Street map analysis with excitable chemical medium

Andrew Adamatzky,∗ Neil Phillips,† Roshan Weerasekera,‡ and Michail-Antisthenis Tsompanas§
Unconventional Computing Laboratory, University of the West of England, Bristol, UK

Georgios Ch. Sirakoulis¶
Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece

Belousov-Zhabotinsky (BZ) thin layer solution is a fruitful substrate for designing unconventional computing devices. A range of logical circuits, wet electronic devices, and neuromorphic prototypes have been constructed. Information processing in BZ computing devices is based on interaction of oxidation (excitation) wave fronts. Dynamics of the wave fronts propagation is programmed by geometrical constraining and interaction of colliding wave fronts is tuned by illumination. We apply the principles of BZ computing to explore a geometry of street networks. We use two-variable Oregonator equations, the most widely accepted and verified in laboratory experiments model of BZ, to study propagation of excitation wave fronts for a range of excitationability parameters, gradual transition from excitable to sub-excitable to non-excitable. We demonstrate a pruning strategy adopted by the medium with decreasing excitability when wider and ballistically appropriate streets are selected. We explain mechanics of streets selection and pruning. The results of the paper will be used in future studies of studying dynamics of cities and characterising geometry of street networks.

I. INTRODUCTION

Cities are often seen as spatially extended non-linear systems in terms of their space-time dynamics of vehicular and pedestrian traffic: cities grow similarly to diffusion-limited aggregation, breath and pulsate [11, 14, 15, 25, 38, 55]. Social and physical processes — waves of traffic jams [41, 45–47, 51, 52, 64, 65], and excitation, contagion and diffusion of riots [16, 50] — emerging on city streets often resemble excitation waves in chemical media [42, 72]. To advance this analogy we consider that city streets are filled with excitable chemical system — the Belousov-Zhabotinsky medium [13, 78] and study space-time dynamics of traversing the street network with oxidation wave-fronts for a range of light-controlled excitability parameters.

A thin-layer BZ medium shows rich dynamics of excitation waves, including target waves, spiral waves and localised wave-fragments and their combinations. A substantial number of theoretical and experimental laboratory prototypes of computing devices made of BZ medium has been reported in the last thirty years. Most interesting include logical gates implemented in geometrically constrained BZ medium [57, 58], memory in BZ micro-emulsion [43], information coding with frequency of oscillations [28], chemical diodes [40], neuromorphic architectures [26, 30, 32, 61, 69], associative memory [62, 63], wave-based counters [29], evolving logical gates [70] and binary arithmetic circuits [19, 33, 66, 67, 79]. By controlling BZ medium excitability we can produce related analogs of dendritic trees [69], polymorphic logical gates [3] and logical circuits [60]. Light sensitive modification, with Ru(bpy)²⁺ as catalyst, allows for manipulation of the medium excitability, and subsequent modification of geometry of excitation wave fronts [17, 44, 49]. A light-sensitive BZ medium allows for optical inputs of information as parallel inputs in massive parallel processors. The medium can be also constrained geometrically in networks of conductive channels, thus allowing for a directed routing of signals.

We simulate light-sensitive BZ medium using two-variable Oregonator model [22] adapted to a light-sensitive Belousov-Zhabotinsky (BZ) reaction with applied illumination [12].

The Oregonator equations in non-linear chemistry is as important as, and phenomenologically equivalent to, Hodgkin-Huxley [39] and FitzHugh-Nagumo [24, 53] equations in neurophysiology, Brusselator [31] in thermodynamics, Meinhardt-Gierer [27] in biology, Lotka-Volterra [48, 76] in ecology, and Fisher equation in genetics [23]. The Oregonator equations are proven to adequately reflect behaviour of real BZ media in laboratory conditions, including triggers of excitation waves in 3D [10], phenomenology of excitation patterns in a medium with global negative feedback [73], controlling excitation with direct current fields [56], dispersion of periodic waves [21], 3D scroll waves [77], excitation spiral breakup [68]. Authors of present paper employed the Oregonator model as a virtual test bed in designing BZ medium based computing devices which were implemented experimentally [4, 6, 20, 60, 70, 71]. Therefore the Oregonator model is proven to be an adequate computational substitute of laboratory experiments.

Approximation of shortest path, also in the context of maze solving problem, with BZ was studied experimentally in [9, 54, 59], approximation of distance fields

∗ andrew.adamatzky@uwe.ac.uk
† neil.phillips@uwe.ac.uk
‡ Roshan.Weerasekera@uwe.ac.uk
§ antisthenis.tsompanas@uwe.ac.uk
¶ gsirak@ee.duth.gr
used in robot navigation [5], and partly applied in on-
board controllers for robots [7, 74]. All previous theoret-
ical and experimental works on space-exploration with
BZ medium dealt with the medium in excitable model.
When exploring a geometrically constrained space filled
with excitable BZ medium excitation wave fronts typ-
ically propagate in all directions, exploring all possi-
bile channels, as a flood fills. Excitation waves in sub-
excitable medium behave sometimes as localised pat-
terns, quasi-dissipative solitons, and, thus, they might
not explore all space available [1, 20, 37].

The paper is structured as follows. We introduce
Oregonator model of a light-sensitive BZ reaction and
other components of modelling in Sect. II. We exemplify
and discuss spatial dynamics of excitation on London
streets template in Sect. III. We uncover mechanisms of
streets spanning by wave of excitation and analyses bal-
listic properties of wave-fragments in sub-excitable BZ
medium in Sect. IV. We discuss outcomes of the studies
in Sect. V.

II. METHODS

A fragment of London street map (map data ©2018
Google) approximately 2 km by 2 km, centred around
London Bridge, was mapped onto a grid of 2205 by 2183
nodes (Fig. 1). Nodes of the grid corresponding to streets
are considered to be filled with Belousov-Zhabotinsky
medium, i.e. excitable nodes, other nodes are non-
excitable (Dirichlet boundary conditions, where value of
variables are fixed zero). We use two-variable Oregona-
tor equations [22] adapted to a light-sensitive Belousov-
Zhabotinsky (BZ) reaction with applied illumination [12]:

\[
\frac{\partial u}{\partial t} = \frac{1}{\epsilon} (u - u^2 - (fv + \phi) \frac{u - q}{u + q}) + D_u \nabla^2 u \\
\frac{\partial v}{\partial t} = u - v
\]

(1)

The variables \(u\) and \(v\) represent local concentrations of
an activator, or an excitatory component of BZ system,
and an inhibitor, or a refractory component. Parameter \(\epsilon\) sets up a ratio of time scale of variables \(u\) and
\(v\), \(q\) is a scaling parameter depending on rates of acti-
vation/propagation and inhibition, \(f\) is a stoichiometric
coefficient. Constant \(\phi\) is a rate of inhibitor production.
In a light-sensitive BZ \(\phi\) represents the rate of inhibitor
production proportional to intensity of illumination. The
parameter \(\phi\) characterises excitability of the simulated
medium. The larger \(\phi\) the less excitable medium is. We
integrated the system using Euler method with five-node
Laplace operator, time step \(\Delta t = 0.001\) and grid point
spacing \(\Delta x = 0.25\), \(\epsilon = 0.02\), \(f = 1.4\), \(q = 0.002\). We
varied value of \(\phi\) from the interval \(\Phi = [0.05, 0.08]\). The
model has been verified by us in experimental labora-
tory studies of BZ system, and the sufficiently satisfac-
tory match between the model and the experiments was
demonstrated in [4, 6, 20, 71]. To generate excitation
wave-fragments we perturb the medium by a square solid
domains of excitation, \(20 \times 20\) sites in state \(u = 1.0\). Time
lapse snapshots provided in the paper were recorded at
every 150th time step, we display sites with \(u > 0.04\);
videos supplementing figures were produced by saving a
frame of the simulation every 50th step of numerical inte-
gration and assembling them in the video with play rate
30 fps. All figures in this paper show time lapsed snap-
shots of waves, initiated just once from a single source of stimulation; these are not trains of waves following each other.

III. DYNAMICS OF EXCITATION

Excitable medium with values of ϕ from lower end of interval Φ exhibit excitation waves propagating along all streets, independently on their width, and passes junction where streets join each at various angles (Fig. 2a). The excitation disappears when all waves reach boundaries of the map. Integral dynamics of excitation is characterised by a sharp increase in a number of excited nodes followed by abrupt disappearance of the excitation when all wave fronts leave the lattice (e.g. Fig. 3, $\phi = 0.052$).

With increase of ϕ to the middle of Φ we observe repeated propagation of excitation wave fronts along some parts of the map. Paths of the streets where excitation cycles are seen as having higher density of wave-fronts in (Fig. 2b). Two peaks in the excitation activity seen in the plot $\phi = 0.065$ (Fig. 3) are due to a combination of two factors: structure of the street network and cycles of excitation emerged. The street map graph consists of Northern and Southern parts connected by few bridges over Thames. The medium is excited in its northern-most part domain of the map (Fig. 1). Therefore, by the time excitation wave fronts cross bridges into the Southern part the excitation propagates along all streets in the Northern part and disappear across the borders of the integration grid. When excitation in the Northern part disappears, just after 20,000th step of integration, we observe sudden drop in the number of excited nodes. The streets in the Southern part are then getting excited.

Value $\phi = 0.064$ is the highest for which all streets are covered by excitation wave fronts (Fig. 4). For $\phi = 0.075$ excitation waves propagate only along major streets (Fig. 2c). And just few of the major streets are selected by excitation for $\phi = 0.078$ (Fig. 2d). Due to excitation following only selected paths an overall time the medium stays excited becomes substantial, up to 100k of iterations (Fig. 3).

Spatial coverage of street networks by excitation wave fronts for various values of ϕ is decreasing with the decrease of the medium’s excitability (increase of ϕ), as illustrated in Fig. 5. Looking at Fig. 5 one might think that by decreasing excitability we prune the street network by selecting only widest streets. This is partly but not always true. The explanations are in the next section.

IV. MECHANICS OF EXPLORATION

Dynamical regimes of BZ medium can be subdivided to excitable $\phi < 0.064$, sub-excitable $0.064 \leq \phi < 0.08$ and non-excitable $0.08 \leq \phi$. In excitable mode a perturbation leads to formation of circular wave fronts (Fig. 6a) which propagates in all directions. If streets are filled with excitable medium then, independently on a site of initial perturbation excitation travels to all streets. In a sub-excitable medium we can observe three regimes of the medium response to asymmetric perturbation: expanding wave fronts, $0.0766 \leq \phi \leq 0.076690$ (Fig. 6b), shape preserving wave fronts,$0.076691 \leq \phi \leq 0.076698$ (Fig. 6c) and collapsing wave fronts, $0.076691 \leq \phi \leq 0.076699$ (Fig. 6d).

Proposition 1. A coverage of a street network by an excitation originated in an arbitrary point of the street network filled with BZ medium with $0.076 \leq \phi \geq 0.079$ is proportional to a ratio of junctions with street branching at acute angles met by propagating wave fronts.

Formal proof of this proposition will be scope of future studies. Here we consider constructive support of the statement. All three types of sub-excitable waves propagate alike at the initial stages of their evolution: they preserve their shape and velocity vector. When such waves collide into non-excitable object they do not reflect but partly annihilate. If — depending on an angle of collision — some part of the wave front did not come in contact with non-excitable object it might restore its shape, especially if the medium is in the expanding wave mode, and continue its propagation. Shape preservation and ballistic propagation of wave-fragments in sub-excitable medium for higher values of ϕ ($\phi \geq 0.076$) prevent excitation from entering site streets. Chances that a wave-front enters a side street are proportional to angle between wave-front velocity vector and a vector from the main street to the side street. This is illustrated in Fig. 7. Coverage versus ϕ plots for street network Fig.1 and test structure Fig. 7 are shown in Fig. 8. Linear fits of the plots are as follow: coverage$_{street} = -63.994 \cdot \phi + 5.4507$ and coverage$_{test} = -187.5 \cdot \phi + 14.713$. The test structure Fig. 7 has equal numbers of junctions with acute and obtuse angles. Absolute value of the slope of coverage$_{street}$ is lower than that of the slope of coverage$_{test}$. This might indicate that an excitation wave fronts propagating from the chosen site of perturbation (labelled by ‘s’ in Fig.1) encounter more junctions with acute angles. Indeed, we could expect different slop of a coverage for another site of initial perturbation, that would be a matter of further studies.

A network of channels filled with BZ medium is commutative if the following condition takes place: if excitation wave front originated by a perturbation of site a reaches site b then excitation wave front originated by a perturbation of site b reaches site a. If BZ medium is in its excitable mode then the network is commutative. To check if the same holds for sub-excitable BZ medium we constructed a template of three channels shown in Fig. 9. We found that the template is commutative. A graph of reachability though is pruned with increase of ϕ. The graph (Fig. 9e) is fully connected in excitable medium, $\phi = 0.06$ (Fig. 9a–d), tree (Fig. 9j) is obtained for $\phi = 0.0767$ (Fig. 9f–i), chain and one isolated node
FIG. 2. Propagation of excitation on the street map. These are time lapsed snapshots of a single wave-fragment recorded every 150th step of numerical integration. Values of ϕ are shown in captions.

FIG. 3. Integral dynamics of excitation calculated as a number of grid nodes with $u > 0.1$ at each time step of integration. The dynamics is shown for the media with $\phi = 0.052, 0.062, 0.065, 0.07, 0.075$. The dynamics is show till the moments when excitation waves disappear or all streets got covered, whichever occurs earlier.

FIG. 4. Coverage of the street network by excitation waves for $\phi \in \Phi$. A value of coverage is calculated as a ratio of nodes, representing streets, excited ($u > 0.1$) at least once during the medium’s evolution to a total number of nodes representing streets. Values of coverage are displayed by circles for ϕ increasing from 0.05 with increment 0.001.
Figure 6: Types of waves. All site of the medium are conducive for excitation. (a) Classical wave in an excitable medium, $\phi = 0.05$. (bed) Behaviour of an initially asymmetric excitation in BZ medium for different levels of excitability. (b) Expanding wave-fragment, $\phi = 0.076690$. (c) Shape preserving wave-fragment, $\phi = 0.076691$. (d) Collapsing wave-fragment, $\phi = 0.076699$. These are time lapsed snapshots of a single wave-fragment recorded every 150th step of numerical integration.

(Fig. 9o) for $\phi = 0.078$ (Fig. 9k–n), a single edge and two isolated nodes (Fig. 9t) is the result for $\phi = 0.079$ (Fig. 9p–s). There is always a chance that we missed some configuration of channels which demonstrates non-commutativity for some values ϕ.

V. DISCUSSION

Using numerical integration of Oregonator model of Belousov-Zhabotinsky medium in a fragment of London street network we demonstrated that (1) coverage of the network is proportional to excitability of the medium, (2) cycling patterns of excitation are only possible in sub-excitible regime of the medium, (3) wave-fragments in sub-excitible network propagate ballistically, (4) coverage of the street network by excitation in a medium with a given value ϕ is proportional to a ratio of junctions with streets branching out at acute angle to junctions with streets branching out at obtuse angles, (5) reachability by excitation wave-fronts is commutative.

Excitation wave fragments propagate ballistically. Close analogies could be a crowd charging along the streets or fluid jet streams propagating along the streets. To evaluate the analogy with a fluid flow we simulate jet streams entering streets from the Western edge of the street map domain and leaving in all other edges. We compared the dynamics of fluid flow with dynamics of excitation waves initiated at the Western edge of the integration grid. There is nearly a perfect match between fluid flow for Reynolds number $Re = 1000$ (Fig. 10a) and sub-excitible medium with $\phi = 0.0767$ (Fig. 10c), with just one street (top of the north-west quadrant) cov-
FIG. 7. Wave propagation to side channel depends on medium’s excitability (a)-(j) Excitation is initiated at the West top of the vertical channel. Side channels join the vertical channel at angles $\alpha = 20^\circ$ to 160° with increment 10°. These are time lapsed snapshots of a single wave-fragment recorded every 150^{th} step of numerical integration. Values of ϕ are shown in captions. (k) Minimal angles α of side channels occupied by excitation waves for $\phi = 0.074$ with increment 0.0005. Cubic fit $\alpha = (-720792) + 2.8017 \cdot 10^7 \cdot \phi + (-3.6312 \cdot 10^8) \cdot \phi^2 + 1.5695 \cdot 10^9 \cdot \phi^3$ is shown by line.

Considered by the jet stream and not covered by excitation wave. Increase of Reynolds number leads to the effect of street pruning as occurs with increase of ϕ (Fig. 10b, d), however the coverage of streets by excitation waves is substantially different from that by fluid flow: the only match in the two streets in the south-west quadrant where flow is disrupted by turbulence (blue coloured in Fig. 10b) and no excitation is travelling the same streets (Fig. 10d).

Ballistic behaviour of the excitation-wave fragments is somewhat similar to a herding behaviour of crowds observed during various scenarios of evacuation, especially when stress is involved [18, 34, 75, 80]. The herding behaviour might lead to situations, when panic stricken crowd traps itself in potentially dangerous domains of the space [35, 36]. Exploring geometries with sub-excitable
[18] Martin Burger, Peter Markowich, and Jan-Frieder Pietschmann. Continuous limit of a crowd motion with increement 20

[45] Jorge A Laval and Ludovic Leclercq. A mechanism to

[56] Hana Ševíková, Igor Schreiber, and Miloš Marek. Dynamics of oxidation Belousov-Zhabotinsky waves in an electric field. The Journal of Physical Chemistry,

