comparisons for each of the test statistics are assessed where the samples are 

taken from different skewed distributions. Due to the poor Type I error robustness of the 

Pitman-Morgan test and var2T , this comparison is done only for the Brown-Forsythe test and 

var1T . The power averaged across the simulation design for increasing ρ  is given in Figure 4. 
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Figure 4. Relative power, averaged across the simulation design for increasing ρ , samples 

from skewed distributions. 

 

Figure 4 shows that the proposed solution, var1T , is more powerful than the Brown-Forsythe 

test. A comparison of Figure 4 against Figure 2 also indicates that both the Brown-Forsythe 

test and the newly proposed test, var1T , are less powerful when samples are taken from a 

heavy-tailed distribution. 

 

 



Page 15 of 19 
 

5. Conclusion 

 

A common research question in psychology, education, medical sciences, business and 

manufacturing, is whether or not the variances are equal (Gastwirth, Gel and Miao, 2009).   

There has been little research into techniques for the comparison of variances for samples that 

contain both independent observations and paired observations. Standard solutions that 

involve discarding data are less than desirable. Two solutions that make use of the tests 

statistics by Derrick et al. (2017) are proposed in this paper. Simulations across a range of 

sample sizes show that these solutions are Type I error robust under normality and the 

assumption of MCAR. These solutions are more powerful than established solutions that 

discard data, namely the Pitman-Morgan test and the Brown-Forsythe test. 

The equal variances form of the partially overlapping samples variances test, var1T , is 

marginally more powerful than the unconstrained form of the test var2T .  

The proposed test statistic var1T  further maintains Type I error robustness for skewed 

distributions where var2T  does not. var1T  is therefore recommended as a powerful alternative to 

test for the equality of variances between two samples when there is a combination of paired 

observations and independent observations in two samples. 
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