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Abstract

The evidence available to a multi-agent system can
take at least two distinct forms. There can be di-
rect evidence from the environment resulting, for
example, from sensor measurements or from run-
ning tests or experiments. In addition, agents also
gain evidence from other individuals in the popula-
tion with whom they are interacting. We, therefore,
envisage an agent’s beliefs as a probability distri-
bution over a set of hypotheses of interest, which
are updated either on the basis of direct evidence
using Bayesian updating, or by taking account of
the probabilities of other agents using opinion pool-
ing. This paper investigates the relationship be-
tween these two processes in a multi-agent setting.
We consider a possible Bayesian interpretation of
probability pooling and then explore properties for
pooling operators governing the extent to which di-
rect evidence is diluted, preserved or amplified by
the pooling process. We then use simulation exper-
iments to show that pooling operators can provide a
mechanism by which a limited amount of direct ev-
idence can be efficiently propagated through a pop-
ulation of agents so that an appropriate consensus is
reached. In particular, we explore the convergence
properties of a parameterised family of operators
with a range of evidence propagation strengths.

1 Introduction and Background
In agent-based systems individuals receive information from
at least two distinct sources; either as direct evidence from
their environment, e.g. directly from different sensor modali-
ties or by running tests or experiments, or from other individ-
uals in the population. More specifically, we envisage agents
as holding beliefs about a set of hypotheses of interest and
then adapting those beliefs, either on the basis of direct evi-
dence, or by taking account of the beliefs of the other agents
that they are interacting with. Assuming that the agents’ be-
liefs take the form of probability distributions over the hy-
potheses, we can model evidential updating in a Bayesian
manner and then allow a form of probability pooling so that
agents can combine their distributions with those of others.

This paper investigates the relationship between the two
processes, updating based on direct evidence and probabil-
ity pooling, in a dynamic setting in which agents adapt their
beliefs over time. The motivating assumption is that pool-
ing operators should provide a mechanism by which a lim-
ited amount of direct evidence can be efficiently propagated
through the agent population so that an appropriate consensus
is reached. This effect has already been studied in the con-
text of social epistemology where the focus is on the overall
knowledge of the group or population [Douven et al., 2017].
For example, Douven and Kelp [Douven and Kelp, 2011] ar-
gue that dialogue between scientists is an important aspect
of scientific research which complements experimental work.
They support their case with simulation studies in which a
population of agents receive occasional evidence, in this case
the true value of a real-valued parameter, as well as pooling
opinions by taking weighted linear combinations of values
from other agents. The results suggest that the population
converges much faster to the true parameter value when both
pooling and evidential updating are employed, than it does
when there is only evidential updating.

In the sequel we investigate probability pooling combined
with updating based on direct evidence. We also adopt a
Bayesian approach to pooling in which it is viewed as a form
of second order updating on the basis of evidence consist-
ing of the probability values of agents in the pool. From this
perspective we provide a clear interpretation of a particular
pooling operator and show the assumptions underlying it. We
then introduce the properties of evidence dilution, preserva-
tion and amplification for pooling operators as a way of gaug-
ing the extent to which they enable direct evidence to be prop-
agated across the agent population. Simulation experiments
will be carried out to investigate a single parameter family of
pooling operators which can be evidence diluting, preserving
or amplifying depending on the parameter value. We con-
sider the effectiveness of these operators at evidence propa-
gation for different parameter values, different pool sizes and
where the evidence is received at different rates. We focus on
two mutually exclusive and exhaustive hypotheses denoted
H1 and H2 so that each agent’s beliefs can be characterised
by a real number x ∈ [0, 1] indicating that P (H1) = x and
P (H2) = 1− x.

Probability pooling operators have been proposed as a
means for combining a group of expert opinions to obtain
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a single probability distribution, with early work dating, at
least, back to DeGroot [DeGroot, 1974] and Stone [Stone and
others, 1961]. As in both of these papers a common approach
is simply to take the pooled distribution as a weighted linear
combination of all the distributions of the agents in the co-
hort. For the two hypotheses case, if there are k agents with
probabilities x1, . . . , xk, then the pooled probability ofH1 is∑k

i=1 wixi where wi > 0 : i = 1, . . . , k and
∑k

i=1 wi = 1.
The weights wi then quantify a relative level of confidence in
the different agents. A general definition of a pooling opera-
tor is simply as follows:
Definition 1.1 (Pooling Operator): A pooling operator for
k agents is a function c : [0, 1]k → [0, 1], so that for
agents A1, . . . , Ak with probabilities PAi

(H1) = xi for
i = 1, . . . , k then c(x1, . . . , xk) is the pooled probability of
H1.

In this paper we focus on three related geometric pooling
operators which have clear Bayesian justifications and which
it turns out have interesting evidence propagation properties.
A summary of these is given in definition 1.2.
Definition 1.2 (LogOp, SProdOp and ProdOP Pooling Oper-
ators): The following are the pooling operators that we con-
sider in this paper;
• The Log-Linear Operator (LogOp):

c(x1, . . . , xk) =

∏k
i=1 x

wi
i∏k

i=1 x
wi
i +

∏k
i=1(1− xi)wi

,

for wi ≥ 0.
• The Scaled Product Operator (SProdOp): This is a spe-

cial case of LogOp in which wi = . . . = wk = w > 0
so that,

c(x1, . . . , xk) =
(
∏k

i=1 xi)
w

(
∏k

i=1 xi)
w + (

∏k
i=1(1− xi))w

,

for wi ≥ 0.
• The Product Operator (ProdOp): This is a special case

of SProdOp in which w = 1 so that,

c(x1, . . . , xk) =

∏k
i=1 xi∏k

i=1 xi +
∏k

i=1(1− xi)
.

LogOp has been widely discussed in the literature (see
Genest and Zidek [Genest and Zidek, 1986] for an early
overview), with a variety of possible justifications for the op-
erator being presented. For instance, it is known to be the
operator which minimizes the weighted Kullback-Leibler di-
vergence between the pooled probability distribution and the
agents’ distributions [Abbas, 2009]. Pennock [Pennock and
Wellman, 1999] shows that LogOp preserves Markov inde-
pendence and can therefore be useful in graphical probability
models. Most recently Pettigrew [Pettigrew, 2017] has con-
sidered LogOp as a way of pooling incoherent probabilities.
More specifically, agents are deemed to be incoherent if their
probabilities do not sum to one. Such distributions can be
‘fixed’ by renormalisation and [Pettigrew, 2017] suggests that
fixing before pooling and fixing after pooling should yield the
same result. Indeed if standard renormalisation is employed

(i.e. dividing by the sum of the non-normalised probabilities)
then LogOp is shown to satisfy this property.

ProdOp, a special case of LogOp, has been proposed as an
effective tool for classifier combination [Hinton, 1999] and
also for expert pooling in the management sciences [Bordley,
1982]. Other applications include natural language process-
ing [Osborne and Baldridge, 2004].

An outline of the remainder of the paper is as follows.
Section 2 will consider a Bayesian interpretation for LogOp
under certain assumptions including agent independence. In
section 3 we consider the combination of pooling and direct
evidence and in particular, we introduce the properties of ev-
idence preservation, amplification and dilution as means of
classifying the extent to which the pooling process propagates
evidence. In section 4 we present simulation experiments into
the convergence properties of SProdOp for different values of
w and k, and at different evidence rates. Finally, in section 5
we give some discussions and conclusions.

2 A Bayesian Interpretation of Opinion
Pooling

In this section we consider pooling as being a type of condi-
tioning based on second order evidence in the form of agents’
beliefs. For this we adopt a Bayesian approach and show that
it provides clear justifications for LogOp. In this context we
introduce the notion of an oracle as an arbitrator who per-
forms Bayesian updating given the probabilities from all k
agents in the pool.

Given a pool of k agents suppose that the aggregated prob-
ability corresponds to the conditional probability ofH1 of an
‘oracle’ O, given the evidence provided by the probabilities
of the agents in the pool. Here the oracle is an abstract entity
which we might choose to interpret in a number of differ-
ent ways. For instance, O might be a kind of independent
arbitrator tasked with identifying a single shared probability
which takes account of the beliefs of the other agents. Al-
ternatively, we could think of O as an aggregate representa-
tion of the whole pool. The idea of opinion pooling as based
on the judgement of an oracle is well-known, with [Hogarth,
1975] and [Keeney and Raiffa, 1976] referring toO as a ‘syn-
thetic personality’ and a ‘supra Bayesian’ respectively. Fur-
thermore, early work by [Winkler, 1968] and [Morris, 1974]
shows that from a Bayesian perspective, the pooling opera-
tor c can then be understood to be O’s posterior distribution
determined along the following lines. Suppose that O has a
prior probability of H1, denoted PO(H1), then this is condi-
tioned on the evidence B =

∧k
i=1(PAi

(H1) = xi) represent-
ing the beliefs of the k agents, according to Bayes’ theorem
as follows;

c(x1, . . . , xk) = PO(H1|B)

=
PO(B|H1)PO(H1)

PO(B|H1)PO(H1) + PO(B|H2)PO(H2)
.

We now consider two assumptions that O might make con-
cerning the distribution of PAi

(H1) for i = 1, . . . , k.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

348



Definition 2.1 (Likelihood Symmetry): ∀xi,
PO(

∧k
i=1(PAi(H1) = xi)|H2) =

PO(
k∧

i=1

(PAi
(H1) = 1− xi)|H1).

This assumes that learning H1 holds provides O with the
same information about the agents’ probabilities of H2 as
learningH2 holds provides about their probabilities ofH1.
Definition 2.2 (Independent Agents): The agentsA1, . . . , Ak

are independent if ∀xi,
PO(

∧k
i=1(PAi

(H1) = xi)|Hj) =

k∏
i=1

PO(PAi
(H1) = xi|Hj).

The agents are deemed to be independent if the random
variables PA1

(H1), . . . , PAk
(H1) are conditionally indepen-

dent of each other given eitherH1 orH2.
In the following theorem we consider the situation in which

given H1, O considers each agents’ probability to be dis-
tributed according to a Beta distribution with parameter val-
ues ai and bi for i = 1, . . . , k.
Theorem 2.1. If given H1, ∀i, PAi

(H1) has a Beta distri-
bution with parameters ai and bi where ai ≥ bi so that
PO(PAi(H1) = xi|H1) ∝ xai−1

i (1 − xi)
bi−1, and if we

assume likelihood symmetry, independent agents and that
PO(H1) = 0.5 then c is LogOp with wi = ai − bi for
i = 1, . . . , n.

Proof. By independence and assuming

PO(PAi
(H1) = xi|H1) ∝ xai−1

i (1− xi)bi−1,

it follows that;

PO(B|H1) ∝
k∏

i=1

xai−1
i (1− xi)bi−1.

Also, by independence and likelihood symmetry it holds that;

PO(B|H2) ∝
k∏

i=1

(1− xi)ai−1xbi−1i .

Hence, since PO(H1) =
1
2 then substituting into Bayes’ the-

orem gives,
PO(H1|B) = ∏k

i=1 x
ai−1
i (1− xi)bi−1∏k

i=1 x
ai−1
i (1− xi)bi−1 +

∏k
i=1(1− xi)ai−1xbi−1i

.

Dividing top and bottom by
∏k

i=1 x
bi−1
i (1− xi)bi−1 gives

PO(H1|B) = ∏k
i=1 x

ai−bi
i∏k

i=1 x
ai−bi
i +

∏k
i=1(1− xi)ai−bi

,

as required.

For a Beta distribution with parameters ai ≥ bi the skew-
ness value is negative. This means that the conditional prob-
ability density for PAi

(H1) given H1 is skewed towards 1.

xi

de
ns

ity

wi = 1

wi = 5

wi = 10

Figure 1: Beta distributions for PO(PAi(H1) = xi|H1) for a fixed
bi and increasing wi exhibiting increasing skewness towards 1. The
density functions shown are for bi = 2 and wi = 1, 5 and 10.

Furthermore, the skewness can be expressed as a function of
wi = ai − bi and bi, which for any fixed bi is a strictly de-
creasing function of wi. Hence, in this case as wi increases
the distribution of PAi(H1) becomes increasingly skewed to-
wards 1. Negative skewness and hence wi, in this context, is
arguably an indicator of the capability of Ai when predicting
which hypothesis holds, since ifH1 is true then we would ex-
pect that the probability PAi

(H1) of a capable agent would
tend to be close to 1 (see figure 1).

In the next section we consider the combination of proba-
bility pooling with evidential updating on the basis of direct
evidence e.g. from sensors or other sources, either obtained
passively or through exploration and experimentation.

3 Combining Pooling Operators with Direct
Evidence

Direct evidence is assumed to correspond to an assertion that
one of the hypotheses holds i.e. evidence E is a variable tak-
ing value H1 or H2. An agent then updates their probability
ofH1 from x to x|E using Bayes’ theorem as follows:
Definition 3.1 (Evidential Updating): For x ∈ [0, 1], E ∈
{H1,H2} and α ∈ [0, 12 ], then x|E ∈ [0, 1] such that;

x|E =
δEx

δEx+ (1− δE)(1− x)
,

where δH1
= 1− α and δH2

= α.
The rationale behind definition 3.1 is that, according to

Bayes’ theorem, an agent with prior probability x should up-
date their beliefs given evidence E such that;

x|E = P (H1|E)

=
P (E|H1)P (H1)

P (E|H1)P (H1) + P (E|H2)P (H2)

=
P (E|H1)x

P (E|H1)x+ P (E|H2)(1− x)
.

We then make the further assumption that the likelihood of E
is given by:

P (E|Hi) =

{
1− α : E = Hi,

α : E 6= Hi.
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Here α quantifies the (agent’s belief about the) reliability of
the source of the evidence. For α = 0 the source is absolutely
reliable and will only provide E if and only if E is true. For
α = 0.5 the source is totally unreliable and is just as likely
to provide E if it is false as if it is true. Notice that when
α = 0.5, x|E = x. This seems to be intuitive since if an
agent has absolutely no faith in a source of evidence, they
should not change their beliefs on the basis of evidence that it
provides. Notice in the case that α = 0, then 1|H2 and 0|H1

are undefined.
We now introduce three possible properties concerning the

extent to which existing direct evidence is propagated through
the pooling process. In each case only probabilities in the
open interval (0, 1) are considered so as to avoid any cases in
which conditional probabilities (definition 3.1) are undefined.

Definition 3.2 (Evidence Preservation): [Dietrich et al.,
2016] For E ∈ {H1,H2}, ∀xi ∈ (0, 1) : i = 1, . . . , k,
∀i ∈ {1, . . . , k}, ∀α ∈ [0, 12 ];
c(x1, . . . , xi−1, xi|E, xi+1, . . . , xk) =
c(x1, . . . , xi, . . . , xk)|E.

Definition 3.3 (Evidence Dilution): ∀xi ∈ (0, 1) : i =
1, . . . , k, ∀i ∈ {1, . . . , k}, ∀α ∈ [0, 12 );
c(x1, . . . , xi−1, xi|H1, xi+1, . . . , xk) ≤
c(x1, . . . , xi, . . . , xk)|H1 and
c(x1, . . . , xi−1, xi|H2, xi+1, . . . , xk) ≥
c(x1, . . . , xi, . . . , xk)|H2.
Furthermore, there exists (x1, . . . , xk) ∈ (0, 1)k such that the
above inequalities are strict.

Definition 3.4 (Evidence Amplification): ∀xi ∈ (0, 1) : i =
1, . . . , k, ∀i ∈ {1, . . . , k}, ∀α ∈ [0, 12 );
c(x1, . . . , xi−1, xi|H1, xi+1, . . . , xk) ≥
c(x1, . . . , xi, . . . , xk)|H1 and
c(x1, . . . , xi−1, xi|H2, xi+1, . . . , xk) ≤
c(x1, . . . , xi, . . . , xk)|H2.
Furthermore, there exists (x1, . . . , xk) ∈ (0, 1)k such that the
above inequalities are strict.

Evidence preservation was recently proposed by Dietrich
and List [Dietrich et al., 2016] who refer to it as ‘Individual
Bayesianism’. It requires that if a single agent receives evi-
dence then that evidence is preserved by the pooling process.
More specifically, it should make no difference whether the
evidence is presented to any one of the agents prior to pool-
ing or if it is presented after pooling. This property could
be appropriate if different agents receive evidence from in-
dependent sources. To see this notice that for an evidence
preserving operator;

c(x1|E, . . . , xk|E) = c(x1, . . . , xk)|E . . . |E.

In other words, if each agent receives the same evidence this
has a strong reinforcement effect on the pooled probabilities.
The evidence dilution and amplification properties then claim
that pooling should respectively dilute or amplify the effect of
evidence presented to any one of the agents. We now consider
evidence dilution, preservation and amplification in detail so
as to obtain an insight into the evidence propagation proper-
ties of the pooling operators introduced in section 1. Indeed,
the following theorem due to [Dietrich et al., 2016] shows

that evidence preservation is a sufficiently strong property to
characterise ProdOp.
Theorem 3.1. [Dietrich et al., 2016] A pooling operator c
satisfies evidence preservation and c(0.5, . . . , 0.5) = 0.5
if and only if ∀xi ∈ (0, 1) : i = 1, . . . , k, c is ProdOp.

We now extend this result to show that SProdOp is evi-
dence diluting, preserving or amplifying depending only on
the value of the parameter w. In section 4 we will use this
property of SProdOp to investigate optimal levels of evidence
propagation for varying evidence rates.
Theorem 3.2. SProdOp is evidence diluting if w < 1, evi-
dence preserving if w = 1 and evidence amplifying if w > 1.

Proof. W.l.o.g let E = H1. Then for the scaled product op-
erator we have that;
c(x1, . . . , xi|E, . . . , xk) =

(xi|E)
w
(∏

j 6=i xj

)w
(xi|E)

w
(∏

j 6=i xj

)w
+ (1− xi|E)

w
(∏

j 6=i(1− xj)
)w

=
(1− α)w

(∏k
j=1 xj

)w
(1− α)w

(∏k
j=1 xj

)w
+ αw

(∏k
j=1(1− xj)

)w .
Also,
c(x1, . . . , xk)|E =

(1− α)c(x1, . . . , xk)
(1− α)c(x1, . . . , xk) + α (1− c(x1, . . . , xk))

=
(1− α)

(∏k
j=1 xj

)w
(1− α)

(∏k
j=1 xj

)w
+ α

(∏k
j=1(1− xj)

)w .
For evidence dilution we require that for some (x1, . . . , xk) ∈
(0, 1)k, c(x1, . . . , xi|E, . . . , xk) < c(x1, . . . , xk)|E. From
the above this implies that;

(1− α)w−1

(1− α)w
(∏k

j=1 xj

)w
+ αw

(∏k
j=1(1− xj)

)w
<

1

(1− α)
(∏k

j=1 xj

)w
+ α

(∏k
j=1(1− xj)

)w ⇒
(1− α)w−1

(1− α)
 k∏

j=1

xj

w

+ α

 k∏
j=1

(1− xj)

w
< (1− α)w

 k∏
j=1

xj

w

+ αw

 k∏
j=1

(1− xj)

w

⇒

(1− α)w−1α

 k∏
j=1

(1− xj)

w

< αw

 k∏
j=1

(1− xj)

w

⇒ (1− α)w−1α < αw ⇒ (1− α)w−1 < αw−1.

Now α < 1
2 ⇒ 1−α > α⇒ (1−α)w−1 < αw−1 if and only

if w − 1 < 0 if and only if w < 1. Similarly, for evidence
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Figure 2: Plot of average time to consensus against w for k = 3 and
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Figure 3: c(x, x, x) as function of x for SProdOp with w = 0.01,
w = 0.337, w = 1.025 and w = 10.

amplification we require that c(x1, . . . , xi|E, . . . , xk) >
c(x1, . . . , xk)|E which then holds if and only if w > 1.
Finally, taking w = 1 corresponds to the product operator
which is evidence preserving by theorem 3.1.

4 Experimental Results
In this section we describe simulation experiments exploring
the consensus attainment properties of SProdOp when imple-
mented in a multi-agent system. The aim of these experi-
ments is to investigate SProdOp using different values of w
in order to better understand the system-level behaviour of
evidence diluting, preserving and amplifying operators.

A population of 100 agents is initialised with probabilities
of H1 randomly chosen from [0, 1]. At each iteration, the
population is permuted to emulate movement, this approach
being consistent with the well-stirred assumption as described
in [Parker and Zhang, 2009]. A pool of k agents are then
chosen at random from the population. Their probabilities
are combined using SProdOp with each agent then adopting
the resulting pooled probability. In addition to pooling, every
agent also has a probability ε of directly receiving the evi-
dence E = H1, in which case they use Bayesian updating to
obtain a posterior probability as given in definition 3.1. We
take α = 0.1 indicating that agents have a high-level of trust
in the sources of direct evidence, but which falls short of ab-
solute confidence. In multi-agent systems or robot swarms we
might envisage this set-up as modelling a scenario in which
agents explore their environment and receive direct sensory

evidence from time-to-time. Subsets of the population would
then also regularly come together to pool their beliefs. This
is a common formulation for the best-of-n problem in swarm
robotics, in which the population must identify the true hy-
pothesis in a distributed manner [Valentini et al., 2017].

We judge that consensus has been reached in a simulation
experiment if 90% of the agents in the population have a prob-
ability for H1 greater than 0.9, in which case the simulation
is terminated and the time to consensus recorded. In the case
that consensus is not reached then a simulation is automat-
ically terminated after 10, 000 iterations, which is for prac-
tical purposes then recorded as the consensus time. In this
context, failure to reach consensus can occur for a number
of reasons. This includes polarisation in which a subset of
the population converges to a probability close to 1, while the
remaining agents converge to a probability close to 0. How-
ever, it also includes the possibility that all agents converge
on a probability close to 0.5. Although, there is agreement
about the probability ofH1 in this case, there is clearly a fail-
ure to effectively propagate the direct evidence thatH1 holds
provided to individual agents. In the following, for each set
of parameter values, 100 independent runs of the simulation
were carried out. Results are averaged over those 100 runs.

We compare the time to consensus for a combination of
pooling and updating with that for evidential updating alone,
across a range of values for ε, k and w. For all values of k
and ε we find that there is an interval of values of w in which
the combination of pooling & updating outperforms updating
alone. Figure 2 illustrates this, showing the average time to
consensus plotted against w for k = 3 and ε = 2%. The
solid line is the consensus time for pooling & updating, while
the dotted horizontal line is the consensus time for updating
alone. The interval in which the solid line lies below the dot-
ted line, therefore identifies the range of w values for which
pooling provides some additional advantage when used in ad-
dition to updating from direct evidence. The characteristic
shape of these curves suggests a number of metrics which
may provide insight into the evidence propagation properties
of SProdOp. We take gain to be the maximum gain in con-
vergence time resulting from using pooling in addition to up-
dating. Robustness corresponds to the length of the interval
of w values for which pooling provides some benefit. This
gives us an indication of the sensitivity of the choice of w for
a particular combination of k and ε values. We also identify
the optimal value of w, denoted w∗, resulting in the shortest
time to consensus. Taken in conjunction with theorem 3.2 this
quantifies the extent to which the optimal form of SProdOp
should be evidence diluting, preserving or amplifying.

Figure 4 shows gain, w∗ and robustness plotted against k
and ε. Figure 4a suggests that there is an optimal value of k
for any given evidence rate ε, and that for larger k values per-
formance then declines. As might be expected gain decreases
as the evidence rate increases for all k values, since for higher
evidence rates updating from direct evidence dominates (see
figure 4d). It should also be noted that for higher values of
k there is increased sensitivity concerning the choice of w,
with a narrower interval of values in which pooling & updat-
ing outperforms updating only. This can be seen in figure 4c
in which robustness decreases with k. Robustness tends to in-
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(a) Gain plotted against k (b) w∗ plotted against k (c) Robustness plotted against k

(d) Gain plotted against ε (e) w∗ plotted against ε (f) Robustness plotted against ε

Figure 4: Gain, robustness and w∗ plotted for a number of different values of k and ε.

crease with evidence rate (figure 4f), although this is against
a backdrop of decreasing gain. Balancing between gain and
robustness, figures 4a and 4c would seem to provide a case
for smaller pool sizes.

From figure 4b we can see thatw∗ decreases with k, so that
the larger the size of the pool the more diluting the operator
should be. In contrast w∗ tends to increase with ε, although
this increase levels off for higher evidence rates (see figure
4e). In general, all w∗ values identified lie in the range (0, 1]
withw∗ = 1 only for k = 2 and evidence rates greater than or
equal to 4%. Hence, the results suggest that evidence diluting
operators may be optimal for evidence propagation particu-
larly when evidence rates are relatively low. Furthermore, for
higher values of ε the gain from pooling is lower (figure 4d).

The variation of consensus time with w, as illustrated by
figure 2, suggests that consensus is not achieved either for
very low (close to 0) or for very high parameter values. For
low evidence rates the system dynamics are significantly in-
fluenced by the properties of the pooling operator.We can gain
insight into this by considering the fixed points of SProdOp
i.e. those values of x for which c(x, . . . , x) = x. For
SProdOp with w > 0, the only fixed points are at x = 0,
x = 0.5 and x = 1. For w ≥ 1

k only 0 and 1 are stable fixed
points and 0.5 is unstable. For w < 1

k all three fixed points
are stable. Furthermore, as w tends to 0, SProdOp tends to
a uniform value of 0.5, while as w tends to infinity SProdOp
tends to a step function. This is illustrated in figure 3, which
shows c(x, x, x) for several values of w. From this we might
hypothesise that for very high values of w, where SProdOp is
extremely evidence amplifying, the population will quickly
polarise with some holding probability 0 and others proba-

bility 1. On the other hand, for very low values of w, where
SProdOp is extremely evidence diluting, we would expect the
population to quickly converge on a shared probability of 0.5.

5 Conclusions
In this paper we have investigated the relationship between
direct evidential updating and probability pooling in multi-
agent systems. We have presented a Bayesian interpretation
of LogOp which considers pooling to be a form of second or-
der updating where the weight wi quantifies the competency
of the agent Ai by influencing the skew of an oracles’ distri-
bution on PAi(H1) (theorem 2.1). We have then introduced
the properties of evidence dilution, preservation and ampli-
fication as a way of gauging the evidence propagation prop-
erties of pooling operators. Furthermore, in this context we
have shown that SProdOP is either diluting, preserving or am-
plifying depending only on the weight parameter w (theorem
3.2). This then provides a single parameter for varying the de-
gree of evidence propagation of an operator, which we have
then studied in detailed simulation experiments.

The simulation experiments presented in section 4 suggest
that probability pooling using an appropriate operator can sig-
nificantly improve the propagation of direct evidence across
an agent population. As is to be expected this improvement is
greatest for relatively low evidence rates. Results suggest that
there is an optimal pool size k for any given evidence rate, but
as k increases robustness decreases, implying that it is more
difficult to identify a suitable value of w. For example, in the
experiments in section 4, the optimal value of k is approxi-
mately 7 for all of the error rates investigated. However, for
k = 7 robustness is relatively low i.e. between 0.1 and 0.3.
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Hence, when taking account of both gain and robustness, our
results suggest that lower values of k are preferable.

For all the error rates considered, the optimal value of w
is between 0 and 1 and hence evidence diluting operators are
more effective at evidence propagation for the type of agent-
based system considered. This is partly due to the fact that
SProdOp with large w tends towards a step function (figure
3), resulting in too fast convergence to either 0 or 1. In accor-
dance with theorem 2.1, this corresponds to an assumption
that agents are only moderately competent, since assuming
higher levels of competence does not allow sufficient time
for the population to take account of direct evidence before
reaching an agreed belief.

Future work will attempt to generalise the results presented
from two to multiple hypothesis i.e. to where opinions are
probability distributions over H1, . . . ,Hn for n ≥ 2. In
this case, pooling operators are functions defined on a carte-
sian product of k (n− 1)-dimensional probability simplexes.
Furthermore, more detailed analytical studies should be con-
ducted into the underlying dynamics of agent-based systems
which combine both pooling and updating. This should then
provide more insight into the simulation results described in
section 4. We will also consider other operators such as lin-
ear pooling. Furthermore, we will consider non-Bayesian
approaches such as imprecise probabilities and Dempster-
Shafer theory.
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