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Abstract 

Organic matter (OM) is ubiquitous to all aquatic environments and plays an essential 

role in global biogeochemical cycles and transportation of organic carbon throughout 

the hydrological continuum. Excitation-emission matrix (EEM) fluorescence 

spectroscopy has been used to characterise naturally occurring aquatic fluorescent OM 

(AFOM), classifying this AFOM as either humic-like, derived from terrestrial sources, or 

protein-like, of microbial origin. The research here explores in situ bacterial-OM 

interactions and AFOM evolution over time by employing fluorescence techniques, both 

within a freshwater body and by developing laboratory model systems. 

Protein-like AFOM, with a particular focus on Peak T, has been linked to bacterial 

activity, with previous research suggesting Peak T as a bacterial enumeration proxy. To 

explore this further and understand the underpinning interactions, the work here 

employs model systems which use microbiological methods alongside fluorescence 

measurements, monitored over a variety of temporal scales. By culturing a range of 

bacterial species and communities, this study provides extensive evidence for the 

bacterial production of Peak T, confirming the suggestions within the literature. The 

universal presence of Peak T within the bacterial cultures studied here permits the 

conclusion that Peak T fluorescence cannot be used for bacterial enumeration but can 

provide information regarding microbial community presence and activity. The model 

systems utilised have also exposed the ability of bacteria to engineer a variety both 

protein- and humic-like AFOM in situ. This demonstrates the fast-acting dynamics of 

bacterial-AFOM production, challenging current understanding. 

In addition to this, the application of in situ Peak T fluorescence sensing for monitoring 

microbial activity in freshwater systems is explored. This was undertaken by monitoring 

a water body, using a suite of in situ sensors to monitor a range of physicochemical 

parameters, alongside a discrete sampling monitoring program. This work, together 

with recent developments in the literature and the understanding gained from the 

laboratory model systems, has informed the development of a new generation 

multichannel fluorimeter.  
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Chapter 1 Introduction and literature review 

 

1.1 Introduction 

Freshwater accounts for only three percent of all water on planet Earth, with the majority 

of that inaccessible (Firth, 1999), and yet water is essential for all life on Earth (Postel, 

2015). It has been internationally acknowledged that monitoring water quality is vital 

for human health and sustainable development, as well as aquatic ecosystem integrity 

(Postel, 2015; Firth, 1999). There is an ever increasing pressure on our limited available 

freshwater sources from population growth, climate change and anthropogenic 

activities, including rapid industrialisation, urbanisation and agricultural expansion 

(Khamis, Bradley and Hannah, 2017; Patil, Sawant and Deshmukh, 2012). Due to the 

increase in demand for, and therefore strain upon, freshwater resources, the ability to 

manage water sources is essential. The key to good water resource management stems 

from the ability to successfully monitor water quality (Postel, 2015). At present, most of 

the typical parameters are physicochemical, relying on discrete sampling and lengthy, 

and costly, laboratory testing (Peleato, Legge and Andrews, 2017; Blaen et al., 2016). 

However, whilst these parameters provide information regarding the chemical 

properties of a water body, they do not provide adequate information for determining 

microbial dynamics and ecosystem interactions (Patil, Sawant and Deshmukh, 2012; 

Matilainen et al., 2011). There is a need for novel monitoring parameters and technologies 

to enhance our understanding of water quality dynamics and processes that occur 

within natural water systems. This has led to extensive research into aquatic 

biochemistry, ecology and the composition of natural waters (Khamis, Bradley and 
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Hannah, 2017; Ruhala and Zarnetske, 2017; Carstea et al., 2016; Coble et al., 2014; Hudson, 

Baker and Reynolds, 2007). 

Within this work there has been an emphasis on research into organic matter (OM) in 

aquatic systems. OM is ubiquitous in natural waters and its characteristics are influenced 

by the surrounding environment and the ecological dynamics and processes within the 

water body (Coble et al., 2014). As such, understanding OM fluxes and composition 

provides information regarding the water quality and ecosystem health, alongside 

providing the ability to trace waters and contamination events (Peleato, Legge and 

Andrews, 2017; Zhou et al., 2016; Tedetti, Joffre and Goutx, 2013). Naturally occurring 

aquatic fluorescent organic matter (AFOM) has been increasingly researched to 

determine OM distribution, composition, origin and dynamics within a variety of 

natural aquatic systems; for example lakes (Zhou et al., 2016; Kellerman et al., 2015; 

Kothawala et al., 2014; Miller and McKnight, 2010; Cammack et al., 2004; Tranvik, 1999), 

rivers (Baker et al., 2003; Baker, 2002c) and marine waters (Timko et al., 2015; Zhao, Lv 

and Miao, 2013; Romera-Castillo et al., 2011; Stedmon, Markager and Bro, 2003; 

Determann et al., 1998; Coble, 1996). Despite the vast amount of work conducted, further 

understanding of this is required for the exploitation of this phenomenon as a water 

quality parameter. 

The majority of freshwater research has analysed AFOM in relation to anthropogenic 

activities, such as sewage treatment, agriculture and industry (Baker and Inverarity, 

2004; Baker et al., 2003; Baker, 2001, 2002a; Ahmad and Reynolds, 1999; Reynolds and 

Ahmad, 1997). This has exposed the Peak T region of the fluorescence spectrum as a 

potential tracer of source waters and contamination events, through the identification of 
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a link between microbial processes and Peak T fluorescence (Sorensen et al., 2018b; Coble 

et al., 2014; Hudson et al., 2008). However, the exact nature of these interactions and the 

dynamics of this relationship through time and space are still unknown. Despite the 

requirement to understand the underpinning interactions of the phenomenon of 

microbially derived fluorescence, in situ fluorimeters for sensing this AFOM are 

currently available (Ruhala and Zarnetske, 2017; Khamis et al., 2015). In situ fluorimeters 

have long been used to monitor anthropogenic pollution, such as hydrocarbons in 

marine waters and industrial effluent (Persichetti, Testa and Bernini, 2013). The use of 

Peak T fluorescence sensors has become popular over the past decade, due to the 

indication that this AFOM can provide information regarding microbial activity and act 

as a tracer within natural systems (Sorensen et al., 2015a). However, without 

understanding the fundamental origin and interactions of AFOM, the application of 

these sensors, and adoption by water management policy, has been limited. Determining 

the microbial-AFOM relationship is essential in order to adapt this technology to fully 

exploit the phenomenon of microbial AFOM. This, in turn, is critical for the development 

and implementation of a novel biological water quality parameter, enhancing water 

quality monitoring and management through time and space. 

 

1.1.1 Research aims 

This research was carried out to further understand microbially derived AFOM, by 

employing fluorescence techniques, and to determine the potential application of this 

for monitoring microbial communities within freshwaters. To achieve this, the specific 

aims of this thesis were: 
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 To investigate the phenomenon of microbially engineered AFOM, and its evolution 

over time, by understanding the dynamics of bacterial consumption and production 

of AFOM at a high temporal resolution. 

 To identify the specific relationship between Peak T fluorescence and bacterial 

growth and/or activity. 

 To assess the performance of current in situ fluorescence sensing technologies for 

monitoring AFOM. 

 To develop a new generation in situ fluorimeter for the continuous real-time sensing 

of fluorescence characteristics and inferred microbial activity. 

 

1.1.2 Thesis overview 

This thesis is comprised of seven chapters. The first chapter provides a general 

introduction to fluorescence, fluorescent organic matter and the current literature 

regarding the application of fluorescence techniques in natural waters. Chapter two 

details the experimental parameters of the methodologies employed throughout this 

research and outlines the development of bacterial model systems. Chapter three details 

the application of a laboratory model system which employs bacterial monocultures to 

determine the fast-acting dynamics of AFOM production with bacterial growth. Chapter 

four uses laboratory systems with isolated environmental bacteria and a standardised 

mixed culture to further explore the bacterial production and processing of AFOM over 

time. Chapter five presents a monitoring study of physicochemical and biological 

parameters of a freshwater system, alongside monitoring the fluorescence characteristics 

through the deployment of Tryptophan and CDOM UviLux sensors (Chelsea 
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Technologies Ltd., UK). This chapter also assesses the performance of these in situ 

sensors for observing microbial activity fluxes in freshwaters. Chapter six describes the 

development of a new generation portable in situ fluorescence sensor. Finally, chapter 

seven provides a summary discussion of the data presented in chapters three, four and 

five, overall conclusions and recommendations for future work.  
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1.2 Origins of fluorescence 

Luminescence is defined as the emission of radiation from electronically, or 

vibrationally, excited species (Reynolds, 2014; Valeur and Berberan-Santos, 2011; 

Lakowicz, 2006). The various types of luminescence are classified by the excitation mode, 

such as chemiluminescence, bioluminescence and photoluminescence. Fluorescence is a 

form of photoluminescence; the emission of light from an excited species after the 

absorption of light (Valeur and Berberan-Santos, 2011; Lakowicz, 2006). Fluorescence 

effects have been observed throughout history but it was Sir George G. Stokes who first 

used the term fluorescence in 1852 (Stokes, 1852). Stokes also determined the 

phenomenon of the dispersed light universally being of longer wavelength, lower 

energy, than that of the original light for fluorescent molecules (fluorophores) in 

solution, termed Stokes’ shift (Valeur and Berberan-Santos, 2011; Carstea et al., 2010; 

Murphy et al., 2008; Lakowicz, 2006; Stokes, 1852). 

Molecule excitation occurs via absorbance, the process whereby a molecule absorbs 

radiation leading to an increase in its energy (Reynolds, 2014; Lakowicz, 2006). This 

increase in energy causes electronic transition of an electron from the ground state to an 

excited electronic state (Reynolds, 2014). The absorption of a photon of light by a 

molecule can stimulate the electron to an electronically excited state. The number of 

molecules in the light path is related to the radiation absorbed, through Beer-Lambert’s 

Law (Equation 1.1): 

 

𝐼𝑡 = 𝐼0 𝑒𝑥𝑝−∈𝑐𝑙    (Equation 1.1) 
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where 𝐼𝑡 is light intensity transmitted, 𝐼0 is the intensity of the incident light, ∈ is the 

molar absorptivity (how well the chemical species absorbs light at a given wavelength), 

𝑐 is the concentration of the absorbing species, and 𝑙 is the path length of the solution. 

 

The processes of light absorption and emission by fluorophores are often illustrated 

using a Jablonski diagram (Coble et al., 2014; Lakowicz, 2006). One form of a Jablonski 

diagram is shown in Figure 1.1, whereby fluorescence occurs when a molecule absorbs 

a photon of light, causing a valence electron to be excited to a higher energy level, e.g. 

S2. The diagram shows a transition from S2 to S1; this is termed internal conversion. 

Internal conversion occurs rapidly, on a scale of picoseconds (10-12 s), and is often 

complete prior to emission as fluorescence lifetimes are typically close to a nanosecond 

(10-9 s) in length (Coble et al., 2014; Lakowicz, 2006). Energy is also lost during vibrational 

relaxation, as shown in the figure. The molecule eventually returns from the 

electronically excited state, e.g. S1, to the ground state, S0 (Carstea, 2012; Murphy et al., 

2008; Hudson, Baker and Reynolds, 2007; Lakowicz, 2006; Baker, 2001). This can occur 

with the emission of fluorescence, as demonstrated by Figure 1.1. Loss of energy via 

other processes can also occur, such as non-radiative decay, energy transfer and collision 

(Carstea, 2012; Cory et al., 2010). Loss of excitation energy as heat rather than light can 

also occur. These radiationless relaxation processes are known as external conversion, 

or quenching, such as collisional quenching where energy is transferred to other 

molecules via collisions (Coble et al., 2014; Lakowicz, 2006). The potential impact of 

quenching on freshwater fluorescence signals is discussed in section 1.2.1.  
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Figure 1.1: Jablonski diagram demonstrating the processes of fluorescence by fluorophores.  
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Scattering also occurs with the interaction of molecules and light. Elastic scattering, 

where little energy is transferred, occurs in the majority of fluorescence applications. The 

type of scattering is determined by the size of the scattering species in relation to the 

wavelength of the incident light. These radiation scattering phenomena are referred to 

as Rayleigh, Mie and Tyndall scattering, classified for entities smaller, equal to, and 

larger than the incident wavelength respectively (Reynolds, 2014). However, as this 

scattering does not provide a discernible signature specific to the scattering species, it is 

often cut, or ‘masked’, within fluorescence data. 

Another notable scattering process is Raman scattering, whereby the scattering occurs 

at distinct wavelengths, determined by the size and symmetry of the scattering species 

(Reynolds, 2014; Lakowicz, 2006). Raman scatter is an inelastic process, involving energy 

transfer, meaning the scattered photons have different energy to that of the incident light 

(Lawaetz and Stedmon, 2009). The difference in energy is related to the difference 

between energy levels within a given molecule and, as such, can be detected as a constant 

frequency difference (Reynolds, 2014; Lawaetz and Stedmon, 2009). Although Raman 

scattering occurs at lower intensities than elastic scatter, such as Rayleigh, it has been 

used throughout much of the literature to normalise fluorescence spectra within aquatic 

fluorescence research (Mladenov et al., 2017; Shutova et al., 2014; Butturini and Ejarque, 

2013; Murphy et al., 2010; Para et al., 2010; Baker, 2002a; Determann et al., 1998). 

Alongside normalising spectra, Raman signals can also be used as an internal standard 

to correct for inner filter effects (IFE); IFE occurs where there is absorbance of the 

excitation or emission wavelength by something other than the fluorophore (Lakowicz, 

2006).  
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1.2.1 Factors that affect fluorescence characteristics 

Physicochemical properties of waters can impact the fluorescence of organic matter 

(OM), altering the characteristics of the fluorescence signal or by increasing or 

decreasing the fluorescence (Coble et al., 2014). Fluorescence quenching, a reduction in 

the signal of fluorescent OM (FOM), is the most common outcome of these 

environmental effects (Coble et al., 2014; Henderson et al., 2009; Lakowicz, 2006; Baker, 

2005). Quenching occurs due to reactions between the fluorophores and the 

environment, which reduces the fluorescence intensity by altering the excited state 

(Figure 1.1). This hinders the ability of the fluorophores to emit energy at lower energy, 

longer wavelength, than the absorbed energy (Coble et al., 2014; Lakowicz, 2006). 

Alterations in chemical structure are also often considered to be a form of fluorescence 

quenching, although this does not directly involve a change in the excited state of the 

fluorophore. 

The influence of the range of fluorescence quenching mechanisms has been well 

researched and discussed within the literature. There have been multiple studies 

exploring the effect of pH, temperature and metal ions in natural waters (Spencer, Bolton 

and Baker, 2007; Baker, 2001, 2005; Sierra et al., 2005; Reynolds, 2003). This research, 

determining the impact of quenching of OM fluorescence in natural waters, has 

demonstrated that amino acid-like fluorescence, such as tryptophan-like fluorescence, is 

more susceptible to quenching than humic-like substances. However, this does seem to 

be dependent on how accessible the tryptophan is; if the tryptophan is exposed, i.e. is 

free or bound to the surface of macromolecules, it is more likely to be quenched than if 

it is bound to the macromolecule interior (Coble et al., 2014; Lakowicz, 2006).  
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1.2.1.1 Metal ions 

Laboratory analysis to investigate the impact of metal ions has shown that collisional 

quenching frequently involves molecular oxygen and metal ions. (Reynolds and Ahmad, 

1995). These quenchers cause the excitation state of the fluorophore to be deactivated, 

often by releasing energy as heat rather than photon emission (Coble et al., 2014; 

Lakowicz, 2006). Contact with other molecules can also account for fluorescence 

quenching due to electronic coupling of interacting molecules (Coble et al., 2014). 

 

1.2.1.2 pH 

Reynolds (2003) has shown that extremes in pH can alter the structure of OM molecules. 

The pH of the aquatic systems can also impact the structure and coiling of a molecule, 

although this is highly dependent on the specific fluorophore (Reynolds, 2003), 

demonstrated by Hudson et al., (2007) who suggest that humic substances are impacted 

less by pH than proteins. Conversely, Coble et al., (2014) state that proteinaceous 

fluorescent material is protected by other molecules and is, therefore, less susceptible to 

quenching by pH changes. 

 

1.2.1.3 Temperature 

Quenching in relation to temperature is important and greatly dependent upon the 

environmental conditions that the OM is exposed to (Spencer, Bolton and Baker, 2007). 

Increasing temperatures can lead to more molecule interactions and, therefore, increased 
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collisional quenching, causing radiationless return of the molecule to the ground state 

(Lakowicz, 2006; Baker, 2005). Baker (2005) has shown this within a range of samples at 

temperatures from 10°C to 45°C. Whilst Carstea et al., (2014) agree that increases in 

temperature lead to increased collisional quenching, they conclude that the variable 

impact of temperature quenching on different fluorophores, determined by the large 

range of varying environmental factors between field sites and the exposure to heat 

sources, makes correction for temperature quenching extremely difficult to apply. This 

study does, however, state that corrections could be applied, with caution and 

awareness of inter-site variation, for temperatures below 20°C using the correction tools 

developed by Watras et al., (2011). This correction method has also been verified by 

Khamis et al., (2015) for in situ sensing across a range of freshwater systems, who 

suggested the use of internal correction algorithms within sensor development. 

As well as temperature variations, freezing and thawing cycles have been shown to 

quench OM fluorescence due to the extensive modifications this causes to the molecular 

structure (Hudson et al., 2009; Spencer, Bolton and Baker, 2007). Yet again, this research 

has shown that amino acid-like fluorescence is more likely to be quenched than humic-

like fluorescence, but the extent of this depends on the exposure and binding of the 

amino acids (Coble et al., 2014; Baker, 2005). Nevertheless, these temperature-induced 

changes are reversible as they do not impact the molecular structure (Hudson, Baker and 

Reynolds, 2007). 
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1.2.1.4 Photodegradation 

Photodegradation is also a very important factor in determining the characteristics of 

OM fluorescence in natural waters. The extent to which photobleaching occurs is 

extremely variable and heavily dependent on the exposure time and intensity 

(Gonçalves-Araujo et al., 2015; Coble et al., 2014). The general impact of 

photodegradation is a decrease in fluorescence intensity and blue shifting (Coble, 1996), 

a shift in emission maxima towards shorter wavelengths (Shubina et al., 2010). The 

quenching mechanisms discussed here have varying impacts on FOM and are extremely 

varied between waters, depending on multiple factors, including the OM composition 

and macromolecular structures. 

 

1.2.1.5 Inner filter effects (IFE) 

Fluorescence measurements are also susceptible to IFE. Although this is not a quenching 

mechanism, IFE occurs where there is absorbance of the excitation or emission 

wavelength by something other than the fluorophore, such as the cuvette, other 

fluorophores, or by additional absorbing components (Lakowicz, 2006). The main cause 

of this in natural environmental samples is turbidity, often caused by background 

substances that absorb light, such as suspended solids (Khamis, Bradley and Hannah, 

2017; Saraceno et al., 2009, 2017; Blaen et al., 2016; Khamis et al., 2015). In particular 

environments where the concentration of suspended sediments, such as silt, is extremely 

high, the detection of the emitted light can be prevented, even if the interfering particles 

do not absorb light, due to scattering (Downing et al., 2012). Sensor fouling can also cause 
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optical interferences that impact the fluorescence signal (Blaen et al., 2016). IFE can be 

corrected for, often done by empirically correcting the Raman scatter by subtracting a 

blank sample (Khamis et al., 2015; Carstea, 2012; Henderson et al., 2009; Hudson, Baker 

and Reynolds, 2007; Lakowicz, 2006). Whilst this is a simple and common practice when 

using benchtop fluorimeters, the impact, and possible correction for, of IFE on 

fluorescence intensity for in situ measurements is an important consideration. 

 

1.2.1.6 Impact of quenching on fluorescence within aquatic systems 

The impact of fluorescence quenching of OM in aquatic systems is extremely 

complicated and can have a profound impact on the fluorescence characteristics of a 

water body (Romera-Castillo et al., 2014). However, all naturally occurring FOM 

observed within aquatic systems is essentially quenched, but it is noted, within the 

literature, that fluorescence intensity should not be altered notably if these variables are 

kept relatively constant and within natural ranges (Hudson, Baker and Reynolds, 2007; 

Spencer, Bolton and Baker, 2007; Reynolds, 2003; Baker, 2001). To fully understand the 

true impact of this, more research is required on natural samples rather than on extracted 

compounds or standards. This would provide a more comprehensive understanding of 

the interactions, complexity and heterogeneity of OM in natural environments (Baker, 

Elliott and Lead, 2007). 

Fluorescence quenching potential is important when storing and analysing samples. 

Both Hudson et al., (2009) and Spencer et al., (2007) found that freezing or acidifying 

samples leads to a decrease in fluorescence intensity for all FOM, which further 
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decreases with each cycle of freezing and thawing. Further to this, quenching has 

implications regarding the design of fluorescence sensors and how different types of 

quenching may affect fluorescence detection (Sorensen et al., 2018a; Blaen et al., 2016). 

The benefits of correcting for some of the impacts of quenching and IFE must be 

considered with caution to ensure the sensors are still readily applicable to a broad range 

of freshwater environments, and seasonal and diurnal variations, that the sensor will be 

exposed to when deployed. However, pre-collection correction, built into the sensor, 

must only be included if it is definitively beneficial to data comparison and does not 

create the requirement for sensor calibration and validation for every water analysed 

(Singh, Inamdar and Scott, 2013). 

 

1.3 Organic matter 

Organic matter (OM), or natural organic matter (NOM), is the pool of carbon-based 

compounds within the environment (Coble et al., 2014). OM is mainly comprised of 

organic compounds derived from plants and animals and their waste, meaning the 

composition of OM is highly variable and dependent upon origin, transformation and 

age. Organic matter (OM) is ubiquitous in natural waters, being a complex 

heterogeneous mixture that influences the transport of nutrients, and impacts the global 

biogeochemical and carbon cycles (Qian et al., 2017; Bieroza and Heathwaite, 2016; 

Lambert et al., 2016; Creed et al., 2015; Wünsch, Murphy and Stedmon, 2015; Singh, 

Inamdar and Scott, 2013; Larsen et al., 2010; Baker and Spencer, 2004). OM origin can be 

either allochthonous or autochthonous (Winter et al., 2007; Stedmon and Markager, 2005; 

Alberts and Takács, 2004; Leenheer and Croué, 2003): allochthonous OM is derived from 
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the surrounding environment and so is influenced by the hydrology, geology and land-

use of its source; whilst autochthonous OM is created in situ via microbial processes, 

either in recycling or formation processes (Carstea, 2012; Murphy et al., 2008; Hudson, 

Baker and Reynolds, 2007). Aquatic OM varies both in composition and concentration, 

over different cyclic patterns (Blaen et al., 2016; Spencer, Bolton and Baker, 2007); 

autochthonous OM increases in the summer with increased microbial and algal growth, 

while allochthonous OM often increases in wetter seasons as it enters rivers via the 

groundwater and marine waters via increased river discharge (Miller and McKnight, 

2010). The composition of OM in aquatic systems is impacted by the biogeochemistry of 

the surrounding terrestrial environment, and the variety of allochthonous and 

autochthonous inputs into the system (Romera-Castillo et al., 2014; Carstea, 2012; Larsen 

et al., 2010; Saraceno et al., 2009; Hudson, Baker and Reynolds, 2007; Stedmon and 

Markager, 2005). This, alongside the environment in which it exists, impacts the 

biochemical functions of OM across different environments (Hessen and Tranvik, 1998). 

 

1.3.1 Aquatic organic matter and the “microbial carbon” pump 

Carbon cycling has received attention in recent years due to its importance for past, 

present and future climatic understanding. The contribution of various carbon stores 

and sinks to carbon cycling has become an increasing focus within earth and 

environmental sciences, with the pressures on using climatic modelling to predict 

potential outcomes of anthropogenic activities on climate change (Anderson, Christian 

and Flynn, 2015). From this work various conceptual carbon “pumps” have been 

prescribed to represent the movement, uptake and storage of carbon within the 
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environment (Ridgwell and Arndt, 2015). Much of this work has focussed on long-term 

marine carbon cycling, as this is the largest reservoir and mechanism for movement of 

carbon globally (Ridgwell and Arndt, 2015). However, these mechanisms are also 

important within all aquatic environments throughout the hydrological continuum, 

particularly regarding transportation and fate of carbon sources (Coble et al., 2014). 

The “organic matter” (or “organic carbon”) pump involves the removal of dissolved 

inorganic carbon (DIC) from solution, which is metabolically processed to produce 

particulate organic carbon (POC) and dissolved organic carbon (DOC) (Ridgwell and 

Arndt, 2015). The resulting POC is efficiently recycled at the surface, with some sinking 

and being processed at depth. The DOC is also processed and recycled within aquatic 

environments, often utilised in the “microbial carbon” pump. This is part of the 

biological pump which leads to DOC production from the microbial processing of OM 

(Ridgwell and Arndt, 2015). The knowledge of this “microbial pump” has increased over 

the past two decades (Jiao et al., 2010). It is now understood that the most labile fractions 

of DOC are consumed rapidly, while the more recalcitrant fractions are more important 

for long-term carbon storage and cycling (Carlson and Hansell, 2015). 

Understanding the “microbial carbon” pump is key for climatic modelling and 

predictions, as any substantial change in this DOC consumption, degradation and 

transformation could have a large impact of atmospheric CO2 and, therefore, global 

climatic changes (Ridgwell and Arndt, 2015). However, due to the complexity of inputs, 

interactions and outputs, the “microbial carbon” pump is not well represented within 

current models. As to not over complicate climate models, or use parameters that are 

currently unknown in function or impact, many of the present day models use a “black 
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box” element to represent the “microbial carbon” pump (Anderson, Christian and Flynn, 

2015). This adds a major element of uncertainty to any predictions derived from such 

models. Due to this, improving understanding of the mechanisms and function of 

microbial-OM interactions is vital. 

 

1.3.2 Aquatic fluorescent organic matter 

Naturally occurring aquatic fluorescent OM (AFOM) can be analysed to assess the water 

quality and relative OM composition, using fluorescence spectroscopy as an extremely 

sensitive and non-destructive technique for water analysis (Cooper et al., 2016; Gabor et 

al., 2015; Bieroza, Bridgeman and Baker, 2010; Baker, Elliott and Lead, 2007; Baker, 2005; 

Alberts and Takács, 2004; Cammack et al., 2004; Reynolds, 2002). The capacity of a 

molecule to fluoresce is determined by the relaxation pathways from the excited state. 

As such, molecular structure is important in determining fluorescence ability, with more 

rigid molecules, such as aromatics, being more likely to fluoresce (Aiken, 2014; Chen et 

al., 2003; Leenheer and Croué, 2003; Baker, 2002a). These more highly conjugated 

molecules are also more likely to fluoresce due to the smaller energy gap from the 

ground to excited state (Aiken, 2014; Carstea, 2012; Baker, 2002c, 2002a), allowing 

movement of delocalised electrons between energy levels. The excitation and emission 

maxima wavelengths of fluorophores are specific to the molecule (Carstea, 2012; 

Hudson, Baker and Reynolds, 2007; Lakowicz, 2006), allowing the use of excitation-

emission spectra to analyse the relative composition of fluorophores in a sample 

(Murphy et al., 2008; Sierra et al., 2005; Boehme et al., 2004; Chen et al., 2003; Coble, 1996). 
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Although not a novel technique for investigating naturally occurring organic matter, 

increased use of excitation-emission matrix (EEM) fluorescence spectroscopy has led to 

a better understanding of AFOM, in particular fluorophores with short ultra-violet (UV) 

excitation wavelengths (Aiken, 2014; Baker, 2005). A range of excitation wavelengths is 

used in relation to the emission wavelengths, allowing an EEM to be plotted as a three-

dimensional map of fluorescence intensity. EEMs provide a visual representation of 

fluorophores within a sample (Murphy et al., 2014; Cory et al., 2010; Hudson et al., 2008; 

Liu, Lead and Baker, 2007; Baker et al., 2004; Parlanti et al., 2000; Coble, Schultz and 

Mopper, 1993); a freshwater EEM with AFOM peaks and spectral scatter identified is 

shown by Figure 1.2. These spectral scattering phenomenon are often corrected for via 

blank subtraction (Carstea, 2012; Henderson et al., 2009; Hudson, Baker and Reynolds, 

2007; Lakowicz, 2006). Raman scatter, seen in Figure 1.2, is caused by the vibration of the 

covalent bonds between the oxygen and hydrogen molecule of water when light energy 

is applied to the water (Park and Snyder, 2018; Carstea, 2012; Hudson, Baker and 

Reynolds, 2007). Rayleigh scatter, identified in Figure 1.2, is caused by the reflection of 

excitation energy and occurs in two locations: where the emission and excitation 

wavelength are equal to one another; and, where the emission wavelength is twice that 

of the excitation wavelength (Park and Snyder, 2018; Hudson, Baker and Reynolds, 

2007). 
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Figure 1.2: Excitation-emission matrix (EEM) with the position of previously characterised 

fluorescence peaks (described in Table 1.1, Coble et al., 2014) and common EEM spectral features. 

 

Fluorescence spectroscopy is an attractive method to study AFOM due to the relative 

ease of data collection and detail provided (Aiken, 2014). The development of this 

technology has met the demand for more rapid and sensitive analysis, <1 minute per 

sample in some cases (Henderson et al., 2009; Baker and Spencer, 2004; Baker, 2002a), in 
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2000). As well as speed of analysis, sensitivity and detail, EEM fluorescence spectroscopy 
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a standard method for data processing is yet to be recognised. Due to this, there is some 

discussion within the field as to whether standards should be used for comparison, such 

as normalisation to quinine sulphate (Mostofa et al., 2013; Shimotori, Watanabe and 

Hama, 2012; Shimotori, Omori and Hama, 2009; Kramer and Herndl, 2004), or machine 

calibration due to the variation in natural fluorescence caused by environmental factors 

(Hudson, Baker and Reynolds, 2007; Sierra et al., 2005; Coble, Schultz and Mopper, 1993). 

Although each fluorophore has a specific fluorescence emission peak wavelengths, it can 

be difficult to identify these from an EEM due to overlapping of fluorescent spectra 

(Wang, Cao and Meng, 2015; Murphy et al., 2008). Much of the available literature 

frequently divides AFOM composition into humic-like and protein-like fluorescence, 

based on their properties being similar to that of the material standards (Xie et al., 2017; 

Liu, Lead and Baker, 2007; Baker et al., 2003; Leenheer and Croué, 2003; Coble, 1996): 

humic-like fluorescence includes allochthonous humic- and fulvic-acid material 

(Fellman, Hood and Spencer, 2010; Hudson, Baker and Reynolds, 2007); and protein-like 

fluorescence encapsulates the autochthonous AFOM, often termed ‘microbially derived’ 

(Hudson et al., 2008; Baker, Elliott and Lead, 2007; Winter et al., 2007; Elliott, Lead and 

Baker, 2006b, 2006a; Determann et al., 1998). However, the complex composition and 

unknown origin of AFOM has led more recently to the use of peak nomenclature (Coble 

et al., 2014), referring to the individual fluorescence peaks over using vague and 

overarching terminology (Table 1.1). 



 

 

Table 1.1: Nomenclature of common fluorescence peaks for AFOM in natural waters, detailing peak name, spectral position, chemical characteristic, and 

environmental source. 

Peak 

name 

λex/λem  

(nm) 

Fluorescence 

characteristic 

Origin 

AB 

B 

230/305 

275/305 

Tyrosine-like protein-like Autochthonous, resembles tyrosine, may be free or bound amino 

acids 

AT 

T 

230/340 

275/340 

Tryptophan-like protein-like Autochthonous, resembles tryptophan, associated with microbial 

processes 

AM 

M 

240/350-400 

290-310/370-420 

Humic-like Autochthonous, originally identified with marine environments, 

associated with microbial biodegradation processes 

AC 

C 

260/400-460 

320-365/420-470 

Humic-like Allochthonous, resembles humic-acids, of terrestrial origin 

C+ 250/470-504 

385-420/470-504 

Humic-like Allochthonous, resembles humic-acids, of terrestrial origin 

Peak nomenclature and description derived from (Coble et al., 2014, p. 78) 
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1.3.3 ‘Protein-like’ fluorescence 

Protein-like fluorescence (λex/λem 230-280/330-360 nm) is associated with biological 

activity and often closely resembles the fluorescence signature of three amino acids; 

tryptophan, tyrosine and phenylalanine (Zhu et al., 2017; Hudson, Baker and Reynolds, 

2007; Lakowicz, 2006; Cory and McKnight, 2005). These molecules are transient, labile 

and of low molecular weight, 204 Da, 181 Da and 165 Da respectively (Promega, 2010); 

the chemical structures for these amino acids are shown in Figure 1.3. This protein-like 

AFOM is attributed to and assumed to be of microbial origin (Hambly et al., 2015; Coble 

et al., 2014; Cammack et al., 2004; Smith, Anderson and Webb, 2004), with much of the 

recent literature focussing on the use of tryptophan-like (Peak T) fluorescence as a 

surrogate for microbial activity (Baker et al., 2015; Cumberland et al., 2012), as originally 

highlighted by Hudson et al., (2008). 

Figure 1.3: Structures of common ‘protein-like’ fluorophores: a) L-Tryptophan; b) L-

tyrosine; and c) L-phenylalanine.  

a) 

c) 

b) 
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The composition of compounds that form protein-like fluorescence is still debated 

(Khamis et al., 2015), particularly focussing on differences between bound and free 

amino acids. Some, for example Determann et al., (1998) and Reynolds (2003), have 

argued that the amino acid-like fluorescent molecules are free, whilst others have stated 

that they are bound to humic substances (Elliott, Lead and Baker, 2006a; Baker, 2005; 

Zang et al., 2000) or are a part of the microbial biomass (Jørgensen et al., 2011; Liu, Lead 

and Baker, 2007; Smith, Anderson and Webb, 2004). These disputes further highlight the 

variation and complexity of AFOM within these natural systems. The increased use of 

parallel factor (PARAFAC) analysis has benefitted this discussion, see section 2.1.2.3. 

Whilst the positioning of these amino acid-like fluorescence peaks is less variable than 

humic-like fluorescence, PARAFAC analysis has demonstrated broad ranges of emission 

wavelengths associated with Peak T fluorescence, suggesting that the variation in signal 

arises from a combination of free and bound amino acid-like compounds (Yu et al., 2015; 

Coble et al., 2014). 

 

1.3.4 Peak T fluorescence 

Peak T, or ‘tryptophan-like’, fluorescence has received more attention within the 

literature, particularly in terms of ‘microbially derived’ AFOM, due to its association 

with proteins and areas of high primary productivity (Miller and McKnight, 2010; 

Hudson et al., 2008; Elliott, Lead and Baker, 2006a; Baker and Spencer, 2004; Parlanti et 

al., 2000; Coble, 1996). Peak T fluorescence is the most common, and often most intense, 

protein-like fluorescence peak seen within a range of natural freshwaters. It is also less 

impacted by instrument limitations and optical scatter interference than other amino 
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acids; particularly phenylalanine which is often obscured by the water Raman line and 

Rayleigh scatter in EEM analysis, and is, therefore, often excluded in the literature. 

Although ‘microbially derived’ AFOM is mentioned throughout much of the literature, 

expansion of the exact nature, origin, transformation and fate of the associated 

fluorescence properties has not been as well explored as the humic-like fluorescence 

components. The current literature demonstrates that these fluorescence properties can 

be used as a proxy for microbial activity, as seen by statistically significant correlations 

between tryptophan-like fluorescence and the biological oxygen demand (BOD) (Baker 

et al., 2015; Bridgeman et al., 2013; Hudson et al., 2008; Baker and Inverarity, 2004), a 

measure of the amount of oxygen required, by the microbial population present, to 

degrade the biodegradable organic matter (Bridgeman et al., 2013; Cutrera et al., 1999). 

Thus, Peak T fluorescence has also been correlated with algal populations and algal 

growth (Makarewicz et al., 2018; Zhi et al., 2015; Fukuzaki et al., 2014; Ferrari and 

Mingazzini, 1995), with a particular focus on algal bloom identification (Fukuzaki et al., 

2014; Suksomjit et al., 2009). Higher intensity Peak T fluorescence is also seen in waters 

with notable anthropogenic activity (Stedmon and Markager, 2005), particularly where 

there is a sewage or agricultural waste input, and, to a lesser degree, urban waters 

(Carstea, 2012; Baker, 2001, 2005; Baker and Spencer, 2004). 

Nevertheless, the exact interactions between amino acid-like fluorescence, such as Peak 

T, and biological degradation of AFOM and metabolic activity have not been clearly 

defined (Coble et al., 2014). Understanding of these relationships is further complicated 

by the evidence that microbial activity is both a source and a sink of amino acid-like 

fluorescence (Carstea et al., 2016; Repeta, 2015; Stedmon and Markager, 2005; Cammack 



Chapter 1: Introduction and literature review 

26 

et al., 2004; Moran, Sheldon and Zepp, 2000). While there is currently no clear 

explanation for these apparent complex interactions, several mechanisms have been 

proposed (Coble et al., 2014). For example, Cammack et al., (2004) suggested that amino 

acid-like AFOM is produced in bacterial growth. However, this hypothesis has been 

challenged due to the costly production of amino acids by bacteria and the lack of 

explanation as to why these molecules would be released from the bacterial cells (Coble 

et al., 2014), whilst other literature has also associated this AFOM with bacterial 

population growth within bacterial culturing (Baker, Elliott and Lead, 2007; Moran, 

Sheldon and Zepp, 2000). Another theory for the microbial production of amino acid-

like fluorescence is that it is a by-product formed after bacterial AFOM degradation that 

denatures the proteins, altering the structure and, therefore, the fluorescence signal 

(Coble et al., 2014; Lakowicz, 2006; Determann et al., 1998). However, there is still 

currently limited data that definitively demonstrates this or determines in situ 

production in freshwater systems, with detailed characterisation of AFOM properties. 

More recently, surface freshwater research has endeavoured to determine enumeration 

of specific bacterial species using Peak T fluorescence. For example, a log correlation R = 

0.74 across a 7-log range in Escherichia coli enumeration was identified for sewage 

impacted rivers (Baker et al., 2015). This has been furthered within groundwater systems 

where there is little background fluorescence interference (Sorensen et al., 2015a, 2016). 

Sorensen et al., (2015a) explored the use of Peak T fluorescence to indicate low levels of 

microbial contamination in groundwater, utilised as drinking water supplies, reporting 

linear correlations, R2 = 0.57 from < 2 to 700 cfu 100 ml-1. The correlations identified vary 

between sampling locations, as Sorensen et al., (2018b) present a strong significant 
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correlation (R2 = 0.71) between Peak T and E. coli counts. This work indicates the potential 

use of Peak T fluorescence as an indicator of bacterial contamination, particularly as an 

alternative to the commonly used turbidity measurement; R2 = 0.48 between turbidity 

and E. coli (Sorensen et al., 2018b). The determination of correlation between Peak T 

fluorescence and total bacterial count is, however, highly dependent on the sampling 

location (Sorensen et al., 2018b). To improve the application of Peak T fluorescence for 

identifying bacterial contamination, Sorensen et al., (2018a) utilised a threshold system 

based on low, medium and high risk contamination. This demonstrated a current 

detection limit of medium risk contamination due to the high false negative rate within 

the low risk category. However, it was postulated that this could be limited by the 

detection limit of the laboratory bacteriological methodology, rather than the 

fluorescence signal (Sorensen et al., 2018a). Although relationships between bacterial 

presence in freshwater environments and Peak T fluorescence have been demonstrated, 

the exact relationship between this fluorescence signal, biological degradation of AFOM 

and metabolic activity are nevertheless not clearly defined at present (Coble et al., 2014). 

 

1.3.5 ‘Humic-like’ fluorescence 

Humic-like AFOM is associated with stable complex larger aromatic compounds (Zhu 

et al., 2017; Cooper et al., 2016), such as fulvic and humic acids (Figure 1.4). These 

compounds range in molecular weight from 5-30 kDa (Perminova et al., 2003). 

Associating this fluorescence with humic substances has, by definition, classified them 

as recalcitrant (Hessen and Tranvik, 1998). As set by Coble et al., (1990), humic-like 

fluorescence has generally been referred to as peaks A and C, excitation-emission 
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wavelengths (λex/λem) 230/400-500 nm and λex/λem 300-350/400-500 nm respectively. 

These fluorescence peaks have frequently been discussed as not being involved in 

microbial processing, due to their recalcitrant properties, but being of terrestrial origin, 

namely fulvic and humic acids: fulvic acids are soluble in water; humic acids are soluble 

in aqueous solutions with a pH >2 (Hudson, Baker and Reynolds, 2007). However, with 

the complex nature of AFOM and the unknown microbial interactions with these 

materials, it seems unlikely that these peaks are simply of a singular origin. 

Demonstrating this is made more difficult by the poorly defined chemistry of the 

fluorescence molecules, typified by the use of the term ‘-like fluorescence’ (Coble et al., 

2014; Stubbins et al., 2014). 

Figure 1.4: Proposed structures of common ‘humic-like’ fluorophores: a) humic acid and b) fulvic 

acid. Theoretical structures cited in Aiken et al., (1985) Humic substances in soil, sediment and water: 

geochemistry, isolation, and characterization [Figure 4 and 6]. p. 24-25. Reproduced with permission 

of the Licensor through PLSclear. In memory of George R. Aiken, died 7th December 2016.  

a) 

b) 
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Recent work has suggested that these fluorescent materials are microbially degraded 

and, therefore, involved in microbial processing (Singh, Inamdar and Scott, 2013). 

Although the majority of these ‘humic-like fluorescence’ regions are referred to as being 

of allochthonous origin, humic-like fluorescence Peak M is thought to be biologically 

transformed and degraded allochthonous humic-like substances, demonstrating an 

autochthonous origin (Harun et al., 2015, 2016; Coble et al., 2014). Although this work 

has highlighted the complexity of AFOM and interactions with the microbiology, it is 

still ‘protein-like fluorescence’ that is almost unanimously referred to as ‘microbially 

derived’ throughout the literature (Coble et al., 2014; Barker et al., 2013). However, this 

recent development has demonstrated how microbial communities interact differently 

with different AFOM, both in terms of activity and through time. 

Frequently less documented, particularly in freshwater AFOM research, is this ability of 

aquatic microbial communities to be a major contributor to the AFOM pool (Hansell and 

Carlson, 2015; Lee et al., 2015; Kramer and Herndl, 2004). As such, these microbial 

interactions may have a global biogeochemical impact (Martínez-Pérez et al., 2017; 

Guillemette and del Giorgio, 2012; Omori et al., 2011). Humic-like AFOM is often not 

considered to be bioavailable (Cooper et al., 2016), but has been shown to be utilised and 

produced during bacterial metabolism within marine environments (Asmala et al., 2014; 

Guillemette and del Giorgio, 2012; Shimotori, Watanabe and Hama, 2012; Romera-

Castillo et al., 2011; Kramer and Herndl, 2004; Moran, Sheldon and Zepp, 2000). Recent 

findings by Kallenbach et al., (2016) have also highlighted the ability of bacteria to 

produce extracellular humic material, contributing to soil organic matter. The discovery 

of this dual functionality, as a carbon source and sink, has highlighted the importance of 
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the role of bacterial communities in aquatic systems and the further research that is 

required to decipher the regulation and metabolic pathways responsible for these 

interactions (Guillemette and del Giorgio, 2012), with specific focus now required for 

freshwater systems. 

Research has been conducted regarding marine AFOM and microbiological interactions, 

due to the importance of ocean OM as a carbon reservoir and the impact of deep ocean 

circulation in relation to carbon cycling and climate change (Nelson and Gauglitz, 2016; 

Ziervogel et al., 2016; Hansell and Carlson, 2015; Timko et al., 2015; Fukuzaki et al., 2014; 

Jørgensen et al., 2011, 2014; Omori et al., 2011). This research has led to an improved 

understanding of autochthonous OM production and consumption by a range of 

microorganisms, specifically relating to the production of recalcitrant humic-like AFOM. 

Whilst there has been a focus on phytoplankton and bacterioplankton (Guillemette and 

del Giorgio, 2012; Romera-Castillo et al., 2011; Suksomjit et al., 2009; Kramer and Herndl, 

2004), due to the importance of these organisms in the ocean microbial carbon pump 

(Mopper, Kieber and Stubbins, 2015; Ridgwell and Arndt, 2015; Tanaka et al., 2014; 

Suksomjit et al., 2009; Kramer and Herndl, 2004), there has also been research into the 

impact of marine bacteria on the AFOM composition (Nelson and Gauglitz, 2016; 

Jørgensen et al., 2014; Shimotori, Omori and Hama, 2009; Ogawa et al., 2001). It is evident 

from these studies that bacterial populations have a direct impact on the AFOM 

properties and amount of labile AFOM in marine systems (Jørgensen et al., 2014; Ogawa 

et al., 2001). This has greatly enhanced our knowledge of bacterial-OM interactions in 

marine environments. However, freshwater research is still lacking much of the 

fundamental understanding of these types of reactions, while it is clear that the bacterial 
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processes from which the AFOM originates in both systems are likely to overlap. As 

such, it is important for all aquatic research to aim to understand these interactions, 

particularly regarding the transport of organic carbon, via OM, along the hydrological 

continuum. 

 

1.4 Characteristics of fluorescent organic matter in aquatic systems 

Fluorescence spectroscopy has been increasingly used for the analysis of AFOM in a 

range of aquatic systems, with much of the literature focussing on fluorescence as a 

technique for determining the AFOM ‘fingerprint’ of an aquatic system (Xiao et al., 2017; 

Aiken, 2014; Koch et al., 2014). This has led to an improved understanding regarding 

how AFOM interacts within the aquatic system (Stedmon and Bro, 2008; Hudson, Baker 

and Reynolds, 2007), with numerous studies relating to characteristics, reactivity, age 

and source (Spencer, Bolton and Baker, 2007; Cory and McKnight, 2005; Baker et al., 2004; 

Stedmon, Markager and Bro, 2003; Coble, Schultz and Mopper, 1993). This has exposed 

the different AFOM characteristics between water systems, whilst simultaneously 

identifying similarities and commonalities. 

The sensitivity of fluorescence analysis, and technological improvements, has led to the 

analysis of AFOM in aquatic environments across multiple disciplines and within many 

applications (Carstea, Baker and Savastru, 2014; Cory et al., 2010; Hudson, Baker and 

Reynolds, 2007; Liu, Lead and Baker, 2007). These technological developments have also 

provided portable equipment, allowing for in situ real-time monitoring at high temporal 
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resolutions (Blaen et al., 2016; Khamis et al., 2015; Tedetti, Joffre and Goutx, 2013; Carstea, 

2012; Spencer, Bolton and Baker, 2007). 

 

1.4.1 Marine AFOM 

Much of the earlier research conducted focussed on the analysis of marine AFOM, 

particularly regarding tracing water bodies (Gonçalves-Araujo et al., 2015; Miller and 

McKnight, 2010; Murphy et al., 2008; Boehme et al., 2004) and characterising AFOM and 

determining its origins (e.g. Coble, 1996). Marine AFOM research has been dominated 

by the properties and distribution of coloured dissolved organic matter (CDOM), 

alongside degradation processes and how this impacts lability of this OM (Martínez-

Pérez et al., 2017; Gonçalves-Araujo et al., 2015; Coble et al., 2014). Terrestrial OM is an 

important carbon source in marine waters and is important for deep ocean cycling 

(Makarewicz et al., 2018; Nelson and Gauglitz, 2016; Ridgwell and Arndt, 2015; Timko et 

al., 2015). An increased interest in this within recent literature has been driven by rapid 

climate change and the potential global and local impacts of this on ocean cycling and 

ecosystems (Coble et al., 2014). The use of fluorescence techniques has become popular 

due to the sensitivity required for monitoring low levels of AFOM in marine systems, 

caused by the dilution of these inputs (Coble et al., 2014). Further to the monitoring of 

terrestrial AFOM, there has been interest in identifying protein-like fluorescence and the 

related biological activity within marine environments (Parlanti et al., 2000; Determann 

et al., 1998). More recently within marine OM research, microbial interactions with 

different components of AFOM has identified the bioavailability of humic-like material 
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(Asmala et al., 2014; Guillemette and del Giorgio, 2012), as discussed in section 1.3.5. This 

has emphasised the significance of microbial-OM interactions. 

 

1.4.2 Freshwater AFOM 

Freshwater AFOM is extensively investigated, with a focus on the optical properties of 

AFOM, composition, source and reactivity (Coble et al., 2014). This has provided insight 

into the biogeochemical importance of OM in freshwater systems. The focus of AFOM 

research in freshwater science has been dominated by the biological, such as microbial 

mineralisation, and hydrological controls, residence time and storm events for instance, 

on ecosystems (Peleato, Legge and Andrews, 2017; Lambert et al., 2016; Coble et al., 2014; 

Kothawala et al., 2014; Miller and McKnight, 2010). Much of this work has focussed on 

temporal analysis of both humic-like and protein-like AFOM changes and dynamics, 

attributed to allochthonous and autochthonous sources respectively, from diurnal to 

seasonal scales (Lambert et al., 2016; Coble et al., 2014). Fluorescence characterisation 

within freshwaters has also been used to analyse point and diffuse anthropogenic 

pollution, including industrial wastewater pollution (Baker, 2002a), agricultural runoff 

(Cohen, Levy and Borisover, 2014; Naden et al., 2010), and wastewater within urban 

catchments (Baker and Inverarity, 2004). The reactivity of OM within these natural 

systems has been researched throughout this body of literature with protein-like 

fluorescence identified as bioavailable AFOM and attributed to bacterial production and 

processes (Coble et al., 2014; Fellman, Hood and Spencer, 2010; Cammack et al., 2004). 

The biodegradation of humic-like AFOM has also been researched, with much of this 

classification of AFOM being considered as recalcitrant, as discussed in section 1.3.5. 
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Whilst this is assumption of humic-like AFOM being solely terrestrial and allochthonous 

in origin is being challenged, further work is required to understand and determine 

bacterial-OM interactions. 

 

1.4.3 Groundwater AFOM 

Groundwater OM fluorescence has long been investigated, particularly regarding those 

used for drinking waters. EEM fluorescence spectroscopy has allowed for the often low 

AFOM signals in groundwater systems to be monitored (Sorensen et al., 2015a, 2016). 

This has facilitated monitoring groundwater connectivity using AFOM signals as tracers 

from surface and river water exchanges. Alongside this, AFOM monitoring has become 

essential for determining potential leachate and pollutant problems that could make the 

use of groundwaters unsafe (Sorensen et al., 2015c, 2015a, 2018a; Graham et al., 2015). 

This has arisen from the understanding gained in both marine and freshwater OM 

studies, where fluorescence has been used to better understand AFOM characteristics, 

source and biological processing (Coble et al., 2014). Tracing hydrological connections 

and contamination monitoring in groundwaters has increased with the development of 

portable in situ fluorescence sensing. This work has highlighted the ability of 

fluorescence sensing to monitor microbial presence (Sorensen et al., 2015a, 2016, 2018b, 

2018a; Baker et al., 2015). However, further work must be undertaken to truly understand 

the relationship between AFOM and its relationship with microbial processes. 
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1.4.4 Wastewater AFOM: contamination of aquatic systems 

In addition to OM characteristics, there has been a recent surge in the use of AFOM 

analysis in natural waters to monitor pollution and trace wastewater contamination 

(Peleato, Legge and Andrews, 2017; Graham et al., 2015; Tedetti, Joffre and Goutx, 2013; 

Carstea, 2012; Stedmon et al., 2011; Murphy et al., 2008; Baker, Elliott and Lead, 2007). 

Research into wastewater contamination (e.g. Baker, 2002c), sewage contamination (e.g. 

Reynolds, 2002), and relatively extensive work regarding the impact of treated sewage 

water in freshwater and marine systems has been conducted (e.g. Baker, 2001; Baker and 

Spencer, 2004). This has allowed for comprehensive research into the impact of 

anthropogenic OM, from sewage, agriculture and industry, in aquatic environments 

(Henderson et al., 2009; Baker et al., 2004; Baker, 2002b; Reynolds, 2002; Reynolds and 

Ahmad, 1997). This work has also found that tryptophan-like, specifically Peak T, 

fluorescence is high in wastewater and so can be used to trace anthropogenic substances 

in natural waters, monitor water quality and to indicate BOD (Hudson et al., 2008; Baker 

and Inverarity, 2004; Baker et al., 2003; Reynolds, 2002; Reynolds and Ahmad, 1997). 

However, comparatively, wastewater fluorescence is not as well investigated as natural 

waters. This is in part due to the optical challenges which often arise within these waters, 

alongside the required applications, often driven by policy. 

 

1.4.5 Drinking water AFOM: contamination detection and treatment 

In comparison to other aquatic research, monitoring AFOM in drinking water sources, 

treatment systems and distribution networks is a recent application of fluorescence 
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spectroscopy. OM is ubiquitous to all waters used to supply drinking water, enabling 

the use of fluorescence monitoring through treatment and distribution systems (Lidén, 

Keucken and Persson, 2017; Lavonen et al., 2015; Coble et al., 2014; Matilainen et al., 2011; 

Westerhoff, Chao and Mash, 2004), and to determine potential contamination events 

(Henderson et al., 2009). OM monitoring in drinking waters is also important for 

understanding the disinfection by-product (DBP) formation potential during 

chlorination processes, as OM is known to be a pre-cursor to these carcinogenic 

compounds (Golea et al., 2017; Zhu et al., 2017; Yang et al., 2015; Bridgeman, Bieroza and 

Baker, 2011; Hua et al., 2010; Beggs, Summers and McKnight, 2009; Roccaro, Vagliasindi 

and Korshin, 2009). Although current literature and understanding of AFOM creates an 

exciting potential new development in the application of fluorescence spectroscopy, 

further work is required to recognise the full potential in drinking water applications. 

 

1.5 Summary: key research gaps 

Regardless of the large body of research conducted and literature available on AFOM 

characteristics, there are still gaps in the knowledge and understanding of the processes 

involved. The key areas for further research are: 

 Fundamental understanding of AFOM-microbial interactions and how this can 

inform OM fluxes within aquatic systems. Then, to build upon this understanding to 

provide a more detailed understanding of these interactions and the complexity of 

AFOM exchanges within environmental systems. 

 The impact of AFOM: as a local nutrient source; on the transportation of OM 

throughout the hydrological continuum; on the local and wider ecology and 



Chapter 1: Introduction and literature review 

37 

ecological status of aquatic systems; and, the influence of AFOM on global 

biogeochemical cycling. 

 Using knowledge and research to exploit the phenomenon of naturally occurring 

AFOM, using fluorescence peaks, such as Peak T, as novel water quality parameters 

to inform water resource management. 

 To further develop, and test, current technology for monitoring AFOM in situ 

utilising the most current scientific research to underpin these developments. This 

should inform the range of applications, environments suitable for sensor 

deployment, and the benefits of these sensors for monitoring water quality, ensuring 

the full potential of this technology is realised. 
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Chapter 2 Experimental parameters and method development 

 

2.1 Fluorescence measurements 

Throughout this research fluorescence measurements were collected using two 

spectrofluorometers; an Aqualog® (Horiba Ltd., Japan) and a FluoroSENS (Gilden 

Photonics Ltd., UK). In situ fluorescence sensors (UviLux, Chelsea Technologies Group 

Ltd., UK) were also deployed in a long-term monitoring program to measure 

fluorescence peaks T and C within a freshwater system. Details of the UviLux sensor are 

provided in chapter 4. This section provides the technical details for the Aqualog® and 

FluoroSENS spectrofluorometers and the parameters used throughout this research. 

 

2.1.1 Fluorescence spectroscopy 

2.1.1.1 Aqualog® spectrofluorometer 

The Aqualog® (Horiba Ltd., Japan) is a spectrofluorometer which employs a 150-W 

xenon arc-lamp. The excitation wavelength ranges from 240-800 nm and the emission 

wavelengths that can be detected are 250-800 nm. The instrument has an excitation 

monochromator, blazed at 250 nm and an emission CCD detector at a right angle to the 

excitation beam to collect the fluorescence spectra (Figure 2.1) (HORIBA Ltd., 2013). 

Instrument correction is provided by the reference detector. Simultaneous measurement 

of the sample’s spectral transmittance and absorbance properties is collected by a single-
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channel detector, colinear with the beam (Figure 2.1), for IFE correction (detailed in 

section 2.1.2.1) (HORIBA Ltd., 2013). 

Figure 2.1: Schematic of the excitation light source, emission and reference detectors of the 

Aqualog®, Horiba Ltd., Japan (HORIBA Ltd., 2013). Image used with the permission of HORIBA 

Ltd. 

 

Instrument function and data output is controlled via the Aqualog® spectroscopy 

software. The scan parameters employed were; excitation wavelengths from 200 to 500 

nm via 1 nm steps, and emission wavelengths of 247.88 to 829.85 nm in 1.16 nm steps. 

The integration time used varied depending upon sample type; 0.5 s for bacterial 

cultures and 0.6 s for environmental samples. Sample transmittance and absorbance 

measurements were collected for IFE correction, detailed in section 2.1.1.1.1. A standard 

3.5 mL quartz cuvette with a 10 mm path-length was used for environmental sample 

analysis and initial culturing. A 1400 µL quartz cuvette with a 10 mm path-length was 
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used for bacterial cultures. Some samples were also diluted where required, to prevent 

CCD saturation, using the blank medium specific to the sample type. 

 

2.1.1.1.1 Aqualog® Absorbance measurements and IFE correction 

The transmittance detector signal is used to calculate the absorbance (𝐴𝑏𝑠) and 

transmittance (𝑇) values within the Aqualog®. 𝐼0 is taken from the sample blank and 𝐼 

from the sample being evaluated (HORIBA Ltd., 2013). The transmission (𝑇𝜆), percent 

transmission (%𝑇𝜆) and absorbance values (𝐴𝑏𝑠) at a given wavelength are calculated as 

follows: 

𝑇𝜆 =  
𝐼

𝐼0
     Equation 2.1 

%𝑇𝜆 = 100 𝑥 
𝐼

𝐼0
   Equation 2.2 

𝐴𝑏𝑠 =  −log10 (𝑇)   Equation 2.3 

 

Common practice for IFE correction is to use the absorbance measurements from the 

sample and blank, as discussed above. For accurate IFE correction, the sample 

concentration must fall within the linear Beer-Lambert region for the absorbance spectra 

associated with the EEM (HORIBA Ltd., 2013). The algorithm employed by the Aqualog® 

requires measuring the absorbance spectra of the sample for the overlapping range of 

both the excitation and emission spectra. The use of this algorithm requires the use of a 

standard cuvette with 10 mm pathlength (HORIBA Ltd., 2013). The following equation 

is applied to each excitation-emission wavelength coordinate within the EEM: 
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𝐹𝑖𝑑𝑒𝑎𝑙  =  𝐹𝑜𝑏𝑠 ×  10
𝐴𝑏𝑠𝐸𝑥+ 𝐴𝑏𝑠𝐸𝑚

2    Equation 2.4 

 

Where 𝐹𝑖𝑑𝑒𝑎𝑙 is the ideal fluorescence signal spectrum in the absence of IFE, 𝐹𝑜𝑏𝑠 is the 

observed fluorescence signal, and 𝐴𝑏𝑠𝐸𝑥 and 𝐴𝑏𝑠𝐸𝑚 are the measured absorbance values 

at the respective excitation and emission wavelengths (HORIBA Ltd., 2013). 

 

2.1.1.2 FluoroSENS 

The fluoroSENS (Gilden Photonics Ltd., UK) fluorimeter is a high performance, fully 

integrated benchtop fluorimeter that utilises a 150-W xenon arc-lamp. The instrument 

utilises the Czerny-Turner design with flexible excitation and emission 

monochromators, with a 300 mm focal length. Both the excitation and emission 

monochromators have triple gratings, 300 nm and 500 nm blaze respectively, and 

variable a bandpass (0.1 nm to 10 mm) (Gilden Photonics, 2009). The emission is detected 

using a single-photon counting photomultiplier. Instrument correction, provided by the 

reference photodiode detector, is applicable but fluorescence spectra cannot be corrected 

for IFE using simultaneous absorbance detection (Gilden Photonics, 2009). 

A fluoroSENS (Gilden Photonics Ltd., UK) fluorimeter was used to collect initial 

fluorescence spectroscopy data, using a 3.5 mL quartz cuvette with a 10 mm path-length. 

The following scan parameters were employed: excitation wavelengths from 200 to 450 

nm at 5 nm steps; emission wavelengths of 250 to 550 nm with 5 nm bandpass; 

integration time of 200 ms.  
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2.1.2 Fluorescence spectra post-processing, interpolation and data 

analysis 

2.1.2.1 Post-processing of fluorescence spectra 

Spectra measured on the Aqualog® were blank subtracted, corrected for IFE (for both 

excitation and emission wavelengths) and first and second order Rayleigh Scattering 

masked (±10 nm at λex=λem and 2λex=λem) (Coble et al., 2014; McKnight et al., 2001). 

Instrument validation was undertaken daily with a quinine sulphate standard (Starna 

Cells, USA), with CV being < 3% (n = 5) in all events. This fluorescence data is reported 

in quinine sulphate units (QSU), determined from normalising data to the fluorescence 

from 1 µg L-1 quinine sulphate in 0.105 M perchloric acid at λex = 347.5 nm and λem = 450 

nm (Mostofa et al., 2013; Shimotori, Watanabe and Hama, 2012; Shimotori, Omori and 

Hama, 2009; Kramer and Herndl, 2004). This allows for quantitative analysis. 

Raw relative fluorescence data, measured on the fluoroSENS, were normalised to the 

water Raman line at λex280/λem310(300-315) nm and output in arbitrary units (A.U.) 

(Baker, 2002c; Determann et al., 1998). Peak-picking analysis was undertaken using an R 

(The R Foundation) script customised from Lapworth and Kinniburgh, (2009). 

 

2.1.2.2 Fluorescence interpolation: EEM generation 

Graphical EEM generation was carried out using a custom script written in PythonTM 

(Python Software Foundation). Where samples were diluted the EEM matrix was 

multiplied by the dilution factor. The script crops the data window to λex 240-490 nm, 

λem 250-550 nm to allow for the analysis of the UV spectra, the area of interest within 
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aquatic fluorescent organic matter (AFOM) work. Data λex <240 nm was discounted due 

to the data quality produced by the Aqualog® caused by the signal to noise ratio. 

 

2.1.2.3 Analysis of fluorescence spectral data 

The increased implementation of fluorescence spectroscopy has led to the development 

of multiple methods for analysing the resultant data (Bridgeman et al., 2015). This is 

particularly important within complex sample matrices as, although EEMs enable the 

visual comparison of samples, dominant fluorophores can often mask other fluorescent 

compounds with similar optical properties (Stedmon and Bro, 2008). Some of these 

analytical techniques include ‘peak-picking’, self-organising maps (SOMs) and the 

commonly utilised parallel factor (PARAFAC) analysis. PARAFAC analysis, although 

the norm within the field, is not without its limitations, whilst ‘peak-picking’ permits for 

a more focussed and detailed understanding of certain peaks of interest, allowing for the 

comparison of fluorescence peaks between samples. 

PARAFAC analysis is a multivariate statistical analysis that decomposes EEM data 

(Murphy et al., 2014). This trilinear component analysis decomposes common polygons 

within the dataset and allows for the comparison of components of different water 

samples, highlighting variations in OM fluorescence (Qian et al., 2017; Harun et al., 2015; 

Stedmon, Markager and Bro, 2003). Furthermore, PARAFAC analysis can be employed 

to identify overlapping components within the EEM data that may not be visible as 

independent peaks (Cory et al., 2010; Larsen et al., 2010). However, it can be limited in 

this regard, often incorporating similar, yet different, fluorescence components as one 
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(Yu et al., 2015; Shutova et al., 2014). This occurs most commonly when samples from 

multiple sources are combined into a single PARAFAC model, and can be avoided by 

creating datasets of samples from similar environments (Yu et al., 2015; Fellman, Hood 

and Spencer, 2010). 

The custom PythonTM (Python Software Foundation) script used for EEM generation 

(section 2.1.2.2) also incorporated peak picking for specific fluorescence peaks. 

PARAFAC analysis was used to decompose the EEM data (Stedmon and Bro, 2008) 

using Solo (Eigenvector Research Inc., WA, USA) software, which employs the PLS-

Toolbox with MATLAB®. The PARAFAC model was validated by CORCONDIA and 

investigation of the models’ residuals. For specific fluorescence peaks of interest peak-

picking analysis was undertaken using PythonTM. 

 

2.2 Dissolved oxygen measurements 

Initially the dissolved oxygen (DO) of the samples was determined using both a DO 

meter and standard Winkler titrations, as described below (APHA AWWA WEF, 1999). 

Slight differences were identified between the absolute values reported by the two 

methods but the trend in the data was similar (R2 = 0.97, p < 0.05). It is likely that 

variations in the measurements obtained using the different methods are caused by 

method specific limitations, such as the subjective nature of colour change identification 

for the titration method. As such, the DO meter was used for all further DO 

measurements. 
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2.2.1 Winkler titration 

Winkler titrations were conducted as per the standard method [ES EN 1889-2:1998] 

(APHA AWWA WEF, 1999), which involves fixing the DO content of the bottle by 

adding 2 mL of 48% manganese sulphate followed by 2 mL of alkali-iodide-azide 

solution to form a precipitate. 2 mL of concentrated sulphuric acid is then added to 

dissolve the precipitate. Once this process has taken place the samples need to be titrated 

within 8 hours. 

0.0125 M sodium thiosulphate was used as the titrant, made daily from a stable stock 0.1 

M solution. This was added to 100 mL of the fixed sample until the colour turned to ‘pale 

straw’. Once the desired colour was reached, 2 mL of starch solution was added to the 

conical flask as a colour indicator. Titrant was added further until the solution turned 

from dark blue to colourless. When using 0.0125 M sodium thiosulphate as a titrant with 

100 mL of sample, 1 mL of titrant used is equal to 1 mg/L DO. 

 

2.2.2 Dissolved oxygen meter 

An optical DO meter (HQ10, Hach, CO, USA) was also used to record dissolved oxygen 

measurements. Each sample was read in triplicate and data averaged. Calibration of the 

DO meter was carried out daily.  
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2.3 Measuring biochemical oxygen demand 

Biochemical oxygen demand (BOD) is a standard measure for determining the 

bioavailable organic content of water. BOD analysis measures the amount of oxygen 

required, by the microbial population present, to degrade the biodegradable fraction of 

organic matter (Cutrera et al., 1999). The 5-day BOD test (BOD5) is a common analysis 

used within industry to determine the amount of biodegradable organic material within 

a sample, providing a proxy that infers biological activity. This involves an initial 

dissolved oxygen (DO) measurement on day 0, incubating water samples at 20°C in the 

dark for 5 days, and then taking a second reading on day 5. The BOD of the sample is 

represented by the difference between the initial and final DO. 

The BOD5 tests were carried out in accordance with the standard methods (APHA 

AWWA WEF 1999). Samples were added to stoppered bottles which were filled until 

overflowing to allow for the creation of a water seal. A bottle was prepared for each 

sampling time point, as not to introduce oxygen into the sample. 

The standard method describes the possibility that samples where oxygen may be a 

limiting factor, such as wastewaters, require dilution to ensure there is an excess supply 

of oxygen. The dilution water was made using distilled water with nutrient additives. 

The additives were a phosphate buffer, 0.25 M calcium chloride solution, 1 M 

magnesium sulphate solution and 2 mM ferric chloride. 1 mL of each nutrient solution 

was added for every litre of dilution water. To saturate the dilution water with oxygen, 

it was aerated for 24 hours before being used. Further to dilution, some samples, such as 

treated wastewaters and chemical standards, require a bacterial seed. A 
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glucose/glutamic acid (150 mg/L) solution was also prepared to provide a carbon source 

for diluted samples. 

 

2.4 Bacterial enumeration 

2.4.1 Flow cytometry 

Flow cytometry is used to analyse chemical and physical characteristics of particles in a 

fluid and is frequently employed in biotechnology for cell enumeration, utilising 

fluorescent labelling protocols. Flow cytometry has become increasingly used due to the 

rapid data acquisition over traditional enumeration techniques, which require a 

minimum 18 hour incubation time. Flow cytometry, depending upon the stain utilised, 

also allows for the identification of a range of cell types and determination of viability. 

This has made it very popular for bacterial enumeration due to the known issues with 

culturing bacteria, particularly from complex environmental samples. 

Bacterial enumeration was performed by flow cytometry using a Accuri® C6 (BD 

Biosciences, USA). The flow cytometer was validated daily to ensure <2.5% instrument 

error. Samples were run at a flow rate of 11 µL/min using a core size of 5 µm for one 

minute. Manually drawn gates were created to discriminate between bacterial cells and 

background particulates. 
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2.4.1.1 BacLight™ Green 

Initial experiments focussed on absolute bacterial enumeration with samples fixed using 

4% paraformaldehyde (PFA), with a final concentration of 2% (v/v). BacLight™ Green 

(Molecular Probes™, Invitrogen, USA) was used to stain bacterial samples. A 1x 

working concentration was used, from a 2x concentrated stock solution, and samples 

were incubated at room temperature for 15 minutes in the dark. 

 

2.4.1.2 BacLight™ LIVE/DEAD® 

To differentiate between viable and non-viable cells, samples were stained using 

BacLightTM LIVE/DEAD® (Molecular Probes™, Invitrogen, USA) bacterial viability 

staining kit. Samples were not fixed to allow the analysis of viability and were analysed 

within one hour of collection. A 2x concentrated stock was made using filter sterilised 

water (Molecular Probes™ 2004). Samples (50 µL) were stained, at 1x working 

concentration, for 15 minutes, in the dark, prior to analysis. All bacterial enumeration 

data is reported in cells mL-1. Two manually drawn gates were used to distinguish live 

and dead cells (Molecular Probes™ 2004) 

 

2.4.2 Optical density 

Optical density (OD) is attenuation determined by absorbance and scattering, routinely 

used to represent the relative increase in cell numbers within a sample when monitoring 

bacterial growth (Hall et al., 2014). A 1 mL aliquot of the sample was put into a disposable 
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cuvette (Sarstedt AG & Co., Germany) and OD measured at 600 nm (WPA Spectrawave 

S1200, Biochrom, UK). 

 

2.5 Collection and storage of water samples 

2.5.1 Sampling location 

The freshwater samples were collected from a water body at the University of the West 

of England (N 51° 29’ 56”, W 2° 32’ 39”), shown in Figure 2.2. This water body receives 

OM inputs from both allochthonous and autochthonous sources, such as surface runoff 

and biological matter respectively, and is artificially aerated, providing an oxygen rich 

environment. The use of this sampling location allows sample integrity to be preserved 

due to the proximity to the laboratory. The long-term installation of a telemetry system, 

with historical water quality data, also makes this a preferable location. 

Figure 2.2: Sample site for environmental freshwater sample collection (N 51° 29’ 56”, W 2° 32’ 

39”). Samples were collected from the location of the buoys, which is where the sensor suite is 

installed at a depth of ~30 cm.  
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2.5.2 Collection technique 

Water samples were collected from the location of the buoys (Figure 2.2), approximately 

30 cm from the surface. Collection was carried out using a five litre HDPE container that 

was cleaned with a 1% Virkon™ (Virkon Disinfectant Technologies, UK) solution, and 

then rinsed thoroughly to ensure there would be no bacterial or chemical contamination 

of the sample. Prior to collection, the aspirator was also rinsed three times with water 

from the water body. 

 

2.5.3 Storage and handling of water samples 

Water samples were analysed or prepared for experimental setups within 2 hours of 

collection to limit changes in the composition and characteristics. Samples were not 

stored prior to use or analysis, and as such did not need to be chilled or fixed, allowing 

sample integrity to be maintained. 

 

2.6 Culturing bacterial inoculum 

2.6.1 Standardised mixed bacterial culture 

A standardised bacterial inoculum, containing a non-pathogenic bacterial mixture (Cole 

Parmer Instrument Company, USA), was used to provide a source of bacteria for the 

mixed culture model system (section 2.7.2). The inoculum was activated by rehydrating 

the capsule contents in 500 mL of sterile de-ionised water and aerating the mixture for 
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an hour for acclimatisation. The inoculum was then added to individual sample bottles, 

0.5% (v/v). 

 

2.6.2 Laboratory bacterial cultures 

Bacterial cultures were obtained from a culture collection at the University of the West 

of England, Bristol. Cultures were streaked onto nutrient agar (Oxoid Ltd., UK) plates 

from frozen stocks and incubated for 24 hours at 37°C. Species, strain and the 

justification for species analysis is detailed in Table 2.1. Overnight liquid cultures were 

obtained by inoculating media (section 2.7.1.1) with pure bacterial colonies, obtained 

from the overnight streak plates, and incubating at 37°C, shaking at 150 rpm. 

 
Table 2.1: Bacterial species and strains obtained from the University of the West of England 

culture collection. 

Bacterial species Strain Justification 

Escherichia coli ATCC 10536 Presence in freshwaters can indicate 

sewage contamination (Sigee, 2004) 

Bacillus subtilis ATCC 6633 Ubiquitous soil bacterium (Graumann, 

2007) 

Pseudomonas 

aeruginosa 

NCIMB 8295 Ubiquitous in freshwater systems (Elliott, 

Lead and Baker, 2006a; Sigee, 2004) 
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2.6.3 Culturing bacterial strains from environmental water samples 

To identify AFOM production by environmental bacteria, strains were isolated and 

cultured from the freshwater body samples (section 2.5). The water was vacuum filtered 

through 0.2 µm filters (Whatman® 0.2 µm nitrocellulose membrane filters, GE 

Healthcare, UK). Filters were then placed on three different types of agar plates to select 

for different bacteria: R2A agar (Oxoid Ltd., UK) was used for total environmental 

counts; Brilliance™ E. coli/Coliform medium (Oxoid Ltd., UK) to allow for the 

identification of E. coli, coliforms and P. aeruginosa; and Difco™ Pseudomonas Isolation 

Agar (Difco Laboratories, USA) differential media as another way of selecting for P. 

aeruginosa. Agar plates were incubated for 24 hours at 37°C. Twelve single colonies were 

then sub-cultured on nutrient agar plates for 24 hours at 37°C. 

These unknown environmental bacterial isolates were run through an identification 

process using a BiOLOG MicroStation™ (BioTek Instruments, USA). Prior to the 

inoculum preparation, a Gram stain (Black, 2005) was conducted to ensure the correct 

inoculating fluid and well-plates were used for identification. Cultures were prepared 

using the inoculating fluid (BioTek Instruments, USA) to the required cell density using 

a BiOLOG Turbidimeter (BioTek Instruments, USA); 52% and 19% transmittance for 

Gram negative and positive bacteria respectively. The inoculum was then transferred to 

the corresponding pre-prepared 96-well plates; SF-N2 MicroPlate™ for Gram negative 

bacteria and SF-P2 MicroPlate™ for Gram positive bacteria (BioTek Instruments, USA). 

A catalase test (MacFaddin, 2000) was also undertaken for the 12 species to narrow the 

species library search further. Six of the environmental bacteria species isolated, which 
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were identified with probability >90 % to at least the Genus level (Table 2.2), were 

investigated further. 

 
Table 2.2: Identification (BiOLOG MicroStationTM, BioTek Instruments, USA) and characteristics 

of bacterial species isolated from an environmental freshwater. 

 BiOLOG Identification Gram (+/-) Catalase (+/-) 

1 Escherichia coli - + 

2 Enterobacter nimipressuralis - + 

3 Bacillus subtilis + + 

4 Pseudomonas sp. - + 

5 Aeromonas sp. - - 

6 Staphylococcus aureus + + 

 

2.6.4 Obtaining a microbial community inoculum from an 

environmental freshwater sample  

An environmental freshwater sample (section 2.5) was used to obtain the community 

inoculum; one sub-sample was used without filtration whilst one was filtered at 11 µm 

to remove particulate matter but retain cells, where not attached to particles or within a 

biofilm. 1 mL of this each inoculum (both unfiltered and filtered) was added to 9 mL of 

the minimal media (section 2.7.1.1). Inoculated media were then incubated overnight at 

a range of temperatures; 25°C, 30°C and 37°C. Once grown up overnight, cultures were 

centrifuged for 10 minutes at x 4000 g and washed three times in osmotically stable ¼ 

strength Ringer solution (Oxoid Ltd., UK), to remove media/supernatant and organic 

matter. The cell pellets were then resuspended in 10 mL of the minimal media and used 

as a mixed culture inoculum.  
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2.7 Development of laboratory model systems for investigating 

microbial processing of aquatic fluorescent organic matter in 

freshwater systems 

Laboratory model systems were developed to allow for a more in-depth understanding 

of bacterial-AFOM dynamics and interactions, in particular how such interactions are 

impacted by microbial communities within a system as well as certain physicochemical 

parameters, such as temperature. Two model systems were developed: Model system 1 

for determining fast-acting bacterial production of AFOM at a species level; and, Model 

system 2 to represent a low nutrient environment and assess microbial processing and 

production of AFOM with increased residence time. 

 

2.7.1 Model System 1: Monoculture model system – determining fast-

acting bacteria-AFOM interactions at a species level 

A laboratory model system was developed to allow optimum growth of bacterial 

monocultures, further investigating the microbial production of AFOM. The base media 

used was the minimal media developed (section 2.7.1.1). This media was inoculated with 

liquid inoculum of each bacterial species (section 2.6.2), using a 1 in 100 dilution. 

 

2.7.1.1 Development of a low-fluorescent minimal medium: DM+ 

A low-fluorescent medium was required for the growth of bacterial monocultures. 

Growth media usually contains proteinaceous material which gives rise to background 

fluorescence. Therefore, exploratory work was undertaken to develop a minimal 
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medium for optimum growth of a range of bacterial species. Two known minimal media, 

M9 minimal salt medium (Geerlof, 2010) and Davis and Mingioli liquid medium, 

without the addition of amino acids (Davis and Mingioli, 1950), were used within this 

exploratory work. Additionally, CaCl2 and trace element solution (Kragelund and 

Nybroe, 1994) were further added to the Davis and Mingioli minimal medium. Each 

media type was inoculated with bacterial monocultures and Costar® 3596 96-well plates 

(Corning® Inc., USA) were used to monitor growth over a 24-hour period. An Infinite® 

200 PRO (Tecan Trading AG, Switzerland) plate reader was used to obtain OD data 

every 15 minutes for the well-plates. Experiments were run in triplicate and data 

averaged to determine the best growth medium; examples of this with Bacillus subtilis 

and Pseudomonas aeruginosa are shown in Figure 2.3. The final basal medium developed, 

hereby referred to as DM+ minimal media, contained a 0.2% v/v glucose solution, as the 

sole carbon source, and with sources of phosphate, nitrogen, sodium and magnesium 

(Davis and Mingioli, 1950), CaCl2 (final concentration 0.035% v/v) and trace elements 

(concentration 0.1% v/v), obtained from Kragelund and Nybroe (1994). 
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Figure 2.3: Optical density (OD600nm) data for a) Bacillus subtilis and b) Pseudomonas aeruginosa 

growth curves (n = 3, ± 1 standard deviation), obtained from using an Infinite® 200 PRO (Tecan 

Trading AG, Switzerland) plate reader. Data shown compares the bacterial growth within the 

minimal medium developed here (DM+) and two commonly used minimal media, M9 minimal 

medium (Geerlof, 2010) and ATCC® medium 778 (Davis and Mingioli, 1950).  
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Further exploratory work was undertaken to quantify the contribution, if any, of the 

developed minimal media (DM+) to the background fluorescence. The basal media 

(ATCC® medium 778) was initially sterilised via autoclaving at 121°C for 15 minutes 

(Davis and Mingioli, 1950), but this produced a complex fluorescence signal (Figure 

2.4a). To prevent this, the media was sterile filtered using Sartobran® 300 0.2 µm cellulose 

filter (Sartorius Stedim Biotech, Germany), resulting in the fluorescence signal shown in 

Figure 2.4b. Glucose solution was also sterile filtered (Minisart® 0.2 µm cellulose filter, 

Sartorius Stedim Biotech, Germany), whilst the CaCl2 and trace element solutions were 

autoclaved at 121°C for 15 minutes, before being added to the basal medium, prior to 

inoculation. 

Figure 2.4: Fluorescence excitation-emission matrices of the DM+ minimal medium developed, 

subjected to two different sterilisation protocols: a) sterilised via autoclaving at 121°C for 15 

minutes; b) sterile filtered (Sartobran® 300 0.2 µm cellulose filter; Sartorius Stedim Biotech, 

Germany). Fluorescence is reported in quinine sulphate units (QSU); 1 QSU is equivalent to the 

fluorescence intensity, of 1 µg/L quinine sulphate at λex/λem 347.5/450 nm. 

  

a) b) 
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2.7.1.2 Bacterial growth curves 

Growth curves (n = 9 i.e. nine independent replicates) of each laboratory bacterial strain 

(Table 2.1) were undertaken by inoculating 150 mL of the sterile minimal medium 

(section 2.7.1.1) from a fresh overnight plate culture (section 2.6.2) and incubating the 

samples at 37°C, shaking at 150 rpm. 2 mL aliquots were collected every 30 minutes for 

fluorescence measurements (section 2.1.1.1) and optical density (OD) measurements 

(section 2.4.2). 

 

2.7.1.3 Bacterial culture analysis 

Media was inoculated from a fresh overnight plate culture (section 2.6.2) with each of 

the bacterial species and incubated overnight at 37°C, shaking at 150 rpm throughout. 

Overnight cultures were centrifuged at 5000 x g for 5 minutes (Allegra X-30R, Beckman 

Coulter™, USA) to form a bacterial pellet. Samples were segregated to provide 

information about intra- and extracellular AFOM and to address some of the current 

understanding surrounding the contribution of cell lysis to the AFOM signal (Elliott, 

Lead and Baker, 2006a). The supernatant was pipetted off and filtered using a Minisart® 

0.2 µm cellulose filter (Sartorius Stedim Biotech, Germany) to guarantee all cells were 

removed. The pellet was resuspended and washed 3 times in 5 mL of osmotically stable 

¼ strength Ringer solution (Oxoid Ltd., UK) to ensure that any supernatant or media 

was no longer present. To physically lyse the cells, a 1 mL aliquot of the resuspended 

cells was sonicated (Ultrasonic Processor XL 2020, Misonix Inc., US) in three 10 second 

pulses at a fixed frequency of 20 KHz, not exceeding 40% amplitude, and kept over ice 
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throughout (Doron, 2009). Physical lysis was undertaken, rather than chemical lysis 

techniques, to ensure the fluorescence properties of the sample was not altered (nine 

independent replicates). An endospore suspension for B. subtilis was prepared as 

described by Lawrence and Palombo (2009). To check for the presence of endospores 

and the removal of vegetative cells, an endospore stain was conducted using the 

Schaeffer-Fulton method (Schaeffer and Fulton, 1933). All samples (raw, supernatant, 

resuspended cells and lysed cells) were subject to fluorescence-EEM spectroscopic 

analysis. Flow cytometry bacterial enumeration was not used as the BacLight® 

LIVE/DEAD viable staining kit was ineffective with P. aeruginosa, due to excretory 

mechanisms within the cells. This was verified by lack of significant correlation between 

flow cytometry enumeration and traditional colony counts in cfu/mL (Gilchrist et al., 

1973), obtained using 50µL of liquid culture dispensed via a Whitley Automated Spiral 

Plater (Don Whitley Scientific Ltd., UK). 

 

2.7.1.4 Model System 1: Culturing bacteria isolates from an environmental 

freshwater 

The monoculture laboratory model system (section 2.7.1) was further adapted to analyse 

the ability of bacterial species isolated from an environmental freshwater (section 2.6.3) 

and an isolated mixed environmental culture (section 2.6.4) to produce and process 

AFOM. 

The six bacteria isolates (Table 2.2) were cultured overnight in the minimal media 

(section 2.7.1.1) at three different temperatures, 25°C, 30°C and 37°C. A range of 
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temperatures were employed to assess the impact of selective conditions on growth, 

species preference and the AFOM signal. Isolated environmental mixed cultures were 

also used to assess the impact of microbial interactions on AFOM produced within a 

model system. Overnight mixed cultures were incubated at a range of temperatures, 

25°C, 30°C and 37°C, in line with the temperature at which initial culturing had occurred. 

The potential impact of residence time on AFOM production was also explored by 

culturing for 24, 48 and 72 hours. All cultures were then subject to analysis, as described 

in section 2.7.1.3. Each sub-sample type was analysed for fluorescence-EEM 

spectroscopy and experiments conducted in triplicate. 

 

2.7.2 Model System 2: Mixed culture model system – bacterial-AFOM 

interactions over a 10-day incubation period 

The BOD method (section 2.3) was altered as described below to develop this laboratory 

model system to investigate the microbial processing of AFOM. Samples were either 

collected (environmental, section 2.5) or prepared (synthetic). These were incubated, 

with triplicate sample bottles, at 20°C in the dark over a 10-day period in individual 

airtight 300 mL bottles, sealed with PARAFILM (APHA AWWA WEF, 1999). 

The dilution water from the BOD Standard Method (section 2.3) was used as the base 

media for the synthetic samples in the mixed culture model system, to limit AFOM 

production and better simulate environmental AFOM fluorescence intensity. Glucose 

and glutamic acid were both added as carbon sources (APHA AWWA WEF, 1999). The 

use of this media composition prevents a strong background fluorescence signal 
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(Shimotori, Watanabe & Hama, 2012), whilst providing sufficient nutrients for bacterial 

growth. This is beneficial over a nutrient rich media, such as nutrient broth (Oxoid Ltd., 

UK), even in dilute form (Figure 2.5), or the addition of a protein source, such as peptone 

water (Oxoid Ltd., UK), as these have a particularly intense fluorescence signal in the 

protein-like region, inhibiting the identification of production and utilisation within the 

AFOM region. Although this can be corrected for, using blank subtraction and inner-

filter correction, using a non-fluorescent media reduces the likelihood of negative values 

and minimises attenuation of the base sample. The standardised mixed bacterial culture 

(section 2.6.1) was used as the bacterial inoculum for the synthetic samples. 

Additionally, some synthetic samples were supplemented with 2% (v/v) environmental 

water to act as an OM source, hereafter referred to as supplemented synthetic samples. 

To account for any fluorescence development via abiotic pathways two negative controls 

were used; 

i. media with heat treated inoculum 

ii. media without bacterial inoculum 
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Figure 2.5: Fluorescence excitation-emission matrix of nutrient broth at 5% concentration. 

Fluorescence is reported in quinine sulphate units (QSU); 1 QSU is equivalent to the fluorescence 

intensity, of 1 µg/L quinine sulphate at λex/λem 347.5/450 nm.  

 

2.7.2.1 Bacterial AFOM: production hour by hour 

To further develop the mixed culture model system, synthetic samples were then used 

in time-resolved experiments whereby aliquots of 5 mL were taken hourly from one litre 

Duran® bottles (Duran Group, Germany) and incubated in static conditions at the 

following temperatures; 20°C, 25°C, 30°C and 37°C. Aliquots were subject to 

fluorescence-EEM spectroscopic analysis (section 2.1.1.1) and flow cytometry (section 

2.4.1) with BacLight® LIVE/DEAD viability stain (section 2.4.1.2). 
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2.8 In situ monitoring of physicochemical, biological and 

fluorescence characteristics 

2.8.1 Discrete sampling of a freshwater system 

Discrete samples of the environmental surface freshwater body were collected over a six 

month period, as described in section 2.5. Aliquots of each sample were analysed using 

fluorescence-EEM spectroscopy (section 2.1.1). Filtration was undertaken for some 

samples: no filtration for AFOM analysis; 11 µm (Whatman™ Type 1, GE Healthcare UK 

Ltd., UK) vacuum filtration removes large particles, reducing light scattering; 0.45 µm 

syringe filtration (Millex®-HA cellulose filter, Merck-Millipore, Ireland) allows analysis 

of the dissolved fluorescent fraction (DOM); and 0.2 µm syringe filtration (Minisart® 0.2 

µm cellulose filter, Sartorius Stedim Biotech, Germany removes bacterial and algal cells 

from the sample, providing supernatant extracellular AFOM. Sub-samples were sent to 

Wessex Water Scientific Services, a UK accredited laboratory, ISO 17025 (2005) for 

standardised chemistry and microbiology analysis, detailed in Table 2.3.  
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Table 2.3: Chemical and microbiological tests conducted on raw environmental samples, 

undertaken by Wessex Water Scientific Services, an accredited laboratory, ISO 17025 (2005). 

 Parameter Description Units 

Chemistry Chloride Chloride on Aquakem mg/L 

Nitrate  mg/L N 

Nitrite Nitrite on Aquakem mg/L N 

Phosphate Orthophosphate on Aquakem mg/L P 

Sulphate Sulphate on Aquakem mg/L 

Total Organic 

Nitrogen (TON) 

TON on Aquakem mg/L N 

Electrical 

Conductivity (EC) 

EC at 25°C µS/cm 

pH   

Turbidity  NTU 

Microbiology 2 day total count Total plate count, incubated 

for 2 days at 37°C 

cfu/mL 

3 day total count Total plate count, incubated 

for 3 days at 22°C 

cfu/mL 

Clostridium Confirmed Clostridium 

perfringens for raw waters 

cfu/100 mL 

Coliforms Raw water coliform 

microbiology: Escherichia coli 

and Total coliforms 

cfu/100 mL 

Enterococci Confirmed Enterococci for raw 

waters 

cfu/100 mL 

Pseudomonas 

aeruginosa 

Confirmed Pseudomonas 

aeruginosa for raw waters 

cfu/100 mL 

 

2.8.2 Online in situ sensors: real-time water measurements 

Table 2.4 details the suite of sensors that are installed in situ in a freshwater water body 

(N 51° 29’ 56”, W 2° 32’ 39”). The sensors provide a good overview of the 
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physicochemical parameters of the water body. These sensors are calibrated annually 

and cleaned on a regular basis (every two to four weeks). This water body is an artificial 

freshwater system that serves the purpose of an urbanised drainage basin, as well as 

supporting a variety of wildlife. As such, it provides a good testing ground for a range 

of contaminants. 

 
Table 2.4: Description of sensors installed in situ for long-term monitoring of a freshwater body. 

Sensor Parameters measured Units 

Eureka Manta 2 Water temperature °C 

pH NA 

Dissolved oxygen mg/L 

Electrical Conductivity (EC) µS/cm 

CTG UviLux CDOM Peak C Fluorescence λex/λem 

280/360 

QSU 

CTG UviLux 

Tryptophan 

Peak T Fluorescence λex/λem 

280/450 

QSU 

CTG UniLux Turbidity  FNU 

 

2.8.2.1 Sensor data collection 

The sensor suite is digitised and installed in a remotely accessed telemetry system, which 

utilises Adcon Addit4 radio telemetry units (RTU’s) (Adcon Telemetry Group, Austria). 

Data are collected via addVANTAGE Pro 6.6 (Adcon Telemetry Group, Austria), where 

it can be viewed in real-time and historical data downloaded for data analysis. The 

sensors report data in 15 minute time intervals for high temporal resolution continuous 

monitoring. 
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Chapter 3 Bacterial engineers: the direct production of 

bacterial aquatic fluorescent organic matter 

 

3.1 Introduction 

The notion of allochthonous and autochthonous organic matter (OM) within freshwater 

systems is well documented throughout the literature system (Coble et al., 2014; Carstea, 

2012; Larsen et al., 2010; Hudson, Baker and Reynolds, 2007). Within this, autochthonous 

aquatic fluorescent organic matter (AFOM) is discussed as the ‘protein-like’ fluorescence 

region, with the only other biological processing of AFOM proposed being 

biodegradation of some of the smaller humic acids (Coble et al., 2014). In addition to the 

protein-like region of fluorescence (λex/λem 230-280/330-360 nm), the remainder of the 

freshwater AFOM spectra is largely considered to be humic or fulvic acid-like 

compounds. These are discussed as being stable, non-labile higher molecular weight 

molecules (Cooper et al., 2016), derived from terrestrial sources and, therefore, 

considered to be an allochthonous input into the system (Coble et al., 2014). However, it 

has been suggested, within marine AFOM research, that bacterial metabolic processes 

could also be responsible for some of the humic-like FOM in these environments 

(Guillemette and del Giorgio, 2012; Shimotori, Watanabe and Hama, 2012; Romera-

Castillo et al., 2011; Kramer and Herndl, 2004). Whilst microbially-mediated processes 

are suggested for the formation of the humic-like AFOM in the marine environment, this 

has yet to be demonstrated within freshwater ecosystems. This is due to the lack of direct 

evidence of autochthonous production of higher molecular weight AFOM. 
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Due to the association of protein-like fluorescence with microbial production, 

particularly in the Peak T region, it has been suggested that Peak T fluorescence could 

be used as a proxy for bacterial activity. Recent literature has attempted to correlate Peak 

T fluorescence with bacterial presence, specifically aimed at species enumeration 

(Sorensen et al., 2015a, 2016; Baker et al., 2015). This has led to studies focussed on the 

correlation between E. coli/coliform counts and Peak T fluorescence, a demand driven 

by current water quality policy. However, correlating these parameters with Peak T has 

had limited success and seems to be dependent upon the system being assessed. 

It is clear from the current available literature that a more detailed understanding of the 

fundamental microbial-OM interactions in freshwater systems is needed. This chapter 

addresses the use of a laboratory model system to analyse the relationship between Peak 

T fluorescence and bacterial growth. By using a minimal media and bacterial 

monocultures, the dynamics of bacterial-AFOM derivation can be assessed. The data 

within this chapter has been published in a peer reviewed journal (Fox et al., 2017), 

presented in Appendix 1. 

 

3.2 Results – Model System 1: Monoculture model system 

Monocultures of laboratory strain bacteria (Table 2.1) were used within laboratory 

Model System 1. Each individual bacterial species was analysed for fluorescence, 

exhibiting unique fluorescence signatures. Peak T fluorescence was the dominant peak 

seen in all samples, exhibiting high fluorescence intensities. This limited the application 

of PARAFAC analysis, whereby no robust model, CORCONDIA >90% (Bro and Kiers, 
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2003), that adequately explained the dataset could be identified. Subsequently, peak 

picking (Asmala et al., 2016), an established method for spectral analysis, was applied to 

peaks identified within the EEMs. 

 

Table 3.1: Identification of the fluorescence peaks, generated via bacterial processing, during 

bacterial growth curves and culturing experiments. 

Named 

Fluorescence Peak 

λex/λem 

(nm) 

Peak Association 

T 280/300-380 Attributed to amino acid (tryptophan) 

presence. 

C 350/400-480 Common aquatic AFOM associated with 

humic substances. 

AC 250/400-460 Observed alongside Peak C but 

considered to be separate due to varying 

ratios between the two peaks. Excites in 

the UVC region. 

C+ 410/450-500 Typically associated with soils and 

freshwaters and attributed to terrestrially 

sourced CDOM. 

M 240/370-430 Originally observed in marine 

environments but now associated with 

recent microbial activity in aquatic 

systems. 

AM 300/370-430 Associated with Peak M due to 

simultaneous occurrence, excites in the 

UVC region 

X 440/510-550 Previously uncharacterised – likely to be 

a high molecular weight fluorophore 

Nomenclature and association derived from Coble et al., (2014). 
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3.2.1 Monitoring bacterial growth and fluorescence development 

3.2.1.1 Escherichia coli 

Figure 3.1 shows the E. coli growth curve, with Peak T as the dominant fluorescence peak 

present at time zero, upon initial inoculation with E. coli cells (Dartnell et al., 2013; Sohn 

et al., 2009). The intensity of Peak T increases alongside the optical density (OD) of the 

sample throughout the growth curve. There is a log increase in the intensity of Peak T 

fluorescence during the exponential stage of the growth curve (growth phase after 

acclimatisation; Hogg, 2005). This leads to a strong significant correlation between the 

increase in Peak T and OD, R2 = 0.9821 (p < 0.001). 

Peak C fluorescence develops during the exponential phase of the growth curve, whilst 

exhibiting a lag in relation to the OD (Figure 3.1). The Peak C fluorescence intensity 

continues to increase during the stationary phase, in which cell deaths are equal to newly 

formed cells (Elliott, Lead and Baker, 2006a; Hogg, 2005). A positive correlation between 

Peak C intensity and OD is identified, R2 = 0.8624 (p < 0.001). The observed maximum 

fluorescence intensity of Peak C is a factor of 10 lower than Peak T (Figure 3.1a). Peak X 

(Table 3.1) is only present within the stationary phase, albeit at comparatively low 

fluorescence intensities (~ 30 QSU). 
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Figure 3.1: Fluorescence and optical density (OD600nm) data for Escherichia coli growth curve, 

showing: a) optical density and fluorescence, QSU (1 QSU = 1 µg L-1 quinine sulphate) ± 1 

standard deviation (n = 9); b) optical density and fluorescence data normalised to the maximum 

value ± 1 standard deviation (n = 9); c) excitation-emission matrix at time zero; and, d) excitation-

emission matrix at 360 minutes.  
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3.2.1.2 Bacillus subtilis 

Figure 3.2 highlights Peak T as the dominant fluorescence peak within the B. subtilis 

growth curve. Peak T intensity increases by an order of magnitude throughout the 

growth curve, in line with the increased OD, demonstrating a strong significant 

correlation, R2 = 0.9879 (p < 0.005). Figure 3.3 demonstrates the EEM of a B. subtilis 

endospore suspension obtained from within this study. This shows the presence of Peak 

T fluorescence, and other protein-like fluorescence peaks. 

Peak C demonstrates a sudden rise, at 360 minutes, within the B. subtilis growth curve. 

This occurs prior to the increases in both OD and Peak T development (Figure 3.2), with 

a strong positive correlation between Peak C fluorescence intensity and the OD being 

identified, R2 = 0.9465 (p < 0.005). Florescence Peaks M and AM are produced and 

observed at very low intensities within the early stationary phase of the growth curve. 
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Figure 3.2: Fluorescence and optical density (OD600nm) data for Bacillus subtilis growth curve, 

showing: a) optical density and fluorescence, QSU (1 QSU = 1 µg L-1 quinine sulphate) ± 1 

standard deviation (n = 9); b) optical density and fluorescence data normalised to the maximum 

value ± 1 standard deviation (n = 9); c) excitation-emission matrix at time zero; and, d) excitation-

emission matrix at 360 minutes.  
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Figure 3.3: Fluorescence excitation-emission matrix of Bacillus subtilis endospores, QSU (1 QSU = 

1 µg L-1 quinine sulphate). 

 

3.2.1.3 Pseudomonas aeruginosa 

Peak T is seen throughout the P. aeruginosa growth curve (Figure 3.4), as with the other 

monocultures analysed here, increasing by an order of magnitude within the 

exponential phase. A relatively weaker correlation, R2 = 0.7601 (p < 0.005), is identified 

between Peak T and the OD across the entire length of the growth curve. This is caused 

by the upregulation of Peak T, independent of cell number seen at 330 minutes, in the 

late exponential, early stationary phase (Figure 3.4). Prior to this (within the lag and 

exponential phases of the growth curve), the Peak T fluorescence development tracks 

the OD (R2 = 0.9674, p < 0.05). 



Chapter 3: Bacterial engineers: the direct production of bacterial aquatic fluorescent organic matter 

75 

A possible explanation for the increase in Peak T intensity is the production of exotoxin 

A; an iron-scavenging enzyme that is produced by P. aeruginosa upon entry into 

stationary phase (Somerville et al., 1999; Lory, 1986). The binding of NAD+ to the enzyme 

active site of Exotoxin A quenches Peak T fluorescence; this can be used to determine 

protein activity (Beattie and Merrill, 1996, 1999; Beattie, Prentice and Merrill, 1996). This 

quenching phenomena may also explain the subsequent sudden decline in Peak T 

fluorescence intensity at 450 minutes (Figure 3.4). 
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Figure 3.4: Fluorescence and optical density (OD600nm) data for Pseudomonas aeruginosa growth 

curve, showing: a) optical density and fluorescence, QSU (1 QSU = 1 µg L-1 quinine sulphate) ± 1 

standard deviation (n = 9); b) optical density and fluorescence data normalised to the maximum 

value ± 1 standard deviation (n = 9); c) excitation-emission matrix at time zero; and, d) excitation-

emission matrix at 360 minutes.  
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P. aeruginosa has the most complex EEM spectra of the species analysed within this 

study, as described elsewhere (Dartnell et al., 2013; Elliott, Lead and Baker, 2006a; Smith, 

Anderson and Webb, 2004). Peaks C and AC are immediately identified upon inoculation 

and during the lag phase (a period of acclimatisation; Hogg, 2005), alongside Peak T. 

Both these peaks increase log-fold throughout the growth curve, with both Peaks C and 

Ac being correlated with the OD, despite a lag in fluorescence intensity at the beginning 

of the exponential phase; R2 = 0.7024 (p< 0.005) and R2 = 0.7146 (p< 0.005) respectively. 

Peak C+ is also seen within the P. aeruginosa growth curve, developing rapidly and to a 

high intensity during the stationary phase (Figure 3.4). This peak is associated at present 

with complex high molecular weight terrestrial OM. However, fluorescence in this 

region of the spectra is associated with the siderophore pyoverdine (Dartnell et al., 2013; 

Wasserman, 1965); an extracellular iron-scavenging metabolite produced by P. 

aeruginosa, associated with microbial virulence (da Silva and de Almeida, 2006). The data 

suggests that this Peak C+ fluorescence could be derived from the building and 

exporting of pyoverdine. 

 

3.2.2 Bacterial fluorescence: overnight culturing 

Overnight cultures of each species were analysed to determine the presence of AFOM in 

the supernatant, AFOM within resuspended cells and lysed cells (section 2.7.1.3). This 

provides a preliminary understanding of where the observed fluorescence is located 

post AFOM production. 
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Peak T fluorescence was the only ubiquitous fluorescence peak common to all bacterial 

species cultured overnight (Table 3.2). The highest intensity for Peak T fluorescence is 

seen within the resuspended and lysed cells, although it is present in the supernatant 

with the amount of extracellular Peak T varying between species (5-25%). Peak C 

fluorescence was observed in both the supernatant and cell lysis fractions for E. coli and 

B. subtilis (shown in Table 3.2), as well as all elements of the P. aeruginosa culture. 

Peak AC is also seen in all fractions of the P. aeruginosa culture and in the E. coli 

supernatant, while Peak M is observed within all fractions of the P. aeruginosa culture, 

but is only present in the B. subtilis supernatant. Peak C+ was also observed in the E. coli 

supernatant, but at far lower levels compared to all fractions of the P. aeruginosa culture. 

Peak X (Table 3.2) is not characterised within current aquatic AFOM research, although 

it is noted in life science research (Smith, Anderson and Webb, 2004). However, it is 

identified at low fluorescence intensities in the supernatant for the three laboratory 

species cultured and analysed (Table 3.2). 

 



 

 

Table 3.2: Identified peaks generated through bacterial processing in the different fractions of the overnight cultures. 

Named 

fluorescence 

Peak 

Escherichia coli Bacillus subtilis Pseudomonas aeruginosa 

Supernatant Resuspended 

cells 

Lysed 

cells 

Supernatant Resuspended 

cells 

Lysed 

cells 

Supernatant Resuspended 

cells 

Lysed 

cells 

T * * * * * * * * * 

C * 

 

* * 

 

* * * * 

AC * 

     

* * * 

C+ * 

     

* * * 

M 

   

* 

  

* * * 

AM 

      

* 

  

X * 

  

* 

  

* 

  

* Indicates presence of fluorescence peak in sample fraction 
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3.3 Discussion 

At present, microbially derived AFOM is often discussed in terms of protein-like 

fluorescence within the literature (Coble et al., 2014; Hudson et al., 2008; Reynolds, 2002; 

Determann et al., 1998). Certain regions of humic-like fluorescence, such as Peak M, are 

also discussed as being biodegraded and, therefore, involved in microbial processes 

(Harun et al., 2015, 2016; Coble et al., 2014). However, although there is a large body of 

literature surrounding characterisation and origin of AFOM, the limitations and true 

microbial-OM interactions are not overly well understood at a fundamental level. 

Utilising Model System 1 with monocultures, the work here determines the direct 

relationship between the underpinning microbiological processes and the origin of 

AFOM. This research has demonstrated a range of microbially engineered AFOM, 

providing evidence of the dynamic relationship between bacterial growth and the 

fluorescence signal, discussed below. This provides insights into the phenmenon of 

fluorescence variation at a highly resolved temporal scale. 

 

3.3.1 Fluorescent organic matter production and bacterial growth 

3.3.1.1 Peak T fluorescence 

The work here (Figures 3.1, 3.2 and 3.4) demonstrates a clear correlation between 

bacterial growth and Peak T within monocultures, particularly within the exponential 

growth phase (R2 > 0.95). These strong and significant correlations identified between 

Peak T and bacterial population growth, inferred by using the OD, are in agreement with 

some previous studies (Deepa and Ganesh, 2017; Baker et al., 2015; Dartnell et al., 2013; 
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Cumberland et al., 2012; Sohn et al., 2009). Much of this previous work has attempted to 

correlate Peak T fluorescence with E. coli and/or coliform counts with varying degrees of 

success. However, variations in Peak T intensity during the stationary phase has also 

highlighted species specific sources of Peak T that can be attributed to metabolically 

active cells; tryptophan is an essential amino acid, necessary for protein formation 

during growth and other metabolic pathways, and so will be produced as a result of cell 

multiplication and metabolic processing (Coble et al., 2014; Hogg, 2005). This emphasises 

the use of Peak T fluorescence as an indicator of microbial activity. From this, it can be 

stated that Peak T fluorescence is an indicator of bacterial activity, and presence to some 

extent. However, it cannot provide a proxy for enumeration, despite the correlations 

identified, due to multiple contributing factors. 

For the B. subtilis growth curve, the fluorescence intensity of Peak T continues to increase 

in the stationary phase (Figure 3.2). It is likely that this is related to endospore production 

from this species, as demonstrated by the EEM of the endospore suspension (Figure 3.3). 

From this figure, it can additionally be suggested that Peak T fluorescence is also 

attributed to structural proteins, rather than solely pure amino acids, as endospores are 

not metabolically active. 

The P. aeruginosa growth curve (Figure 3.4) also demonstrates a correlation with Peak T 

and the OD during the exponential phase, R2 = 0.97. However, Peak T is again 

highlighted as not solely related to bacteria enumeration as a sudden increase followed 

by a decrease in Peak T fluorescence intensity is seen within the stationary phase. This 

is likely to be another species specific response, caused by the production of Exotoxin A 
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and subsequent binding of NAD+ to the enzyme active site, causing quenching of the 

Peak T fluorescence, as discussed in section 3.2.1.3. 

 

3.3.1.2 Peak C fluorescence 

Peak C fluorescence has been suggested as an alternative proxy for bacterial presence to 

Peak T (Sorensen et al., 2018b). The correlations here definitely support this association. 

However, the lag observed within the E. coli growth curve (Figure 3.1), in conjunction 

with continued increase in Peak C intensity during the stationary phase of the growth 

curve, supports the notion that bacterial metabolic activity, rather than enumeration, 

may be the driver for Peak C fluorophore production. Within the B. subtilis growth curve 

(Figure 3.2), an increase in Peak C fluorescence intensity precedes the Peak T, with a 

strong correlation identified. It has previously been suggested that Peak C, in the 

presence of Bacillus sp., may be related to endospore production (Smith, Anderson and 

Webb, 2004). However, Figure 3.3 clearly demonstrates endospores produce a protein-

like fluorescence spectra, suggesting Bacillus sp. undergo metabolic processes which 

produce compounds which fluoresce in the Peak C region of the EEM. 

Furthermore, the observed maximum fluorescence intensity of Peak C is seen in lower 

intensities than Peak T, with it being a factor of 10 lower than Peak T within the E. coli 

growth curve (Figure 3.1). This suggests that in the environment, where Peak C 

fluorescence is commonly of greater intensity than that of Peak T, the majority Peak C 

mainly originates from allochthonous terrestrial sources. The lower intensity 

fluorescence seen in the growth curve data allows the determination that microbially-
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derived Peak C may be a metabolic by-product or a secondary metabolite produced 

mainly during the stationary phase. 

 

3.3.1.3 Bacterially engineered ‘humic-like’ fluorescence 

As well as the most common and dominant fluorescence peaks, other humic-like peaks 

are seen to be produced in situ during the monoculture growth curves (Figures 3.1, 3.2 

and 3.4). Peaks M and AM are shown to be produced directly, as suggested by marine-

based literature (Shimotori, Omori and Hama, 2009; Coble, 1996), rather than simply a 

result of photo- and biodegradation of Peak C (Coble et al., 2014). Peak C+ fluorescence 

is seen at very high intensities within the P. aeruginosa growth curve. The positioning of 

this peak within the EEM is associated with the siderophore pyoverdine (Dartnell et al., 

2013; Wasserman, 1965), suggesting Peak C+ may be as a result of pyoverdine 

production by P. aeruginosa, as discussed in section 3.2.1.3. Peak C+ has been seen in 

freshwater environments and is currently attributed to terrestrial allochthonous OM 

(Coble et al., 2014). However, this work proves that microbial compounds produced in 

situ may provide an autochthonous source of Peak C+ fluorescence. As such, Peak C+ 

may act as a biomarker for an active P. aeruginosa community, although further 

investigation within natural environmental systems is required. 
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3.3.2 Bacterial fluorescent aquatic organic matter; intracellular or 

extracellular? 

Further to the identification of the growth phase in which different AFOM is produced, 

monocultures were incubated overnight and the samples segregated into different 

components (supernatant, resuspended cells and lysed cells) to identify the intraceullar 

and extracellular (exported from cells) nature of the AFOM. This provides an insight into 

the metabolic role of the compounds produced by different bacterial species. From this 

the potential available microbially-engineered AFOM can be postulated, i.e. 

extracellular material, within natural systems, providing insight into the potential fate 

of AFOM. 

 

3.3.2.1 Intracellular Peak T fluorescence 

The ubiquitous presence of Peak T fluorescence within all sample fractions for the 

overnight monocultures (Table 3.2) highlights the inability of Peak T to act as an 

enumeration proxy, particularly within complex microbial communities. Whilst seen in 

the supernatant fraction, suggesting some Peak T accounts for extracellular FOM, the 

highest intensities are seen in the resuspended and lysed cells. From this it can be 

deduced that the majority of Peak T fluorescence is intracellular material, either 

functional or structural molecules, explaining the presence of Peak T upon inoculation 

and its increase in intensity with cell multiplication (as per the growth curves). The 

intracellular nature of the FOM further suggests that Peak T can be used as an indicator 

of microbial presence. However, its omnipresence in all the bacterial species analysed, 
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clearly demonstrates the inability of Peak T fluorescence to act as an indicator of specific 

species presence in complex aquatic microbial communities. 

 

3.3.2.2 Extracellular Peak C fluorescence 

Peak C fluorescence is seen within the supernatant and lysed cell fractions from the 

overnight E. coli and B. subtilis fractions (Table 3.2). Its presence in the supernatant can 

be attributed to either (1) material exported out of the cell (either metabolic by-products 

or functional proteins) or (2) cellular debris resulting from cell lysis during growth (prior 

to sampling). The extracellular nature of this fluorescence peak for these species also 

suggests the possibility that Peak C may be derived from compounds that fluoresce 

when not within a cell, where the fluorescence is quenched or inhibited. The presence of 

Peak C in all elements of the P. aeruginosa culture, indicates that these molecules, for this 

species, are likely to be functional proteins exported to become extracellular OM. The 

data here indicates that the fluorophores that give rise to Peak C fluorescence are likely 

to be derived from multiple sources, and can be attributed to either cell lysis (Elliott, 

Lead and Baker, 2006a) or microbial metabolic by-products or extracellular proteins 

(Guillemette and del Giorgio, 2012; Shimotori, Omori and Hama, 2009). 

 

3.3.2.3 Bacterially engineered humic-like fluorescence 

Whilst Peak M is identified in relation to both B. subtilis and P. aeruginosa, Peak AM is 

only observed in the supernatant of P. aeruginosa (Table 3.2). These peaks are thought to 

occur simultaneously in the environment (Coble et al., 2014). However, the independent 
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development of these peaks suggests Peak AM could be attributed to either species 

specific proteins or bacterial metabolic by-products. As such, Peaks M and AM must be 

considered separately due to the likelihood that they are derived from different 

fluorophores. The ubiquitous presence, and high intensity, of Peak C+ fluorescence in 

the P. aeruginosa sample fractions suggests the intracellular production and extracellular 

output of pyoverdine, as discussed previously. 

Although Peak X (Table 3.2) is previously uncharacterised within aquatic AFOM studies, 

current understanding of fluorophore structures leads to the proposal that Peak X is 

likely derived from high molecular weight compounds, characterised as humic and 

fulvic acids (Lakowicz, 2006). Within the current body of environmental AFOM 

literature, this OM is usually attributed to terrestrial allochthonous material. However, 

it is only present within the supernatant for the overnight monocultures of the bacterial 

species cultured (Table 3.2). This suggests it is likely to be secreted from the cells as a 

metabolic byproduct, further demonstrating the ability of bacteria to rapidly produce 

high molecular weight OM in situ. 

The data here shows ‘humic-like’ fluorescence peaks to be both intracellular and 

extracellular, depending upon species specific metabolic processes. This suggests that 

the microbially-derived element of these fluorescence peaks may be related to functional 

or structural biological molecules. Another possible origin for some of this AFOM is 

degradation of OM in situ (Coble et al., 2014; Coble, 1996). Although the work here does 

not provide information regarding the exact microbial metabolic pathways for the range 

of autochthonously produced microbially-derived AFOM, the ability of these molecules 

to be exported from cells and exist within suggests that they are unlikely to represent 
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cellular structural material. The ability of bacteria to produce such a range of AFOM 

changes the current understanding and view within aquatic OM research regarding the 

complexity of OM origin. 

 

3.3.3 Chapter 3: key findings 

 Peak T fluorescence does not provide a proxy for enumeration but is an indicator of 

bacterial activity and presence, to some extent. This is highlighted by the intracellular 

nature of Peak T AFOM and its ubiquitous presence in all bacterial species cultured. 

 Bacteria can rapidly produce high molecular weight OM in situ. The extracellular 

identification of the majority of this AFOM attributes this to bacterial metabolic by-

products or extracellular proteins. 

 In situ production of Peak C+ fluorescence may provide a biomarker for an active P. 

aeruginosa community. 
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Chapter 4 Microbial processing and production of aquatic 

fluorescent organic matter 

 

4.1 Introduction 

Current literature has explored the characteristics of aquatic fluorescent organic matter 

(AFOM) across a range of aquatic systems (Khamis, Bradley and Hannah, 2017; Carstea 

et al., 2016; Coble et al., 2014; Henderson et al., 2009; Hudson, Baker and Reynolds, 2007). 

This has demonstrated the microbial origin of a range of AFOM, with research focussing 

on the use of Peak T fluorescence as a proxy for microbial presence and/or activity. This 

has been driven by statistically significant correlations between tryptophan-like 

fluorescence and the biological oxygen demand (BOD) (Baker et al., 2015; Bridgeman et 

al., 2013; Hudson et al., 2008; Baker and Inverarity, 2004). BOD is a well-used water 

quality parameter, assessing microbial activity through the degradation of labile OM 

(Bridgeman et al., 2013; Cutrera et al., 1999). These correlations have led to the use of Peak 

T as an in situ indicator of this parameter (Yang, Shin and Hur, 2014; Henderson et al., 

2009; Hudson et al., 2008; Reynolds, 2002; Reynolds and Ahmad, 1997). Nonetheless, the 

underpinning microbial-AFOM interactions within environmental systems are still not 

well understood. 

The data in chapter 3 has highlighted the ability of bacteria to engineer a range of AFOM 

in situ. To determine the application of this in natural systems, bacterial isolates from an 

environmental freshwater (section 2.5.1) were cultured using Model System 1. As well 

as using monocultures, a mixed microbial community, isolated from the same 
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environmental freshwater sample, was cultured using Model System 1 to assess the 

impact of using a mixed culture. 

Model System 2 was developed to analyse the relationships between Peak T fluorescence 

and dissolved oxygen, along with bacterial enumeration. Longer incubation times were 

used within this model system to assess the potential impact of residence time and a low 

nutrient medium was employed to better replicate environmental fluorescence 

intensities. By simplifying the sample matrix and analysing the samples on a higher 

temporal scale, the true dynamics of microbial-FDOM interactions can be assessed. From 

this, the applicability of Peak T fluorescence as a proxy for other water quality 

parameters can be determined, alongside the potential use of Peak T as a standalone new 

water quality parameter. 

 

4.2 Results 

4.2.1 Model System 1: Processing and production of AFOM by 

bacterial isolates from an environmental freshwater 

Peak picking was applied to the EEMs obtained from the environmental monocultures 

and mixed cultures. Due to the dominance of certain fluorescence peaks, particularly 

Peaks T and C+, PARAFAC analysis did not provide a robust model of the monoculture 

and mixed culture data sets; n = 268 and n = 234, respectively. The fluorescence peaks 

identified are detailed in Table 4.1. 
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Table 4.1: Fluorescence peaks identified from the environmental isolate overnight bacterial 

monocultures and mixed community cultures. 

Named Fluorescence Peak λex/λem (nm) 

T 280/320-360 

C 350/420-460 

AC 250/420-460 

C+ 400/440-490 

AM 240/380-420 

M 300/380-420 

B 250/290-320 

X 440/510-550 

 

4.2.1.1 Overnight bacterial monocultures 

Six bacterial species (Table 2.2), isolated from an environmental freshwater (section 

2.6.3), were cultured overnight to ensure that the phenomenon of AFOM production 

seen with the laboratory bacterial strains (chapter 3), is replicated by environmental 

bacterial strains. Cultures were incubated at 25°C, to attempt to replicate environmental 

conditions; 30°C, to ensure growth but not limit the bacteria; and, 37°C, to provide 

optimum growth conditions for any pathogenic species. However, the data presented 

was obtained from the 30°C 24 hour cultures as this was identified as the optimum 

temperature for growth across the species cultured. 

Table 4.1 shows the range of fluorescence peaks identified within the environmental 

isolate monocultures, except for Peak B which was not identified in any of the overnight 

monocultures. This is likely to be due to the incubation time and the labile nature of this 
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AFOM. As seen previously, Peak X was identified only in the supernatant fraction for 

all six cultures, in relatively low fluorescence intensities, as was fluorescence Peak AC. 

The presence of Peak M was also only identified in the supernatant of P. aeruginosa, in 

agreement with the AFOM identified from the laboratory strain of P. aeruginosa (section 

3.2), and S. aureus. The presence of the other fluorescence peaks identified for the 

environmental E. coli and B. subtilis are comparable to that of the laboratory strains 

(Table 3.2). The fluorescence spectra of the environmental P. aeruginosa demonstrates a 

comparable range of AFOM within the supernatant fraction, whilst Peaks T and C+ are 

the only significant fluorescence peaks identified within the cell sample fractions. 

Figure 4.1 shows the fluorescence intensity of four of the identified fluorescence peaks 

within the different sample fractions for all six cultured environmental bacteria. Figure 

4.1a demonstrates that Peak T is the sole ubiquitous and dominant fluorescence peak, as 

it is seen in all sample fractions for all species analysed. Furthermore, the presence of 

Peak T mainly within the cell fractions is highlighted, although some extracellular Peak 

T is seen within the supernatant for all species. This is in agreement with the previous 

data (section 3.3.2.1). 

 



 

 

Figure 4.1: Fluorescence intensity (QSU, 1 QSU = 1 µg L-1 quinine sulphate), ± 1 standard deviation (n = 3), of fluorescence peaks of interest in each of the sample 

fractions for the six bacterial species (isolated from an environmental freshwater sample), cultured at 30°C, n = 3 with +/- 1SD: a) Peak T, λex/λem 280/330-360nm; 

b) Peak C, λex/λem 350/420-460nm; c) Peak C+, λex/λem 400/440-480nm; d) Peak M, λex/λem 300/380-420nm. 
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Peak C fluorescence is mainly identified in the supernatant sample fraction for all six 

species cultured (Figure 4.1b). It is seen in much lower intensities in the resuspended 

and lysed cell fractions, suggesting the majority of this AFOM is exported outside of the 

cell, existing as extracellular material. Figure 4.1c highlights the extracellular presence 

Peak C+ for the environmental strain of P. aeruginosa, as seen with the laboratory 

cultures. Peak M, shown in Figure 4.1d, is seen in all species and all sample fractions, 

albeit at low fluorescence intensities in comparison to some of the other fluorescence 

peaks shown in Figure 4.1. 

 

4.2.1.2 Overnight culturing of an isolated mixed microbial community 

Mixed cultures were incubated at 25°C, 30°C and 37°C to provide a range of growth 

conditions, including the selection of pathogenic bacteria. This also allows for the 

assessment of the impact of temperature, and the potential selective growth this may 

cause, on the AFOM produced. Samples were also analysed at three time-points – 24, 48 

and 72 hours – to assess the impact of residence time on AFOM. However, the data 

shown here is all from the 24 hour time-point. The fluorescence signal at the other time-

points indicated variable fluorescence peak intensity but no additional peaks were 

identified with increased residence time in the minimal media used within the model 

system. 

All the fluorescence peaks identified in Table 4.1 were seen within the mixed microbial 

community cultures, except Peak X. Peak X is seen in the supernatant of all the bacterial 

monocultures but has not previously been discussed within aquatic AFOM research. 
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From the community data, it can be suggested that competition for resources prevents 

Peak X from being present in the mixed cultures and environmental samples alike. The 

microbial production of the range of AFOM seen is in line with the previous data but 

provides direct evidence that environmental bacterial strains are capable of producing 

such high molecular weight fluorescent compounds. 

Filtering the freshwater to be cultured for use as inoculum culture ensures that only 

planktonic bacteria are present within the initial culture. It also removes particulate 

matter, reducing potential contamination, background fluorescence, scatter and biofilm 

structures. The use of unfiltered samples was also undertaken to understand the 

potential role of biofilms, in relation to freshwater fluorescence, and to encourage a more 

complete and reflective community to develop within the model system. 

Table 4.2 demonstrates the relative increase in peak fluorescence intensity from the 

initial inoculum at time zero to the 24 hour time-point for each sample fraction. The most 

notable difference between the filtered and unfiltered samples is the wider variety of 

fluorescence peaks present within all fractions of the sample, at all incubation 

temperatures, for the cultures obtained from the unfiltered environmental inoculation. 

At time zero, the samples inoculated within the unfiltered culture contained 

fluorescence peaks T and C, whilst the filtered inoculum produced Peak T fluorescence 

only. The impact of temperature on the AFOM produced is also seen, as the samples at 

25°C have the highest variety of AFOM across the sample fractions, while the samples 

incubated at 37°C demonstrate the least variety. 

 



 

 

Table 4.2: Relative increase in fluorescence intensity, from time zero (initial inoculum), of AFOM peaks within sample fractions after 24 hour incubation period. 

Three incubation temperatures were employed; 25°C, 30°C and 37°C. 

 

Increase in intensity identified, but less than an order of magnitude 

* Increase by an order of magnitude 

** Increase by two orders of magnitude 

*** Increase by three orders of magnitude 

 

Named 

Fluorescence 

Peak 

Filtered Unfiltered 

Supernatant Resuspended cells Lysed cells Supernatant Resuspended cells Lysed cells 

25 30 37 25 30 37 25 30 37 25 30 37 25 30 37 25 30 37 

T    ** ** ** ** ** *    ** ** ** * * * 

C 
*** *** ** * *  * *  *** *** *** * * * * * * 

C+ 
*** *** * *   *   *** *** *** ** * * ** * * 

M 
** ** * * * * * * * * * * * * * * * * 

B 
*   * * * * * * * * * * * * * * * 
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Peak T fluorescence is not seen within the sample supernatant at the 24 hour time point. 

However, the 48 and 72 hour data demonstrate low intensity Peak T fluorescence, 

suggesting this AFOM is present as extracellular material with increased residence time 

and metabolic activity. However, Peak T is seen within the cell sample fractions at the 

24 hour time-point, with the intensity increasing most within the resuspended cells 

(Table 4.1). Increased Peak B fluorescence is seen within all sample fractions of the mixed 

cultures. This is, again, reflective of what is often seen within environmental samples, 

although it was not seen in the monocultures. Peak M, a common surface freshwater 

AFOM peak, is also seen in higher fluorescence intensities within the mixed cultures 

than the monocultures. 

Peak C is seen in the highest intensities within the supernatant sample fractions, in line 

with the other data. The presence of this in the cell samples highlights some intracellular 

Peak C. Peak C+ is present in the highest intensities within the supernatant fraction. This 

is in line with the P. aeruginosa data, shown previously, and the presence of P. aeruginosa 

in the original environmental samples used to culture. This was identified using Difco™ 

Pseudomonas Isolation Agar (Difco Laboratories, USA) and also within a UKAS 

laboratory water quality assessment (Wessex Water Scientific Services, UK; ISO 17025 

(2005)). 
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4.2.2 Model System 2: Mixed culture model system – microbial 

processing and production of AFOM over time 

Initially, Model System 2 (section 2.7.2) was used to incubate an environmental 

freshwater (section 2.5), to investigate microbial processing, over a 10-day incubation 

period in order to understand the impact of residence time and explore microbial-OM 

interactions and AFOM variations over a longer period of time. Variation in the 

fluorescence signal, both decreasing and increasing in intensity, was identified within 

all repeats (Figure 4.2a). 

Figure 4.2: Variation of Peak T fluorescence (λex280/λem340-360 nm) data throughout the 10-day 

experimental period. a) averaged environmental samples ± 1 standard deviation (n = 3); b) 

averaged supplemented synthetic samples ± 1 standard deviation (n = 3) and c) averaged 

synthetic samples (n = 5). See section 2.7.1 for sample definitions. All fluorescence data reported 

as arbitrary units (A.U.) normalised to time zero and corrected to the water Raman line at 

λex280/λem310(300-315) nm. 
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To enable better understanding of microbial processing within a defined system, more 

simplistic sample matrices were employed; supplemented synthetic and synthetic 

samples (section 2.7.2). Using a minimal base media for the synthetic samples removes 

background FOM, allowing detailed investigation into the microbial production and 

consumption of FOM. This low nutrient media was also used to better replicate 

environmental systems, limiting the AFOM production and ensuring the fluorescence 

intensity is within the range of that seen in the environment. The variation of Peak T 

fluorescence throughout the 10-day period was observed in these samples (Figure 4.2). 

Fluctuations in Peak T fluorescence highlight the variable nature of microbial production 

and consumption of FOM, even within a controlled closed model system. 

To allow for quantitative analysis, the 10-day experiments for all sample types were 

repeated and the measured fluorescence intensities standardised using quinine sulphate 

units, QSU (section 2.1.2) (Mostofa et al., 2013; Shimotori, Watanabe and Hama, 2012; 

Shimotori, Omori and Hama, 2009; Kramer and Herndl, 2004). The fluorescence spectra 

data set, containing 217 EEMs in total from synthetic, supplemented and environmental 

samples, was then subjected to PARAFAC analysis. This analysis of the EEM data 

(n=217) (excluding EEMs with scattering anomalies) identified the common presence of 

five fluorescence components (Table 4.3). The five-component PARAFAC model 

accounted for 97.64% of the total variation in fluorescence, adequately describing the 

AFOM spectral variability. These fluorescence components have been previously 

described and are commonly attributed to freshwater AFOM, namely humic-like 

(components 2 and 4) and protein-like (components 1, 3 and 5) fluorescence peaks; 

components and fluorescence peaks are detailed in Table 4.3.  
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Table 4.3: Identified PARAFAC analysis components and fluorescence peaks generated through 

microbial processing of environmental and synthetic samples over a 10-day experimental period. 

PARAFAC 

Component 

Named 

Fluorescence 

Peak* 

λex/λem 

(nm) 

Description 

1 T 

 

Tryptophan-like 

275/340 

 

Autochthonous peak, described 

unanimously in the literature as 

microbially-derived and associated 

with protein presence. 

2 M 

AM 

Humic-like 

(Marine-like) 

300/410 

240/410 

Biologically or photochemically 

degraded terrestrial humic-like, 

sometimes referred to as ‘marine-

like’ OM (Coble, 1996). 

3 B 

 

Tyrosine-like 

265/290 

 

Autochthonous peak, described as 

microbially-derived and associated 

with amino-acid and protein 

presence.  

4 C+ 

 

C 

 

Humic-like 

260/490 

390/490 

260/430 

360/430 

Double maxima components of 

terrestrial allochthonous higher 

molecular weight aromatic 

compounds, noted as humic-like 

fluorescence. 

5 B 

 

250/300 Region similar to Peak B, 

associated with autochthonous 

production or possible 

photodegraded OM. 

*Nomenclature consistent with peak ranges from Coble et al., (2014). 
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4.2.2.1 Microbial AFOM processing over time: freshwater environmental 

samples 

Environmental freshwater samples that were analysed over a 10-day period show that 

both components 1 and 3, Peak T and B respectively, decline from day zero to day five 

(Figure 4.3). By day ten, Peak T has further declined, whilst the intensity of Peak B 

increased beyond the original intensity observed at day zero (Figure 4.3). This 

phenomenon of variations in the fluorescence intensities was observed on all occasions 

(Figures 4.2 and 4.3). Components 2 and 4 were omnipresent within the environmental 

samples. Some variation in the fluorescence intensity of these components was seen 

throughout the 10-day experimental period, although the measured intensity was 

consistently higher than components 1 and 3 (Figure 4.3).



 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Excitation-emission matrices of a) environmental samples and b) supplemented synthetic samples incubated at 20°C over a 10-day experimental period. 

Coloured bars are in quinine sulphate units, QSU (1 QSU = 1 µg L-1 quinine sulphate). 
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4.2.2.2 Bacterial AFOM processing over time: supplemented synthetic 

samples 

The incubation of environmental cultures highlighted the issues of sample matrix 

complexity and background fluorescence. To further explore microbial-AFOM 

interactions at this resolution, supplemented synthetic samples were used within Model 

System 2. These samples provide an insight into fluorescence variation within the model 

system over the 10-day experimental period, with some sample matrix similarity to the 

environmental samples. The supplemented synthetic samples exhibited an initial 

background fluorescence consistent with the fluorescence components observed in the 

environmental samples, albeit at lower intensities (Figure 4.3). By day two of the 

experiment, Peak T fluorescence (component 1) was shown to develop from a low 

baseline of 3 QSU to a maxima of 25.2 QSU. By day five the fluorescence intensity of 

Peak T decreased to 2 QSU and remained low (between 0.5-5.5 QSU) throughout the 

remaining experimental period (Figure 4.3). This variation in fluorescence intensity 

highlights the necessity of high-frequency monitoring to understand dynamic changes 

in Peak T that identify the utilisation of this AFOM by the microbial community, 

alongside production (Coble et al., 2014). Components 2 and 4 (Table 4.3) were also 

present in the supplemented synthetic samples, with the phenomenon of variation in 

component intensity also seen. The maximum intensity for these components, a factor 

of six higher than the starting intensity, was reached by day two. The fluorescence then 

decreased, remaining stable until a second maxima was reached on day nine, half the 

intensity of that seen on day two. The observed variation associated with the 

fluorescence intensities of components 2 and 4 throughout the experimental period, 

allows us to propose bioavailability of this AFOM. 
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4.2.2.3 Bacterial AFOM processing over time: synthetic samples 

The characterisation of AFOM formed within synthetic samples during microbial 

processing reveals the presence of PARAFAC components 2, 3 and 4 in all samples 

(Table 4.3). Once developed, the fluorescent peaks that give rise to components 2 and 4 

persisted throughout the 10-day experiment, a phenomenon seen in all experimental 

repeats (Figure 4.2) and in agreement with the other samples studied. Again, the 

variation in fluorescence intensity of these humic-like components throughout the 10-

day experimental period was identified, exhibiting a Coefficient of Variance (n = 5) 

between 54% and 104%. Interestingly, component 3 (Peak B) varied greatly throughout 

the 10-day experimental period (exhibiting a Coefficient of Variance (n = 5) between 73% 

and 232%) suggesting that both production and consumption of Peak B takes place in 

situ. 

The work here provides further evidence that Peak T is derived from an active bacterial 

population. The development of Peak T fluorescence (component 1) can be accelerated 

via incubation at 30°C when compared to data derived from samples incubated at 20°C 

as shown in Figure 4.4. Both incubation temperatures produced a variable Peak T 

fluorescence intensity throughout the 10-day experimental period. The 30°C Peak T data 

also showed a second increase in fluorescence intensity at day 7, whilst the live bacterial 

cell numbers and DO remained steady. 

Changes in dissolved oxygen and Peak T fluorescence were monitored daily for 

environmental samples. This data indicated that Peak T fluorescence intensity was 

variable over time while DO declined and then plateaued, as expected. While variation 

in Peak T was seen, use of synthetic samples removed masking or interference from 



Chapter 4: Microbial processing of aquatic fluorescent organic matter 

105 

other background fluorescence, such as Peak C. This data clearly demonstrates that Peak 

T fluorescence is extremely variable (Figure 4.4), whilst the DO declines rapidly over the 

first two days and then plateaus, but is not depleted meaning it does not become a 

limiting factor. This means no significant correlations are identified between the 

intensity of Peak T and the enumeration of bacterial cells, either living or total; likely to 

be due to the differences in dynamics observed at this sampling frequency. 

Figure 4.4: Data for synthetic samples incubated at 20°C and 30°C over a 10-day microbial 

processing period: showing a) Peak T fluorescence and dissolved oxygen and; b) the number of 

living bacteria (cells mL-1).  
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4.2.2.3.1 Hourly monitoring of synthetic samples: bacterial growth and 

fluorescence development 

To further understand the development of bacterial-OM fluorescence within Model 

System 2, synthetic samples were cultured and incubated at a series of temperatures. 

Samples were analysed at hourly intervals over a 48-hour period and then again after 

120 hours. 

The EEMs from this dataset were included in a five-component PARAFAC model (Table 

4.3). Component 2 was identified within some of the synthetic samples. Low intensity 

fluorescence for component 4 was also seen in some of the samples; a “shoulder” of this 

fluorescence can be seen in Figure 4.4b. Peaks T and B were present in all samples (see 

Figure 4.5). Interestingly, Peak B seen in the synthetic samples, identified as component 

5, differed slightly in wavelength position to Peak B observed in the environmental 

samples (component 3), see Table 4.3. Throughout the 48-hour period the OM that gives 

rise to Peak B fluorescence was shown to be produced and assimilated, resulting in large 

variations in the fluorescence intensities (see Figure 4.5). 

Peak T fluorescence was observed in all samples at all temperatures (component 1, Table 

4.3). For the first 24 hours, the development of Peak T fluorescence observed in all 

samples was minimal (~ 3 QSUmin). However, Peak T fluorescence was seen to develop 

five-fold (16.8 QSUmax) by the 120 hour time point at 20°C incubation (Figures 4.5 and 

4.6), in agreement with data gained from the 10-day experiments. The data shown in 

Figure 4.6a shows that higher incubation temperatures relate to the production and 

development of Peak T, likely to be as a function of increased bacterial metabolic activity.  
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Figure 4.5: Excitation-emission matrices of synthetic samples incubated at a) 20°C and b) 37°C 

over a 5-day microbial processing period (analysis performed hourly during the first 48-hours). 

Coloured bars are in quinine sulphate units, QSU (1 QSU = 1 µg L-1 quinine sulphate).  
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Figure 4.6: Fluorescence and bacterial enumeration data for synthetic samples incubated at a 

range of temperatures over a 5-day experimental period, showing; a) Peak T fluorescence, QSU 

(1 QSU = 1 µg L-1 quinine sulphate); and b) the number of living bacteria (cells mL-1). Data shown 

is from 20 to 48-hrs plus a single time point at day five (120 hours). 
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Analysis undertaken at hourly intervals from samples incubated at 37°C show that an 

observed log-fold increase in living bacterial numbers (5.0 x105 live cells mL-1 to 2.4 x106 

live cells mL-1) was preceded by a four-fold increase (from 5 QSU to 20 QSU) in Peak T 

fluorescence intensity. Although the initial induction of Peak T fluorescence can be 

identified, by monitoring the fluorescence phenomenon dynamics at hourly intervals, 

no significant correlations between the Peak T fluorescence intensity and the bacteria cell 

enumeration are observed for either live, dead or total cell counts. 

 

4.3 Discussion 

4.3.1 Model System 1: AFOM processing and production by bacterial 

isolates from an environmental freshwater 

4.3.1.1 Bacterial isolate monocultures 

The monocultures here, using the bacterial species from an environmental sample, were 

employed to determine the potential bacterial AFOM range in natural waters. These 

display similar fluorescent signatures to the corresponding laboratory strains (chapter 

3), suggesting fluorescence spectroscopy may be applicable as a tool for monitoring the 

presence of particular species with specific fluorescence signatures. 

Peak T fluorescence is shown to be intracellular, with the highest intensities seen in the 

resuspended and lysed cells, shown clearly in Figure 4.1a; this is in agreement with the 

data in chapter 3. However, its omnipresence in all the bacterial species analysed (Figure 

4.1a), as well as other microorganisms such as algae (Makarewicz et al., 2018; Zhi et al., 

2015; Suksomjit et al., 2009), clearly demonstrates the inability of Peak T fluorescence to 
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act as an indicator of specific species presence in complex aquatic microbial 

communities; this may explain the variation in correlations between Peak T and bacterial 

enumeration identified within the current body of literature (Bridgeman et al., 2015; 

Sorensen et al., 2015a). However, Peak T fluorescence can provide information regarding 

microbial activity, caused by an influx of nutrients into the system, via pollution events, 

as well as the potential to act as an indicator for microbial contamination events, such as 

sewage pollution. 

Peak C fluorescence was ubiquitous and seen to be variable in intensity and presence 

within the sample fractions for the environmental isolate monocultures (Figure 4.1b). 

The majority of this AFOM is shown to be extracellular, demonstrated by its 

omnipresence and highest intensity within the supernatant for all environmental 

species. This fluorescence peak is universal to surface freshwaters and considered 

allochthonous in origin (Coble et al., 2014). The Aeromonas sp. culture also demonstrated 

a high Peak C fluorescence intensity within the supernatant, suggesting that this AFOM 

is likely to be a functional protein that has a specific purpose for this species or genus 

group. Peak C fluorescence intensity was also seen to be high for the Pseudomonas 

aeruginosa isolate, as it had the highest intensity Peak C fluorescence of all the species 

cultured within this work. This data highlights the likelihood of a microbial contribution 

to this environmental Peak C fluorescence. While it is clear that bacteria can produce 

Peak C fluorescence, at present the mechanisms for this production are unknown. 

However, it can be suggested that microbial Peak C fluorescence is related to metabolic 

products that are produced within the cell and exported, likely to be functional proteins 

or metabolic by-products. 
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Although Peak C+ was present within the other species signals (Figure 4.1c), the 

intensity of this fluorescence peak within the P. aeruginosa isolate again demonstrates the 

potential of this fluorescence peak to be used as a biomarker for P. aeruginosa. The 

application of this may be limited for environmental monitoring, although identifying 

the presence of P. aeruginosa is common within drinking water analysis, but could have 

a far-reaching impact within health and clinical sciences, where P. aeruginosa is an 

important pathogenic bacterium. 

Peak M is identified as both intracellular and extracellular material, due to the 

ubiquitous presence of Peak M within the sample fractions for the environmental isolates 

(Figure 4.1). This demonstrates the ability of bacteria to engineer this AFOM in situ and 

suggests that this fluorescence is related to proteins or metabolic by-products that are 

common across the six species cultured here. 

When looking at the range of fluorescent peaks that each environmental bacterial isolate 

can produce, we begin to see, for the first time, the true complexity of microbial FOM 

potential. The data from the environmental bacterial monocultures clearly demonstrates 

the ability of environmental bacteria to produce a range of AFOM. This is in agreement 

with the data in chapter 3 and highlights the ability of bacteria to produce higher 

molecular weight and more complex compounds than suggested previously in 

freshwater AFOM research. 
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4.3.1.2 AFOM production by a microbial community isolated from an 

environmental freshwater 

The monoculture data highlights that bacterial AFOM production is species specific. 

This production also varies with the incubation temperatures used, suggesting that the 

environmental conditions and residence time of the microbes has an impact on the 

ability and intensity of microbial AFOM. Also, whilst the monocultures indicate the 

ability of bacteria to produce AFOM without competition, no information is provided as 

to how mixed cultures and competition for resources between species may impact the 

range and intensity of AFOM produced. To understand how these interactions may 

impact the microbial production of AFOM, mixed communities were cultured overnight 

and subjected to the same analysis as the overnight monocultures; microbial community 

obtained from an environmental water sample (section 2.6.4). 

Culturing a complex microbial community, albeit in controlled and limited conditions, 

highlights the complexity of the potential microbially-engineered AFOM in natural 

systems, as shown by Tables 4.1 and 4.2. All the fluorescence peaks detailed in Table 4.1 

were identified in the mixed microbial community cultures, apart from Peak X. This is 

not in agreement with the monoculture data, but is in line with the lack of presence of 

this peak within environmental samples and, therefore, discussion of this AFOM in the 

literature. The presence of this high molecular AFOM in the monocultures, where it is 

not seen within a microbial community, suggests that Peak X production is limited by 

competition with other species or that it is a metabolic by-product that is utilised by the 

community. Another possible explanation is that Peak X is ‘lost’ in the background 
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AFOM as it is only seen in relatively low fluorescence intensities, <50 QSU, within the 

monocultures. 

Peak T is seen with low fluorescence intensities in the supernatant fractions of the 

samples and high intensity within the resuspended cells, and seems to vary little when 

incubated at the different temperatures (Table 4.2). This is in agreement with the data 

obtained from the bacterial monocultures. The high intensity within the resuspended 

cells suggests that Peak T may be used for microbial enumeration; we know from the 

monoculture data that this is not possible within complex microbial communities. The 

increase in Peak T fluorescence seen for the 24 hour supernatant samples is less than an 

order of magnitude change, although a low fluorescence intensity increase, comparative 

to the resuspended cells, is seen with extended culturing time, i.e. at the 48 and 72 hour 

time points. This indicates that surplus Peak T is produced within cells, which is then 

exported, within stationary growth phase but, whilst the microbial community is 

adapting to the new environment, Peak T is valuable for growth and activity. This 

highlights the potential importance of residence time for extracellular Peak T 

fluorescence, although more research into this phenomena is required. It also 

demonstrates how the environmental conditions and requirements for optimum growth 

can impact the microbial community and, in turn, microbial AFOM production. This 

further enhances the use of Peak T in determining changes in the microbial activity and, 

therefore, infer a change in environmental conditions, such as nutrient input from 

pollution events, or a surge in microorganisms, i.e. from sewage contamination. 

Peak C+ contrasts with Peak T in that the majority of the fluorescence intensity is 

associated with the supernatant sample fraction (Table 4.2). This demonstrates the 
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extracellular nature of this AFOM, in agreement with the monoculture model system 

data discussed previously, which determined the likely origin of Peak C+ as an exotoxin. 

Surprisingly, the samples incubated at 37°C have lowest Peak C+ intensity. The 

association of this fluorescence with P. aeruginosa, a pathogenic bacterium, would 

suggest that it should be the most intense at that temperature. Although P. aeruginosa 

was identified in all the samples, the environmental source of the microbial community 

utilised means it is likely that 37°C inhibits these metabolic processes and/or growth of 

the corresponding species. 

The cultures obtained from unfiltered water samples are likely to contain a more 

complex microbial community, as well as particulate and dissolved OM. By monitoring 

the relative increase in intensity of the AFOM present, it is possible to identify 

microbially engineered AFOM from any residual OM provided by the inoculum. The 

data in Table 4.2 indicates that using a more complex community (from unfiltered water 

samples) as the inoculum leads to a more varied AFOM signal after incubation. This 

seems to be of particular importance for the resuspended cell sample fraction, indicating 

variation between the species’ AFOM production capabilities. It is also possible that 

filtering the sample prior to culturing the inoculum removes the majority of microbes 

besides bacteria and viruses, and may result in the culturing of only planktonic microbes. 

This can impact biofilm production, with visible biofilm production observed within the 

overnight cultures for the unfiltered water sample inoculum. However, within the work 

presented here, this can only be speculated but provides an interesting avenue for 

further research and a potentially essential developmental understanding for the issue 

of biofouling within in situ sensing. It also highlights the importance of sample integrity 
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and requires us to question collection and storage practices for samples to be analysed 

for fluorescence. 

 

4.3.2 Model System 2: Microbial production and processing of AFOM 

over time 

4.3.2.1 Microbially engineered protein-like fluorescence 

The data obtained from Model System 2 demonstrated the increase and decrease in the 

Peak T fluorescence signal (Component 1, Table 4.3) over time, for all sample types; 

environmental, supplemented synthetic and synthetic. This is clearly demonstrated by 

the peak picking data in Figure 3.1 and the EEMs presented in Figure 3.2. The variation 

in fluorescence intensity over the 10-day experimental period indicates both production 

and processing of AFOM in situ. This provides evidence that Peak T fluorescence can be 

of autochthonous origin and is labile (Coble et al., 2014). However, whilst the variation 

in the fluorescence signal fluctuation over time is reproducible, the importance of the 

sample matrix and community composition is highlighted by the variation between 

experiments, as demonstrated by Figure 4.2. 

The use of the mixed culture model system with synthetic samples highlights the 

autochthonous origins of the proteinaceous AFOM, namely peaks T and B; identified 

within the PARAFAC analysis as components 1 and 3 respectively (Table 4.3). Peak B is 

seen to vary greatly throughout the 10-day experimental period, suggesting both 

production and consumption of the OM in situ. This further supports previous studies 

that reported Peak B as a labile and microbially-derived compound (Cammack et al., 
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2004; Parlanti et al., 2000). The work here also provides further evidence that Peak T is 

derived from an active bacterial population, via bacterial metabolic processes as has been 

previously suggested in recent literature (Cooper et al., 2016; Ziervogel et al., 2016). This 

is highlighted by the accelerated development of Peak T fluorescence when increasing 

the incubation temperature, from 20°C to 30°C (Figure 4.4). This further supports the 

hypothesis that Peak T fluorescence is a microbial metabolic product, agreeing with the 

suggestion by Ogawa et al., (2001) that the rate of OM formation is dependent on the rate 

of microbial activity, and therefore metabolism. The increase in Peak T intensity for the 

30°C with steady bacterial numbers and DO also indicates that Peak T can provide extra 

information about microbial activity and metabolic processing. This is further supported 

by the lack of significant correlation identified between Peak T and bacterial numbers 

within this work. By using different temporal scales to other Peak T/DO research, the 

work here contradicts some of the correlations identified in recent research. This is not 

unexpected within a microbial community where complex microbial interactions occur. 

However, this does allow for the suggestion that Peak T fluorescence is not a suitable 

proxy for bacterial enumeration, but rather is indicative of microbial activity. 

Furthermore, variable Peak T fluorescence intensity is seen for both incubation 

temperatures, again suggesting that this AFOM is both processed and produced in situ 

by the bacterial community. 

 

4.3.2.1.1 Fluorescence, microbes and dissolved oxygen 

Previous research supports a relationship between Peak T fluorescence and the BOD 

(Hudson et al., 2009; Baker and Inverarity, 2004; Reynolds, 2002), leading Peak T 
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fluorescence to be used as a surrogate for the BOD5 test, often required by water 

management policy. BOD5 is a widely utilised method for approximating bioavailable 

organic matter, by determining the change in oxygen over a 5 day period as an indication 

of biological activity (Jouanneau et al., 2014). However, the fast-acting dynamics of Peak 

T fluorescence at the 5 day resolution of the BOD test make it difficult to apply Peak T 

as a BOD5 proxy. By measuring fluorescence and dissolved oxygen at a higher temporal 

resolution, the true relationship between these parameters can be idenitifed. 

The data shown in Figure 4.4, from Model System 2, shows variation in Peak T 

fluorescence intensity, with a steady decline in DO. This is demonstrated by the 

environmental samples suggesting that the correlations identified within the literature, 

between Peak T and BOD5, may be artificial and not causal but created from the temporal 

resolution of the analysis. However, interference from the background fluorescence 

within the environmental samples prevented the true variation and dynamics of Peak T 

fluorescence to be determined. 

By using synthetic samples, shown in Figure 4.4, Peak T could be identified without 

interference from Peak C. Monitoring the induction of Peak T fluorescence highlights 

the variability of Peak T fluorescence. This, alongside the steady decline in DO meant no 

significant correlations were identified. However, it is likely that significant correlations 

would have been present for the day zero and day five data points, as per the BOD5 test 

and the observation from previous studies that have led to the suggestion of using Peak 

T fluorescence as a proxy for BOD5 (Khamis et al., 2015; Bridgeman et al., 2013; Baker and 

Inverarity, 2004). The time-resolved data shows correlations identified in previous 

literature to be superficial, as previously suggested (Reynolds and Ahmad, 1995). 
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By investigating the dynamic relationship between DO mass transfer and Peak T 

fluorescence, using higher temporal resolution analysis, clear variation between the time 

points can be seen. This provides evidence that the BOD5 test is non-representative of 

such an active system (Carstea et al., 2016), rendering it unsuitable for comparison with 

fluorescence of a dynamic system and explaining the lack of significant correlations in 

the data presented here. From this study it can be concluded that the BOD5 and Peak T 

fluorescence cannot be correlated due to the disparities between the analysis techniques 

(Carstea et al., 2016). Regarding the dynamics of the system, the BOD5 test is inherently 

flawed due to the assumptions made about the system and its representation of a 

demand without providing any information concerning the rate or kinetics of the 

demand. The study data discussed also highlights the importance of metabolic activity 

within the microbial community and how this impacts the fluorescence signal 

development, supporting the notion that Peak T fluorescence should be used as an 

indicator for labile material, independent from BOD5 analyses, proposed by Hudson et 

al. (2008). This makes the prospect of real-time monitoring of microbial activity in 

freshwater aquatic systems a reality. 

 

4.3.2.2 Microbially engineered humic-like fluorescence 

The detailed dynamics of the mixed culture model system reveal in situ production and 

consumption from the net balance of AFOM involved during microbial processes, within 

all sample types. The use of environmental samples within this model system allows us 

to try to understand what may happen in real-world systems. The omnipresence of 

fluorescence peaks C and M (Figure 4.3), traditionally considered terrestrial/humic-like, 
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within these environmental samples supports the notion that the majority of this 

environmental AFOM, components 2 and 4 (Table 4.3), is recalcitrant in nature (Tanaka 

et al., 2014; Hudson et al., 2009; Spencer et al., 2008). This is in line with the general 

understanding that component 4 represents high molecular weight non-bioavailable 

AFOM, currently considered to be of allochthonous origin (Cooper et al., 2016), and 

component 2, Peak M, is biodegraded material derived from component 4, terrestrial 

AFOM Peak C (Coble et al., 2014). However, some variation in fluorescence intensity for 

these components was seen over time, suggesting the possibility of these AFOM 

components being produced and processed in situ. Fully understanding the potential of 

the microbial community to influence these humic-like components is hampered by the 

background fluorescence from the environmental samples. 

The use of supplemented synthetic samples (Figure 4.3), within the mixed culture model 

system, removed much of the background fluorescence seen in the environmental 

samples whilst providing a natural OM source. The increase, and phenomenon of 

variable fluorescence intensity, seen within the supplemented synthetic samples further 

supports the notion suggested from the environmental samples; humic-like fluorescence 

can be produced and utilised in situ by the microbial community. This proposed 

bioavailability changes the thinking within much of the freshwater AFOM research as it 

demonstrates that these fluorescence peaks are not solely attributed to terrestrial 

allochthonous sources. This is in line with marine-based AFOM studies (Fukuzaki et al., 

2014; Romera-Castillo et al., 2011; Kramer and Herndl, 2004) and has been proposed in 

freshwater systems (Guillemette and del Giorgio, 2012). However, the use of closed 

model systems and high-frequency monitoring allows for the determination, beyond 
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speculation, of both production and consumption of a range of AFOM compounds and 

highlights the dynamic changes to AFOM composition that can occur via microbial 

processes. 

The use of synthetic samples within the mixed culture model system clearly 

demonstrates the ability of the microbial community to produce AFOM in situ, albeit 

under controlled closed conditions. These samples provide clear evidence, in line with 

the environmental and supplemented synthetic samples, that ‘microbially-derived’ 

AFOM is not restricted to proteinaceous material or degradation of humic-like 

compounds. This is in agreement with recent FOM research for marine environments 

(Timko et al., 2015; Shimotori, Watanabe and Hama, 2012), soils (Kallenbach, Frey and 

Grandy, 2016) and some freshwater literature (Guillemette and del Giorgio, 2012). Once 

developed these fluorescence peaks are again seen to be persistent yet varying 

throughout the 10-day experimental period. This is in line with the phenomenon seen 

throughout the use of Model System 2 and demonstrates fast-acting microbial dynamics 

are involved in the consumption and production of Peaks M, AM, C and C+ (Lee et al., 

2015). The microbial building of higher molecular weight recalcitrant OM, as shown 

here, could have important implications for longer-term carbon storage and 

transportation throughout the aquatic continuum (Asmala et al., 2014; Jørgensen et al., 

2014; Tanaka et al., 2014; Ogawa et al., 2001). Biodegradation is associated with 

component 2 (Table 4.3) and Peak C has previously been observed to be microbially 

derived (Guillemette and del Giorgio, 2012; Shimotori, Watanabe and Hama, 2012; 

Kramer and Herndl, 2004; McKnight et al., 2001), as well as the in situ production and 

consumption of Peak C+, not previously reported. 
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4.3.2.3 Microbially engineered AFOM: hourly fluorescence and bacterial 

enumeration measurements 

Increasing the temporal resolution of the fluorescence monitoring to hourly provides 

details regarding the fast-acting dynamics of bacterial-OM interactions not discussed 

elsewhere in the literature. These time resolved experiments further demonstrate the 

lability of Peak B (Figure 4.6) and the fast-acting dynamics associated with it mean that 

no significant correlation between Peak B fluorescence and bacterial numbers can be 

obtained. However, its omnipresence, alongside Peak T, asserts these fluorescence peaks 

as ‘microbially-derived’ and associates low intensities with cell presence alone. The five-

fold increase in Peak T fluorescence intensity, seen in both Figure 4.5 and 4.6, further 

highlights the dynamics of microbial metabolism and the impact this has on the origin 

of such AFOM. For the hourly monitored samples (Figure 4.6), there is an observed lag 

in Peak T fluorescence development suggesting that residence time may be important 

for the production of autochthonous AFOM, particularly with competition within a 

microbial community sustained in nutrient limited environments (as shown here). The 

impact of incubation at a range of temperatures clearly demonstrates the relationship 

between microbial metabolic activity and fluorescence intensity, suggested from 

synthetic sample data obtained during the 10-day experiment. This directly supports the 

hypothesis that heterotrophic microbial metabolism, and its rate, are key drivers in the 

production of microbially-derived AFOM (Cammack et al., 2004; Ogawa et al., 2001; 

Parlanti et al., 2000).  

The fluorescence intensity increase preceding that of the cell multiplication suggests 

upregulation of bacterial metabolic processes, in the nutrient limited system, prior to cell 
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multiplication. This provides potential evidence that microbially-derived fluorescence is 

the result of metabolic activity. It is likely that this lag is the reason that significant 

correlations cannot be identified between the Peak T fluorescence and microbial 

enumeration. This is in agreement with the daily samples from the 10-day experimental 

period previously discussed (section 4.3.2.1). From this it can be recommended that Peak 

T fluorescence cannot be used to determine species specific enumeration in surface 

freshwater systems where there is high AFOM background (Sorensen et al., 2018b; Baker 

et al., 2015) and groundwater with little fluorescence (Sorensen et al., 2015a, 2016, 2018a). 

From the work here, it can be suggested that the correlations identified in other work 

may be due to the temporal resolution used in monitoring samples and not truly 

reflective of the complex microbial-OM interactions that occur within these dynamic 

systems. By utilising this resolution, the bacterial origin of Peak T fluorescence can be 

clearly identified. Therefore, it can be proposed that the microbially-derived 

fluorescence observed in aquatic systems is a function of heterotrophic microbial 

metabolism and is not representative of bacterial cell enumeration. 

In addition to the importance of microbial metabolism, the data also highlights the need 

to study further the role of low nutrient environments in production and assimilation of 

AFOM. In the model synthetic aquatic systems that were used to investigate the 

production and assimilation of AFOM, the Peak T fluorescence QSUmax was 

approximately 25 (see Figures 4.4, 4.5 and 4.6). It is likely that this maximum is limited 

by nutrient availability, further supporting the theory that aquatic fluorescence organic 

matter is intrinsically related to the microbial metabolism at a community level which 

is, in turn, limited within the environmental constraints of the system. 
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The time resolved analysis of synthetic samples (Figure 4.5) also provides further clear 

direct evidence that AFOM, attributed to Peak M and Peak AM (Table 4.3), can be 

manufactured without the presence of terrestrial OM material, namely Peak C 

(Guillemette and del Giorgio, 2012; Shimotori, Omori and Hama, 2009), as reported in 

marine OM research (Jørgensen et al., 2014; Shimotori, Watanabe and Hama, 2012; 

Kramer and Herndl, 2004; Ogawa et al., 2001). However, this experiment provides a 

detailed insight into dynamic production and assimilation of microbially-derived FOM 

in freshwater systems, both temporally and over a range of temperatures. From this, 

further evidence is provided regarding the possibility that Peak M can be attributed to 

microbially-derived extracellular AFOM production. The shoulder of Peak C+ seen at 

the 120 hour time points (Figure 4.5) is in agreement with Peak C+ production in the 10-

day experiments. This highlights the importance of different metabolic processes, 

community composition and residence time on the AFOM signal of a waterbody. 

However, this does further support the hypothesis that allochthonous production of OM 

extends beyond proteinaceous material into higher molecular weight compounds. 

 

4.3.3 Chapter 4: key findings 

 The temporal scales used within the different laboratory model systems expose, for 

the first time, the evolution of bacterial AFOM over time. This reveals the details of 

the fast-acting dynamics of bacterial-OM interactions and AFOM production, not 

discussed elsewhere in the literature. 

 Peak T fluorescence is not an appropriate proxy for bacterial enumeration, 

particularly in surface freshwater systems with high AFOM background. 
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 BOD5 and Peak T fluorescence should be used as independent water quality 

parameters, with in situ Peak T fluorescence providing a real-time indicator of 

microbial activity in freshwater aquatic systems. 

 Bacteria can produce a range of complex high molecular weight AFOM, in situ, likely 

to be metabolic by-products or the production of functional proteins, created within 

the bacterial cell and exported. 

 Peak C+ can act as a biomarker for P. aeruginosa, which could have cross-disciplinary 

applications, such as within clinical and health science. 
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Chapter 5 Monitoring quality of a freshwater system 

 

5.1 Introduction 

Monitoring quality of surface freshwater bodies is of global interest, particularly with 

increasing pressures from population growth, urbanisation and increased agricultural 

and industrial pollution (Patil, Sawant and Deshmukh, 2012). At present, policy and 

regulation drives the monitoring of freshwater systems. This has led the water industry 

and environmental agencies to collect discrete samples and conduct routine testing at 

off-site laboratories (Dunn et al., 2014; Cook et al., 2013). These discrete samples are 

collected at varying temporal and spatial scales, often weekly or monthly and at points 

of interest. However, this often does not capture events, such as sewage contamination, 

within freshwater systems due to their dynamic nature. The variety of external sources 

and internal processes make it very difficult to obtain useful long-term data from this 

method of monitoring. 

There are well established in situ sensors for the online monitoring of many 

physicochemical parameters, such as pH and electrical conductivity (EC). Discrete 

sampling is, however, still required to monitor other parameters of interest, such as 

microbiological contamination (Cook et al., 2013), due to a shortage of suitable online 

detection techniques (Besmer and Hammes, 2016). Such parameters are intrinsically 

transient and so discrete sampling does not adequately report variations within a 

dynamic system and cannot provide real-time information on events. Current practice 

employs other physicochemical sensors as proxies for microbiological monitoring, such 
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as turbidity meters. However, turbidity is not considered a reliable indicator of 

microbiological contamination. Recent literature (Sorensen et al., 2015a, 2016; Coble et al., 

2014; Hudson et al., 2008) has suggested the use of monitoring aquatic fluorescent 

organic matter (AFOM) as an alternative indicator. 

To date, much research exploring the use of Peak T fluorescence to monitor these 

dynamic aquatic systems has relied upon discrete sampling, with in situ sensors often 

being used for short term monitoring. This chapter addresses the use of online in situ 

sensing for a long term monitoring study, for both traditional water quality 

physicochemical parameters and fluorescent organic matter. The impact of biofouling 

on in situ sensors is also explored, particularly in relation to the fluorescence data. The 

continuous online in situ data is compared to regular discrete sampling, with samples 

analysed at an ISO accredited off-site laboratory for a range of parameters, replicating 

common water quality monitoring practice, alongside laboratory fluorescence 

measurements. The influence of sample storage and treatment is also considered in 

relation to the intensity of AFOM identified by discrete sampling. 

 

5.2 Continuous monitoring: online in situ sensing 

Continuous online in situ monitoring of the surface freshwater body (section 2.8) was 

undertaken from May to December 2017. Data were collected via a telemetry system 

(section 2.8.2.1) and the mean calculated for each physicochemical parameter for each 

calendar month (Table 5.1). From this data it is clear that the pH of the water body is 

within natural limits, 7.5-8.5, and, therefore, not considered to have much impact on the 
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quenching of the fluorescence signal. The EC is variable throughout the monitoring 

period, with no discernible changes easily identified between the different months. 

Dissolved oxygen (DO) is shown to be higher and more stable, as demonstrated by the 

standard deviation, for the winter months, when the water temperature is lower. The 

water temperature peaks in July, with a gradual decline through the autumn and into 

the winter months, as expected. This is reflected within the fluorescence data from the 

in situ Peak T and C UviLux sensors (Figure 5.1, Chelsea Technologies Group Ltd., UK), 

whereby the fluorescence intensity for both peaks demonstrates a decline with a 

decrease in temperature. 



 

 

Table 5.1: Mean values from the online in situ sensor data for physicochemical and fluorescence parameters. Values averaged per calendar month (n = 2879/2975, 

± 1 standard deviation). 

 Physicochemical Parameter 

Month 

(2017) 

pH Temperature 

(°C) 

EC 

(µS/cm) 

Dissolved Oxygen 

(mg/L) 

Peak T Fluorescence 

(QSU) 

Peak C Fluorescence 

(QSU) 

May 7.54 ± 0.26 17.66 ± 2.01 587.04 ± 79.81 6.10 ± 2.29 24.87 ± 6.66 28.86 ± 6.56 

June 7.86 ± 0.60 19.57 ± 2.60 636.34 ± 75.08 6.86 ± 4.77 27.82 ± 6.24 24.86 ± 11.61 

July 7.76 ± 0.78 20.00 ± 1.83 534.55 ± 79.34 7.93 ± 4.02 22.87 ± 7.40 17.19 ± 6.10 

Aug 7.51 ± 0.53 18.75 ± 1.06 579.55 ± 37.81 7.11 ± 2.73 23.43 ± 11.14 27.05 ± 3.30 

Sept 7.62 ± 0.23 16.14 ± 1.20 514.56 ± 75.52 7.00 ± 1.43 16.61 ± 12.40 25.07 ± 4.11 

Oct 7.81 ± 0.11 13.87 ± 1.17 551.61 ± 46.76 6.96 ± 0.73 19.37 ± 8.96 21.50 ± 1.97 

Nov 8.02 ± 0.17 9.29 ± 1.43 565.94 ± 48.84 8.02 ± 0.66 14.55 ± 1.08 18.57 ± 1.15 

Dec 8.53 ± 0.07 6.34 ± 1.50 654.03 ± 90.89 9.51 ± 0.71 12.26 ± 0.83 16.91 ± 2.36 
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5.2.1 Online in situ fluorescence monitoring: UviLux fluorometer 

The UviLux fluorometer (Figure 5.1) from Chelsea Technologies Group Ltd. (UK) is an 

innovative, sensitive, low cost, in situ digital UV fluorometer. The sensors are easily 

portable with a diameter of 70 mm and length of 185 mm. The sensor is available in a 

range of variants that enable real-time monitoring of the following parameters: Single 

ring aromatics (BTEX), Polycyclic Aromatic Hydrocarbons (PAH); optical brighteners, 

used for detecting household wastewater misconnections; Coloured Dissolved Organic 

Matter (CDOM), Peak C; and, Tryptophan-like fluorescence, Peak T, associated with 

bacterial contamination in waste, recycled and natural water supplies. UviLux employs 

a UV LED light source and a compact photomultiplier tube (PMT) to provide extremely 

sensitive measurements, at the parts per trillion level. The light cowl enables the use of 

UviLux sensors in high ambient light, which can be of great importance for use in surface 

waters. The sensors have long-term calibration stability and optical filtration for both 

excitation and emission paths provides turbidity rejection, although this is not internally 

corrected for. Lack of inherent turbidity correction affects the ability of the UviLux to be 

utilised for a range of applications, including environmental surface waters and 

wastewaters. The robust and chemically inert housing facilitates broad application and 

the low power consumption makes the sensor attractive for off-grid deployment, as well 

as permanent or long-term monitoring installations. 
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Figure 5.1: Image of the UviLux sensor (Chelsea Technologies Group Ltd., UK), complete with 

light cowl. Used with permission of the creator, Chelsea Technologies Group Ltd. 

 

5.2.1.1 Long-term in situ monitoring: fluorescence Peaks T and C 

Figure 5.2 displays the data obtained from the online in situ fluorescence sensors from 

July 2017-December 2017. The data for each sensor is relatively noisy and it is possible 

that overlapping spectra cause the data to trend together. To remove this, and display 

true Peak T events within the system, a T/C ratio (Figure 5.2b) was also considered. This 

may be particularly important if the sensors were to be deployed within a monitoring 

system with a threshold-based alarm mechanism. However, some events occur at similar 

magnitudes within both sensor datasets (Figure 5.2a), suggesting that intense Peak C 

events may impact the fluorescence region of the Peak T signal. Peak T events are seen 

after cleaning and redeployment of sensors, identified within both the Peak T signal and 

ratio data. These events occur for across a time period of two-three days



 

 

Figure 5.2: Continuous online in situ monitoring of Peak T and C fluorescence within the surface freshwater, measured using UviLux Tryptophan and CDOM 

sensors (Chelsea Technologies Group Ltd., UK) respectively. Online data collection is undertaken at 15 minute intervals: a) Peak T and C data from sensor 

deployment July 2017-December 2017; b) Ratio of Peak T and Peak C in situ fluorescence from July 2017-December 2017; c) Peak T and C data from 4 week period, 

commencing 14th August 2017, demonstrating diurnal variation in fluorescence intensity; d) Peak T and C data from a 48-hour period, highlighting diurnal 

variation in Peak T fluorescence intensity. Blank data periods seen within a) and b) are caused by removal of the sensors for cleaning.
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It is clear from Figure 5.2 that the in situ fluorescence measurements are impacted by 

fouling of the sensor windows, as with all in situ aquatic monitoring. This is seen by a 

drop off in fluorescence over time after cleaning and re-deployment. During this gradual 

decline, the diurnal variation in Peak T is still identifiable within the data, with 

fluorescence intensity peaking during daylight hours. To assess the impact of fouling, 

sensors here were deployed with longer periods of time between deep cleaning, which 

involves an ethanol soak and manual cleaning of the windows and sensor housing. 

Additionally, windows were routinely wiped and sediment build-up removed at the 

collection time-point for each discrete sample. 

 

5.3 Discrete sampling 

Discrete samples (section 2.8.1) were collected weekly from the water body at the 

location of the in situ sensors (section 2.5.1). Samples were subsampled within an hour 

of collection for chemical and microbiological analysis off-site at a UK accredited 

laboratory (ISO 17025 (2005). Table 5.3 contains the mean data for each month collected 

from this analysis. This freshwater system is very eutrophic, i.e. it has a high nutrient 

load, and is physicochemically relatively stable throughout the sampling period (Table 

5.3). The steady pH and variable EC data trends are in agreement with the continuous 

online in situ data (Table 5.1). The chemical composition of the water body is also similar 

across the months sampled; with chloride, sulphate and orthophosphate data displaying 

little variability between the mean values for each calendar month (Table 5.3). The nitrite 

levels within this system are low, apart from in June, and decline throughout the 

sampling period, with lower and stable nitrite concentrations seen in the colder months. 
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The calculated nitrate values highlight the increased presence of bioavailable nitrogen 

within the system in the latter months, which may be related to decreased microbial 

activity and/or lower assimilation of nitrate due to reduced plant growth at this time. 

The microbiological data provided (Table 5.2) by the off-site laboratory demonstrates the 

presence of pathogenic and commonly tested bacteria in water quality analysis in all 

discrete samples from the freshwater body; the presence of coliforms, Escherichia coli, 

Clostridium perfringens, Enterococci sp. and Pseudomonas aeruginosa, specifically, were also 

identified within all samples. This data is presence focussed and measured using 

thresholds, rather than enumeration. However, the presence of any of the species 

cultured is a fail by Drinking Water Inspectorate (DWI) standards. 

 

Table 5.2: Presence and absence data for the microbiological cultures obtained from the analysis 

of discrete samples from the surface freshwater body, undertaken at an off-site laboratory (UK 

accredited laboratory, ISO 17025 (2005)); n = 3-4. Data is reported via a threshold system, and 

presented here as universal presence, greater than (>) or less than (<) the threshold value. 

Bacterial 

culturing 
analysis 

Units Threshold Presence in samples (2017) 

June July Aug Sept Oct Nov 

2 day plate 
count (37°C) 

cfu / ml 3000 > > > > < < 

3 day plate 

count (22°C) 
cfu / ml 3000 > > > > > > 

Total coliforms cfu /100 ml 1000 > > < > > > 

Escherichia coli cfu /100 ml 100 > > > > > > 

Clostridium 

perfringens 
cfu /100 ml 100 > > < > > > 

Enterococci sp. cfu /100 ml 100 > > < > > > 

Pseudomonas 
aeruginosa 

cfu /100 ml 50 > > < > > > 

 



 

 

Table 5.3: Mean monthly data for the physicochemical parameters obtained from the analysis undertaken at an off-site laboratory (UK accredited laboratory, ISO 

17025 (2005)); n = 3-4, ± 1 standard deviation. Mean peak picked fluorescence intensity data, QSU (1 QSU = 1 µg L-1 quinine sulphate) for Peak T (λex/λem 280/330-

360 nm) and Peak C (λex/λem 350/420-460 nm) per calendar month. Data obtained from excitation-emission matrices (n = 3-4, ± 1 standard deviation) from the 

surface freshwater body discrete samples. 

Month 

(2017) 

Physicochemical Parameter Fluorescence 

pH 

 

Turbidity 

(NTU) 

EC 

(µS/cm at 20°C) 

Chloride 

(mg/L) 

Sulphate 

(mg/L) 

Orthophosphate 

(mg/L P) 

Nitrite 

(mg/L NO2) 

Nitrate 

(mg/L NO3) 

Peak T 

(QSU) 

Peak C 

(QSU) 

June 

 

7.63 

± 0.22 

52.75 

± 18.98 

567.75 

± 61.49 

48.00 

± 7.70 

103.50 

± 14.39 

0.74 

± 0.17 

0.20 

± 0.07 

4.90 

± 1.27 

47.57 

± 6.02 

27.10 

± 7.78 

July 

 

7.98 

± 0.19 

59.50 

± 4.80 

491.50 

± 66.23 

44.00 

± 6.68 

91.75 

± 24.05 

0.48 

± 0.13 

0.09 

± 0.05 

4.43 

± 1.63 

57.93 

± 16.35 

26.99 

± 2.54 

Aug 

 

7.50 

± 0.10 

50.00 

± 16.09 

580.34 

± 40.61 

49.00 

± 3.61 

113.67 

± 5.13 

0.45 

± 0.03 

0.06 

± 0.01 

5.23 

± 0.85 

39.51 

± 1.77 

20.80 

± 2.47 

Sept 

 

7.55 

± 0.06 

27.50 

± 6.81 

497.75 

± 94.49 

41.50 

± 8.19 

94.75 

± 24.14 

0.44 

± 0.07 

0.05 

± 0.03 

7.00 

± 2.04 

27.67 

± 1.91 

17.68 

± 3.24 

Oct 

 

7.65 

± 0.07 

33.50 

± 24.75 

525.50 

± 34.65 

40.50 

± 3.54 

111.50 

± 7.78 

0.61 

± 0.01 

0.05 

± 0.01 

8.15 

± 0.07 

24.58 

± 3.11 

15.06 

± 0.68 

Nov 

 

7.60 

± 0.08 

11.53 

± 5.20 

540.75 

± 75.07 

41.25 

± 6.02 

113.25 

± 20.85 

0.67 

± 0.10 

0.04 

± 0.01 

8.80 

± 1.85 

17.72 

± 3.70 

13.26 

± 1.50 
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Samples were also analysed using fluorescence spectroscopy on site. PARAFAC analysis 

was conducted on the fluorescence spectra data set obtained from the laboratory analysis 

of the freshwater discrete samples. This analysis of the EEM data (n=96) (excluding EEMs 

with scattering anomalies) could only identify the common presence of two fluorescence 

components (Table 5.4). Although the two-component PARAFAC model is statistically 

valid (CORCONDIA = 100), the model only accounted for 90.61% of the total variation 

in fluorescence. However, increasing the number of components within the PARAFAC 

model resulted in a model that is not considered to be statistically robust (CORCONDIA 

< 50) (Bro and Kiers, 2003). It is clear from Figure 5.3 and Table 5.4 that this model does 

not adequately describe the spectral variability in the AFOM of the samples. The 

fluorescence components identified encompass multiple fluorescence peaks common to 

freshwater AFOM (Table 5.4). It is likely this is caused by all the samples being from the 

same water source, albeit at different time points. As such, it is the intensity of the 

fluorescence peaks that varies between samples, rather than the AFOM composition 

(Figure 5.3). The occurrence of peaks simultaneously throughout the data set limits the 

ability of the PARAFAC to decompose the fluorescence spectra. 



Chapter 5: Monitoring quality of a freshwater system 

136 

Table 5.4: Identified PARAFAC analysis (section 2.1.2.3) components from the excitation-

emission matrices obtained from the environmental discrete-samples data set (n = 96). Polygon 

position and associated fluorescence peaks (Coble et al., 2014) are detailed. 

PARAFAC 

Component 

Spectral position of 

component polygon 

λex/λem (nm) 

Fluorescence 

peaks within 

polygon 

Peak position 

λex/λem (nm) 

(Coble et al., 

2014) 

1 

 

240-380/380-480 

 

M 

AM 

C 

AC 

290-310/370-420 

240/350-400 

320-365/420-470 

260/400-460 

2 

 

240-300/290-360 T 

AT 

BTEX 

275/340 

230/340 

255/310 



 

 

Figure 5.3: Excitation-emission matrices of discrete samples from the surface freshwater body at the end of each calendar month sampled in 2017: a) June; b) July; 

c) August; d) September; e) October; and f) November. Coloured bars are in quinine sulphate units, QSU (1 QSU = 1 µg L-1 quinine sulphate). 137 
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The EEMs, shown in Figure 5.3, highlight variation in the AFOM signal intensity 

throughout the sampling period. The highest fluorescence intensity of the overall AFOM 

fluorescence spectra is seen in the months with the higher water temperatures (Table 

5.1). This is in agreement with the in situ fluorescence data (Table 5.1) and is evident in 

the peak picking data for fluorescence peaks T and C, obtained from the discrete samples 

(Table 5.4). The increase in intensity of the other fluorescence peak regions, with warmer 

water temperature, demonstrates the potential for in situ AFOM production to 

contribute to the environmental fluorescence spectra. Within environmental systems, 

AFOM origin is highly complex. However, the impact of temperature on microbial 

metabolic activity and AFOM production, demonstrated by the data in chapters 3 and 4, 

leads to the proposition that microbial production of AFOM is likely to be responsible 

for some of the increases in Peak AM fluorescence intensity. 

A peak is seen within these EEMs at λex/λem 255/310 nm. This peak is not discussed within 

the freshwater naturally occurring AFOM literature as it is associated with BTEX 

(benzene, toluene, ethylbenzene, and xylene) contamination (Persichetti, Testa and 

Bernini, 2013). The variable presence and fluorescence intensity of this peak is potentially 

related to increased runoff during rainfall events, as the waterbody receives runoff from 

the University campus carparks. 
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5.3.1 Fluorescence intensity and water temperature 

The peak picking data from the EEM of each sample (Table 5.3) demonstrates a general 

decline in fluorescence intensity, in line with decreasing temperature. This is in 

agreement with the in situ fluorescence data (Table 5.1) and is also clearly seen by the 

EEMs in Figure 5.3. Significant correlations between the water temperature at the time 

of sampling and the fluorescence intensity for Peaks T and C were identified (Figure 5.4); 

R2 = 0.61, p < 0.001, and R2 = 0.50, p < 0.01, respectively. No significant relationships were 

identified between water temperature and the fluorescence for the discrete sampling 

time points, although a similar trend, increasing fluorescence with increased 

temperature, is exhibited by the monthly mean data (Table 5.1). 

Figure 5.4: Water temperature (°C) at the time of the discrete sample collection against the 

benchtop fluorescence intensity for peaks T and C. Fluorescence data is presented in quinine 

sulphate units, QSU (1 QSU = 1 µg L-1 quinine sulphate).  
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5.4 Comparison of in situ and laboratory fluorescence measurements 

Similar to the online in situ fluorescence intensity data, shown in Figure 5.2 and Table 

5.1, the EEM fluorescence data (Table 5.3) further highlights the stability of Peak C 

fluorescence relative to the variability in Peak T. This is in line with other surface 

freshwater monitoring, whereby Peak C is seen to vary less and, therefore, considered 

to be less labile and terrestrially sourced (Coble et al., 2014). 

Table 5.3 and Figure 5.3 highlight that Peak T fluorescence is seen in higher intensities 

than Peak C; this is not reflected within the in situ fluorescence data (Table 5.1). It is likely 

that interference and scatter within the environment, which is not corrected for in the in 

situ data, is responsible for these discrepancies. The in situ sensors are also impacted by 

bio-fouling of the windows, which impacts the fluorescence intensity reported (Figure 

5.2). Furthermore, this highlights the issue when comparing in situ continuous 

monitoring of a dynamic system with discrete samples, which reflect not only a snapshot 

in time, but also alter from collection to analysis. To minimise the impact of this, samples 

were analysed within one hour of collection. 

 

5.5 Filtration of environmental freshwater samples: impact on 

fluorescence intensity 

Unfiltered discrete samples from the environmental monitoring were analysed for 

fluorescence spectroscopy within 1 hour of sample collection (Section 5.3). Samples were 

also sub-sampled into sterile bottles containing 20 mg/L sodium thiosulphate for the off-

site laboratory microbiological analysis. The use of sodium thiosulphate is common 
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within drinking water analysis sample collection to prevent any further disinfection 

from the presence of chlorine (The Public Health Laboratory Service Water Sub-

Committee, 1953). As such, it is important to understand the potential impact on the 

AFOM signature that this may have if fluorescence is to be used to monitor potable water 

sources. Figure 5.5 shows that the addition of sodium thiosulphate to the sample has no 

significant impact on the fluorescence intensity of Peaks T and C. 

The samples were also subjected to filtration using a range of pore sizes (section 2.8.1), 

to assess the impact of this on sample integrity. Although sample filtration is common 

practice (Zhu et al., 2017; Asmala et al., 2016; Miller and McKnight, 2010; Cammack et al., 

2004), there is currently no standard method for this. It is important to understand the 

impact of a range of filtration practices on AFOM fluorescence intensity when assessing 

discrete sampling for monitoring the water quality of natural systems. 11 µm filters were 

employed as these are frequently used within environmental sample collection to 

remove large particulate matter. It is clear from Figure 5.5 that, although particulate 

matter and some microorganisms are removed from the sample, this filtration has no 

significant impact on the fluorescence intensity of Peaks T and C. Some samples 

demonstrate an increase in fluorescence intensity for Peaks T and C post-11 µm filtration. 

This is likely to occur due to the variation between each subsample of the main sample, 

highlighting the issue of using discrete samples and subsampling within such dynamic 

systems. 

0.45 µm filtration was undertaken (on samples in August-November) as this is often 

considered to be the dissolved fraction of OM, in line with the filtration techniques for 

dissolved organic carbon (Thurman, 1985). Filtration at this pore size removes 
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particulate OM, alongside many microorganisms, including algae and some bacteria. It 

is clear from Figure 5.5 that this results in FOM removal, with Peak T fluorescence 

intensity being impacted more heavily. This is evidenced by the mean reduction of 60% 

fluorescence intensity for Peak T and 19% reduction for Peak C, between the unfiltered 

and filtered samples. A paired t-test was conducted to determine if filtration at 0.45 µm 

filtration significantly reduced the fluorescence intensity of Peaks T and C. The mean 

reduction for Peak T (M = 16.06 QSU, SD = 2.05, n = 13) and Peak C (M = 3.10 QSU, SD = 

0.33, n = 13) were both significantly greater than 0; t(12) = 7.84, two-tail p < 0.001 and , 

t(12) = 9.49, two-tail p < 0.001, respectively. 

Samples were also filtered at 0.2 µm, which is considered to provide sterile-filtered 

samples. No significant difference was seen between the fluorescence intensity for the 

samples filtered with a 0.45 µm filter and a 0.2 µm filter (Figure 5.5). The mean reduction 

in fluorescence intensity after filtration at 0.2 µm for these samples was 40% for Peak T 

and 16% for Peak C. Filtration has a greater impact on Peak T fluorescence intensity, 

likely due to the removal of microorganisms that contain intracellular Peak T AFOM 

(chapters 3 and 4). A paired t-test was performed to determine the significance of 

filtration at 0.2 µm upon the fluorescence intensity of Peaks T and C. The mean reduction 

for Peak T (M = 14.60 QSU, SD = 5.36, n = 22) and Peak C (M = 3.20 QSU, SD = 0.53, n = 

22) were both significantly greater than 0; t(21) = 2.72, two-tail p < 0.05 and , t(21) = 6.00, 

two-tail p < 0.001, respectively. This provides evidence that filtering samples at 0.2 µm 

also significantly reduces the fluorescence intensity of peaks T and C. 
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Figure 5.5: Monthly mean fluorescence intensity (n = 3-4, per month), reported in quinine sulphate 

units, QSU (1 QSU = 1 µg L-1 quinine sulphate), of Peaks T (a) and C (b) from the discrete samples 

(± 1 standard deviation). Data sets derived from a range of storage conditions and filtration 

applied prior to fluorescence spectroscopic analysis. There is no data for 0.45µm filtration for June 

and July.  
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5.6 Discussion 

In this study, AFOM measurements have been undertaken using laboratory 

spectrofluorometers to analyse discrete samples, alongside acquisition of data for 

traditional microbiological and physicochemical water quality parameters. Whilst this 

has provided a wealth of information regarding OM characterisation and composition, 

technological developments have made in situ fluorescence monitoring a possibility 

(Ruhala and Zarnetske, 2017). Although the application of in situ monitoring has 

received more attention recently (Sorensen et al., 2015a, 2016, 2018b, 2018a; Khamis, 

Bradley and Hannah, 2017; Saraceno et al., 2017; Bridgeman et al., 2015; Khamis et al., 

2015; Carstea, 2012), there is little available data exploring longer term monitoring of 

freshwater systems. The work here addresses this by utilising single fluorescence peak 

sensors, in conjunction with traditional water quality parameters, revealing the potential 

for this technology as well as exposing further developments to improve the application. 

 

5.6.1 Water quality monitoring: physicochemical parameters and 

fluorescence intensity 

Many of the physicochemical parameters measured are relatively stable throughout the 

monitoring period, for both the data collected from the in situ sensing (Table 5.1) and 

from the laboratory testing (Table 5.3). No relationship between the fluorescence signals 

and the water quality parameters, i.e. DO, temperature and EC, were identified within 

the continuous data. This highlights the notion that fluorescence data provides different 

information about the water quality and is not a proxy for current parameters but should 

be considered as a novel water quality parameter. The water temperature (Table 5.1) 
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varies monthly, reflecting seasonal variations. The impact of temperature variations on 

fluorescence quenching has long been recognised in relation to higher temperatures 

leading to increased collisional quenching (Carstea, Baker and Savastru, 2014; Coble et 

al., 2014; Lakowicz, 2006). Whilst seasonal changes in temperature of environmental 

water bodies is gradual, the impact of diurnal temperature changes has been noted by 

Watras et al., (2011). However, temperature variation is not seen to have a significant 

impact on fluorescence quenching within these samples, since although increased 

temperatures are paired with increased Peak T fluorescence intensity (Tables 5.1 and 

5.2), Peak C remains relatively stable throughout. This is also reflected in the EEMs 

presented in Figure 5.3, and the fluorescence intensity data for peaks T and C obtained 

from these (Table 5.3). Higher water temperatures would increase the metabolic rate of 

microbial activity (Ogawa et al., 2001), as demonstrated by the laboratory cultures in 

chapter 3. The increase in fluorescence intensity correlated with higher water 

temperatures, therefore, further indicates that the AFOM, particularly Peak T (Figure 

5.4), can be indicative of microbial activity in freshwaters (Ziervogel et al., 2016; Coble et 

al., 2014). The highly eutrophic nature of this system means that the algal contribution 

to Peak T may be higher than the bacterial contribution. However, due to the unknown 

composition of the complex microbial community and the ubiquitous presence of Peak 

T with all bacterial types (chapters 3 and 4), Peak T fluorescence cannot be used to 

enumerate bacteria within this aquatic system. 

The stability of Peak C fluorescence intensity, in comparison with Peak T, demonstrates 

the ability of the T/C ratio to be used to identify events driven by changes in Peak T 

fluorescence. Peak T is seen to be more variable, making it the more suitable fluorescence 
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peak for monitoring microbial activity in complex aquatic ecosystems. It can be 

suggested that the majority of the Peak C fluorescence present within this system is of 

allochthonous terrestrial origin (Coble et al., 2014; Hudson, Baker and Reynolds, 2007), 

with microbially engineered Peak C being a much smaller contributor to the overall 

fluorescence intensity (Shimotori, Watanabe and Hama, 2012), as identified in chapters 

3 and 4. Whilst the ratio can remove noise from the data, the data here highlights the 

importance of understanding the background fluorescence of the locations to be 

monitored. From this, it is clear that reporting the individual data outputs, alongside the 

T/C ratio, is important for data analysis and event identification (Zhou et al., 2017). It also 

demonstrates the need for further research into the relationship between peaks T and C, 

to determine a more robust way of combining the data. 

The use of Peak T fluorescence to monitor microbial activity is further evidenced here 

by the diurnal variation in fluorescence intensity (Figure 5.2). Further to the impact of 

temperature in the summer months, it is also likely that the hours of sunlight impact the 

microbial activity, particularly algal activity, leading to increased Peak T. The diurnal 

variation is clearly identified within the T/C ratio (Figure 5.1b), demonstrating that Peak 

T is the driver for this variation and highlighting the necessity of using both fluorescence 

peaks T and C to understand AFOM dynamics within freshwaters (Zhou et al., 2017; 

Bridgeman, Bieroza and Baker, 2011). The diurnal variation is likely to be related to 

microbial activity within the system, related to both temperature and sunlight; 

interference from sunlight does not impact the fluorescence signal due to the built-in 

light cowl (Figure 5.1). Thus, algal Peak T fluorescence is likely to be the major 

contributing factor to this diurnal effect, as increased sunlight will cause an increase in 
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algal metabolic activity (Zhi et al., 2015; Fukuzaki et al., 2014; Herlemann et al., 2014; 

Carstea, 2012; Spencer et al., 2008). Although bacterial metabolic activity will impact 

Peak T, the data here does not allow for the algal and bacterial Peak T fluorescence to be 

separately distinguished. To determine this, it is important to monitor other water 

quality parameters, such as chlorophyll-a, which could then be used to distinguish algal 

blooms from increases in bacterial load (Makarewicz et al., 2018). This further supports 

the application of in situ Peak T fluorescence monitoring for overall microbial 

community activity, not bacterial enumeration, due to the multiple factors which 

contribute to variations in Peak T fluorescence. 

In addition to the variation in fluorescence intensity with water temperature, DO is 

shown to be higher at lower temperatures, with the data for May-August demonstrating 

more variable DO with higher water temperatures. The reason for this is potentially two-

fold, with DO solubility being higher at lower temperatures and reduced microbial 

activity leading to lower oxygen consumption (Jørgensen et al., 2011). However, Peak T 

fluorescence demonstrates higher intensities with lower, albeit more variable, DO 

values. From this, it can be postulated that increased microbial activity may also 

contribute to the lower DO in the summer months. 

Moreover, the nitrite and nitrate data, obtained from the laboratory analysis of the 

discrete samples (Table 5.3), suggests decreased activity within this highly eutrophic 

system in the winter months. As available nitrogen is often a limiting factor for microbial 

activity, lower nitrate values would indicate increased microbial activity (Bieroza and 

Heathwaite, 2016). This can be suggested from the higher Peak T fluorescence intensity 

in conjunction with lower nitrate levels (Table 5.3). The turbidity data obtained from the 
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discrete samples also implies lower bacterial presence in the winter months; turbidity is 

commonly used as a proxy for bacterial contamination (Sorensen et al., 2018a). However, 

in a complex system, such as the one monitored here, turbidity is affected by multiple 

factors, including the effects of rainfall events, such as dilution, and the addition of POM 

and DOM. Although the fluorescence and turbidity data show similar trends, the data 

here suggests in situ fluorescence is a water quality parameter independent of turbidity 

and providing higher sensitivity to changes in microbial community activity. 

Although the data here highlights the potential advantages of using in situ fluorescence 

sensing, there are developments required to improve the application of this technology. 

As in situ fluorescence sensing usage has increased, research has identified a number of 

corrections that improve the data output (Khamis et al., 2015; Watras et al., 2011, 2014). 

These corrections include algorithms for spectral interferences from turbidity and 

absorbance, which prevent ‘real’ fluorescence being reported. As such, within complex 

matrices, it is difficult to compare in situ and EEM data. Regardless, the usefulness of 

this comparison must be questioned as the in situ data reflects a dynamic and ever 

changing sample within a system, particularly in flowing waters, whereas discrete 

sampling represents a static point in time. This highlights the limitations of discrete 

sampling and the inability to compare real-time in situ data with discrete sample data. 

 

5.6.2 Impact of sensor fouling on the fluorescence signal 

Another current limitation to the in situ sensors is fouling, in particular biofouling where 

biofilm structures build upon the sensor windows interfering with the fluorescence 
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signal (Khamis, Bradley and Hannah, 2017; Ruhala and Zarnetske, 2017; Blaen et al., 

2016). This is a problem common to all in situ sensing and is currently mitigated by 

frequent maintenance, with some sensors now employing physical biofouling removal, 

using wipers built into the sensor. The data in Figure 5.1 highlights the impact of 

biofouling, with a drop-off in fluorescence over time, between cleaning of the probes, 

with fouling seemingly having less of an impact in the winter months, when reduced 

microbial activity decreases the potential for biofilm production. This accumulation of 

biofilm prevents the identification of events within the sample beyond a certain level of 

biofilm development (Fischer, Friedrichs and Lachnit, 2014). Biofilm accumulation also 

seems to affect the sensor signal, with two large Peak T events, lasting two to three days, 

identified post deep cleaning of the sensors (Figure 5.2). It is difficult to determine 

whether these are AFOM events within the water or related to biofouling, of the sensor 

window, or lack of this phenomenon. As these events occur shortly after cleaning, it is 

possible that this is a result of the attachment phase of a biofilm on the window which 

leads to a spike in Peak T (Lemus Pérez and Rodríguez Susa, 2017; Fischer, Friedrichs 

and Lachnit, 2014). Determining the cause of these events requires further exploration to 

ensure that it is not also related to the sensor cleaning protocol. The influence of biofilms 

on the sensor windows requires further work to determine the true impact this can have 

on the fluorescence signal detected, with the development of biofouling prevention 

and/or removal techniques required to make sensors more autonomous and fit for the 

purpose of long-term monitoring. 
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5.6.3 Impact of sample filtration on fluorescence intensity 

Further to the physicochemical, biological and fluorescence analysis of the discrete 

samples, the impact of filtration was also measured. Sample filtration is common 

practice within environmental water sample collection, particularly if discrete samples 

require transportation, meaning measurements cannot be undertaken shortly after 

collection (Zhu et al., 2017; Asmala et al., 2016; Miller and McKnight, 2010; Cammack et 

al., 2004). Many filter at ≤ 0.7 µm to obtain the dissolved fraction of OM (Repeta, 2015; 

Aiken, 2014), with others using 0.45 µm filtration in line with dissolved organic carbon 

methods (Thurman, 1985). Figure 5.5 demonstrates the impact of filtration, 

predominantly on Peak T fluorescence intensity, providing evidence that filtering 

samples at ≤ 0.45 µm significantly reduces the intensity of the AFOM signal. This 

filtration removes microbial cells and, therefore, AFOM. This is particularly evident in 

the summer samples, further indicating the relationship between microbial cells and 

Peak T fluorescence. However, it is possible to use filtration of samples to discern 

between extracellular and intracellular Peak T fluorescence within environmental 

samples (Herlemann et al., 2014), as highlighted within chapters 3 and 4. This data 

demonstrates the importance of on-site analysis and the necessity for careful 

consideration of sample storage and transportation. By exploring the impact of filtration 

on sample integrity, the work here exposes the potential for much of the previous 

literature to have underestimated Peak T fluorescence, inhibiting the understanding of 

its origin and potential as a water quality parameter. 
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5.6.4 Chapter 5: key findings 

 In situ Peak T fluorescence can monitor overall microbial community activity, not 

bacterial enumeration; the contribution of algal AFOM is likely to be a major driver 

of variations in Peak T fluorescence intensity. 

 Microbially engineered humic-like AFOM is likely to be a smaller contributor to the 

overall AFOM fluorescence intensity than allochthonous terrestrial AFOM in natural 

freshwater systems. 

 Biofouling of in situ sensors currently limits the application of fluorimeters for long-

term autonomous monitoring of freshwater systems. 

 Preserving sample integrity when using fluorescence spectroscopy is essential. 

Collection, storage and transportation of samples must be carefully considered. 
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Chapter 6 Validation of an effective and reliable sensor to 

measure the phenomenon of aquatic fluorescent organic matter 

in situ 

 

6.1 Introduction 

Water quality sensors are widely commercially available for the monitoring of basic 

physicochemical parameters, but these sensors do not provide information regarding 

biotic parameters or processes within aquatic systems. Real-time technologies provide 

advantages in terms of streamlining the data collection process, potentially minimising 

human error and time delay, cost reduction in data collection, and, critically, produce a 

higher quantity and quality of data on temporal and spatial scales. 

Extensive research is ongoing into the application of fluorescence based sensor 

technology for water quality management, but few commercially available devices are 

in existence on the market. This is occurring by adapting available technologies, such as 

in situ real-time portable fluorimeters for the identification of anthropogenic pollutants, 

such as polycyclic aromatic hydrocarbons (PAH) and optical brighteners. Recently 

portable fluorimeters have been developed for sensing biological contamination, using 

microbially derived fluorescence signals. There is a focus on the application of Peak T 

fluorescence sensing, as this has been shown, within the literature, as an indirect 

indicator of bacterial metabolism (Coble et al., 2014; Hudson et al., 2008; Cammack et al., 

2004), as well as a tracer for sewage contamination within aquatic systems (Sorensen et 
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al., 2015a, 2016; Hudson et al., 2008; Elliott, Lead and Baker, 2006a; Baker et al., 2003; 

Reynolds, 2002, 2003). 

This chapter will detail the current limitations of the UviLux (Chelsea Technologies 

Group Ltd., UK), discussed in chapter 5, for certain applications. From this information, 

the design for the prototype of the new generation sensor (V-Lux) and the correction 

factors built into the new sensor will be detailed. The work reported here was 

undertaken at Chelsea Technologies Group Ltd. (CTG) and is commercial in confidence. 

Figures are provided by CTG. Units within this chapter are reported in ppt, ppb and 

ppm, as per the industry standard: 1 ppt is equivalent to 1 ng/L; 1 ppb is equivalent to 1 

µg/L; and, 1 ppm is equivalent to 1 mg/L. 

 

6.2 Application of in situ fluorometers: UviLux 

The freshwater sensors are aimed at environmental monitoring and have been used for 

a range of applications within surface freshwaters (Bieroza and Heathwaite, 2016). 

Further to surface freshwaters, the UviLux sensors have been employed to assess the 

impact of various leachate in groundwater globally, and have demonstrated good 

correlations with bacterial enumeration within these systems (Sorensen et al., 2015a, 

2016). Alongside research and environmental water quality assessment, another key 

market is the water industry, mainly water utility companies, who are focussed on 

improving the efficiency and reducing the cost of water treatment, regarding both 

drinking water supply and waste water treatment. Whilst the application of fluorescence 

techniques for contamination events and wastewaters is well documented, monitoring 
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OM in source waters of drinking water treatment and monitoring the efficacy of the 

treatment process could provide an essential tool to trace contamination. Fluorescence 

may also be applicable to monitor disinfection by-products (DBPs) in distributed 

drinking water (Roccaro, Vagliasindi and Korshin, 2009). However, as UV and 

chlorination are common practice within drinking water treatment, the quenching 

effects on the fluorescence signal must be assessed. A case study is presented to 

determine the potential impact of chlorination on aquatic fluorescent organic matter 

(AFOM). 

 

6.2.1 Case study: Quenching of AFOM signal with the addition of 

chlorine 

There is currently a gap in the market for provision of a real time Peak T fluorosensor as 

an early warning system for identifying contamination or pollution events in drinking 

water distribution. However, the impact of residual chlorine within distribution 

networks must be considered when determining the use of fluorescence for monitoring 

AFOM. 

All waters used to provide drinking water are known to contain both dissolved and 

natural organic matter, DOM and NOM respectively, that produces a fluorescence 

signature (Coble et al., 2014; Matilainen et al., 2011). These fluorescent aromatic 

compounds could potentially be used to monitor their presence in distribution and 

treatment systems (Westerhoff, Chao and Mash, 2004), and although this idea has not 

yet been applied in a commercial capacity, there is significant scope for applying 
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fluorescence based techniques in this sector. This could be of particular importance 

regarding the increasing awareness and concern for public health surrounding 

Disinfection By-Products (DBP), with specific focus on carcinogenic trihalomethanes, as 

these can be produced during chlorination processes (Hua et al., 2010; Roccaro, 

Vagliasindi and Korshin, 2009; Westerhoff, Chao and Mash, 2004). 

The key to DBP management is source water control, specifically regarding OM control 

and management (Bridgeman, Bieroza and Baker, 2011). Although high molecular 

weight aromatics are easily removed within treatment, low molecular weight 

autochthonous material is a major precursor for these DBPs, but is difficult to monitor 

at present due to spatial and temporal variations in source water OM and the use of 

multiple source waters (Bridgeman, Bieroza and Baker, 2011; Bieroza, Bridgeman and 

Baker, 2010). Fluorescence techniques offer a sensitive detection methodology for 

monitoring the removal of NOM and to determine the OM characteristics within source 

waters and throughout treatment processes (Bridgeman, Bieroza and Baker, 2011; 

Bieroza, Bridgeman and Baker, 2010; Beggs, Summers and McKnight, 2009). Alongside 

DBP precursor monitoring, fluorescence can also be used to determine contamination 

events in distribution networks or recycled water systems by monitoring Peak T 

(Henderson et al., 2009), and this has been shown experimentally (Hambly et al., 2010). 

 

6.2.1.1 Methodology 

A chlorine stock (10 ppm) was added to an L-tryptophan (Sigma-Aldrich Co., USA) 

solution (300 ppb) and environmental samples from two different surface freshwaters: 



Chapter 6: Developing an effective and reliable sensor to measure the phenomenon of AFOM in situ 

157 

Dead River, N 51° 23’ 40”, W 0° 22’ 33”, and a lake within Molesey Heath park, N 51° 23’ 

31”, W 0° 22’ 36”. Chlorine was added to produce final concentrations of 0.1-4.0 ppm, 

which was verified using SenSafe® test strips (Industrial Test Systems, Inc., USA). The 

maximum concentration, 4.0 ppm, is below the guideline of 5.0 ppm set by the World 

Health Organisation for residual chlorine within distribution systems (Drinking Water 

Inspectorate, 2010). Chlorine was dosed into the samples which were analysed 10 

minutes after the dosing, using fluorescence spectroscopy (HORIBA Aqualog®, 

HORIBA Ltd., Japan), with the parameters detailed in section 2.1.1.1. 5 mg of sodium 

thiosulphate was then added to the 4.0 ppm chlorine sample, removing any free chlorine 

and preventing further chlorination effects. An EEM of this sample was then conducted 

to determine if quenching of the AFOM was reversible. Analysis of all samples was rerun 

two hours after the dosing. Data was peak picked to determine the quenching impact of 

chlorine on peaks T and C fluorescence (section 2.1.2.3). 

 

6.2.1.2 Results and Discussion 

The data for the L-tryptophan samples, Figure 6.1, highlights how vulnerable free 

tryptophan is to chlorine quenching. The fluorescence intensity was reduced by 30% for 

the weakest chlorine concentration, after only 10 minutes contact time. The Peak T 

fluorescence is completely quenched within the sample with a final chlorine 

concentration of 0.4 ppm. The data demonstrates that the majority of the quenching 

occurs with short contact times. For low concentration chlorine solutions, some of the 

fluorescence appears to recover with time. This data suggests that chemical quenching 

of Peak T may prevent the application of fluorescence technologies for monitoring water 
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treatment works, post chlorination. However, elevated Peak T fluorescence within 

distribution networks could identify misconnections or contamination within the 

system. 

Figure 6.1: Impact of chlorine addition on Peak T fluorescence of an L-Tryptophan solution (300 

ppb). Data is peak picked from excitation-emission matrices at λex/λem 280/350 nm. Chlorine 

dosing 1 refers to the fluorescence intensity after 10 minutes contact time with the chlorine dosing; 

chlorine dosing 2 is the intensity measured after 2 hours contact time. Fluorescence intensity is 

reported in quinine sulphate units (QSU); 1 QSU is equivalent to the fluorescence intensity, of 1 

ppb quinine sulphate at λex/λem 347.5/450 nm. 

 

The EEMs in Figure 6.2 clearly demonstrate the quenching seen by the addition of 

chlorine to environmental surface freshwaters. This highlights the quenching of all 

regions of AFOM, not solely Peak T. This quenching was seen in both environmental 

samples tested (Figures 6.2 and 6.3), with Figure 6.3a demonstrating the impact of 

chlorine dosing on fluorescence quenching for both peaks T and C. This data further 

demonstrates the impact of chlorine dosing on AFOM intensity. However, the Peak T 
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within the environmental samples is not fully quenched, as seen with the chemical 

tryptophan solution (Figure 6.1). Figure 6.3 also shows that increasing the contact time, 

although having little impact, does not allow the fluorescence intensity to recover. This 

suggests that the environmental Peak T fluorescence is less vulnerable to quenching, 

perhaps as it is not free tryptophan (Coble et al., 2014) and, as Peak T in environmental 

samples is attributed to a range of fluorophores, not solely pure tryptophan (Bridgeman, 

Bieroza and Baker, 2011). 

Figure 6.2: Fluorescence excitation-emission matrices of: a) an environmental surface freshwater 

(Dead River, N 51° 23’ 40”, W 0° 22’ 33”); and b), c) and d) for the environmental sample dosed 

with chlorine, resulting in 0.4 ppm, 1.5 ppm and 4.0 ppm chlorine solutions respectively. 

Fluorescence is reported in quinine sulphate units (QSU); 1 QSU is equivalent to the fluorescence 

intensity, of 1 ppb quinine sulphate at λex/λem 347.5/450 nm. 

Dead River 

d) c) 

0.4 ppm Cl2 

T 
(PAH) 

C 
(CDOM) 

a) b) 

4.0 ppm Cl2 1.5 ppm Cl2 



 

 

Figure 6.3: Impact of chlorine addition on the fluorescence intensity of an environmental surface freshwater sample (Molesey Heath park lake, N 51° 23’ 31”, W 

0° 22’ 36”). Data is peak picked from excitation-emission matrices at λex/λem 280/350 nm for Peak T, and λex/λem 280/450 nm for Peak C. Fluorescence intensity is 

reported in quinine sulphate units (QSU); 1 QSU is equivalent to the fluorescence intensity, of 1 ppb quinine sulphate at λex/λem 347.5/450 nm. (1) refers to the 

fluorescence intensity after 10 minutes contact time with the chlorine dosing; (2) is the intensity measured after 2 hours contact time. a) shows the fluorescence 

intensity for peaks T and C with the chlorine addition; b) demonstrates the T/C ratio of the samples with chlorine dosing.160 
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Although complete fluorescence quenching is not seen within the environmental 

samples, it is clear that quenching would affect the ability to use fluorescence 

technologies for in-line monitoring within water treatment, which employs chlorination. 

However, as the response to chlorine quenching between peaks T and C is linear, it may 

be possible to use the T/C ratio to enable a threshold based monitoring system to identify 

unusual Peak T events (Baker et al., 2015; Bridgeman, Bieroza and Baker, 2011). Figure 

6.3b highlights the robustness of this ratio to chlorine quenching, within both 

environmental samples analysed. 

 

6.2.1.3 Conclusions 

The data presented within this case study shows that whilst fluorescence can be used as 

an indicator of contamination in distribution systems and to assess microbial loading 

prior to chlorination, it is not a suitable technique to assess AFOM throughout a water 

treatment works post-chlorination. Chlorine quenching is not reversed by the addition 

of sodium thiosulphate, impacting the potential use of fluorescence techniques for by-

products (DBPs) monitoring. By monitoring the Peak C prior to treatment, to ensure the 

reduction of OM loading in the pre-chlorination stages, DBP precursors can be 

monitored. However, quenching of all AFOM peaks means that it cannot be used for in-

line DBP detection. To realise the full potential of fluorescence sensors for in-line 

treatment monitoring, further work must be undertaken onsite to determine the impact 

of actual treatment on fluorescence quenching. 
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6.2.2 UviLux limitations 

Increasing demand for in situ, portable and low cost fluorometers, has presented the 

necessity for the UviLux sensor to evolve and develop into a more sophisticated sensor, 

addressing current end user issues with the UviLux range. This is in line with current 

research and market demands. From this, it has become apparent that new generation 

fluorescence sensors must include in-built correction for absorbance and turbidity, to 

improve the validity of the data and the function of the sensor (Khamis et al., 2015). 

Furthermore, the use of multiple wavelengths to identify sources provides the user with 

a more complete dataset, allowing more sophisticated data interpretation and 

monitoring. 

The UviLux sensors output data in µg/L or ppt equivalents of the calibration solution. 

This does not always correlate to the true concentration present in a test water sample 

and calibration curves will vary according to the complexity of the water sample under 

test. This also leads to variable sensitivity between sensors, making it difficult to 

compare sensors and ratio output data. Units should be standardised to a common 

fluorescence unit that can also be replicated with laboratory measurements. This will 

allow for intra-site comparison and inter-sensor measurements. This is particularly 

important for complex aquatic matrices and field-based studies, such as the data 

presented in section 5.2.1. 

Alongside unit standardisation, another key limitation of the UviLux sensors is fouling, 

particularly bio-fouling, of the sensor windows. This is particularly important for long-

term continuous deployment and for particular surface freshwaters, as shown in section 
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5.2.1. The full impact of bio-fouling needs to be assessed, and appropriate measures put 

in place to reduce its effects where necessary. 

 

6.3 Unit standardisation 

One of the issues with the previous generation of sensors was the comparison of data 

between locations and between sensor variants, e.g. Tryptophan and CDOM. This was 

due to the units that the sensors reported in, fluorescence equivalent to 1 ppb of the 

calibration compound, i.e. Tryptophan for the Tryptophan sensor, PTSA for the CDOM 

sensor etc. To facilitate data interpretation and benchtop comparison, sensor data is now 

reported in commonly used fluorescence units, quinine sulphate units (QSU); 1 QSU is 

equivalent to the recorded fluorescence intensity, on a spectrofluorometer (HORIBA 

Aqualog®, Japan), of 1 ppb quinine sulphate standard in 0.1 M perchloric acid (Starna 

Cells, USA) at λex/λem 347.5/450 nm. This also provides the ability to quantitatively 

compare inter and intra sample site, and sensor, fluorescence intensity variation. 

QSU, as a measure, provides standardisation of units across instrumentation and 

applications. By standardising the data, a more sophisticated approach to data 

interpretation can be undertaken. The use of QSU for the shorter wavelength 

fluorescence peaks, such as Peak T, is not as representative as for Peak C for example. 

This is due to the excitation and emission wavelengths of the quinine sulphate reference 

(Figure 6.4). However, a single unit must be employed to allow for sensor and data 

comparison. Whilst the use of QSU may not be ideal, standardisation does provide 
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comparable sensor sensitivity for different fluorescence parameters; something that is 

required across the market and to facilitate research and industry data comparison. 

 

Figure 6.4: Emission spectra of quinine sulphate and the calibration standards for the Tryptophan 

and CDOM sensors, L-Tryptophan and p-Toluenesulphonic acid (PTSA) solutions respectively. 

Fluorescence intensity is provided in quinine sulphate units (QSU); where 1 QSU is the equivalent 

to 1 ppb of quinine sulphate at λex/λem 347.5/450 nm. Used with permission of the creator, Chelsea 

Technologies Group Ltd. 

 

6.3.1 Sensor QSU conversion factor generation 

The QSU factor is used to convert the channel data, thus all the fluorescence data is 

reported in QSU for the various target wavelengths. The QSU factor is generated by 

undertaking laboratory fluorescence spectroscopic analysis on the calibrations standards 

at a range of concentrations, reflective of the expected range of the parameter across the 

different applications. The data used is the average of the emission spectra for the 

0

100

200

300

400

500

600

700

300 350 400 450 500 550 600

F
lu

o
re

s
c

e
n

c
e

 (
Q

S
U

)

Emission wavelength (nm)

QS Tryptophan PTSA



Chapter 6: Developing an effective and reliable sensor to measure the phenomenon of AFOM in situ 

165 

emission wavelengths prescribed by the optical filter used within the sensor. The 

excitation wavelength used reflects that of the sensor UV LED. 

To ensure using the mean of the spectra across the filter bandpass was reflective of the 

sensor view, a weighted average model was constructed. This was undertaken by 

utilising emission spectra from EEM data for different environmental samples. The 

weighted model accounted for the emission filter transmittance at the different 

wavelengths, the PMT response and the fluorescence data. This demonstrated no 

significant difference between the data for a weighted average model and using the 

mean value. As such, the mean value across the emission bandpass is used within the 

sensors. However, the use of absorbance corrected data significantly improved the 

agreement between sensor and benchtop output, highlighting the requirement for in-

built absorbance correction. 

 

6.4 V-Lux – New generation portable fluorometer 

The aim of the V-Lux sensor (Figure 6.5) is to meet the market demand for a single sensor 

with multiple parameters. This is a generic fluorometer design (Figures 6.5 and 6.6), both 

across measurement parameters and applications, which will ultimately replace CTG’s 

UniLux, TriLux, UviLux and AquaTracka range of fluorometers. The creation of a multi-

parameter sensor will provide a detailed optical assessment of the location and allow for 

corrections to be undertaken on the real-time data output, improving sensor 

functionality. The combination of multiple parameters, highlighted by the schematics in 

Figure 6.6, also aims to reduce the cost, making fluorescence monitoring a more cost-
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effective technique. This is to be achieved in part by using silicon photomultiplier 

(SiPMs) detectors as an alternative to the expensive Photomultiplier Tubes (PMTs) 

currently used in UviLux. Sensors will also be miniaturised to reduce cost of materials 

and improve portability. 

Figure 6.5: Image of the V-Lux sensor (Chelsea Technologies Group Ltd., UK). Used with 

permission of the creator, Chelsea Technologies Group Ltd. 

 

Due to the multiple operating environments that the sensor variants will be required to 

operate in the sensors have a depth rating of 6000 m and operational temperature range 

of -4°C to 55°C. The housing is made from titanium, with the sensor windows being 

made of sapphire with copper surrounding bezels, as shown by the image in Figure 6.5, 

and in the schematics in Figure 6.6. The sensor size is also reduced from the UviLux, at 

a diameter of 45 mm and length of 130 mm. The internal UV illumination and copper 
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bezels will protect against window fouling to some extent and a wiper accessory will be 

available for deployments where deemed necessary. 

 

Figure 6.6: Computer-aided design schematics of the V-Lux sensor: a) cross-sectional schematic; 

b) schematic of the internal build. Used with permission of the creator, Chelsea Technologies 

Group Ltd. 

  

a) 

b) 
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The details provided below briefly outline the measurement parameters (Table 6.1) and 

optical specifications of the Tryptophan V-Lux variant of the new multiwavelength 

fluorometer; the target market for this sensor is environmental pollution monitoring. 

Fluorescence data will be output in QSU, as discussed previously. A chlorophyll channel 

has also been incorporated as algae has been shown to produce a significant Peak T 

signal – thus enabling the identification of bacterial or algal Peak T events. By exciting at 

the same wavelength, using a 280 nm UV LED in this case, and reporting the data in the 

same units, a ratio can be used to identify true spikes in the monitored system. The co-

monitoring of two optical regions allows the T/C ratio to be reported alongside the 

individual signals. 

 
Table 6.1: Parameters to be monitored by the V-Lux Tryptophan sensor variant. 

Parameter Excitation λ 

(nm) 

Emission 

filter λ (nm) 

Dynamic 

Range 

Sensitivity 

Chlorophyll 

fluorescence 

280 682 ±15 0-700 µg/L 

(chlorophyll-a) 

0.01 µg/L 

(chlorophyll-a) 

Tryptophan 

fluorescence 

280 365 ± 25 0-600 QSU 

0-1200 µg/L 

(Tryptophan) 

0.02 QSU 

0.04 µg/L 

(Tryptophan) 

CDOM 

fluorescence 

280 450 ± 25 0-600 QSU 

0-800 µg/L 

(PTSA) 

0.02 QSU 

0.04 µg/L 

(PTSA) 

Absorbance 280  0-3.5 OD 0.002 OD 

Turbidity 860 860 0-1000 FNU 0.01 FNU 
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All channels within the V-Lux sensor require calibration, undertaken at time of purchase 

and annually as part of the technical support. This ensures that the sensor error is kept 

to a minimum and allows for correction of the sensor signal, if necessary, that may be 

caused by drift in the LED output for example. Within the calibration procedure, as for 

the UviLux sensors, the V-Lux channels will be subject to a range of concentrations of 

the calibration compound to determine the dynamic range of each channel parameter 

(Table 6.1). To pass the calibration the sensors must demonstrate both precision and 

accuracy: precision of the sensor signals is determined by a CV of <1% (n = 50); accuracy 

is assessed by the linearity of the relationship between the concentration of the 

calibration compound and the signal output (> R2 = 0.9995). 

 

6.4.1: Optical design 

This section describes the optical design principles to be employed in the new V-Lux 

multiwavelength fluorometers. 
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The V-Lux Tryptophan sensor has two main optical variants: one for UV fluorescence 

detection, the second for visible algal pigment excitation. Figure 6.7 provides a schematic 

of the layout for the UV Multiwavelength Fluorometer. 

 

Figure 6.7: Layout of the multiwavelength UV fluorometer illustrating the CDOM detection path. 

Used with permission of the creator, Chelsea Technologies Group Ltd. 

 

For fluorescence measurements the output from the UV LED source is reflected off the 

first dichroic filter and is focussed into the sample through a C-Cut Sapphire window 

using a fused-silica lens. Chlorophyll, Tryptophan (here referred to as PAH) and CDOM 

fluorescence generated in the sample is collected and collimated by the same fused-silica 

lens and passes back through the first dichroic filter. A second dichroic filter allows 

longer wavelength chlorophyll fluorescence to pass through where it is filtered and then 

focussed onto a Multi-Pixel Photon Counter (MPPC) detector, which will subsequently 

sample 
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be referred to as a Silicon Photomultiplier (SiPM). The shorter fluorescence wavelengths 

associated with PAH and CDOM fluorescence reflect off the second dichroic filter. A 

third dichroic filter is then used to split the PAH (reflected) from CDOM (transmitted) 

wavelengths. CDOM emission is then reflected off a mirror and directed to a discrete 

SiPM. 

Optical transmission is measured using a UV-enhanced photodiode positioned opposite 

the excitation window. A notch filter (not shown) blocks ambient light interference 

across the visible wavelengths and allows both UV (absorbance) and infrared (turbidity) 

wavelengths to pass through. A reference photodiode monitors the output of the UV 

LED and this signal is used to track both output drift (with time and temperature) in 

LED intensity and provides the reference for the transmission measurement. 

Turbidity measurements are achieved using an infrared LED (860 nm) as the source. 

Output from this LED passes through an aperture, which limits the angular spread of 

the light. Scattered light generated in the sample from IR light interacting with 

suspended particulates is then detected using the UV-enhanced photodiode. The 

turbidity measurement has been designed to be compliant with the ISO 7027:1999(E) 

standard requirements. 
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6.4.2 Turbidity and absorbance correction 

There are a number of factors that interfere with the measured fluorescence response. It 

is important to mitigate for these factors to improve sensor data output. Elevated 

measured signal, arising from scattered excitation light breaking through to the detector, 

can be mitigated by the use of good quality filters in both the excitation and emission 

paths of the fluorometer. Raman scattering can lead to elevated background signals. This 

can be minimised by careful selection of the fluorescence excitation and emission 

wavelengths and the bandpass characteristics of the filters used. Attenuation of the 

measured signal arising from absorbance in the sample, either from the compound being 

detected, i.e. the inner filter effect, or from other non-fluorescent dissolved compounds, 

and turbidity scattering also interferes with the fluorescence measurements. 

Independent measurement of both absorbance and turbidity enables the data to be 

corrected for these effects. 

The algorithms developed to correct for both types of interference are detailed below. 

These algorithms are based on independent turbidity and absorbance measurements, 

either within the same instrument or independently. The approach described is then 

validated using experimental data acquired from a UviLux Tryptophan fluorometer.  
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6.4.2.1 Correction methodology 

The effects of turbidity and absorbance on measured fluorescence are illustrated in 

Figure 6.8. 

Figure 6.8: Plot based on experimental data illustrating the suppression of signal arising 

from sample absorbance and turbidity.  

 

Both absorbance and turbidity introduce non-linearity to the measured response. 

Experiments have shown that these interferences are additive and that the fluorescence 

signal can be corrected using a standard attenuation correction derived from an equation 

of the following form: 
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EQUATION REDACTED   (Equation 6.1) 

 

Where: F_ConcCorr is the corrected calculated concentration; F_Conc is the reported 

concentration before correction; C_Abs is the measured absorbance due to ‘colour’; 

C_AbsFPL is a pathlength factor associated with colour absorbance, which is defined by 

the sensor geometry; T_Abs is the absorbance arising from turbidity, and T_AbsFPL is a 

second pathlength factor associated with turbidity absorbance. 

Experiments have demonstrated that the fluorescence pathlength factor C_AbsFPL is 

approximately 6 times larger than T_AbsFPL, so a single correction based on the 

measured absorbance is not adequate to fully correct for both turbidity and ‘colour’. 

 

6.4.2.2 Turbidity factors 

To implement the correction in Equation 6.1, it is necessary to determine the contribution 

to the total measured absorbance arising from turbidity, T_Abs, at the excitation 

wavelength. This is then used along with the calibrated fluorescence pathlength factor 

T_AbsFPL to adjust the signal for turbidity interference. 

To calculate T_Abs, a calibration must be performed relating the measured absorbance, 

at the fluorescence excitation wavelength, as a function of turbidity. An example is 

presented in Figure 6.9, using formazin as the turbidity standard.  
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Figure 6.9: Measured benchtop absorbance (at 280 nm excitation) as a function of turbidity, using 

formazin as the turbidity standard. 

 

As can be seen in Figure 6.9, the effect of turbidity on the absorbance is non-linear. This 

response suggests that at low turbidity light is scattered out of the sample volume and 

is not seen by the detector. However, as turbidity increases secondary scattering leads to 

an increase in the light detected, which has the result of limiting the increase in 

absorbance at higher turbidity and introduces non-linearity to the absorbance response. 

The typical particle size of the formazin standard is comparable to the wavelength of 

light, so Raleigh Scattering formulae cannot be used to fit the response, as these only 

work with particle sizes less than 10% of the wavelength. A Mie Scattering model would 

have to be used which is too complicated for this application. The measured response 
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observed in Figure 6.9 can, however, be fitted using a logistic equation of the following 

form: 

 

EQUATION REDACTED   (Equation 6.2) 

 

Where: T_Abs is the measured absorbance at the excitation wavelength (assuming there 

is no ‘colour’ absorbance); Turbidity is the measured turbidity (typically measured at 860 

nm); and T_AbsC1, T_AbsC2, T_AbsC3 and T_AbsC4 are the four constants required for 

the logistic fit. 

 

In practice, the calibration constants needed for the logistic fit can be determined by 

running a dose response curve to a turbidity level that introduces non-linearity in the 

measured absorbance and then using Equation 2 to fit the response, as illustrated in 

Figure 6.10. 
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Figure 6.10: Measured absorbance as a function of turbidity fitted using a logistic equation. 

 

The results for the uncorrected fluorescence are shown in the blue markers in Figure 6.8. 

The fluorescence is significantly attenuated as the turbidity increases. Given the 

relationship between turbidity and absorbance that has been established (Figure 6.10), 

T_AbsFPL was optimised to provide the turbidity-corrected data points shown in the 

orange markers in Figure 6.11. 
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Figure 6.11: Plot of the uncorrected Tryptophan fluorescence and turbidity-corrected Tryptophan 

fluorescence, obtained from sensor data. The red dotted lines indicate 5% deviation limits. Three 

standard deviation error bars are shown on the uncorrected Tryptophan fluorescence, 

determined from 1 Hz data acquisition with n = 50. Three standard deviation error bars are also 

shown on the turbidity-corrected Tryptophan fluorescence, where the uncertainty in the 

turbidity-corrected Tryptophan fluorescence has been calculated. 

 

The relationship between absorbance and turbidity depends on sensor geometry, 

excitation wavelength and the size of the particles generating the turbidity, which 

implies that a specific calibration might be needed for different sample types. If turbidity 

is measured at 860 nm, as required by the ISO 7027:1999(E) standard for turbidity 

measurements, colour is unlikely to be an interfering factor. The effect of particle 

absorbance at the excitation wavelength should be accounted for through the absorbance 

measurement. 
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A simpler approach can be used to calculate T_AbsFPL, the second calibration variable 

required for the turbidity correction. A fixed level of background turbidity will lower 

the slope of a fluorescence dose response, as illustrated in Figure 6.12. 

Figure 6.12: Theoretical plot based on actual data illustrating the suppression of the fluorescence 

signal arising from a fixed level of turbidity. 

 

T_AbsFPL can be calculated by running a two-point fluorescence calibration both with 

and without a known level of background turbidity, using a fluorophore concentration 

low enough to avoid the inner filter effect, i.e. C_Abs = 0, and simultaneously recording 

the measured absorbance. The following equation can then be used to correct the 

turbidity affected signal by adjusting the value of T_AbsFPL: 
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𝐹_𝑆𝑖𝑔𝐶𝑜𝑟𝑟 = 𝐹_𝑆𝑖𝑔 × 10(𝑇_𝐴𝑏𝑠×𝑇_𝐴𝑏𝑠𝐹𝑃𝐿)  (Equation 6.3) 

 

Where: F_SigCorr is the true fluorescence signal without background turbidity; F_Sig is 

the reduced fluorescence signal with background turbidity; T_Abs is the measured 

absorbance at the excitation wavelength (assuming there is no ‘colour’ absorbance); and, 

T_AbsFPL is the fitted fluorescence pathlength parameter. 

 

6.4.2.3 Absorbance factors 

Having determined the contribution to the total absorbance arising from turbidity, the 

contribution from ‘colour’ absorbance is then simply: 

 

𝐶_𝐴𝑏𝑠 = 𝐴𝑏𝑠 − 𝑇_𝐴𝑏𝑠     (Equation 6.4) 

 

Where: Abs is the total absorbance measured at the excitation wavelength, and C_Abs is 

the contribution to the total absorbance arising from dissolved ‘colour’. 

 

Finally, the remaining pathlength variables C_AbsFPL and T_AbsFPL, needed in 

Equation 6.1, are determined by independently measuring the effect that both dissolved 

‘colour’ and turbidity has on the fluorescence response. C_AbsFPL can be determined by 

running a calibration without turbidity up to concentrations that generate non-linearity 

in the fluorescence response, Figure 6.13, while simultaneously recording the measured 

absorbance. 
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Figure 6.13: Theoretical plot based on actual data illustrating the suppression of the fluorescence 

signal arising from the inner filter effect. 

 

The response can be linearised using the following equation: 

 

𝐹_𝑆𝑖𝑔𝐶𝑜𝑟𝑟 = 𝐹_𝑆𝑖𝑔 × 10(𝐶_𝐴𝑏𝑠×𝐶_𝐴𝑏𝑠𝐹𝑃𝐿)   (Equation 6.5) 

 

Where: F_SigCorr is the linearised signal response; F_Sig is the measured non-linear 

fluorescence signal; C_Abs is the measured absorbance at the excitation wavelength 

(assuming there is no turbidity); C_AbsFPL is the fitted pathlength parameter. 
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6.5 Discussion 

Fluorescence techniques have increasingly been used to improve understanding of 

aquatic systems and monitor water quality and contamination events (Sorensen et al., 

2015c, 2015b, 2016, 2018b; Khamis, Bradley and Hannah, 2017; Blaen et al., 2016; Baker et 

al., 2015; Bridgeman et al., 2015; Khamis et al., 2015). In situ AFOM monitoring has 

recently become of interest within the field, due to the sensitivity and non-destructive 

nature of this technique (Ruhala and Zarnetske, 2017). High-frequency measurements 

greatly improve the temporal resolution of fluorescence data, proving the ability to 

detect short-term events. This is particularly attractive when compared to traditional 

discrete sampling methods, which are expensive and add to through life costs, making 

these fluorometers a cost-effective alternative (Sorensen et al., 2018a; Ruhala and 

Zarnetske, 2017; Blaen et al., 2016; Khamis et al., 2015). 

Although the application of in situ fluorometers is increasing, this research has 

highlighted the current shortcomings of the technologies available, limiting their use 

within water quality monitoring. These mainly surround measurement correction 

requirements that arise from spectral phenomena, such as correcting for absorbance and 

turbidity (Khamis, Bradley and Hannah, 2017; Khamis et al., 2015). The development of 

the V-Lux correction algorithms addresses this, by concurrently monitoring turbidity 

and absorbance, as well as temperature. This provides real-time in-built corrections for 

the detected absorbance and turbidity. This enhances the agreement between in situ 

sensor data and benchtop laboratory readings, producing data that is more reflective of 

the ‘true’ AFOM signals (Khamis et al., 2015). 
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The standardisation of the sensor units allows for quantitative measurements, which can 

easily be compared to benchtop work. Unit standardisation, critically, enables the output 

from different sensors to be compared directly with reference to a traceable standard. 

Standardisation also allows for the equivalent sensitivity between fluorescence channels, 

permitting the use of channel ratios. With increasing market demand, there are more 

AFOM sensors being developed. By applying a standard unit, the V-Lux is well placed 

for field trials that compare available sensors, monitoring locations and studies that 

ground-truth sensor data with discrete sampling methods. As discussed, this 

comparison to benchtop data is further improved by the addition of the correction 

factors (Ruhala and Zarnetske, 2017; Khamis et al., 2015). 

Further to the in-built signal corrections and unit standardisation, the multi-channel 

nature of the V-Lux sensor greatly improves applicability of the sensor within a range of 

aquatic systems, providing a more detailed optical assessment of the aquatic 

environment in a way that could not be achieved cost effectively using existing discrete 

sensors. The measurement of multiple fluorescence peaks allows for a more detailed 

understanding of the AFOM for water quality monitoring and contamination 

identification, particularly when categorising risk (Sorensen et al., 2018a; Bridgeman et 

al., 2015). The ability of V-Lux to monitor multiple fluorescence peaks and report both 

as individual signals and as a ratio provides a detailed understanding of the real-time 

AFOM dynamics. However, Sorensen et al. (2018b) has demonstrated the potential 

requirement for only Peak C fluorescence as an indicator of bacterial contamination, 

particularly in groundwater systems. Whilst this suggests that the V-Lux sensor may be 

overly complex for particular applications, the focus for the development of V-Lux has 
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been regarding monitoring surface waters, where multiparameter monitoring is 

essential for more robust measurements. On the other hand, the extra information 

gained from the multiple channel sensor provides the user with a more comprehensive 

understanding. The addition of a chlorophyll channel is an important development that 

allows for the differentiation between algal Peak T fluorescence, indicative of 

eutrophication events, and bacterial Peak T (Makarewicz et al., 2018). The identification 

of the likely Peak T source is beneficial for managing water quality and determining the 

possible source, be it sewage, agricultural runoff, or eutrophication, for example. 

The V-Lux sensor is a more-cost effective technology for comprehensively monitoring 

AFOM in aquatic systems. The size and weight of the sensor improves its portability, 

but there is still a question over whether the copper bezels and the UV LED output is 

enough to keep the windows free from fouling and reduce the maintenance 

requirements. It is, therefore, necessary to conduct further research into biofouling 

(Khamis, Bradley and Hannah, 2017; Blaen et al., 2016), as highlighted by the data 

presented in section 5.2.1, and potential solutions for this to further enhance sensor 

autonomy, particularly for long-term monitoring applications. Future work must also 

be conducted to fully understand the T/C ratio and improve the meaningfulness of this 

data; a simple ratio is may not reflect the relationship between peaks T and C, requiring 

the development of a more complex algorithm. Field deployment of the sensor within a 

range of environments and applications is essential to determine further necessary 

adaptations. This is also essential for understanding the efficacy of the changes made 

and the suitability of the sensor for different scenarios. 
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6.5.1 Chapter 6: key findings 

 The limitations, and potential applications, of the UviLux fluorimeters have been 

assessed, highlighting the developments necessary for improving the suitability of 

in situ fluorimeters across a range of environmental applications. 

 The benefits of standardising the units used to report fluorescence measurements are 

identified. From this, it is clear that standardisation protocols must be created to 

provide clarification across fluorescence data and allow for inter-instrument 

comparison. 

 A new in situ fluorimeter, V-Lux, has been developed, and validated, in light of the 

limitations highlighted within the literature and by applying the understanding 

gained from the research undertaken within this thesis. The addition of in-built 

corrections broadens the scope of application for the sensors, although extensive 

field testing is now required. 
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Chapter 7 Final Discussion and Conclusions 

 

7.1 Synopsis 

The main aim of this research was to understand the bacterial origin of aquatic 

fluorescent organic matter (AFOM) by exploring bacterial-OM interactions and AFOM 

evolution at a range of temporal scales. This work was centred around the fundamental 

understanding of the origin of Peak T fluorescence, to enhance the knowledge 

surrounding the association of its presence and variation with microbial activity 

(Hambly et al., 2015; Coble et al., 2014; Baker et al., 2008; Hudson, Baker and Reynolds, 

2007; Reynolds, 2003). Alongside this, microbial-AFOM interactions, both production 

and processing, of a range of AFOM was identified; this led the research to further 

explore the variety of microbially engineered AFOM and consider the potential impact 

of this for global biogeochemical cycling. The other focus of this research was to 

determine the potential applications of Peak T fluorescence within water quality 

monitoring and resource management. To facilitate this, another objective within this 

research was to develop a way to reliably measure the phenomenon of microbially 

engineered AFOM in situ and determine the application of this as a novel parameter for 

monitoring water quality in freshwater systems. 

To identify the relationship between Peak T AFOM and bacterial communities, 

simplified laboratory model systems were used, as detailed in chapters 3 and 4. 

Understanding the potential microbial production of a range of AFOM within aquatic 

systems is important for global biogeochemical cycling, carbon storage and 
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transportation of labile OM through the hydrological continuum (Qian et al., 2017; 

Bieroza and Heathwaite, 2016; Coble et al., 2014; Baker and Spencer, 2004). This work has 

highlighted the ubiquitous bacterial production of Peak T, establishing its use as a proxy 

for bacterial activity within aquatic systems, rather than bacterial enumeration. The 

laboratory data obtained has also demonstrated the ability of bacteria to produce a range 

of AFOM compounds, indicating the potential for other fluorescence peaks to be utilised 

as biomarkers. 

By employing EEM fluorescence spectroscopy alongside bacterial monocultures, within 

Model System 1 (chapter 3), it was possible to ascertain the variety of microbially 

engineered AFOM. Strong significant correlations between Peak T fluorescence and 

optical density (OD) were identified from the monoculture growth curves (R2 = 0.97-

0.99). However, the continued bacterial production of Peak T within the stationary phase 

suggested that Peak T should be used as a reporter of metabolically active bacteria, 

rather than a proxy for bacterial enumeration. This conclusion was further supported by 

the ubiquitous presence of Peak T production by the nine bacterial strains cultured 

within Model System 1. The ubiquity and continuous production of Peak T within a 

metabolically active community demonstrated here also explains the variety of 

correlations identified within the literature, when applied to real-world environments. 

This provides strong evidence for the application of Peak T fluorescence to infer 

variation in microbial activity within a system. As part of a monitoring network, 

including commonplace physicochemical parameter monitoring, the use of Peak T 

fluorescence as a water quality parameter could greatly enhance the knowledge of 
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aquatic systems and allow the source of activity and, therefore, contamination to be 

identified. 

Additionally, this work identified the microbial production of AFOM, currently 

understood to be of terrestrial allochthonous origin (Coble et al., 2014), altering the 

understanding of the contribution to AFOM by microbial communities. Although Peak 

T was seen to be ubiquitous within all the bacterial strains, the ability of bacteria to 

produce other AFOM molecules seems to vary between species. This has highlighted the 

importance of metabolic processes in AFOM production, and suggests that AFOM other 

than Peak T may act as biomarkers for specific species, or groups of bacteria with 

particular functions, such as the production of pyoverdine, identified as Peak C+, by 

Pseudomonas aeruginosa. This also suggests the potential importance of variation in 

environmental conditions, such as nutrient availability and temperature, on the 

microbial production of AFOM, which could have wide ranging impacts on global 

biogeochemical cycling, although further work is required to truly assess this. 

To enhance the understanding of bacterial-OM interactions, both monocultures and a 

mixed community, isolated from a freshwater sample, were employed and samples 

fractioned to determine extracellular and intracellular AFOM (chapter 4). This work 

identified Peak T fluorescence as mainly intracellular material, with the highest 

intensities seen within resuspended cells. This highlighted the likely origin of Peak T 

AFOM as being functional proteins, involved in metabolic activity, although further 

proteomic and molecular work may be able to fully identify the processes responsible 

for driving this AFOM production. This verified Peak T fluorescence as an indicator of 

microbial metabolic activity, as well as an indication of presence, providing a novel 
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water quality parameter for understanding in situ microbial activity, and therefore 

enhancing understanding of ecosystem interactions. Other AFOM peaks, characterised 

as humic-like fluorescence, were also identified as intracellular, albeit at much lower 

intensities than Peak T. The majority of these AFOM fluorescence peaks were seen in the 

supernatant sample fraction, indicating exportation from the cells. This suggests that the 

molecules responsible for this AFOM signal are likely to be derived from bacterial 

metabolic by-products, structural proteins or specific functional molecules, such as 

pyoverdine. The extracellular nature of these compounds could prove essential for 

global cycling, with this OM being available for utilisation and degradation via a range 

of processes. Further understanding the processes of the production of this AFOM and 

identification of the compounds responsible could greatly enhance aquatic 

biogeochemical research and fill in the knowledge gaps pertaining to the ‘black box’ of 

processes within biogeochemical modelling. In turn, this could have wide-reaching 

effects on understanding present, past and future potential changes in the environment 

due to changes in biogeochemical cycling from a variety of pressures, including climate 

change and anthropogenic pollution, such as industrial and agricultural contamination. 

A second laboratory model system (Model System 2, chapter 4) was developed to assess 

microbial-OM interactions in natural freshwater samples and synthetic samples, 

employing a standardised mixed bacterial culture. Monitoring AFOM evolution hourly 

in Model System 2 exposed the Peak T production with microbial population growth, 

providing further evidence that metabolically active microbial communities produce 

Peak T in situ. Model System 2 was then further developed to assess the impact of 

residence time on bacterial AFOM evolution and determine the relationship between 
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Peak T and dissolved oxygen (DO) at a daily temporal scale. Monitoring DO in tandem 

with fluorescence, at this resolution, identified the variable and fast-acting dynamics of 

these aquatic systems. From this data, the lack of a reflective relationship between DO 

and Peak T can be established, with Peak T fluorescence being a dynamic parameter that 

assesses microbial activity through time, providing more detailed understanding of 

microbial activity than 5-day oxygen demand. As such, the work here suggests that the 

correlation between BOD5 and Peak T identified within the literature is dependent upon 

the temporal resolution. It can, therefore, be suggested that comparison of BOD5 and 

Peak T is unsuitable, with each parameter being beneficial for water quality management 

independent of each other (Hudson et al., 2008). 

The water quality monitoring study presented here (chapter 5), demonstrates the use of 

Peak T fluorescence as an independent water quality parameter, with in situ sensing 

being used to identify periods of enhanced microbial activity. This is demonstrated by 

diurnal variations in fluorescence intensity, and increased intensity with water 

temperature and, therefore, metabolic processing. However, by monitoring a single 

fluorescence peak it is not possible to determine the microbial origin, i.e. algal or 

bacterial, of this Peak T (Makarewicz et al., 2018; Fukuzaki et al., 2014; Ferrari and 

Mingazzini, 1995). If the microbial origin of AFOM is to be understood, and the 

application of in situ fluorescence to be fully recognised, then similar exploratory work 

must be undertaken, assessing the contribution of a range of microorganisms, such as 

algae and viruses. Also, without correcting for absorbance or turbidity effects, the data 

output by the fluorescence sensors does not reflect the ‘true’ fluorescence signal 

(Khamis, Bradley and Hannah, 2017; Khamis et al., 2015). The discrete sampling within 
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this study highlights the limitations of this methodology, such as sample collection and 

storage, demonstrating the benefits of in situ sensing over traditional spot samples with 

lengthy and expensive laboratory analysis (Ruhala and Zarnetske, 2017). Nevertheless, 

this study reveals the limitations of current in situ sensing technologies, particularly 

biofouling. 

To improve the application of in situ fluorescence sensing, the development of a new 

generation sensor, V-Lux, is detailed here (chapter 6). This sensor provides corrected (for 

turbidity and absorbance) and standardised fluorescence data, in QSU. By developing 

the corrections the sensor reports the ‘true’ fluorescence signal (Khamis et al., 2015), 

expanding the application of the sensor and enhancing its suitability to a range of 

complex environments. Further to this, the integration of multiple fluorescence channels 

enhances the ability of the V-Lux sensor to identify contamination via thresholds and 

the addition of chlorophyll monitoring allows for the microbial source of Peak T 

fluorescence, algal or bacterial, to be deciphered (Makarewicz et al., 2018). Although 

extensive field trials for the V-Lux are now required, this sensor provides a more cost-

effective and portable alternative to traditional water quality monitoring programs, 

reliant upon discrete sampling, with the potential for improved temporal and spatial 

monitoring resolution. 
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7.2 Conclusions 

The key objectives of this research were three-fold: 

 to assess the application of Peak T fluorescence as a novel biotic water quality 

parameter; 

 to determine bacterial production and processing of AFOM over time;  

 to develop, and validate, a new generation sensor to measure this phenomenon in 

situ. 

 

7.2.1 Peak T fluorescence: a novel water quality parameter 

This research provides the first direct evidence that Peak T fluorescence can be 

engineered by bacteria in situ over short time periods. Monitoring bacterial growth and 

fluorescence, as well as identifying the intracellular nature of Peak T AFOM, has 

highlighted the application of Peak T fluorescence for determining the dynamics of 

microbial activity within aquatic systems. The ubiquitous presence of Peak T within the 

bacterial cultures presented within this study leads to the conclusion that Peak T 

fluorescence can indicate microbial presence and provide a proxy for activity, but cannot 

be utilised for species or community enumeration. 

 

7.2.2 Bacterial engineers: AFOM production 

Secondly, this research introduces the ability of bacteria to produce complex, high 

molecular weight AFOM molecules, previously associated with terrestrial recalcitrant 
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material, within short periods of time. The work here identifies this AFOM as 

extracellular, revealing its importance for transportation of OM throughout the 

hydrological continuum. From the extensive evidence provided here, it can be 

concluded that bacterially-engineered AFOM is important for carbon storage and within 

global biogeochemical cycles. In addition, the monocultures researched here suggest the 

potential for other AFOM peaks to be utilised as biomarkers to identify the presence of 

particular species. 

 

7.2.3 Sensing in situ microbial AFOM: a new generation sensor 

Finally, the work presented demonstrates the application of in situ fluorescence sensing 

for the measuring of variations in Peak T fluorescence as an independent water quality 

parameter for determining microbial activity. The development of a new generation 

sensor facilitates the application of this novel parameter within water quality 

monitoring. The derivation of in-built sensor corrections, using known and novel 

algorithms, provide a sensor that can report the real-time ‘true’ fluorescence signal of an 

aquatic system in situ. This technology platform, alongside the underpinning 

understanding provided by the laboratory model systems developed here, presents a 

novel water quality parameter for determining microbial activity in aquatic systems. 
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7.3 Recommendations for Future Work 

This study has contributed to the knowledge of bacterial production of AFOM, 

providing direct evidence that it is related to metabolic activity. However, this study has 

not identified the specific processes that lead to AFOM production. Further work must 

be undertaken to characterise, in detail, the composition of microbial communities. This 

could be undertaken utilising common molecular techniques, such as 16S rRNA and 18S 

rRNA. Once community composition is better detailed, future work should also explore, 

in depth, the metabolic pathways responsible for the microbial production and 

transformation of AFOM. Introducing molecular techniques to the field of AFOM, to 

assess potential contributing metabolic pathways, would greatly enhance 

understanding of the true origins of microbially derived AFOM. The field of AFOM 

would benefit greatly from the determination of the interactions of metabolic pathways 

and the function of the range of proteins produced, identified within proteomic studies 

that contribute to AFOM. This would allow for a detailed understanding of the origin 

and transformation of organic matter within aquatic environments. This knowledge 

would inform the real contribution of the microbial community to global biogeochemical 

cycling. From this understanding, it may be possible to further our knowledge of 

biogeochemical cycling, with a specific focus on the current ‘black box’, which is often 

used to describe the ecological processes involved. This could have far reaching 

implications on our understanding of local and global systems, as well as to improve our 

modelling outputs for current, future and past climatic predictions. 

From the work undertaken here it is clear that the bacterial community contributes to 

the AFOM, particularly Peak T, within environmental systems. However, the bacterial 
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production of other AFOM, albeit at low fluorescence intensities, has highlighted the 

potential autochthonous source of all AFOM. Further work should be undertaken to look 

at the relative contribution of bacterial and algal AFOM, to fully understand ‘microbial’ 

AFOM origin. To truly use fluorescence to determine ‘microbial’ activity, extensive 

research into different microorganisms must be undertaken, to identify the relative 

contribution to the AFOM signal. This is particularly important when assessing the 

source of an AFOM event; i.e. if an event is to be attributed to a particular source such 

as a eutrophication event or sewage input. Whilst monitoring chlorophyll, as seen within 

the V-Lux design (chapter 6), attempts to assess this, this does not provide quantification 

of the contribution. The use of chlorophyll monitoring may also be misleading, as it may 

indicate the presence of cyanobacteria and/or certain algae. At present, the use of 

chlorophyll indicates only algal presence, and not activity. As such, associating Peak T 

variation with chlorophyll is potentially flawed and incompatible. It is, therefore, 

essential that the algal contribution to AFOM, and the relationship between this and 

chlorophyll, amongst other common algal pigments, is explored in detail. To develop 

this understanding, model systems must be developed to explore the basic algal-AFOM 

interactions, with a focus on time-scales. This must then be expanded into more complex 

systems, and full scale microbial communities. By unpicking and modelling different 

sections of the natural system, the fundamental underpinning knowledge required to 

inform ecosystem-level understanding can be gained. Only then, can the full potential 

of the fluorescence technology be realised and successfully applied within complex real-

world systems. 
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The work here raises questions regarding the extent to which bacterially produced 

AFOM occurs in freshwater systems and the role that any production plays in the 

biogeochemical cycling throughout the hydrological continuum. It is, therefore, also 

important to fully understand how the underpinning knowledge gained in this study is 

applied within the environment. Future work should develop more complex model 

systems to simulate a range of conditions. The importance of residence time, and 

temporal scales, have been discussed here and within the literature. However, the 

impact of varying environmental conditions, and not within stable systems, is less well 

understood. Within the more complex model systems designed, the impact of flow rates, 

hydrological events and pollution events should be addressed, as this could have 

important implications on the suitability of in situ sensing in different environments and 

hydrological systems. It is also essential to understand how nutrient limitations and 

loading impacts the AFOM signal. This is important for understanding the contribution 

of metabolically active communities, particularly regarding potential biological and 

chemical constraints which may limit the fluorescence intensity. It is also important to 

understand that such events may not always result in increased activity, but may alter 

the aquatic conditions such that this has a detrimental impact on the microbial 

community. Thus, the potential impact on AFOM of preferential growth, competition 

and the development of anoxic environments, must also be assessed. 

Within this work, the potential for fluorescence peaks to act as biomarkers for specific 

bacterial species has also been highlighted. Future research could look at the potential 

use of this technique for monitoring bacterial species of interest. Whilst this could be 

undertaken within aquatic environments, the research here has shown that many of the 
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species of interest for drinking water safety are not discernible using fluorescence 

spectra. However, the application of AFOM measurements may be extended outside of 

the water sector, with possible importance within health care and food production. With 

the increased sensitivity and speed of EEM-fluorescence analysis, it may be possible to 

create a database of species spectra, from which pathogenic species may be identifiable. 

Such application has already been considered within healthcare science, to assess the 

cleanliness of surfaces within hospital environments (Dartnell et al., 2013). 

Within this study, the impact of biofouling of in situ sensors has been discussed. 

Although this is a problem throughout in situ environmental monitoring, further work 

must be undertaken to understand the true impact of biofouling on the fluorescence 

signal and determine effective methods for prevention and/or removal. To do this, it may 

be possible to develop biofilm model systems which include in situ sensors within a flow 

chamber system. This could then provide understanding of the time scales of biofilm 

production, as well as the impact this has on sensor signal, in turn, informing the 

potential mitigation and/or corrective measures to be introduced as part of the sensor 

design. Additionally, the application of fluorescence measurements for detection of 

biofilm presence and characterising communities may provide an alternative technology 

within biofilm studies. 

Finally, the newly developed sensor, V-Lux, requires extensive field trials to be 

undertaken across a range of environments and applications. This is essential to test the 

effectiveness of the developments made to both the sensor hardware and software. This 

information will provide the ability to further optimise the sensor for the application 

within a range of different environments, as well as assessing its application within a 
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range of environments. From the field work, the full potential of the sensor can be 

determined, providing further information regarding the use of fluorescence as an 

independent water quality parameter, with the potential of enhancing global water 

management. 
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Aquatic dissolved organic matter (DOM) plays an essential role in biogeochemical cycling and transport
of organic matter throughout the hydrological continuum. To characterise microbially-derived organic
matter (OM) from common environmental microorganisms (Escherichia coli, Bacillus subtilis and Pseu-
domonas aeruginosa), excitation-emission matrix (EEM) fluorescence spectroscopy was employed. This
work shows that bacterial organisms can produce fluorescent organic matter (FOM) in situ and,
furthermore, that the production of FOM differs at a bacterial species level. This production can be
attributed to structural biological compounds, specific functional proteins (e.g. pyoverdine production by
P. aeruginosa), and/or metabolic by-products. Bacterial growth curve data demonstrates that the pro-
duction of FOM is fundamentally related to microbial metabolism. For example, the majority of Peak T
fluorescence (> 75%) is shown to be intracellular in origin, as a result of the building of proteins for
growth and metabolism. This underpins the use of Peak T as a measure of microbial activity, as opposed
to bacterial enumeration as has been previously suggested. This study shows that different bacterial
species produce a range of FOM that has historically been attributed to high molecular weight
allochthonous material or the degradation of terrestrial FOM. We provide definitive evidence that, in fact,
it can be produced by microbes within a model system (autochthonous), providing new insights into the
possible origin of allochthonous and autochthonous organic material present in aquatic systems.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Dissolved organic matter (DOM) in aquatic systems plays an
essential role in global biogeochemical cycling (Bieroza and
Heathwaite, 2016; Hudson et al., 2007). It is generally accepted
that the majority of DOM found in freshwaters is allochthonous,
with a proportion of the DOM considered to be produced in situ, i.e.
autochthonous material (Coble et al., 2014). Fluorescence
excitation-emission matrix (EEM) spectroscopy has been increas-
ingly employed in recent research to characterise aquatic fluores-
cent organic matter (FOM) and fluorescent dissolved organic
d organic matter; EEM, exci-
tter; FDOM, fluorescent dis-
ts; PARAFAC, parallel factor
i; B. subtilis, Bacillus subtilis;

Reynolds).

r Ltd. This is an open access article
matter (FDOM) (Baker, 2005; Bridgeman et al., 2015). The use of
this technique has advanced our understanding of FDOM, its clas-
sification, transformation and potential origin (Hudson et al., 2007;
Stedmon and Bro, 2008).

Aquatic FDOM has been characterised as consisting of humic-
like material considered to be of allochthonous origin of terres-
trial input (Coble et al., 2014). The compounds associated with
terrestrially derived FDOM are known to be stable highermolecular
weight aromatic compounds, generally considered non-labile
(Cooper et al., 2016). However, recent work concerning the ma-
rine environment has suggested that humic-like FDOM could be a
consequence of bacterial metabolism (Guillemette and del Giorgio,
2012; Kramer and Herndl, 2004; Romera-Castillo et al., 2011; Shi-
motori et al., 2012). Recent findings by Kallenbach et al. (2016) have
shown the production of extracellular humic material by bacteria
within soil organic matter. There is no direct evidence that the
production of humic-like FDOM in freshwaters is the result of
bacterial processing. However, Elliott et al. (2006) attributed the
presence of this FOM in laboratory samples to stress as opposed to a
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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function that may inherently occur within aquatic systems. What is
clear from the literature is that a more detailed understanding of
microbial/OM interactions in freshwater systems is needed.

Autochthonous and allochthonous FDOM can be associatedwith
protein-like fluorescence (lex/lem 230e280/330e360 nm) specif-
ically referred to as Peak T, lex/lem 275/340 nm, (tryptophan-like)
and Peak AT, lex/lem 230/305 nm, (tyrosine-like) (Coble et al., 2014).
This protein-like FDOM is attributed and assumed to be ofmicrobial
origin (Cammack et al., 2004; Coble et al., 2014; Hambly et al., 2015;
Smith et al., 2004). Recent literature suggests that Peak T fluores-
cence may act as a surrogate for microbial and bacterial activity
(Baker et al., 2015; Cumberland et al., 2012), as first highlighted by
Hudson et al. (2008). Recent surface freshwater research has also
attempted to use Peak T fluorescence to determine enumeration of
specific species. For example, Baker et al. (2015) observed a log
correlation R ¼ 0.74 across a 7-log range in Escherichia coli
enumeration for sewage impacted rivers. Using Peak T fluorescence
to infer microbial enumeration, and activity, has been further
suggested for groundwater systems, where there is little back-
ground fluorescence interference (Sorensen et al., 2016, 2015).
Sorensen et al. (2015) investigated low levels of microbial
contamination in drinking water supplies, reporting linear corre-
lations, R2 ¼ 0.57 from < 2 to 700 cfu 100 ml�1. Although re-
lationships have been demonstrated for protein-like fluorescence
and the presence of bacteria in freshwater systems, the research
reported thus far does not take into account the implication and
impact of microbial activity at an individual species level.

The study aim was to further our understanding of the role
aquatic microbes play in the production of both protein-like and
humic-like FOM in freshwaters. For this, we focus on the devel-
opment of FOM in a model system using a simplified microbial
community, thus removing the background complexities observed
in environmental samples. Using this approach, we also determine
the intracellular and extracellular fluorescence signatures of com-
mon freshwater bacterial species.

2. Methods

2.1. Bacterial species

Three bacterial species were cultured for analysis; Escherichia
coli (ATCC 10536) was used as its presence in freshwaters can
indicate sewage contamination (Sigee, 2004); Bacillus subtilis (ATCC
6633) was used as it is a ubiquitous soil bacterium (Graumann,
2007) that may be transferred into freshwater systems; and Pseu-
domonas aeruginosa (NCIMB 8295) as it is ubiquitous in freshwater
systems (Elliott et al., 2006; Sigee, 2004).

2.2. Media

A non-fluorescent minimal media was developed to promote
growth within our model system whilst excluding the presence of
proteinaceous material. The basal medium consisted of a final
concentration of 0.2% v/v glucose solution, as the sole carbon
source, and a solution containing a source of phosphate, nitrogen,
sodium and magnesium. The basal medium was adopted from the
ATCC® medium 778 Davis and Mingioli minimal medium (Davis
and Mingioli, 1950), but without the addition of amino acids and
agar. All elements of the basal mediumwere filter sterilised using a
Minisart® 0.2 mm cellulose filter (Sartorius Stedim Biotech, Ger-
many). CaCl2 (final concentration 0.035% v/v) and a trace element
solution (final concentration 0.1% v/v), obtained from Kragelund
and Nybroe (1994), were added to the sterile basal medium prior
to inoculation. These chemicals were sterilised by autoclaving at
121 �C for 15 min.
2.3. Fluorescence measurements

Fluorescence excitation-emission matrices (EEMs) were
collected using an Aqualog® (Horiba Ltd., Japan). Samples were not
filtered prior to fluorescence spectroscopic analysis (except for
bacterial supernatant samples, section 2.6). The scan parameters
employed were; excitation wavelengths from 200 to 500 nm via
1 nm steps, and emission wavelengths of 247.88e829.85 nm in
1.16 nm steps using an integration time of 500 ms. A micro quartz
cuvette (1400 mL) with a 10 mm path-length was used throughout.
Spectra were blank subtracted, corrected for inner filter effects (for
both excitation and emission wavelengths) and first and second
order Rayleigh Scattering masked (±10 nm at lex ¼ lem and
2lex ¼ lem) (Coble et al., 2014; McKnight et al., 2001). Fluorescence
data is reported in quinine sulphate units (QSU), determined from
normalising data to the fluorescence from 1 mg L�1 quinine sulphate
at lex ¼ 347.5 nm and lem ¼ 450 nm (Kramer and Herndl, 2004;
Mostofa et al., 2013; Shimotori et al., 2012, 2009). Instrument
validation was undertaken daily with a quinine sulphate standard
(Starna Cells, USA), with CV being < 3% (n ¼ 5) in all events.

2.4. Fluorescence data analysis

A custom script, written in Python™ (Python Software Foun-
dation), was used to convert the data into QSU and create the EEM
maps. The script crops the data window to lex 240e490 nm, lem
250e550 nm to allow for the analysis of the UV spectra, the area of
interest within FDOMwork. Data lex < 240 nmwas discounted due
to the data quality produced by the Aqualog® caused by the signal
to noise ratio. The custom script was then used to undertake peak
picking for specific fluorescence peaks. Some of the peak picked
data was normalised to the maxima to provide a clear visual rep-
resentation of the fluorescence development over time. The EEM
data was also investigated by employing parallel factor (PARAFAC)
analysis (Stedmon and Bro, 2008) in Solo (Eigenvector Research
Inc., WA, USA) software, in conjunction with the MATLAB® PLS-
Toolbox (Mathworks, USA).

2.5. Bacterial growth curves

Growth curves (n ¼ 9 i.e. nine independent replicates) of each
bacterial species were undertaken by inoculating 150 mL of the
sterile medium (section 2.2) from a fresh overnight plate culture (<
24 h) and incubating the samples at 37 �C, shaking at 150 rpm.
Aliquots were collected every 30 min for fluorescence measure-
ments (section 2.3) and optical density (OD) measurements at
600 nm (WPA Spectrawave S1200, Biochrom, UK); OD, attenuation
determined by absorbance and scattering, is routinely used to
represent the relative increase in cell numbers within a sample
when monitoring bacterial growth (Hall et al., 2014). OD data was
also normalised to the maxima.

2.6. Bacterial culture analysis

Media was inoculated, from a fresh overnight plate culture (<
24 h), with each of the bacterial species and incubated overnight at
37 �C, shaking at 150 rpm throughout. Overnight cultures were
centrifuged at 5000�g for 5 min (Allegra X-30R, Beckman
Coulter™, USA) to form a bacterial pellet. The supernatant was
pipetted off and filtered using a Minisart® 0.2 mm cellulose filter
(Sartorius Stedim Biotech, Germany) to guarantee all cells were
removed. The pellet was resuspended and washed 3 times in 5 mL
of ¼ strength Ringer solution (Oxoid Ltd., UK) to ensure that any
supernatant or media was no longer present. To physically lyse the
cells, a 1 mL aliquot of the resuspended cells was sonicated
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(Ultrasonic Processor XL 2020, Misonix Inc., US) in three 10 s pulses
at a fixed frequency of 20 KHz, not exceeding 40% amplitude, and
kept over ice throughout (Doron, 2009). Physical lysis was under-
taken to ensure no extra chemicals were added to the cells that may
alter the fluorescence properties of the sample (nine independent
replicates). An endospore suspension for B. subtiliswas prepared as
described by Lawrence and Palombo (2009). To check for the
presence of endospores and the removal of vegetative cells, an
endospore stain was conducted using the Schaeffer-Fulton method
(Schaeffer and Fulton, 1933).
Fig. 1. Fluorescence and optical density (OD600nm) data for Escherichia coli growth curve, sh
standard deviation (n ¼ 9); b) optical density and fluorescence data normalised to the max
and d) excitation-emission matrix at 360 min.
3. Results and discussion

Filtering of samples was not performed prior to spectroscopic
analysis to maintain sample integrity (Baker et al., 2007), since the
focus of this study is on in situ bacterial production of FOM in a
model system. Each individual bacterial species exhibited unique
fluorescing signatures. Some FOM, specifically Peak T, was domi-
nant in all samples exhibiting high fluorescence intensities. This
limited the application of PARAFAC analysis, whereby no robust
model, CORCONDIA > 90% (Bro and Kiers, 2003), that adequately
owing: a) optical density and fluorescence (QSU, 1 QSU ¼ 1 mg�1 quinine sulphate) ± 1
imum value ±1 standard deviation (n ¼ 9); c) excitation-emission matrix at time zero;
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explained the dataset could be identified. Subsequently, peak
picking (Asmala et al., 2016), an established method for spectral
analysis, was applied to peaks identified within the EEMs.
3.1. Bacterial growth curves

3.1.1. Escherichia coli
The E. coli growth curve is shown in Fig. 1, whereby Peak T is the

dominant fluorescence peak and is present at time zero, upon
initial addition of the E. coli cells (Dartnell et al., 2013; Sohn et al.,
2009). During the growth curve, the intensity of Peak T increases
in line with the optical density (OD) of the sample (Fig. 1). During
the exponential stage (growth phase after acclimatisation; Hogg,
2005) there is a log increase in the intensity of Peak T fluores-
cence. This, alongside the increase in OD, leads to a significant
strong correlation between Peak T and OD, R2 ¼ 0.9821 (p < 0.001).
This suggests that Peak T fluorescence intensity can be attributed to
an increase in E. coli population size, in accordance with previous
studies (Baker et al., 2015; Cumberland et al., 2012; Dartnell et al.,
2013; Deepa and Ganesh, 2017; Sohn et al., 2009). However, as
tryptophan is an essential amino acid, necessary for protein for-
mation during growth and other metabolic pathways, it will be
produced as a result of cell multiplication andmetabolic processing
(Coble et al., 2014; Hogg, 2005). As such, Peak T fluorescence can
also be attributed to E. coli cell activity.

Fig. 1 shows that Peak C also develops during the exponential
phase of the growth curve, exhibiting a lag in relation to the OD.
The intensity of Peak C continues to increase even during stationary
phase, in which cell deaths are equal to newly formed cells (Elliott
et al., 2006; Hogg, 2005). Nevertheless a positive correlation be-
tween OD and Peak C fluorescence intensity is identified,
R2 ¼ 0.8624 (p < 0.001), supporting the association of Peak C with
bacterial numbers. However, the observed lag in conjunction with
the continued increase in fluorescence intensity during the sta-
tionary phase strongly supports the idea that metabolic activity,
and not bacterial numbers per se, may be the main driver for the
creation and production of Peak C fluorophores. Notably, the
observedmaximum fluorescence intensity of Peak C is a factor of 10
lower than Peak T (Fig. 1a). It can, therefore, be suggested that Peak
C may be derived as a metabolic by-product or a secondary
metabolite produced mainly during the stationary phase (Fig. 1b).
Peak X (Table 1) is only present within the stationary phase, albeit
at comparatively low fluorescence intensities (~ 30 QSU). The mi-
crobial production of Peaks C and X demonstrates the ability of
E. coli to rapidly produce (within 8 h), in situ, FOM associated with
allochthonous high molecular weight FOM.
3.1.2. Bacillus subtilis
Fig. 2 highlights Peak T as the dominant fluorescence peak

within the B. subtilis growth curve. Peak T intensity increases by an
order of magnitude throughout the growth curve, in line with the
Table 1
Identification of the fluorescence peaks, generated via microbial processing, during bact

Named Fluorescence Peak lex/lem (nm) Peak Association

T 280/300e380 Attributed to amino acid (tryptop
C 350/400e480 Common aquatic FDOM associate
AC 250/400e460 Observed alongside Peak C but co

Excites in the UVC region.
Cþ 410/450e500 Typically associated with soils an
M 240/370e430 Originally observed in marine en
AM 300/370e430 Associated with Peak M due to si
X 440/510e550 Previously uncharacterised e like

Nomenclature and association derived from Coble et al. (2014).
increased OD (Fig. 2), demonstrating a strong significant correla-
tion, R2 ¼ 0.9879 (p < 0.005). However, as Peak T fluorescence in-
tensity increases during what appears to be early stationary phase
(Fig. 2), it could be suggested that these fluorophores are produced
bymetabolically active cells. This emphasises the use of Peak Tas an
indicator of microbial activity rather than being attributed to cell
enumeration, despite the significant correlation identified. The
production of Peak T within the stationary phase (Fig. 2) could also
be related to B. subtilis sporulation, demonstrated by the high in-
tensity Peak T fluorescence obtained bacterial endospores analysed
alone (Fig. 3). This suggests that some of the fluorophores attrib-
utable to Peak T fluorescence are related to structural proteins since
endospores are not metabolically active, although this is species
specific.

Within the B. subtilis growth curve, Peak C demonstrates a
sudden rise, at 360 min, prior to OD and Peak T development
(Fig. 2), with a strong positive correlation between Peak C fluo-
rescence intensity and the OD being identified, R2 ¼ 0.9465
(p < 0.005). This further challenges our current understanding of
Peak C being attributed to terrestrial allochthonous material (Coble
et al., 2014). Smith et al. (2004) suggested that the Peak C fluo-
rescence, identified in the presence of Bacillus sp., may be related to
the fluorescence of endospores. However, Fig. 3 demonstrates the
endospore suspension obtained from B. subtilis within our study as
having high Peak T, and low Peak C, fluorescence intensity.

Florescence Peaks M and AM are produced and observed at very
low intensities within the early stationary phase of the growth
curve. A possible explanation of this observation is the result of the
biodegradation of OM responsible for Peak C fluorescence, a pro-
cess that has been noted in the literature (Coble et al., 2014).
Alternatively, this could indicate that Peaks M and AM can be pro-
duced directly, in situ, by bacteria, as has been suggested to occur
within marine environments (Coble, 1996; Shimotori et al., 2009).
3.1.3. Pseudomonas aeruginosa
Peak T is ubiquitous within the P. aeruginosa growth curve

(Fig. 4), increasing by an order of magnitudewithin the exponential
phase. A relatively weaker correlation, R2 ¼ 0.7601 (p < 0.005), is
identified between Peak T and the OD, likely to be caused by the
upregulation of Peak T independent of cell number which can be
seen at 330 min, in the late exponential, early stationary phase
(Fig. 4). Prior to this, the Peak T fluorescence development tracks
the OD (R2 ¼ 0.9674, p < 0.05). One possible explanation for this
sudden increase in Peak T fluorescence intensity is the production
of exotoxin A; exotoxin A is an iron-scavenging enzyme that is
produced by P. aeruginosa upon entry into stationary phase (Lory,
1986; Somerville et al., 1999). Previous studies have shown how
Exotoxin A can be used to determine protein activity, by assessing
tryptophan (Peak T) fluorescence quenching upon binding of
NADþ to the enzyme active site (Beattie and Merrill, 1999, 1996;
Beattie et al., 1996). Therefore, the observed subsequent sudden
erial growth curves and culturing experiments.

han) presence.
d with humic substances.
nsidered to be separate due to varying ratios between the two peaks.

d freshwaters and attributed to terrestrially sourced CDOM.
vironments but now associated with recent microbial activity in aquatic systems.
multaneous occurrence, excites in the UVC region
ly to be a high molecular weight fluorophore



Fig. 2. Fluorescence and optical density (OD600nm) data for Bacillus subtilis growth curve, showing: a) optical density and fluorescence (QSU, 1 QSU ¼ 1 mg�1 quinine sulphate) ± 1
standard deviation (n ¼ 9); b) optical density and fluorescence data normalised to the maximum value ± 1 standard deviation (n ¼ 9); c) excitation-emission matrix at time zero;
and d) excitation-emission matrix at 360 min.
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Fig. 3. Fluorescence excitation-emission matrix of Bacillus subtilis endospores (QSU, 1 QSU ¼ 1 mg�1 quinine sulphate).
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decline in Peak T fluorescence intensity at 450 min may be as a
result of this quenching phenomena (Fig. 4).

P. aeruginosa has the most complex EEM spectra of the species
analysed within this study (Dartnell et al., 2013; Elliott et al., 2006;
Smith et al., 2004), with Peaks T, C and AC all immediately identified
upon inoculation and during the lag phase (a period of acclimati-
sation; Hogg, 2005). The occurrence of Peaks C and AC at inocula-
tion suggests it is likely that this FDOM is intracellular and
produced within the cells during the initial overnight incubation;
likely to be structural or functional proteins produced via microbial
metabolic pathways, or potentially intracellular metabolic by-
products. These peaks increase log-fold throughout the growth
curve, with both Peaks C and AC being correlated with, despite a lag
in relation to, the OD; R2 ¼ 0.7024 (p < 0.005) and R2 ¼ 0.7146
(p < 0.005) respectively. The data indicates upregulation of these
peaks during late exponential phase and stationary phase, sug-
gesting that these peaks are a result of metabolic activity.

Peak Cþ develops rapidly and to a high intensity during the
stationary phase of P. aeruginosa growth (Fig. 4) and this fluorescent
peak is associated with the siderophore pyoverdine (Dartnell et al.,
2013; Wasserman, 1965). Pyoverdine is an extracellular iron-
scavenging metabolite produced by P. aeruginosa and is associ-
ated with microbial virulence (da Silva and de Almeida, 2006). The
fluorescence intensity of this high molecular weight OMwithin the
P. aeruginosa growth curve, suggests that this Peak Cþ fluorescence
could be derived from the building and exporting of pyoverdine.
Peak Cþ has been seen in freshwater environments and is currently
attributed to terrestrial allochthonous OM. However, our work
proves that microbial compounds produced in situ (akin to
autochthonous material) may contribute to this Peak Cþ fluores-
cence. As such, Peak Cþ may act as a biomarker for an active
P. aeruginosa community, although further investigation within
natural environmental systems is required.
3.2. Overnight culturing of bacterial species

From the microbial growth curve data it has been shown that all
the fluorescence peaks identified (Table 1) are microbially
produced in situ, with variations in peak occurrence between bac-
terial species. To further investigate the microbial source and origin
of the OM, overnight cultures of each species were analysed to
determine the presence of FDOM in the supernatant, OM within
resuspended cells and lysed cells (see section 2.6). This provides a
preliminary understanding of where the observed fluorescence is
located post FOM production.

Peak T fluorescence is the only ubiquitous fluorescence peak
common to all bacterial species cultured overnight (Table 2). This
shows that the intensity of Peak T alone cannot be used to deter-
mine bacterial enumeration, especially in systems with complex
microbial communities, but supports its use as a measure of mi-
crobial activity. The highest intensity for Peak T fluorescence is seen
within the resuspended and lysed cells, suggesting that the ma-
jority of this material is intracellular, either as structural or func-
tional biological molecules. This explains the presence of Peak T
upon inoculation and the increase in intensity with cell multipli-
cation (section 3.1). However, the presence of Peak T in the su-
pernatant also indicates that some of this fluorescence signal is
derived from extracellular FDOM, although the amount is species
specific, varying from 5 to 25%. This material is possibly associated
with metabolic by-products or extracellular proteins (many of
which may be functional) that have been exported from the cells.

Peak C fluorescence was observed in both the supernatant and
cell lysis fractions for E. coli and B. subtilis (shown in Table 2).
Within the supernatant fraction, this can be attributed to either (1)
material exported out of the cell (either functional proteins or
metabolic by-products) or (2) cellular debris as a result of cell lysis
during growth (prior to sampling). However, Peak C fluorescence
may also be derived from compounds that fluoresce when not
bound within a cell where the fluorescence signal is quenched or
inhibited. Peak C is present in all elements of the P. aeruginosa
culture, indicating that for this species this FOM is likely to be a
functional protein that can be exported to become extracellular
DOM. Collectively, this data indicates that the fluorophores that
give rise to Peak C fluorescencemay be derived from either cell lysis
(Elliott et al., 2006) or attributed to microbial metabolic by-
products or extracellular proteins (Guillemette and del Giorgio,



Fig. 4. Fluorescence and optical density (OD600nm) data for Pseudomonas aeruginosa growth curve, showing: a) optical density and fluorescence (QSU, 1 QSU ¼ 1 mg�1 quinine
sulphate) ± 1 standard deviation (n ¼ 9); b) optical density and fluorescence data normalised to the maximum value ± 1 standard deviation (n ¼ 9); c) excitation-emission matrix at
time zero; and d) excitation-emission matrix at 360 min.
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Table 2
Identified peaks generated through microbial processing in the different fractions of the overnight cultures.

Escherichia coli Bacillus subtilis Pseudomonas aeruginosaNamed 
fluorescence 

Peak Supernatant Resuspended cells Lysed cells Supernatant Resuspended cells Lysed cells Supernatant Resuspended cells Lysed cells

T * * * * * * * * *

C * * * * * * *

AC * * * *

C+ * * * *

M * * * *

AM *

X * * *

* Indicates presence of fluorescence peak in sample fraction
Shaded regions indicate absence of fluorescence peak in sample fraction.
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2012; Shimotori et al., 2009).
Peak AC is also seen in all fractions of the P. aeruginosa culture

and in the E. coli supernatant. This suggests that this FOMmay be a
function of a particular biological molecule(s) common to both
P. aeruginosa and E. coli. Peak Cþ was also observed in the E. coli
supernatant, but at far lower levels compared to P. aeruginosa. The
high fluorescence intensity of Peak Cþ in all elements of the
P. aeruginosa culture, and the association of this peak with pyo-
verdine (section 3.1), demonstrates the possible intracellular pro-
duction and extracellular output of this FOM. Peak M is also
observed within all fractions of the P. aeruginosa culture, but is only
present in the B. subtilis supernatant. This suggests it may have a
similar species specific function like Peak AC, or be derived via the
biodegradation of Peak C (Coble, 1996; Coble et al., 2014). As the
fluorophores attributed to these peaks (T, C, AC, Cþ and M) can be
exported from cells and are identified in cells, lysed cell material
and supernatant, they are unlikely to represent cellular structural
material. Whilst Peak M is identified in relation to both B. subtilis
and P. aeruginosa, Peak AM is only observed in the supernatant of
P. aeruginosa, although these peaks have been seen to occur
simultaneously in the environment (Coble et al., 2014). Therefore,
Peak AM could be attributed to either species specific proteins or
bacterial metabolic by-products. From this, Peaks M and AM must
be considered separately as they are likely derived from different
fluorophores.

Although noted in previous life science research (Smith et al.,
2004), Peak X (Table 1) has not yet been reported or charac-
terised in aquatic FDOM. However, it is identified at low fluores-
cence intensities in the supernatant for all species analysed within
this study (Table 2). Based on our current understanding of fluo-
rophore structures (Lakowicz, 2006), it is likely that this peak is
derived from high molecular weight compounds (characterised as
humic and fulvic acids), that would usually be attributed to
terrestrial allochthonous material in the environment.
Nevertheless, as it is only seen in the supernatant it is likely to be
secreted from the cells and not related to cellular structure.
3.3. Future work

The protein-like fluorescence region has been the focus for
research investigating microbially-derived, autochthonous dis-
solved organic matter. The data from this study furthers our current
understanding of bacteria-OM interactions and highlights the
importance of metabolic activity and bacterial population growth
for driving the dynamics of microbially produced FOM and FDOM,
albeit within a model system. Furthermore the bacterially derived
FOM, exhibits the same fluorescent features as DOM observed in
natural systems which has previously been attributed as being
allochthonous in origin. This work raises questions regarding the
extent to which bacterially produced FOM occurs in freshwater
systems and the role that any production plays in the biogeo-
chemical cycling throughout the hydrological continuum. Finally,
further work should also explore the metabolic pathways respon-
sible for the microbial production and transformation of FOM and
FDOM, including optical regions that are limited by the instru-
mentation used in this study (e.g. lex 200e240 nm).
4. Conclusions

� Peak T fluorescence correlates strongly with an increasing bac-
terial population, but is dependent on microbial metabolic ac-
tivity. As such, we suggest Peak Tas a proxy formicrobial activity
rather than enumeration.

� This work provides direct evidence that Peak T fluorescence is
ubiquitous within the bacterial cells analysed within this study.
It is mainly identified as intracellular material but also exists as
extracellular FDOM.
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� Peak C is produced in situ during the exponential stage of bac-
terial growth curves, likely to be produced via microbial meta-
bolic pathways during microbial growth, or derived from
metabolic by-products.

� FOM peaks can be partially attributed to microbial metabolic
processing, through the production of biological molecules,
some of which is exported from the cell. These FOM peaks
include regions that are currently associated with allochthonous
high molecular weight compounds, categorised as humic and
fulvic acids.

� FOM production varies between bacterial species, with this
work providing definitive evidence that freshwater FOM can be
produced by microbes in situ. It can therefore be of autochtho-
nous origin, altering and enhancing our understanding
regarding the complexity of environmental OM origin.

� Extracellular organicmatter contributes to FDOM and, as such, is
available as an organic matter source for microorganisms,
playing an essential role in nutrient exchange and global carbon
cycling.
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