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Abstract

Interactions with artificial agents often lack immediacy because agents respond slower than

their users expect. Automatic speech recognisers introduce this delay by analysing a user’s

utterance only after it has been completed. Early, uncertain hypotheses of incremental

speech recognisers can enable artificial agents to respond more timely. However, these

hypotheses may change significantly with each update. Therefore, an already initiated

action may turn into an error and invoke error cost. We investigated whether humans would

use uncertain hypotheses for planning ahead and/or initiating their response. We designed

a Ghost-in-the-Machine study in a bar scenario. A human participant controlled a bartending

robot and perceived the scene only through its recognisers. The results showed that partici-

pants used uncertain hypotheses for selecting the best matching action. This is comparable

to computing the utility of dialogue moves. Participants evaluated the available evidence

and the error cost of their actions prior to initiating them. If the error cost was low, the partici-

pants initiated their response with only suggestive evidence. Otherwise, they waited for

additional, more confident hypotheses if they still had time to do so. If there was time pres-

sure but only little evidence, participants grounded their understanding with echo questions.

These findings contribute to a psychologically plausible policy for human-robot interaction

that enables artificial agents to respond more timely and socially appropriately under

uncertainty.

Introduction

Face-to-face interactions between humans are the model for intuitive and social human-

machine interaction (HMI). Humans respond sensibly and swiftly to their interlocutors’ utter-

ances and establish immediacy in the interaction. This exchange of conversational turns sys-

tematically minimises silence and overlapping talk [1]. The next speaker typically starts

PLOS ONE | https://doi.org/10.1371/journal.pone.0201516 August 1, 2018 1 / 30

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Loth S, Jettka K, Giuliani M, Kopp S, de

Ruiter JP (2018) Confidence in uncertainty: Error

cost and commitment in early speech hypotheses.

PLoS ONE 13(8): e0201516. https://doi.org/

10.1371/journal.pone.0201516

Editor: Cheryl Mary Corcoran, Icahn School of

Medicine at Mount Sinai, UNITED STATES

Received: June 7, 2017

Accepted: July 17, 2018

Published: August 1, 2018

Copyright: © 2018 Loth et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This research/work was funded as part of

the Cluster of Excellence Cognitive Interaction

Technology ‘CITEC’ (EXC 277), Bielefeld University

(http://www.dfg.de). This research was funded by

the European Union’s Seventh Framework

Programme (FP7/2007-2013) under grant

agreement No. 270435 (https://ec.europa.eu/

research/fp7). We acknowledge support for the

Article Processing Charge by the Deutsche

https://doi.org/10.1371/journal.pone.0201516
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201516&domain=pdf&date_stamp=2018-08-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201516&domain=pdf&date_stamp=2018-08-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201516&domain=pdf&date_stamp=2018-08-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201516&domain=pdf&date_stamp=2018-08-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201516&domain=pdf&date_stamp=2018-08-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201516&domain=pdf&date_stamp=2018-08-01
https://doi.org/10.1371/journal.pone.0201516
https://doi.org/10.1371/journal.pone.0201516
http://creativecommons.org/licenses/by/4.0/
http://www.dfg.de
https://ec.europa.eu/research/fp7
https://ec.europa.eu/research/fp7


speaking within a small time window ranging from 250 ms before and after the end of an utter-

ance [2]. A preference for very brief periods of silence was found across cultures [3]. Precisely

timed responses are conventionalised in human interaction. Thus, temporal misalignments

constitute a signal to interlocutors [4], e.g. gaps may signal disagreement [5,6]. In HMI, pro-

longed system response times slow down turn-taking, reduce the agent’s immediacy, cause

annoyance, reduce user motivation [7,8] and users might falsely believe that they made a mis-

take in how they were communicating with the system. Therefore, to be socially competent, an

artificial agent has to respond with precise timing.

Humans achieve timely responses despite the fact that it takes approximately 600 ms for

preparing and initiating the articulation of a single word [9–11]. More complex utterances

require considerably longer [12]. Thus, understanding an utterance and planning a response

occur concurrently for at least 400 ms. This implies that humans understand utterances incre-

mentally [2]. Evidence suggests that they start trying to predict the end of an utterance by as

much as 1250 ms [13]. The effects of incrementality are most apparent in mistakes, e.g. garden

path sentences typically require a re-analysis [14,15]. Correct predictions enable the listener to

estimate their interlocutor’s speech act ahead of time and to prepare a sensible and timely

response [16,17]. But the mapping between utterances and speech acts is highly ambiguous.

Thus, heuristics are required for identifying the intended speech act [4,18]. Both, predicting an

utterance and heuristically estimating the speech act are imperfect processes, introduce uncer-

tainty and might result in costly errors. Humans try to avoid errors with several strategies.

First, humans account for larger parts of a discourse [17,19] and use knowledge about the sce-

nario (e.g., scripts, see [20,21]) when forming predictions rather than relying only on local

information. Secondly, listeners produce so-called grounding signals to communicate their

current understanding of an utterance to the speaker, e.g. they gesture [22] or gaze towards rel-

evant objects [23,24] or objects that will become relevant [25,26]. These grounding signals

enable speakers to adapt their utterances on-the-fly [27]. Thirdly, humans typically initiate

their response after their interlocutors almost completed their utterances [22,28]. This enables

them to compare their predictions to the actual utterance and to adapt their responses if

needed. These mechanisms enable timely responses and reduce the risk of costly errors in

incremental, predictive processing.

From their daily experience of interacting with other humans, users expect that artificial

agents respond swiftly, sensibly and provide relevant grounding signals. But artificial agents

have to rely on automatic speech recognisers (ASR). Recently, ASR performance exceeded

human performance in conversational speech [29] and improved in noisy environments [30].

However, ASRs typically provide a final hypothesis about the speaker’s utterance only after 1.6

s [31] which is outside the +/- 250 ms window in human interaction. Incremental ASRs (ISR)

deliver uncertain hypotheses while utterances unfold, e.g., Kaldi [32,33], Sphinx-4 [34], Google

Voice API and Microsoft Speech Recognition APIs. Thus, they can enable artificial agents to

respond more timely. However, early speech hypotheses are incomplete and uncertain. The

hypotheses’ content may change as more material of the unfolding utterance has been ana-

lysed. In contrast to humans, artificial agents cannot wait for the final and most certain ASR

analysis without sacrificing the temporal advantage of an ISR. For example, a system trained

with inverse re-inforcement learning to detect the end of a turn and initiate a speak or back-

channel action showed an increase in the probability of responding to over 50% after about 1.0

s of silence [35]. However, a pause of 1.0 s is still large compared to a fluent interaction and

does not include the time required by the ASR for recognising a pause. Thus, an artificial agent

has to fully commit and initiate its response based on an early and therefore more uncertain

speech hypothesis.

Error cost and commitment in early speech hypotheses
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Incomplete speech hypotheses have to be projected onto an utterance that is sufficiently

informative for initiating an appropriate response. This has been achieved, e.g., by fitting a

syntactic structure to a hypothesis, disambiguating syntactic ambiguities with knowledge

about the scene and further projecting this onto a collection of fully annotated utterances

[36,37]. This way the system guesses the full utterance and its semantic frame [38–40]. The

early semantic information can be used for producing grounding signals [38,40]. Vice versa,

processing the user’s actions during the artificial agent’s utterance enables the agent to estimate

the user’s understanding [41,42], to adapt its utterance and to explicitly elicit user feedback if

needed [43–45]. These accounts aim for integrating incremental hypotheses into a larger, mul-

timodal model of intention recognition. The AIRBUS model [16,18] integrates multimodal

inputs and prior knowledge with Bayesian updates over the probabilities of a set of intentions.

This identifies the most likely speech act and how this deviates from the model’s prior expecta-

tions at any moment in time. The architecture can be extended to capture the processing

from basic units of computer perception to intentions in hierarchical layers [46,47]. Further

improvements to ISRs were achieved by contextually boosting parts of the vocabulary [48] and

estimating the end of an utterance, e.g., using morae in Japanese [49]. Furthermore, projecting

incomplete onto full utterances magnifies the ISR’s uncertainty and in turn, the risk of a signif-

icant revision that requires re-planning increases. Thus, dialogue managers have to balance

the risk of costly errors with the benefit of more timely responses. In order to explicitly model

uncertainty, dialogue managers shifted from Markov decision processes (MDPs) to partially

observable MDPs (POMDPs, see [50,51] for introduction and [52] for review). These systems

focussed on the uncertainty after the final analysis of an utterance and its corresponding n-

best list of hypotheses in POMDPs [53,54] and recurrent neural nets [55]. However, the large

training sets that are required with these models are often derived from simulated users. This

limits the model’s performance to the quality of the simulation. Gaussian process policy opti-

misation reduces the number of required dialogues by a magnitude to only 10,000s of dia-

logues that are feasible to create with Amazon MTurk [56]. The policy trained with real input

significantly outperforms simulator trained policies [56]. By using domain independent

knowledge such as syntactic and lexical knowledge, Eshgi et al. [57] were able to demonstrate

that as little as 5 dialogues were sufficient for training. Furthermore, their incremental word-

by-word processing improved the quality of the dialogues but the incremental parses were

based on text that did not change or update during the parse.

The abstract ’incremental unit’ (IU) model [58–61] explicitly addresses incremental speech

hypotheses. It maintains a record of each hypothesis but it does not address efficiency and

error cost. The incremental interaction manager [62] immediately performs a response action

if it advances the dialogue. An ongoing action is stopped if an update triggers a more appropri-

ate action. This model does not require tracing hypotheses but it may commit unnecessary

errors. For example, prematurely closing the interaction with the user cannot easily be inter-

rupted or undone. Erroneous closings require the user to start all over again and thus, have

high error cost [63,64] whereas other types of actions that incur lower error cost could be trig-

gered immediately. But there is no clear evidence on quantifying error cost and how it inter-

acts with the users’ expectation on immediacy in the interaction.

The research on human-human interactions showed that humans predict utterances and

actions of others. Humans use these predictions for planning ahead and for producing

grounding signals but often initiate their response only after almost the entire utterance has

unfolded. Thus, there is little evidence for designing a psychologically plausible dialogue man-

ager that uses incremental speech hypotheses for initiating response actions and accounts for

the respective error cost. We therefore investigated whether humans use incremental speech

Error cost and commitment in early speech hypotheses
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hypotheses for grounding, planning ahead or for immediately performing actions, and sum-

marised the results in an abstract interaction policy.

Ghost-in-the-Machine study

We conducted a real-time Ghost-in-the-Machine study (GiM, see [65,66]). The participants

controlled a bartending robot that accepted orders from its customers and served the corre-

sponding drinks. In contrast to typical Wizard-of-Oz studies, see [67] for review, the partici-

pants cannot observe the scene through a video or audio link but have to rely on preprocessed

sensor data including the ISR speech hypotheses. That means that the main participants in our

study (ghosts) observed their bar customers through the robot’s eyes and ears and responded

to them by selecting actions from the robot’s repertoire. In this study, we focus on their use

of incremental speech hypotheses. These were real ISR hypotheses including mistakes induced

by the customers (e.g., slips of the tongue) and any recognition mistakes, uncertainties and

updates by the ISR.

The ghosts were familiarised with the interfaces of this GiM study. They were explained

that the ISR hypotheses were real and subject to uncertainties and errors. But they were not

instructed how they should interact with their customers. Thus, their actions approximate

how they would use speech hypotheses themselves and by extension, how they expect others to

use them. We hypothesised that the ghosts would rely on the early hypotheses for planning a

response but not necessarily for initiating it. Furthermore, the evidence from human-human

interaction suggests that mechanisms in interaction including turn-taking (i.e., timely

responses) obey the same timing constraints independently from the potential error cost asso-

ciated with a particular response.

We refer to the main participants controlling the robot as ghosts and to the confederates

placing the orders as customers.

Methods and materials

Conditions. In order to test whether the ghosts used early, uncertain speech hypotheses,

we designed a certain and an uncertain condition. The certain condition reflected typical dia-

logue managers or action planners where all data with a confidence level exceeding a threshold

are treated as ground truth whereas other data are discarded. Thus, the ghosts were presented

only final hypotheses that were displayed with the maximum confidence level. In the uncertain
condition all available data together with their true confidence level were presented, i.e. the

ghosts had access to faster and additional information. A dialogue manager would have to

integrate the confidence levels and the content of the hypotheses. By comparing the response

times (RT) in certain and uncertain trials, we studied how the presence of the additional early

but uncertain speech hypotheses affected the ghost’s behaviour.

Scenario and materials. A typical bar scene involves multiple customers. The bartending

robot has to accept drink orders and subsequently serve the ordered drinks to its customers. In

addition, the robot has to recognise its customers’ social signals (e.g., the intention to order)

and respond intuitively and socially appropriately. We derived six simple drink order scripts

from previously recorded empirical data [68]. We selected two examples for each: a) one con-

federate ordered a drink and the second confederate was a bystander, b) both confederates

ordered their drinks individually, and c) one confederate ordered both drinks (group order).

In addition to the drink orders, some trials included questions about the menu. In these trials,

a customer asked which drinks or whether a particular drink was available prior to placing

their order. In order to answer the questions, the ghosts would respond verbally, e.g. by enu-

merating the menu consisting of three drinks. The drink orders required the physical serving

Error cost and commitment in early speech hypotheses
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of a drink. Due to technical limitations, this action could not be interrupted and the drink

could not be retracted. Thus, an erroneous serving was associated with high error cost. In con-

trast, customers approaching the robotic bartender might not be familiar with its drinks

menu. In this case, listing the menu was appropriate even if the customers did not ask for it. So

the error cost was considerably higher for an erroneous drink serving than for an unsolicited

enumeration of the drinks menu.

In a typical trial, the ghosts observed how the customers entered the area covered by the

sensors and approached the bar. The ghosts initiated an interaction, the customers asked their

question and placed their order(s), the robot served the drink(s), the interaction was closed

and the customers left the scene with their drinks. All scripts are listed in S1 File.

In our study, the same two confederates acted as customers throughout the experiment.

They staged scripted drink order scenarios for the robot (and by implication, for the ghosts

controlling the robot). This procedure served to minimise user specific variation of the recog-

nisers, especially the ISR. The assignment of the roles (bystander, group member, placing an

order) and the choice of drinks (water, juice, coke) were counterbalanced between the

confederates.

Participants. Seventeen participants (4 female, 13 male, age range 21–39, M = 28.5,

Mdn = 27) were recruited out of the employees of fortiss GmbH in Munich, Germany (all with

a background in IT or engineering). The participants were not familiar with the purpose of the

study. They received 5 € and a chocolate bar in exchange for their time and effort.

The study was conducted by scientists of Bielefeld University, Germany. Its procedures

were approved by Bielefeld University’s Ethics Committee (EUB) under approval №4807. An

informed written consent was collected prior to the experiment.

Apparatus. The participants were seated at a desk with two typical office screens (52 cm

by 32 cm, 1920 by 1200 pixel), mouse and keyboard in a room separating them from the bar-

tending robot. The first screen was positioned straight in front of the participants at a viewing

distance of approximately 70 cm. It displayed the recogniser data. The participant’s eye gaze

on this screen was recorded using a 60 Hz remote eye tracker [69] positioned below the centre

of the screen. Data were recorded on the local computer at 60 Hz. Infrared illuminator pods

were positioned on top of the screen, below the screen and in the central position between the

cameras. Switching between the pre-installed pods speeded the process of finding a suitable

illumination and tracking mode for each participant. The eye tracker could be calibrated to all

participants satisfactorily for the purpose of this study.

The robot’s control interface was presented on the second screen which was positioned to

the left hand side of the participants and outside of the eye tracker’s range. If the ghosts wished

to control the robot, they had to turn left and away from the screen in front of them. Thus,

even with a relatively coarse tracking precision, we were still able to reliably determine when

the participants switched to the control panel and which recogniser data had been visually

attended. The participants were shielded from distractions by portable blank screens around

the desk and passive sound insulating headphones. An experimenter checked the functioning

of the eye tracker through a tablet computer connected via WiFi. This experimenter stayed in

the room in order to adjust the eye tracker if needed. It was obvious to the participants that

they were not monitored directly or through the tablet. The setup is shown in Fig 1.

Robot and sensors. The robot (Fig 2) consisted of a Meka torso, right arm and hand and

an iPad with a comic style representation of eyes and mouth implemented in HTML5. It

served the drinks to the customers and a text-to-speech programme voiced the ghosts’ utter-

ances. The ghosts’ commands were also shown in plain text on the tablet computer next to the

face. This provided an additional channel for the customers, e.g. if the text-to-speech was dis-

torted due to typos.

Error cost and commitment in early speech hypotheses
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The customers were tracked by a Microsoft Kinect unit. We implemented a tracking mod-

ule that provided updates about the customers’ visibility, distance to the bar and their torso

orientation based on the Kinect’s skeleton data. We implemented a speech recognition module

that used the Microsoft speech recognition and implemented a Speech Recognition Grammar

Specification (SRGS) containing only sentences related to the bar scenario. This included

greetings, drink orders, clarifications, and sentences to conclude the interaction. The Kinect,

the robot and the ghost’s interface were connected through a middleware at 20 Hz.

Ghost-in-the-Machine interface. The ghosts’ interface was a dedicated JAVA application

that managed the flow of information to and from the middleware. It consisted of an informa-

tion panel that showed the incoming recogniser data (Fig 3). This was displayed on the screen

with the eye tracker straight in front of the ghosts. The screen on the left hand side displayed

the control panel (Fig 4). Any selected robot actions were executed immediately. The remain-

ing area on either screen was covered by a plain single coloured background. In contrast to

previous off-line GiM studies [65,66], this design enabled the ghosts to engage directly with

their customers and observe how they responded to their actions.

Information panel. The information panel was divided into two larger sections. In order

to facilitate the ghosts’ real-time understanding, the upper part was limited to the most rele-

vant information from computer vision [66]: the customers’ visibility, distance and body ori-

entation. In the uncertain condition, the progress bar for the customer’s visibility reflected the

system’s confidence of having detected a person in the tracking area whereas in the certain
condition the bar was either empty or full. The other progress bar indicating whether a cus-

tomer is at the bar. It linearly mapped the customer’s distance between 0.8 and 0.3 m in the

uncertain condition and a threshold of 0.6 m was used in the certain condition for switching

between empty and full. The arrow indicator for the body orientation was not affected by the

condition. The lower section of the information panel was dedicated to the ISR hypotheses.

Up to four hypotheses were displayed with their content as plain text and a progress bar

Fig 1. Setting of the study. The setting for the ghost participants including the information panel, eye tracker, control panel and eye tracker control

screen. The participant wears passive noise insulating headphones.

https://doi.org/10.1371/journal.pone.0201516.g001
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indicating the ISR’s confidence. In addition, the utterance’s source direction as measured by

the Kinect’s microphone array was depicted by a speaker symbol on a slider bar and indicated

whether customer 1 or 2 had spoken. In the certain condition, only final hypotheses were dis-

played and the progress bar was always set to full. In the uncertain condition, all hypotheses

were presented with their true confidence value.

Time morphing. We presented the ISR data visually because an ergonomical and accurate

auditory presentation of incrementally growing content and hypotheses that differ only in

their confidence level is (almost) impossible. Due to smoothing and other post-processing

ASRs are slow in producing hypotheses compared to a human listener. However, the ISR pro-

duces hypotheses faster than humans can read and understand them. Visually understanding

the presented speech hypotheses requires explicitly combining their spatial origin, certainty

and content whereas these data are inherently combined when listening to an utterance. If the

Fig 2. Bartending robot. The robot is shown at its bar about to grab a bottle of water for serving.

https://doi.org/10.1371/journal.pone.0201516.g002
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time span between two hypotheses is too short, we cannot distinguish whether the ghosts a)

attended a fast stream of incoming information but could not process it, b) perceived the

information as still unreliable and waited for more/better data, or c) wished to act but new

information appeared and distracted them from doing so. Thus, in order to ensure that we can

interpret our results, we extended the time span between hypotheses to a minimum of 1500

ms (see S1 and S2 Videos for comparison).

Displaying hypotheses was managed by entering all new hypotheses into a queue that main-

tained their temporal order. The next hypothesis in the queue was displayed whenever the

most recent hypothesis has been displayed for at least 1500 ms. Up to four hypotheses were

presented in descending order of their confidence level. Since later hypotheses tended to be

more confident, they typically entered the display at the top position. If the content and direc-

tion of a new hypothesis matched with an already displayed item, the confidence level was

updated. Some hypotheses entered the temporal queue but were never displayed because their

confidence was too low. Old speech hypotheses were removed from the display or the queue

after 4000 ms and the next hypothesis was displayed. The display in the certain condition was

rarely affected by time morphing because each utterance was typically associated with one

final hypothesis. The time morphing allowed the ghosts sufficient time for reading the hypoth-

eses but it also slowed the speech recognition process, especially in the uncertain condition.

For this reason the customers could have perceived the ghosts’ responses as very slow. In order

to mitigate this, the customers had an additional display of their own ISR hypotheses and were

Fig 3. Information panel for the ghosts. The panel covered the entire computer screen in front of the participants. Translations are provided in blue

and were not part of the experimental design.

https://doi.org/10.1371/journal.pone.0201516.g003
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instructed to wait patiently. None of the ghosts commented on the speed of the ISR nor did

they appear to notice our manipulation.

Control panel. The control panel (Fig 4) was arranged in three groups: serving, gazing

and speaking. Serving a drink was achieved by dragging the respective bottle onto the custom-

er’s serving zone and dropping it. The ghosts shifted the slider bar to either side for gazing at

the respective customer or returned it to its neutral position. The slider remained at its posi-

tion until the ghost changed it or the interface was reset at the end of a trial. The area below

was dedicated to speech and included clickable pre-worded utterances. Below the buttons, the

ghosts could type into a free text field for triggering an individual utterance. All actions were

forwarded to the middleware and executed immediately. The ghosts could combine actions

into a complex response by clicking several actions, e.g. by selecting a gaze direction and a

speech utterance. However, the interface hindered the ghosts from selecting actions that could

not be performed simultaneously, e.g. saying two things at once. This was achieved by locking

buttons group-wise for as long as an action was ongoing, e.g. all speech related buttons were

locked for as long as the robot was speaking. The ghosts were asked to press the Complete-but-

ton if they felt they had served their customers and were ready for the next interaction. They

were warned that pressing this button too early would abruptly terminate an ongoing

interaction.

Procedure. The participants (ghosts) were welcomed to the experiment, introduced to the

bartending robot, the bar and the available drinks (coke, water and juice). They were shown

Fig 4. Control panel for the ghosts. The panel was shown in the upper left corner of the screen. The remaining screen was light grey matching the

panel’s background colour. Translations are provided in blue and were not part of the experimental design.

https://doi.org/10.1371/journal.pone.0201516.g004
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the office where the experiment was conducted, the equipment and their task. After introduc-

ing the setting, the participants were asked to provide their written consent. If they agreed to

partake in the study, they attended a presentation, introducing in detail the experiment, their

task and how to use the interface. It emphasised that the sensor data were real and possibly

unreliable. The eye tracker was calibrated for the screen in front of the participants.

Each trial started with a message on the ghost’s screen indicating that the robot was waiting

for new customers. The confederates were presented the script of the trial on their interface at

a position outside the robotic sensors’ scope. They started the trial through a wireless key-

board. This cleared the message on the ghost’s display. The customers placed their orders

according to the script, took their drinks and returned to their start position. The trial ended

as soon as the ghost clicked the Complete-button. This triggered the message that the robot

was waiting for new customers and informed the confederates about the next trial. In case of

any problems, the experimenter in the room and the confederates communicated through an

online chat and tried to rectify them.

The experimental session started with two practice trials in fixed order that were excluded

from further analyses. In the first practice trial, a single customer approached the robot and

ordered a single drink in the certain condition. In the second trial, two customers approached

the robot and one of them ordered a drink in the uncertain condition. After the practice trials,

the ghosts were asked whether they felt confident with the task and whether anything in the

display was unclear to them. In addition, the customers pointed out any problems through the

chat connection. After the ghosts’ questions had been answered to their satisfaction, the twelve

experimental trials were presented in system generated random order.

The introduction and calibration required about 20 min. The experimental session took

about 25 to 30 min to complete so participants were scheduled for one hour sessions.

Results

One participant was excluded from further analysis because the link between robot and control

interface had broken down. We report data of 16 participants who completed 192 trials

(excluding practice trials). The numbers of ordered, served and the trial-wise correctly served

drinks are summarised in Table 1. The majority of drinks were served correctly indicating that

the ghosts and their customers were able to establish a credible, successful dialogue. However,

incorrectly identified speech utterances and whether the ghosts attended the information

influenced the results, e.g. whether a group order was identified as one combined or two indi-

vidual orders. In order to mitigate these effects, we adapted our analysis according to the data

that were available to the ghosts. For example, if a customer ordered a juice but the ISR recog-

nised two waters, we treated this as an order of two waters. If the ghost served the two waters,

Table 1. Number of scripted drink orders, drink orders detected by the sensors and number of correctly served drinks.

Type of order Condition Number of scripted orders Number of detected orders Number of correctly served orders Ratio of correctly served orders

Individual order Certain 96 124 115 93%

Uncertain 96 133 99 74%

Group orders Certain 32 19 18 95%

Uncertain 32 20 14 70%

Total number of

drinks

Certain 160 162 151 93%

Uncertain 160 173 127 73%

A trial was scored as correct if the customers’ requests were served according to recogniser data. Only those drinks that were served in correct trials contributed to the

number of correctly served drinks. Please note that a group order comprised of two drinks, thus 32 group orders contribute 64 drinks.

https://doi.org/10.1371/journal.pone.0201516.t001
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this drink order was scored as correctly served. Thus, we analysed how the ghosts responded

to the speech hypotheses that they actually received from the ISR. It is important to note that

we measured the actions of the participant with regard to the speech hypotheses and how they

mitigated uncertainty rather than the quality of the ISR/ASR. The hypotheses could still update

during the presentation and the ghosts could still make mistakes, e.g. by selecting the wrong

drink compared to information that was available to them (see Table 1). Consequently, the

served drinks differed from the scripted dialogues. In particular, the number of group orders

was smaller than scheduled. The customers were aware of technical mishaps through their

information screen.

Acknowledging new customers

In order to start an interaction, the ghosts had to identify new customers from the sensor data

and communicate to them that they were ready to take their drink orders. We identified when

the ghosts turned towards the control panel in order to select appropriate actions using the eye

tracker data. The respective states of the indicators on the information panel are summarised

in Table 2. For comparing the certain and uncertain condition, we summarised the continuous

data in the uncertain condition into categories. The customers’ visibility and distance to the

bar were categorised into false (no indication on display), true (at the bar) and approaching

(intermediate state). The customers’ torso orientation was presented as an arrow in both con-

ditions. However, if the sensor detected their torso orientation, the customers were more or

less looking towards the bar. Thus, we summarised the data as customers looking towards the

bar (true) if the sensor was able to determine their torso orientation and as false otherwise. In

the vast majority of cases, the ghosts acknowledged new customers if they were visible, at the

bar, and faced the bar. The ghosts did not wait for a verbal utterance from their customers.

The first action that the ghosts selected for the acknowledegement are summarised in Table 3.

Table 2. States of the indicators when the ghosts acknowledged new customers.

Indicator State Certain Uncertain

Number Percent Number Percent

Customer visible True 95 99% 96 100%

False 1 1% 0 0%

Customer at bar True 92 96% 89 93%

Approaching 0 0% 7 7%

False 4 4% 0 0%

Customer facing the bar True 93 97% 95 99%

False 3 3% 1 1%

Customer saying something True 8 8% 33 34%

False 88 92% 63 66%

https://doi.org/10.1371/journal.pone.0201516.t002

Table 3. First action that the ghosts selected for acknowledging their new customers.

Selected action Certain Uncertain

Number Percent Number Percent

Looking at customer 76 79% 70 73%

Verbal greeting 18 19% 22 23%

Other verbal utterance 1 1% 2 2%

No action 1 1% 2 2%

In ‘No action’ trials, the ghosts waited for the customers to place an order before initiating any action.

https://doi.org/10.1371/journal.pone.0201516.t003
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Speech hypotheses

The response times (RT) were analysed only if the ghosts served the drinks correctly because

an erroneous serving affected the time course of the entire trial. Out of 192 trials, we analysed

the RTs of the 168 correctly served trials. We excluded three actions from the analysis that

were correct but performed with very fast (26 and 105 ms) or extremely slow (210 s) RT after

the first informative hypothesis. A total of 304 actions including drink servings and responses

to questions about the menu were analysed.

In order to measure whether the ghosts used the early ISR hypotheses, their RT was mea-

sured from the onset of a hypothesis on the display until they shifted away towards the control

panel. The time span approximates the time required for reading and understanding the

hypotheses and for deciding whether to initiate a response action or whether to wait for more

or better data. In addition to making that decision, the content of the hypotheses had to be

memorised because re-reading them required the ghosts to turn back to the panel. Other mea-

sures would have included additional biases, e.g. the time until a click was performed includes

biases from locating and positioning the mouse cursor on the control panel. In contrast, we

relied on a shift of overt attention. The RTs were measured both from the onset of the first

(RTfirst) and last (RTlast) informative hypothesis. The first hypothesis (RTfirst) was defined as

the first hypothesis that included sufficient information in order to respond correctly to the

customer’s request. The most recent hypothesis that the ghosts attended before turning away

was defined as the last hypothesis (RTlast). In the certain condition, both metrics are often

equal because only final hypotheses had been presented. However, in some cases the ISR

marked two hypotheses as final. Also, if a ghost did not respond in the first instance, the cus-

tomers repeated their utterance. In order to mitigate effects of individual differences in RT, a

participant-wise z-score was computed and analysed (see Table 4).

We used the statistical analysis program JASP [70]. We report the Bayes Factors from the

respective ANOVAs and t-tests [71,72] that were obtained with a scale parameter of 1ffiffi
2
p for the

Cauchy distribution serving as prior for the effect size [72]. In contrast to standard, frequentist

statistical tests, Bayesian statistics also evaluates the amount of relative evidence in favour of

Table 4. Summary of the number of cases, response times (RT), the corresponding z-scores (z-RT), the number of hypotheses and their confidence levels as a func-

tion of the type of request and the condition.

Individual orders Group orders Questions about menu

Certain Uncertain Certain Uncertain Certain Uncertain
Number of cases 115 98 17 14 28 32

M of RTfirst in ms 8249 8501 10992 20970 4909 5573

SD of RTfirst in ms 6561 6923 6677 20637 2821 6173

M of z-RTfirst in ms 0.00 0.06 0.41 1.32 -0.56 -0.49

SD of z-RTfirst in ms 0.91 0.93 0.64 1.63 0.42 0.81

M of RTlast in ms 6191 3041 9423 5473 4838 3433

SD of RTlast in ms 3493 3049 3369 5573 2835 2576

M of z-RTlast in ms 0.36 -0.52 1.38 0.03 -0.03 -0.41

SD of z-RTlast in ms 0.85 0.81 0.93 1.30 0.77 0.63

M of # of hypotheses 1.17 3.38 1.12 5.36 1.04 1.84

SD of # of hypotheses 0.46 1.46 0.49 3.32 0.19 0.95

M of confidence level 100 73 100 74 100 61

SD of confidence level 20 15 27

Only correct trials contributed to the measures. An individual order, a group order and a question were excluded for extremely fast/slow RT.

https://doi.org/10.1371/journal.pone.0201516.t004
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the null hypothesis. In addition, we used mixed model analyses [73,74] as implemented in the

lme4 package [75] of R. The denominator degrees of freedom and p-values were estimated

with the Kenward-Roger approximation in the lmerTest [76] and pbkrtest packages [77]. We

considered an effect to be statistically significant if both statistical methods agreed. The effect

size of the equivalent F-test [78] or t-test [78] was computed with G�Power [79].

The mixed model analysed the type of request (individual order/group order/question about
menu) with a Helmert contrast testing whether individual orders differed from group orders

and whether the drink orders in general differed from questions about the menu. The condi-

tion (certain/uncertain) entered this analysis as a nested factor under the type of request. In the

Bayesian analysis, the type of request and the condition entered as two main factors and their

interaction (means were aggregated for the Bayesian t-test). In some analyses, the discrepancy

between the frequentist p-value and the Bayes factor [80] was large and in the unexpected

direction, i.e., the BayesFactor appears as a more lenient. This was attributed to a) the nested

factor in the mixed model resulted in less balanced group sizes compared to the main effects in

the Bayesian analysis, and b) under these circumstances, the Kenward-Roger approximation

for p-values is more conservative than a standard ANOVA whose p-values are lower but prob-

ably underestimated [81,82]. The trials were scripted in pairs of a certain and a matched uncer-
tain trial. However, due to errors and exclusions, the data set did not reflect the pairwise

design. Thus, the certain and uncertain trials were analysed as independent samples.

Measured from the first hypothesis, there was a statistically significant effect of the type of

request on z-RTfirst [F(2,53.276) = 3.514, p = .037, f = 0.16, BF10 = 590.8]. The BF indicated that

group orders required more time than individual orders [BF10 = 25.32] but the mixed model

did not [t(24.13) = 1.149, p = .262, d = 0.22]. There was an unequivocal indication that the

ghosts responded statistically significantly faster to questions than to drink orders [t(63.70) =

2.555, p = .013, d = 0.37, BF10 = 340848]. There was no statistically significant effect of the con-

dition (certain/uncertain) on z-RTfirst [F(3,26.175) = 0.626, p = .605, f = 0.08]. The Bayesian

analysis revealed evidence against a main effect of the condition [BF10 = 0.313] and its interac-

tion with the type of analysis [BF10 = 0.222].

There was a main effect of the type of request on the RT from the onset of the last hypothe-

sis z-RTlast [F(2,34.37) = 13.453, p<.001, f = 0.30] in the mixed model analysis but not in the

BF [BF10 = 2.591]. The contrasts showed that individual orders required statistically signifi-

cantly shorter z-RTlast than group orders [t(19.67) = 4.437, p<.001, d = 0.86, BF10 = 193.8].

The mixed model indicated that questions were responded to faster than orders [t(44.71) =

4.378, p<.001, d = 0.63] but the BF did not provide clear evidence [BF10 = 1.606]. There was a

statistically significant effect of the nested factor condition (certain/uncertain) on z-RTlast

[F(1,19.62) = 21.336, p<.001, f = 0.46]. The BF indicated the corresponding main effect on z-
RTlast [BF10 = 14.705] and interaction of the condition and the type of request [BF10 = 3.558].

The effect of the condition was tested for each type of request and revealed that z-RTlast in the

uncertain condition were statistically significantly faster compared to the certain condition in

individual orders [t(11.10) = 6.711, p<.001, d = 0.93, BF10 = 4.612e+6] and in group orders

[t(35.18) = 4.330, p<.001, d = 1.62, BF10 = 5.246]. In contrast to orders, there was no such an

effect in questions about the menu [t(32.17) = 1.511, p = .141, d = 0.39, BF10 = 1.829].

For further insights into how the ISR speech hypotheses were used, we analysed the uncer-
tain trials with regard to the number of hypotheses and their confidence level. The type of

request was analysed as above using a Helmert contrast in the mixed model. This showed a sta-

tistically significant effect on the number of required hypotheses [F(2,84.46) = 14.946, p<.001,

f = 0.47]. The BF supported the corresponding main effect [BF10 = 14113]. Individual orders

required statistically significantly fewer hypotheses than group orders in the mixed model

[t(59.55) = 3.532, p<0.001, d = 1.02] but not with a Bayesian t-test [BF10 = 2.796]. Questions
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required statistically significantly fewer hypotheses than orders [t(87.86) = 5.459, p<.001,

d = 1.10, BF10 = 934930]. The type of request had a statistically significant main effect on the

confidence level of the last attended hypothesis [F(2,45.94) = 3.523, p = .038, f = 0.23, BF10 =

6.270]. There was no statistically significant difference between individual orders and group

orders [t(35.12) = 0.015, p = .988, BF10 = 0.376] and there was no unequivocally conclusive evi-

dence for such a difference between orders and questions [t(41.77) = 2.283, p = .028, d = 0.46,

BF10 = 1.694].

Fluency of the interaction

In order to estimate the fluency of the interaction, we analysed the time from the first visible

customer action until the first drink had been served in each trial (see Table 5). In individual

orders, we have to distinguish between drink orders that were preceded by a question and

those that were not. The condition (certain/uncertain) and whether a question preceded plac-

ing the order entered the model as variables. There was a main effect of whether there was a

question about the menu on the participantwise z-scores of serving time [F(1,44.12) = 14.810,

p<.001, f = 0.34, BF10 = 330.5] indicating that the initial question prolonged the interaction

duration. There was no main effect of the condition [F(1,7.709) = 1.644, p = .237, BF10 =

2.587]. The interaction of both factors was statistically significant [F(1,44.62) = 6.338, p = .015,

f = 0.22, BF10 = 10.37]. This analysis indicated serving times were shorter in the uncertain com-

pared to the certain condition if a question preceded the drink order. The group orders were

not tested with respect to questions because only one group order was preceded by a question.

This and another group order that was preceded by an individual order were excluded from

this analysis. In the remaining 29 group orders, there was no effect of the condition on the z-
scores of serving time [F(1,0.901) = 0.531, p = .610, BF10 = 0.828].

Discussion

All ghost participants reported that they enjoyed taking part in the study. They were immersed

in the setting and were highly engaged in the task. This allowed us to investigate spontaneous

decisions regarding social behaviour in a service encounter. In order to develop a cognitively

plausible interaction policy, we had to assume that humans expect other humans and artificial

agents to behave like they themselves would. This is supported by the fact that typical mistakes

in human-human communication can be attributed to so-called “egocentric” assumptions of

the interlocutors [83], i.e. humans draw conclusions about the knowledge and understanding

of others based on their own experience. Speakers failed to systematically use syntactic struc-

tures that are unambiguous to their listeners [84,85] and listeners systematically misinter-

preted utterances with an egocentric bias [86]. Participants also used their own strategy for

Table 5. Number of cases, serving time (RT), their participant-wise z-scores and the corresponding standard deviations from the first appearance of the customers

until the first drink in the trial was served as a function of the type of request, preceding menu related questions and condition (certain/uncertain).

Individual orders Group orders

Preceding question No question No question

Certain Uncertain Certain Uncertain Certain Uncertain
Number of cases 31 17 43 44 16 13

RT in ms 61169 43262 29911 29220 30504 46130

SD in ms 56001 24214 24754 8185 11605 26848

z-RT 0.72 0.14 -0.39 -0.27 -0.19 0.52

SD of z-RT 1.17 0.95 0.81 0.44 0.66 1.30

https://doi.org/10.1371/journal.pone.0201516.t005
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predicting the actions of others in social decision making, e.g., the prisoner’s dilemma or the

give-some game [87–89]. The Bayesian rationale for this is that one’s own behaviour is a rea-

sonable starting point for forming expectations [90]. In fact, one’s own behaviour is the only

available data in anonymous one-shot social decisions [91]. The bar scenario is a brief, goal

oriented social interaction whose participants typically do not know each other but they share

prior knowledge about the situation. Thus, they would likely use their own behaviour for

forming expectations about others in the same situation [88,92]. Assuming that others behave

like yourself causes misunderstandings if the egocentric assumptions about others do not hold,

e.g., if the speaker’s and the listener’s egocentric models differ [83]. We still suggest to model

an artificial agent according to the participants’ (ghosts) own behavioural preferences. In this

way, the artificial agent is similar to humans as it operates on egocentric assumptions. Thus, it

could either produce the expected behaviour or commit a typically human mistake. However,

whether the behavioural preferences of humans (e.g., as ghosts in the machine) are equal to

their expectations on the behaviour of artificial agents remains an important question for fur-

ther research.

Ecological validity

The study was designed as similar as possible to a real human-robot interaction at the bar.

The ghosts perceived their human customers through real robot sensors and responded with

robot actions. They also experienced the time pressure of a real-time interaction with their cus-

tomers. The experiments were resource intensive and thus, conducted with a small number of

participants. However, they provided insights into the socially appropriate strategies for miti-

gating slow sensors, uncertainty and short response times.

The ecological validity was evaluated by comparing when the ghosts identified and how

they addressed new customers in this study to previous findings. In real-life recordings of bars

and in lab experiments [68] as well as in offline GiM studies [65,66], new customers were iden-

tified if they were close to the bar and looked towards the bar or bartender. Real bartenders

and lab participants preferred to initiate a verbal interaction before their customers said some-

thing. We obtained very similar results with only one deviation, see Table 2. In about of the

interactions in the uncertain condition, the ghosts acknowledged their new customers after

they said something. We attributed this to the faster pace of displaying early, uncertain speech

hypotheses in the uncertain condition compared to the final hypotheses in the certain condi-

tion. Thus, the same RT could have preceded utterances in certain but succeeded them in

uncertain trials. Also, accidental sounds from the environment may have triggered early speech

hypotheses that were displayed in uncertain but not in certain trials. This can account for the

small deviation from previous findings. Furthermore, we compared the type of action that the

ghosts selected for acknowledging new customers to previous results. In this study, the ghosts

looked at the new customers or greeted them verbally (Table 3) reflecting earlier results

[66,68] in type and frequency of the selected actions. We concluded that the real-time GiM

interface allowed the ghosts to interact with their customers socially appropriately. Thus, the

collected data enable us to derive a cognitively plausible policy for using early, uncertain

speech hypotheses in short social interactions with artificial agents.

Use of speech hypotheses

The customers’ speech was the most important modality once the interaction had been initi-

ated, [66]. The display of the speech hypotheses received the largest share of relative dwell time

in this study (Table 6). Thus, responding to the users’ speech is highly important in service

interaction with artificial agents. However, current ASRs require more time for fully analysing
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an utterance [31] than humans expect in conversation [2,5,6]. In order to use early ISR hypoth-

eses in a psychologically plausible way, we have to identify when humans would rely on a

partly processed utterance for initiating a response action. Humans recognise auditory utter-

ances incrementally and provide grounding signals while it is still unfolding [22,28]. This

serves as feedback to the speaker who can adapt her/his utterance and thereby ensure that the

listener’s response action will be appropriate. In contrast to grounding, initiating a response

requires that the listener has already committed to one interpretation of the utterance.

Utterance understanding and committing to one interpretation are rapid and elusive

processes. In turn, it is difficult to identify when a human listener committed to a particular

interpretation. In order to investigate when a human (ghost) initiates a response action, we

extended the temporal gaps between the visual presentations of ISR hypotheses (time morph-

ing). The delayed presentation of speech hypotheses provided the ghosts with sufficient time

for reading, understanding and responding to the hypotheses. Time morphing combined with

the GiM design enabled us to investigate whether, when and how humans use early, uncertain

hypotheses with a slow motion variant of a typical ISR.

Error cost

The RT from the onset of the first hypothesis (RTfirst) indicated that questions about the menu

were responded to faster than drink orders. We attributed this difference to the potential error

cost of the respective response action. Error cost is represented by the required efforts for recti-

fying the error and by the ‘loss of face’ associated with it [93]. The questions about the menu

differed from the drink orders with regard to their error cost. Listing the short menu of three

drinks was appropriate as a response to all questions about the menu and if new customers

have just arrived at the bar. Thus, the error cost of listing the menu was small. In contrast, serv-

ing the wrong drink or unsolicitedly serving a drink was not appropriate. Furthermore, the

bartending robot had no option of retracting or replacing a drink once the action had been ini-

tiated. Thus, the ghost would have had to apologise and negotiate an appropriate repair. Due

to the restricted SRGS, the customers could not respond with the flexibility required for

accepting or negotiating the ghost’s repair action. Consequently, rectifying an erroneous serv-

ing was never successful in this study and resulted in a breakdown of the interaction. If the

ghosts experienced this, a breakdown added to their perceived error cost. Such errors occurred

in 12.5% of the trials that were excluded from further analyses. It should be noted that it is dif-

ficult to detect and repair such breakdowns even without SRGS restrictions [94]. Thus, costly

errors should be avoided and we discuss echo question as one measure to achieve this.

In general, RT can be regarded as a compound of a baseline and a decision time, cf. [95]. In

our study, the baseline was required for understanding hypotheses and preparing a response.

Table 6. Relative dwell times on indicators.

Indicator Relative dwell time

Customer visible 0.11

Customer torso orientation 0.15

Customer at bar 0.12

Speech hypotheses 0.42

Elsewhere 0.21

The relative dwell time was computed by dividing the time span that a participant dwelled on each indicator by the

summed dwell time on the information panel, and averaging across participants. This analysis is comparably coarse

because the tracking accuracy was reduced as a result of the large head turns.

https://doi.org/10.1371/journal.pone.0201516.t006
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The decision time is the additional time needed before committing to an action. The ghosts

attended the information panel during this time. By doing so, they could gain access to addi-

tional and/or better data, e.g. additional and more confident hypotheses in the uncertain
condition.

Answering questions about the menu was associated with low potential error cost and with

the fastest RT in our study. Thus, these RT are mainly composed of the baseline (reading and

understanding hypotheses) and only little decision time. Compared to answering questions,

the RTfirst in drink servings were prolonged. The baseline was constant but the decision time

was extended because the ghosts aimed for a higher level of confidence before initiating the

serving due to the higher error cost of serving a drink compared to listing the menu. They

achieved this higher confidence by a) trying to accumulate more evidence, i.e. additional and

more confident speech hypotheses, and b) using echo questions (e.g., “A coke for you?”) for

grounding their correct understanding in 62 out of 165 servings. Echo questions and the cus-

tomer’s response increased the confidence in serving the correct drink. But choosing between

serving the drink straight away and using an echo question added to the decision time. In con-

trast to servings, the ghosts never grounded whether they should list the drinks menu but initi-

ated this action immediately even if the data were only suggestive. In sum, the ghosts required

greater confidence before committing to a serving than to listing the menu. They achieved this

by waiting for additional and more confident speech hypotheses or explicit grounding. Thus,

the RTfirst for drink orders were slower than for questions.

The differences in RTfirst cannot be attributed to the ghosts’ efforts in identifying, planning

or initiating the appropriate response action. The RTfirst were measured from the onset of the

first informative speech hypothesis. Thus, the RTfirst do not include a period of time where the

ghosts were unable to identify their customers’ speech act and the corresponding response

action. However, they include reading the speech hypotheses. But reading the interface was

comparable across the types of requests and cannot explain the observed RT pattern. The RTs

were measured until the ghosts shifted their gaze from the information panel towards the con-

trol screen. The time required for finding the correct response button and navigating the

mouse cursor were not included in the RT. Thus, differences in the spatial or visual saliency of

the control buttons cannot account for the longer RT in drink orders than in questions. If any-

thing, the drinks were represented by icons of bottles with a greater visual saliency than the

text buttons. This would predict that listing menu required more time than serving a drink but

the results showed the opposite pattern. Another possible explanation for the differences in

RTfirst is that the ghosts required more time for planning a serving than for listing the menu.

This account also predicts that the time required for planning the serving of one drink (indi-

vidual order) should be shorter than for two drinks (group order). However, there was no

unequivocal statistical evidence in RTfirst that indicated such a difference. Thus, the RT pattern

cannot be explained by planning response actions.

The congruence of the modality of requests and responses could provide another explana-

tion for the results. The modality of the response action was associated with fixed error cost

(risk) in this study. The physical serving of a drink was associated with greater potential

error cost than a verbal listing of the available drinks. But there is no general link between a

modality and its potential error cost, e.g. verbal utterances in court can be very costly. How-

ever, there is a preference to respond to requests in the same modality [66]. The questions and

their responses were congruent in using the verbal modality whereas drink orders were incon-

gruent. If the ghosts were slower in initiating the response of incongruent than congruent

request-response pairs, their RT should be slower in drink orders than in questions indepen-

dently of the number and confidence of the speech hypotheses. But the results indicated that

speech hypotheses were used strategically. In questions, the ghosts responded quickly and
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independently of whether the speech hypotheses were more or less confident. In drink orders,

the ghosts showed a prolonged RTfirst indicating that they accumulated evidence. But the RTlast

measured from the last attended hypothesis showed that questions and drink orders required

similar RTs once sufficient and confident data were available in the uncertain condition. This

shows that the time for reading and understanding the hypotheses was similar across requests

but the decision time was dependent on the error cost of the response, and the number and

the confidence of the speech hypotheses.

In sum, the ghosts tried to accumulate more and more confident data if the potential error

cost was higher. This resulted in longer decision times in drink orders compared to questions

about the menu.

Effect of uncertain hypotheses

The analysis of RTfirst revealed no difference with regard to whether early, uncertain hypothe-

ses were displayed or not. This could indicate that the participants a) fully relied on the early

data, or b) they were not able to distinguish between different types of hypotheses. The results

showed that the number of attended speech hypotheses differed significantly between the

types of requests in the uncertain condition. This implies that the ghosts distinguished between

confident and less confident hypotheses and that they used the hypotheses strategically

depending on the potential error cost of their next action.

The strategic decision time can be estimated as the difference between RTfirst and RTlast.

The questions about the menu provided the baseline for the analysis of the RTfirst because of

their low potential error cost and the fast RT. Similarly, the RTlast to questions can serve as

baseline with minimal decision time. In questions, the RTfirst and RTlast were often measured

from the same hypothesis because the ghosts often responded to the first hypothesis that indi-

cated a question. In turn, there was no statistically significant difference between questions in

the certain and uncertain condition. Drink orders differed from questions with regard to the

number of speech hypotheses and their RT pattern. The ghosts attended more speech hypothe-

ses in drink orders than in questions in the uncertain condition. Also, RTlast were shorter in

uncertain compared to certain trials in drink orders indicating that the ghosts’ decision was

more dependent on the intermediate hypotheses. If they were available, the ghosts responded

as fast as their baseline RTlast, i.e. with minimal decision time. This indicates that the preceding

time was used for accumulating evidence and deciding whether and when to commit to an

interpretation. In the uncertain condition, intermediate hypotheses with similar content

would support the ghosts’ confidence in the sensor data or provide counterevidence to their

response plan. In the certain condition, the ghosts would have to rely on the absence of coun-

terevidence. Thus, their RTlast was longer in the certain compared to the uncertain condition.

The group orders’ time line differed from that of individual orders. First, the utterances

were slightly longer than in individual orders. This required additional processing by the ISR,

triggered more speech hypotheses and in turn, the time morphing slowed the presentation sig-

nificantly. Secondly, the ghosts had to memorise and check possible updates on two instead of

one drink while preparing their response. Despite those differences, the RTlast were shorter

when using early, uncertain hypotheses compared to using only final hypotheses. This advan-

tage was similar to but smaller than in individual orders.

These results showed that the participants committed to response actions based on partly

processed or anticipated content. Previous studies showed that incomplete material was used

for anticipating the end of a turn [96], performing grounding gestures [22] and planning

ahead [28] such that the response action is initiated just about the end of the speaker’s turn [2].

However, speech hypotheses differ from natural language as they do not have temporal
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information about the end of a turn, are delayed compared to an unfolding user utterance but

appear in fast succession. In order to develop a psychologically plausible policy for using incre-

mental speech hypotheses, we slowed down the presentation of incremental speech hypothe-

ses. We demonstrated that the ghosts did not wait for a complete analysis of their customers’

utterances before initiating their response. If a request is plausible and the potential error cost

is low, humans commit to their response. This suggests that humans would respond to utter-

ances that they have not fully processed or only perceived partly. In order to fully understand

the cognitive processes involved in using anticipated content, further experimental evidence is

required. But our findings demonstrate that humans use early, uncertain ISR speech hypothe-

ses and might expect others and artificial agents to do so.

Benefit of using early hypotheses

There was a clear benefit of using early, uncertain ISR hypotheses. The time span between

the first hypothesis and a response (RTfirst, see Table 4) was independent of whether the

hypothesis was uncertain or final. But relative to the customers’ utterance, the ISR issues early,

uncertain hypotheses about one to two seconds earlier than final hypotheses. Thus, the time

span between the first and the final ISR hypothesis estimates how much faster a question was

answered or a drink was served if uncertain hypotheses were available compared to when they

were not.

There was no observable advantage of the uncertain condition beyond the time difference

between the first and the final speech hypothesis. However, ghosts’ workload was larger in the

uncertain compared to the certain condition. The ghosts had to read additional hypotheses,

identify their confidence value, judge whether next hypotheses may change the current inter-

pretation and select a response taking into account the available information and the potential

error cost. These processes had to be repeated for each speech hypothesis, i.e. once in the cer-
tain condition and multiple times in the uncertain condition. This additional workload might

have delayed the ghosts’ responses but it was necessary in order to benefit from integrating

multiple hypotheses as converging evidence. It enabled the ghosts to pre-plan their response

and to initiate it quickly once they had committed to an interpretation. Similarly, participants

prepared their responses and waited for initiating them in interaction studies [28]. In this GiM

study, this strategy was used specifically in drink orders that were associated with high error

cost whereas questions were responded immediately. Thus, the increased workload in the

uncertain compared to the certain condition might has hindered the ghosts from responding

more timely. In turn, the temporal difference between the ISR’s first and the final speech

hypothesis only approximates how much faster a question was answered in the uncertain com-

pared to the certain condition, i.e. the net benefit of using uncertain hypotheses.

Fluency of the interaction

In order to approximate the fluency of the interaction, we used the time span from the first

visual information of the customers’ appearance until the first drink had been served [97].

This relatively coarse metric might be subject to influences including our own time morphing

procedure. However, it approximates how fast the task of serving a drink had been achieved.

Individual orders included trials with and without preceding questions about the menu (see

Table 5). Without a preceding question, the time until the first serving was almost equal in the

certain and uncertain conditions for individual and group orders. However, if a question pre-

ceded an individual drink order, there was a benefit of presenting early, uncertain hypotheses.

This appears counterintuitive because questions contributed multiple additional hypotheses in

the uncertain condition but only one in the certain condition. Thus, the time morphing should
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increase the required time in the uncertain condition but it did not. First, the ghosts responded

quickly to the first indication of a question. Thus, they did not attend all hypotheses. Secondly,

the first hypothesis in the certain condition was a final hypothesis. Thus, it was issued a few

seconds after the comparable uncertain hypothesis. Thirdly, after responding to the question,

the ghosts had just explained the menu to their customers and expected a drink order. In turn,

they might have spent less time for preparing or deciding on their actions. This study does not

allow to distinguish between these options but we can conclude that the uncertain condition

benefited from the additional evidence about the customers’ utterances. That means that the

time morphing and additional hypotheses did not reduce but improve the fluency of the dia-

logue. In a computational model, the evidence from preceding dialogue moves could contrib-

ute to the confidence of recognising current utterances and/or committing to an action.

Policy for human-robot interaction

Typical interaction policies wait for the final hypothesis but this increases the response time to

at least one second. As shown above, this delays turn-taking and disrupts the flow of the inter-

action. Furthermore, users might interpret the pause as signalling that the artificial agent has

not understood their utterance, they requested something that is outside of the machine’s

scope, or that they have made a mistake in using the machine. Thus, we investigated human

mitigation strategies for interacting through slow and sometimes erroneous robot sensors. The

results of this study enable us to outline a policy for human-robot interaction in Fig 5 that a)

uses early, uncertain speech hypotheses in a human-like way, and thereby, b) responds more

timely to its users, and c) acts socially appropriately. In particular, we outline a social strategy

for resolving situations where the best response action is associated with high error cost, the

sensor data are uncertain and the user expects a timely system response.

The user’s speech utterance triggers the ASR that produces speech hypotheses as it pro-

gresses with the analysis of the utterance. For each hypothesis, the dialogue manager identifies

the response action that the user requested, e.g. [35,56]. The next step in our policy is to esti-

mate the error cost that is associated with this action. Two factors contribute to this cost. First,

the cost of repairing the performance of the response action if the user actually requested

something else, i.e., the severity of the error. This could be approximated, e.g. as the number of

actions or the time that is required for the repair. For example, verbally listing the menu is less

severe than serving the wrong drink because the former is much easier to fix than the latter.

Secondly, the cost of committing an error as such, i.e., the user might trust the system less irre-

spectively of the error’s severity. This could be approximated as a constant cost per error.

Deciding whether and when to perform the response action is the most important aspect of

this social policy. This evaluation is performed in two steps and considers three criteria: a) the

error cost explained above, b) the available evidence, i.e. the number of converging hypotheses,

their confidence value, and the dialogue state, and c) the time that has passed since the user’s

utterance. The first step (Evaluation 1 in Fig 5) compares the error cost and the evidence. If the

error cost is very low, the agent should execute the response action. If the error cost is higher,

the number of converging speech hypotheses and their confidence level have to be assessed. In

addition, the preceding dialogue has to be considered. For example, whether the user utterance

is a second part of an adjacency pair, such as an answer to a question or the confirmation of a

preceding statement [1,98]. If the available evidence is sufficient compared to the error cost,

the agent executes the response action. Otherwise, the time constraint is assessed in a second

step (Evaluation 2 in Fig 5). The evaluation will only arrive at this step, if the error cost is high

and the evidence insufficient. If the timeliness constraints force the agent to perform a

response now, the agent uses an echo question or statement. Otherwise, the agent can afford to
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wait for additional or better evidence with upcoming hypotheses until either new evidence is

available or a response is due. This policy outlines when and how to proceed in the dialogue.

Our knowledge about timing a response is very good but the precise statistics with regard to

the quality of evidence from speech hypotheses are subject to future research. Relative to the

GiM study, both evaluations take place in the decision time where the participants had to

decide whether to commit to the response action, ask a question, or wait for more evidence.

Echo questions are a socially appropriate way of gathering additional evidence and avoiding

errors, e.g. “A coke for you?”, cf. [66]. In addition to questions, the ghosts explicitly grounded

[27] their understanding in about 37% of the drink orders prior to the serving with echo state-

ments, “Here is your coke.”. These echo utterances repeat the key content of the user’s

Fig 5. Flowchart of suggested human-robot interaction policy. The user’s speech utterance triggers the ASR that issues hypotheses about it.

Comparing the error cost of the response action to the evidence decides whether to wait, ask an echo question or perform the action.

https://doi.org/10.1371/journal.pone.0201516.g005
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utterance [99] and, if the repetition was erroneous, expose misunderstandings quickly by pro-

viding the user an opportunity for corrections [42,44]. An echo question does not replace the

response action but works towards more certainty with regard to it. For example, in Clark and

Krych’s study [22], hearers poised their hand above the suspected target item before perform-

ing the response action and grasping the target. Signalling agreement to an echo is typically

achieved through small gestures (e.g., nodding) or short statements (e.g., “yes”) or similar. In

contrast, disagreements tend to be mitigated, delayed and involve more verbal material [6,100]

and thus, are easy to identify from recogniser data. Furthermore, disagreements most likely

repeat the correct key content, e.g. “No, a water, please.” However, these questions do not fulfil

the requirements of minimal repetition and minimising the number of turns. Thus, they are in

conflict with many reward functions used for machine learning [52]. But using adaptive

grounding [42] and social interaction strategies [97] improved the agent’s subjective ratings,

dialogue success and surprisingly, the increased number of turns reduces the dialogue dura-

tion. In sum, the explicit grounding strategy is socially appropriate, occurs frequently, is asso-

ciated with minimal error cost and allows timely responses.

The social policy also requires that the response includes at least some action in the modal-

ity of the user’s request. For example, serving of the drink in response to a drink order is suffi-

cient from a functional perspective. However, our results suggest that performing a motor

action is not enough but that the user expects a verbal response as well. Thus, at least a short

verbal response is required, e.g. a short confirmation such as "Here you are." This serves the

users’ expectations that a request receives a response in the same modality, i.e. a verbal request

receives a verbal feedback. Maintaining the same modality reflects a human tendency to imi-

tate conversation partners. For example, speakers adapt their choice of words [101,102], their

pronunciation [103], prosodic features [104] but also their posture [105] to each other. This

co-adaptation improves different metrics of perceiving interactions and rapport [102,105,106].

In sum, this social policy enables the robot to respond more timely, socially appropriately

and in the user’s modality. The timely, human-like responses enhance the immediacy of the

interaction. It is still difficult for the robot to initiate a response within a time window of 250

ms before and after the user’s end of turn given the delays in speech recognition, speech pro-

duction and the robot actuators. However, this policy uses the early speech hypotheses and, as

we have argued above, can improve the response speed in many cases. By relying on socially

appropriate strategies and incorporating psychological principles, the robot’s behaviour satis-

fies the users’ expectations on timing, manner and response selection. Thus, the artificial agent

responds more timely and handles uncertainty more human-like.

Limitations of the study

The bar scenario involves multiple customers in front of the robot that may engage in different

activities such as chatting or placing a drink order and challenges the robot to correctly inter-

pret human social behaviour. This complex scenario is restricted by a bar script [107] of typical

customer-staff interactions. This might have enabled the ghosts to anticipate the next moves of

their customers even without sensor data. In addition, the SRGS was limited such that the

speech recognition was biased towards the correct content. Thus, the ghosts could rely on both

their knowledge about the script and the SRGS for improving their performance. But enhanc-

ing perception by boosting or pre-activating also reflects basic principles in human cognition

[108,109] and has been successfully used in speech recognition, e.g. [48]. Thus, our results can

generalise to other situations, especially to short-term dialogues that are governed by a script.

Using the ISR and other recognisers under real-life conditions resulted in greater statistical

noise than artificial data and some unexpected outputs. We mitigated this by adapting our
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analyses accordingly. Therefore only a small number of group orders could be analysed. How-

ever, the real-life ISR data highlighted how early speech hypotheses can contribute to create

immediacy with existing technology. Even though the sensor data provide only a coarse

approximation of human anticipation, our insights allow targeted experimental investigations,

e.g. with respect to the confidence in human anticipation, sensor data in HMI and the cost of

erroneously performing an action.

Conclusions

The new interactive Ghost-in-the-Machine (GiM) design enabled us to investigate incremen-

tality in human speech recognition and its role in social human-robot interaction. We showed

the validity of the new design by comparing how the participants (ghosts) initiated the interac-

tion with their customers to the behaviour real-life recordings [68]. The ghosts used a sophisti-

cated method for accounting for a) the sensors’ confidence, b) the number of presented

hypotheses, and c) the potential error cost of an action when selecting and initiating an action.

We have argued that if humans interacted with an artificial agent, they would expect it to

respond in a similar way, i.e. it should account for these factors. Existing models of processing

incremental speech hypotheses, e.g. [61], would have to include the number of hypotheses and

the error cost of the requested action. Such an extension makes the evaluation of speech

hypotheses similar to evidence evaluation in decision theory frameworks that account of

expected losses and the confidence in the evidence.

We identified the timeliness of the agent’s responses and their social appropriateness as

important benchmarks. In natural interaction, human interlocutors prepare their response [2]

and ground their understanding [22] while utterances unfold. They typically avoid overlapping

speech [1] and time their responses very precisely within 250 ms before and after the turn end

[2,3]. Thus, humans expect socially competent artificial agents to adhere to similar constraints

on timeliness. But agents typically respond with a delay because they start planning only after

the final analysis of the user’s utterance was available. In addition to the ASR, robot actuators

and/or text-to-speech add further delays. In turn, users might mistake these gaps in the inter-

action as signalling an error. Thus, responding timely is difficult, especially if the error cost of

the action is high, the certainty of the sensor data low and the user expects an immediate

response. We devised a social response strategy that implements human social strategies for

responding timely and socially appropriate while minimising errors.

The social interaction policy is based on the results of our online study. We found that the

ghosts initiated actions while the ISR still analysed the user’s utterance, i.e. while speech

hypotheses were still uncertain and the content was unfolding on the display. But the ghosts

only initiated actions that were associated with low potential error cost (e.g., listing the menu).

In turn, the customer’s request was responded faster if the ghosts had access to uncertain

speech hypotheses because the ISR provided them earlier than the full analysis. Thus, the pol-

icy relies on speech hypotheses and first evaluates the evidence (confidence of the speech

hypotheses, number of preceding, converging hypotheses) and the error cost of the response

action. If an error would have been more costly (e.g., serving the wrong drink), the ghosts

waited for additional and more confident speech hypotheses before initiating their response.

However, if the ghosts waited for too long, this would have delayed their response. Thus, the

second evaluation considers the response time. If the ghosts perceived a pressure to respond

but a lack of evidence, they used echo questions (e.g., “A juice for you?”). This is a form of

explicit grounding that a) enabled the ghosts to respond quickly with an action that was associ-

ated with low error cost, b) elicit the correct information, and c) maintain a socially appropri-

ate interaction. Furthermore, these questions guide users into a predictable response. Agreeing
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to an echo question is typically a very brief utterance (e.g., “Yes.”) or a small gesture (e.g., nod-

ding). In contrast, corrections require more verbal material and typically include the correct

key content, e.g. “No, I would like a juice, please.” An agent can distinguish between agreement

and objection based on the user’s utterance length and could deliver timely responses.

To summarise, this study provides evidence that humans use early, uncertain hypotheses

not only for pre-planning but also for initiating response actions. Furthermore, we provided a

psychologically plausible policy for creating immediacy in interactions with socially competent

artificial agents by using early, uncertain speech hypotheses, their confidence level and the

potential error cost as well as grounding actions.

Supporting information

S1 File. Customer script. The file lists the scripts that the customers used for ordering drinks.

(PDF)

S2 File. Data set speech hypotheses. The data file includes the response times of the ghost par-

ticipants from the first and last hypothesis in ms and z-scores. The file includes the type of

response and the condition. Cases with wrong responses and the three excluded cases are

marked.

(DAT)

S3 File. Time to first serving. The file includes the type of serving (individual or group),

whether the serving was preceded by questions, the condition and the serving time in ms and

z-scores.

(DAT)

S1 Video. Display of speech hypotheses in real-time. The video shows the speed of incre-

mental speech hypotheses without time morphing.

(AVI)

S2 Video. Display of speech hypotheses with time-morphing. The video shows the same

example as S2 video as it was presented in the study including the eye tracking overlay of the

ghost participant.

(AVI)

Author Contributions

Conceptualization: Sebastian Loth, Katharina Jettka, Manuel Giuliani, Stefan Kopp, Jan P. de

Ruiter.

Data curation: Sebastian Loth, Katharina Jettka, Manuel Giuliani.

Formal analysis: Sebastian Loth.

Funding acquisition: Stefan Kopp, Jan P. de Ruiter.

Investigation: Sebastian Loth, Katharina Jettka, Manuel Giuliani, Jan P. de Ruiter.

Methodology: Sebastian Loth, Katharina Jettka, Manuel Giuliani, Jan P. de Ruiter.

Project administration: Sebastian Loth, Stefan Kopp, Jan P. de Ruiter.

Resources: Manuel Giuliani, Jan P. de Ruiter.

Software: Sebastian Loth, Katharina Jettka, Manuel Giuliani.

Supervision: Stefan Kopp, Jan P. de Ruiter.

Error cost and commitment in early speech hypotheses

PLOS ONE | https://doi.org/10.1371/journal.pone.0201516 August 1, 2018 24 / 30

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201516.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201516.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201516.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201516.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201516.s005
https://doi.org/10.1371/journal.pone.0201516


Validation: Sebastian Loth, Manuel Giuliani.

Visualization: Katharina Jettka.

Writing – original draft: Sebastian Loth.

Writing – review & editing: Sebastian Loth, Katharina Jettka, Manuel Giuliani, Stefan Kopp,

Jan P. de Ruiter.

References
1. Sacks H, Schegloff EA, Jefferson G. A Simplest Systematics for the Organization of Turn-Taking for

Conversation. Language. 1974; 50: 696. https://doi.org/10.2307/412243

2. De Ruiter JP, Mitterer H, Enfield NJ. Projecting the End of a Speaker’s Turn: A Cognitive Cornerstone

of Conversation. Language. 2006; 82: 515–535. https://doi.org/10.1353/lan.2006.0130

3. Stivers T, Enfield NJ, Brown P, Englert C, Hayashi M, Heinemann T, et al. Universals and cultural vari-

ation in turn-taking in conversation. Proceedings of the National Academy of Sciences. 2009; 106:

10587–10592. https://doi.org/10.1073/pnas.0903616106 PMID: 19553212

4. Levinson SC. Interactional biases in human thinking. In: Goody EN, editor. Social intelligence and

interaction. Cambridge: Cambridge University Press; 1995. pp. 221–260. https://doi.org/10.1017/

CBO9780511621710.014

5. Davidson J. Subsequent versions of invitations, offers, requests, and proposals dealing with potential

or actual rejection. Structures of social action: studies in conversation analysis. London, UK: Cam-

bridge University Press; 1984. pp. 102–128.

6. Pomerantz A. Agreeing and disagreeing with assessments: some features of preferred/dispreferred

turn shapes. Structures of social action: studies in conversation analysis. Cambridge: Maison des

Science de l’Homme and Cambridge University Press; 1984. pp. 57–101.

7. Thum M, Boucsein W, Kuhmann W, Ray WJ. Standardized task strain and system response times in

human-computer interaction. Ergonomics. 1995; 38: 1342–1351. https://doi.org/10.1080/

00140139508925192 PMID: 7635125

8. Trimmel M, Meixner-Pendleton M, Haring S. Stress Response Caused by System Response Time

when Searching for Information on the Internet. Human Factors: The Journal of the Human Factors

and Ergonomics Society. 2003; 45: 615–621. https://doi.org/10.1518/hfes.45.4.615.27084 PMID:

15055458

9. Indefrey P, Levelt WJM. The spatial and temporal signatures of word production components. Cogni-

tion. 2004; 92: 101–144. https://doi.org/10.1016/j.cognition.2002.06.001 PMID: 15037128

10. Jescheniak JD, Levelt WJM. Word frequency effects in speech production: Retrieval of syntactic infor-

mation and of phonological form. Journal of Experimental Psychology: Learning, Memory, and Cogni-

tion. 1994; 20: 824–843. https://doi.org/10.1037/0278-7393.20.4.824

11. Levelt WJM. Timing in Speech Production with Special Reference to Word Form Encoding. Annals of

the New York Academy of Sciences. 1993; 682: 283–295. https://doi.org/10.1111/j.1749-6632.1993.

tb22976.x PMID: 8323120

12. Schnur TT. Phonological Planning during Sentence Production: Beyond the Verb. Frontiers in Psy-

chology. 2011; 2. https://doi.org/10.3389/fpsyg.2011.00319 PMID: 22069396

13. Magyari L, Bastiaansen MCM, De Ruiter JP, Levinson SC. Early Anticipation Lies behind the Speed of

Response in Conversation. Journal of Cognitive Neuroscience. 2014; 26: 2530–2539. https://doi.org/

10.1162/jocn_a_00673 PMID: 24893743

14. Ferreira F, Henderson JM. Recovery from misanalyses of garden-path sentences. Journal of Memory

and Language. 1991; 30: 725–745. https://doi.org/10.1016/0749-596X(91)90034-H

15. Frazier L, Rayner K. Making and correcting errors during sentence comprehension: Eye movements

in the analysis of structurally ambiguous sentences. Cognitive Psychology. 1982; 14: 178–210. https://

doi.org/10.1016/0010-0285(82)90008-1

16. De Ruiter JP, Cummins C. A model of intentional communication: AIRBUS (Asymmetric Intention Rec-

ognition with Bayesian Updating of Signals). In: Brown-Schmidt S, Ginzburg J, Larsson S, editors. Pro-

ceedings of SemDial 2012 (SeineDial)– 16th Workshop on the Semantics and Pragmatics of

Dialogue. Paris, France; 2012. pp. 149–150. http://www.uni-bielefeld.de/lili/personen/jruiter/

downloads/DeRuiter_Cummins_AIRBUS_paper.pdf

17. Van Berkum JJA, Brown CM, Zwitserlood P, Kooijman V, Hagoort P. Anticipating Upcoming Words in

Discourse: Evidence From ERPs and Reading Times. Journal of Experimental Psychology: Learning,

Error cost and commitment in early speech hypotheses

PLOS ONE | https://doi.org/10.1371/journal.pone.0201516 August 1, 2018 25 / 30

https://doi.org/10.2307/412243
https://doi.org/10.1353/lan.2006.0130
https://doi.org/10.1073/pnas.0903616106
http://www.ncbi.nlm.nih.gov/pubmed/19553212
https://doi.org/10.1017/CBO9780511621710.014
https://doi.org/10.1017/CBO9780511621710.014
https://doi.org/10.1080/00140139508925192
https://doi.org/10.1080/00140139508925192
http://www.ncbi.nlm.nih.gov/pubmed/7635125
https://doi.org/10.1518/hfes.45.4.615.27084
http://www.ncbi.nlm.nih.gov/pubmed/15055458
https://doi.org/10.1016/j.cognition.2002.06.001
http://www.ncbi.nlm.nih.gov/pubmed/15037128
https://doi.org/10.1037/0278-7393.20.4.824
https://doi.org/10.1111/j.1749-6632.1993.tb22976.x
https://doi.org/10.1111/j.1749-6632.1993.tb22976.x
http://www.ncbi.nlm.nih.gov/pubmed/8323120
https://doi.org/10.3389/fpsyg.2011.00319
http://www.ncbi.nlm.nih.gov/pubmed/22069396
https://doi.org/10.1162/jocn_a_00673
https://doi.org/10.1162/jocn_a_00673
http://www.ncbi.nlm.nih.gov/pubmed/24893743
https://doi.org/10.1016/0749-596X(91)90034-H
https://doi.org/10.1016/0010-0285(82)90008-1
https://doi.org/10.1016/0010-0285(82)90008-1
http://www.uni-bielefeld.de/lili/personen/jruiter/downloads/DeRuiter_Cummins_AIRBUS_paper.pdf
http://www.uni-bielefeld.de/lili/personen/jruiter/downloads/DeRuiter_Cummins_AIRBUS_paper.pdf
https://doi.org/10.1371/journal.pone.0201516


Memory, and Cognition. 2005; 31: 443–467. https://doi.org/10.1037/0278-7393.31.3.443 PMID:

15910130

18. Cummins C, De Ruiter JP. Computational Approaches to the Pragmatics Problem. Language and Lin-

guistics Compass. 2014; 8: 133–143. https://doi.org/10.1111/lnc3.12072

19. Otten M, Nieuwland MS, Van Berkum JJ. Great expectations: Specific lexical anticipation influences

the processing of spoken language. BMC Neuroscience. 2007; 8: 89. https://doi.org/10.1186/1471-

2202-8-89 PMID: 17963486

20. Abelson RP. Script Processing in Attitude Formation and Decision Making. In: Carroll JS, Payne JW,

Carnegie-Mellon University, editors. Cognition and social behavior. Hillsdale, N.J.: New York: L. Erl-

baum Associates; distributed by the Halsted Press Division of Wiley; 1976. pp. 33–46.

21. Schank RC, Abelson RP. Scripts, plans, goals and understanding: an inquiry into human knowledge

structures. Hillsdale, N.J.: L. Erlbaum; 1977.

22. Clark HH, Krych MA. Speaking while monitoring addressees for understanding. Journal of Memory

and Language. 2004; 50: 62–81. https://doi.org/10.1016/j.jml.2003.08.004

23. Spivey MJ, Tanenhaus MK, Eberhard K, Sedivy JC. Eye movements and spoken language compre-

hension: Effects of visual context on syntactic ambiguity resolution. Cognitive Psychology. 2002; 45:

447–481. https://doi.org/10.1016/S0010-0285(02)00503-0 PMID: 12480476

24. Spivey-Knowlton MJ, Tanenhaus MK, Eberhard K, Sedivy JC. Integration of visuospatial and linguistic

information: Language comprehension in real and real space. In: Olivier P, Gapp K-P, editors. Repre-

sentation and Processing of Spatial Expressions. Mahwah, N.J: Lawrence Erlbaum Associates;

1998. pp. 201–214.

25. Arai M, Keller F. The use of verb-specific information for prediction in sentence processing. Language

and Cognitive Processes. 2013; 28: 525–560. https://doi.org/10.1080/01690965.2012.658072

26. Kamide Y, Altmann GT., Haywood SL. The time-course of prediction in incremental sentence process-

ing: Evidence from anticipatory eye movements. Journal of Memory and Language. 2003; 49: 133–

156. https://doi.org/10.1016/S0749-596X(03)00023-8

27. Clark HH, Brennan SE. Grounding in Communication. In: Resnick LB, Levine JM, Teasley SD, editors.

Perspectives on socially shared cognition. 1st ed. Washington, DC: American Psychological Associ-

ation; 1991. pp. 127–149.

28. Barthel M, Meyer AS, Levinson SC. Next Speakers Plan Their Turn Early and Speak after Turn-Final

“Go-Signals”. Frontiers in Psychology. 2017; 8. https://doi.org/10.3389/fpsyg.2017.00393 PMID:

28443035

29. Xiong W, Droppo J, Xuedong H, Seide F, Seltzer M, Stolcke A, et al. Achieving Human Parity in Con-

versational Speech Recognition [Internet]. Ithaca, NY: Microsoft Research; 2016 Oct p. 12. Report

No.: MSR-TR-2016-71. https://arxiv.org/abs/1610.05256

30. Blanchard N, Brady M, Olney AM, Glaus M, Sun X, Nystrand M, et al. A Study of Automatic Speech

Recognition in Noisy Classroom Environments for Automated Dialog Analysis. In: Conati C, Heffernan

N, Mitrovic A, Verdejo MF, editors. Artificial Intelligence in Education. Cham: Springer International

Publishing; 2015. pp. 23–33. http://link.springer.com/10.1007/978-3-319-19773-9_3

31. Baumann T, Kennington C, Hough J, Schlangen D. Recognising Conversational Speech: What an

Incremental ASR Should Do for a Dialogue System and How to Get There. Proceedings of the Interna-

tional Workshop Series on Spoken Dialogue Systems Technology (IWSDS) 2016. Hamburg, Ger-

many; 2016. https://pub.uni-bielefeld.de/publication/2900218
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