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a b s t r a c t 

Underwater scenes captured by cameras are plagued with poor contrast and a spectral distortion, which 

are the result of the scattering and absorptive properties of water. In this paper we present a novel de- 

hazing method that improves visibility in images and videos by detecting and segmenting image regions 

that contain only water. The colour of these regions, which we refer to as pure haze regions, is simi- 

lar to the haze that is removed during the dehazing process. Moreover, we propose a semantic white 

balancing approach for illuminant estimation that uses the dominant colour of the water to address the 

spectral distortion present in underwater scenes. To validate the results of our method and compare them 

to those obtained with state-of-the-art approaches, we perform extensive subjective evaluation tests us- 

ing images captured in a variety of water types and underwater videos captured onboard an underwater 

vehicle. 

© 2017 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Improving the visibility in underwater images and videos is

esirable for underwater robotics, photography/videography and

pecies identification ( Ancuti et al., 2012; Beijbom et al., 2012;

oser et al., 2014 ). While underwater conditions are considered by

everal authors as similar to dense fog on land, unlike fog, under-

ater illumination is spectrally deprived as water attenuates dif-

erent wavelengths of light to different degrees ( Emmerson and

oss, 1987 ). 

A key challenge is the spectral distortion in underwater scenes,

hich dehazing methods are unable to compensate for, especially

or scenes captured at depth or in turbid waters ( Fig. 1 ). At depth

he distortion is caused by the process of absorption where longer

avelengths (red) are highly attenuated and shorter wavelengths

green and blue) are more readily transmitted ( Lythgoe, 1974 ).

n turbid coastal waters constituents in the water reduce visi-

ility and more readily increase the transmission of green hues

 Lythgoe, 1974 ). 

Important parameters to be estimated for underwater dehazing

re the veiling light (i.e. the light that is scattered from underwater

articles into the line of sight of a camera) and the transmission

i.e. a transfer function that describes the light that is not scattered

y the haze and reaches the camera) ( He et al., 2011 ). 
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Most research has explored dehazing methods for underwa-

er still images ( Drews-Jr et al., 2013; Emberton et al., 2015;

aldran et al., 2015; Wen et al., 2013 ). Only few methods have

een presented for dehazing underwater videos ( Ancuti et al., 2012;

rews-Jr et al., 2015; Li et al., 2015 ). Applying post-processing

o video footage in comparison to images brings new challenges

s large variations in estimates between neighbouring frames

ead to temporal artefacts. Another challenge for underwater de-

azing is to avoid the introduction of noise and false colours.

ncuti et al. (2012) fuse contrast-enhanced and grey-world based

hite-balanced versions of input frames to enhance the appear-

nce of underwater images and videos. This method performs well

or most green turbid scenes but the output is often oversaturated

nd containing false colours, especially in dark regions. Drews-

r et al. (2015) use optical flow and structure-from-motion tech-

iques to estimate depth maps, attenuation coefficients and re-

tore video sequences. This method requires the camera to be

alibrated in the water which hinders its application to under-

ater footage captured by other sources ( Drews-Jr et al., 2015 ).

i et al. (2015) apply stereo matching to single hazy video se-

uences and use the generated depth map to aid the dehazing pro-

ess. Assumptions are made that videos contain translational mo-

ions for modelling the stereo and are free of multiple independent

oving objects, as only a single rigid motion is considered in the

odel of 3D structures. 

In this work, we propose a method to dehaze underwater im-

ges and videos. We address the spectral distortion problem by
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Light is absorbed and scattered as it travels on its path from source, via ob- 

jects in a scene, to an imaging system onboard an Autonomous Underwater Vehicle. 
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automatically selecting the most appropriate white balancing

method based on the dominant colour of the water. Moreover, to

avoid bias towards bright pixels in a scene, we propose to use

varying patch sizes for veiling light estimation. We use entropy-

based segmention to localise pure haze regions, the presence of

which informs the features to select for the veiling light estimate.

Finally, to ensure that the pure haze segmentation is stable be-

tween video frames, we introduce a Gaussian normalisation step

and allocate an image-specific transmission value to pure haze

regions to avoid generating artefacts. Then, to ensure coherence

across frames, we temporally smooth estimated parameters. 

In summary, the main contributions of this work include (i) a

semantic white balancing approach for illuminant estimation that

uses the dominant colour of the water; (ii) a pure haze detection

and segmentation algorithm; (iii) a Gaussian normalisation to en-

sure temporally stable pure haze segmentation; and (iv) the use of

different f eatures generated with varying patch sizes to estimate

the veiling light. The main components of the proposed approach

are shown in Fig. 2 . 

The paper is organised as follows. In Section 2 we provide an

overview of the state of the art in underwater image dehazing, and

white balancing. We introduce methods to white balance under-

water scenes ( Section 3 ), select features for the veiling light esti-

mate ( Section 4 ) and segment pure haze regions during the gen-

eration of the transmission map ( Section 5 ). In Section 6 we eval-

uate our approach in comparison to the state of the art in under-

water image and video dehazing. Finally, conclusions are drawn in

Section 7 . 

2. State of the art 

In this section we discuss the state of the art in image dehazing,

the localisation of pure haze regions and finally underwater white

balancing methods. 

The majority of dehazing approaches make use of the Dark

Channel Prior (DCP) ( He et al., 2011 ) or adaptations of it ( Drews-

Jr et al., 2013; Galdran et al., 2015; Wen et al., 2013 ). The DCP
Fig. 2. Block diagram of the proposed approach. Temporal smoothing of the parameter

indicating whether pure haze regions exist; T v 
k 

: threshold value indicating amount of pu

V k : veiling light estimate; t k : transmission map; J k : dehazed frame. 
akes the assumption that information in the darkest channel of

 hazy image can be attributed to the haze ( He et al., 2011 ). Ter-

estrial dehazing methods detected sky regions in still images with

eatures such as the saturation/brightness ratio, intensity variance

nd magnitude of edges ( Rankin et al., 2011 ), gradient informa-

ion and an energy function optimisation ( Shen and Wang, 2013 ),

nd semantic segmentation ( Wang et al., 2014 ). A method for im-

ge and video dehazing suppressed the generation of visual arte-

acts in sky regions by minimising the residual of the gradients be-

ween the input image and the dehazed output ( Chen et al., 2016 ).

n underwater-specific method locates pure haze regions by ap-

lying a binary adaptive threshold to the green-blue dark channel

 Henke et al., 2013 ), which fails if the dark channel incorrectly es-

imates pixels from bright objects as pure haze. An underwater de-

azing approach used colour-based segmentation ( Emberton et al.,

015 ), which can be unreliable in cases where, due to the effects

f the medium, the colour of objects underwater appear similar to

he colour of the pure haze regions. 

A number of underwater-specific methods ( Chao and Wang,

010; Chiang and Chen, 2012 ) estimate the transmission map with

he original DCP method ( He et al., 2011 ). Water attenuates long

avelength (red) light more than short wavelength (blue) light, so

he DCP method has the disadvantage that the darkest channel is

sually the red channel: when at depth there is no red light and

herefore no variation in information in the darkest channel, the

ransmission estimate will be corrupted ( Drews-Jr et al., 2013 ). The

nderwater Dark Channel Prior ( Drews-Jr et al., 2013 ) solves this

imitation by applying DCP only to the green and blue channels. 

White-balancing methods include grey-world and white-patch:

he grey-world algorithm ( Buchsbaum, 1980 ) assumes that the av-

rage reflectance in a scene is grey ( Gijsenij et al., 2011 ). White-

atch ( Land, 1977 ) makes the assumption that the maximum re-

ponse in all the channels of a camera is caused by a perfect

eflectance (i.e. a white patch) ( Gijsenij et al., 2011 ). Underwater

hite balancing methods have assumed that the attenuation co-

fficient of the water is known ( Chiang and Chen, 2012 ), which

s unlikely in the real world, and have estimated the illumi-

ant using the grey-world assumption and an adaptive parame-

er that changes depending on the distribution of the colour his-

ogram ( Ancuti et al., 2012 ). 

Underwater dehazing methods are summarised in Table 1 . The

ain novelties of our proposed approach include stable segmenta-

ion of pure haze regions between frames to avoid the production

f artefacts in these areas during dehazing, using the presence (or

bsence) of pure haze to inform the features for the estimation

f the veiling light and a semantic approach for white balancing

here the method applied is dependent on the water type. 

. Water-type dependent white balancing 

We propose a general framework to estimate the dominant

olour for the selection of the most appropriate white-balancing

ethod. The proposed method is inspired by semantic meth-

ds, which classify images into categories before choosing the
s takes place in each buffer. KEY – I k : input frame at time k . T b 
k 

: Boolean value 

re haze in frame; I W 
k 

: water-type dependent (WTD) white balancing output frame; 
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Table 1 

Underwater dehazing methods. 

Method Dehazing White balancing Applicable to video? 

Chao’10 ( Chao and Wang, 2010 ) Dark Channel Prior ( He et al., 2011 ) – –

Chiang’12 ( Chiang and Chen, 2012 ) Dark Channel Prior ( He et al., 2011 ) Fixed attenuation coefficient K ( λ) –

Ancuti’12 ( Ancuti et al., 2012 ) Fusion Adapted grey-world � 

Drews-Jr’13 ( Drews-Jr et al., 2013 ) Underwater Dark Channel Prior – –

Wen’13 ( Wen et al., 2013 ) Adapted Dark Channel Prior – –

Li’15 ( Li et al., 2015 ) Stereo & Dark Channel Prior – � 

Proposed Adapted Dark Channel Prior Semantic � 

Fig. 3. Sample images from the PKU-EAQA dataset ( Chen et al., 2014 ) captured in 

(a) blue, (b) turquoise and (c) green waters. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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ost applicable illumination estimation method for each cate-

ory ( Gijsenij et al., 2011 ). We group images into three main

lasses, namely images captured in blue, turquoise or green-

ominated waters ( Fig. 3 ). 

Blue-dominated waters are representative of open ocean waters.

hen white balancing methods (i.e. grey-world, white-patch, max-

GB, grey-edge ( Weijer et al., 2007 )) are used with images cap-

ured in these water types they often introduce undesirable spec-

ral distortions with the colour of the water becoming purple-grey

nd the colour of objects becoming yellow-grey. There is the po-

ential for white balancing methods to be able to deal with the

pectral distortion present in blue waters. However, in this work

e avoid white balancing this water type so to inhibit the intro-

uction of spectral distortions. 

Turquoise waters contain relatively similar levels of green and

lue light than in other spectral domains. For these waters we

mploy the white-patch method as the images are likely to ful-

l its assumption. Let I WP ( x ) be a colour-corrected image with the

hite-patch method and x a pixel location in the image. We em-

loy a white-patch method implemented in CIE L ∗a ∗b ∗ space as

he lightness channel L ∗ is intended to approximate the perceptual

bilities of the human visual system ( Wyszecki and Stiles, 1982 ).

e sort the pixel values in order of lightness by transforming the

GB image to CIE L ∗a ∗b ∗ space. The estimated illuminant is defined

n L ∗a ∗b ∗ space as the mean of the lightest one percent of pixels

 Kloss, 2009 ). 

Green-dominated waters are likely to be found in turbid coastal

egions where the waters contain run off from the land and in-

reased levels of phytoplankton and chlorophyll ( Lythgoe, 1974 ).

n these water types light does not travel far and visibility is

educed significantly. The green colour cast is caused by the

onstituents in the water. These images often still contain use-

ul information in the red channel and it is therefore likely

hat the grey-world assumption is valid for these cases. Let

 

GW ( x ) represent a colour-corrected image with the grey-world

ethod. The grey-world implementation makes use of an illu-

inant estimation method that is a function of the Minkowski

orm ( Finlayson and Trezzi, 2004 ). For both illuminant estima-

ion methods, values are converted to CIE XYZ space which de-

cribes a colour stimulus in terms of the human visual sys-

em ( Wyszecki and Stiles, 1982 ). Diagonal transforms are better

ble to discount the illumination if first transformed to a suit-

ble RGB space ( Finlayson and Susstrunk, 20 0 0 ), therefore we
pply a chromatic adaptation transform to white balance the

mage. 

In order to categorise green, turquoise and blue waters, we

alculate μG and μB , the mean value of the green and blue

olour channels. Then we consider their difference μd = μG − μB .

o avoid oversaturated pixels biasing the estimation of the illu-

inant we apply a median filter to I ( x ) before white balancing

 Gijsenij et al., 2011 ). We define a white-balanced image as 

 

W (x ) = 

{ 

˜ I (x ) if μd ≤ −0 . 05 , 

˜ I W P (x ) if − 0 . 05 < μd ≤ 0 . 09 , 

˜ I GW (x ) if μd > 0 . 09 , 

(1) 

here our target illuminant is a perfect white light ( R = G = B = 

1 √ 

3 
)

 Gijsenij et al., 2011 ). Negative values in Eq. 1 define blue domi-

ance , values closer to zero indicate no dominance (i.e. turquoise

aters ) and positive values define green dominance . The values

f -0.14, -0.01 and 0.13 were calculated for the blue, turquoise

nd green images in Fig. 3 , respectively. We select the thresh-

lds from subjective observations of the performance of the

hite balancing methods on a training dataset of 44 under-

ater images. The dataset contained 18 blue (min = −0.259,

ax = −0.052, mean = −0.129), 9 turquoise (min = −0.048,

ax = 0.015, mean = −0.027) and 17 green images (min = 0.110,

ax = 0.601, mean = 0.320). Note that we disregard the information

n the red channel as it often produces low signals at depth. 

. Veiling light feature selection 

The key observation underlying the Dark Channel Prior is that

n local patches of an image the minimum intensity can be at-

ributed to haze ( He et al., 2011 ). Therefore dark channel-based

eiling light estimation is biased towards pixels from bright objects

n the scene that are larger than the size of the local patch � used

o generate the dark channel. Large patches help to avoid inaccu-

ate estimates caused by bright pixels which invalidate the prior,

hile small patches help to maintain image details during the gen-

ration of the transmission map ( Lee et al., 2016 ). To ensure both

lobal and local information is taken into account we employ a hi-

rarchical veiling light estimation method ( Emberton et al., 2015 ),

hich fuses a range of layers with different-sized patches. We ap-

ly a sliding window approach with varying patch sizes for each

ayer l = 1 , 2 , . . . , L to generate the veiling light features. If w is the

idth of the image, we define the size of a local patch at each

ayer as �l = 

w 

2 l 
. 

We aim to estimate the veiling light from the part in the scene

ith the densest haze, which is usually found in the most distant

ocation. We use different features depending on the presence of

ure haze. We use texture information to avoid bias towards bright

bjects only in images with pure haze, as it would bias estimates

owards textureless regions, such as dark shadows, in images with-

ut pure haze. 

Compared to areas with objects, pure haze regions have low

exture and therefore lower entropy values. Let G ( x ) be the grey-

cale version of I ( x ). To detect whether an image contains pure
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Fig. 4. Pure haze region checker. (a),(e) Sample images and (b),(f) corresponding entropy images. (c),(g) Histograms of the entropy images: a unimodal distribution (top) 

indicates the absence of pure haze regions; whereas a bimodal distribution (bottom) indicates the presence of pure haze regions. (d) Visualisation of f ( x ) for veiling light 

estimation in an image with no pure haze regions. (h) Visualisation of f p ( x ) for veiling light estimation in an image with pure haze. Input images taken from the PKU-EAQA 

dataset ( Chen et al., 2014 ). 
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1 Note that we ignore the red channel as it often contains very low values. 
haze and then select the features to use in the veiling light esti-

mation accordingly, we compute the entropy image as 

η(x ) = 1 −
∑ 

y ∈ �(x ) 

p(G (y )) log 2 p(G (y )) , (2)

where p ( G ( · )) is the probability of the intensities of G in a local

patch �( x ) centred at pixel x . 

To normalise the values of η( x ) we propose a method which

ensures the mean value of the normalised entropy image η
′ 
(x ) re-

mains stable between consecutive frames. We only use the data

within the interval [ μ − 3 σ, μ + 3 σ ] and normalise them as 

η
′ 
(x ) = 

{ 

0 if η(x ) < μ − 3 σ
1 if η(x ) > μ + 3 σ
η(x ) −(μ−3 σ ) 

6 σ otherwise . 

(3)

Finally, we apply a 2D Gaussian filter (9 × 9 pixels) to remove

local minima and improve spatial coherence, and a 3D Gaussian fil-

ter (9 × 9 pixels and 21 frames) to improve spatial and temporal

coherence. The standard deviation of the Gaussian in both filters is

set to 1. 

We expect the distribution of the histogram of η
′ 
(x ) to be uni-

modal for scenes without pure haze regions ( Fig. 4 (c)) and bi-

modal for scenes that contain pure haze. In the latter case, the

peak containing darker pixels is the pure haze and the peak con-

taining lighter pixels corresponds to foreground objects ( Fig. 4 (g)).

To determine the difference between the empirical distribution

and the unimodal distribution we employ Hartigan’s dip statis-

tic ( Hartigan and Hartigan, 1985 ). The output of this method is a

Boolean threshold value T b which determines whether an image

contains pure haze regions (1) or not (0). 

For images without pure haze regions we use the green-blue

dark channel θd GB 
(x ) ( Drews-Jr et al., 2013 ), an adaptation of the

Dark Channel Prior ( He et al., 2011 ), which allows us to produce a

range map describing the distance of objects in a scene. We gen-

erate this feature with varying patch sizes at each layer and then

average all the layers together to create our feature image f ( x ) from

which we estimate the veiling light ( Fig. 4 (d)). 

For images with pure haze regions we find the most distant part

of the scene to estimate the veiling light using θd GB 
(x ) together
ith the entropy image η( x ) ( Eq. 2 ). This allows us to avoid bias

owards bright pixels. We use 1 − θd GB 
(x ) so that low values in-

icate pure haze regions for both features. To ensure features are

eighted equally we normalise both the features with Eq. 3 before

ombining them to produce f p ( x ) ( Fig. 4 (h)). 

Finally, we use our feature images, which describe locations

ikely to contain dense haze, to estimate the veiling light. Let

 = argmin 

x 
( f (x )) and Q be the set of pixel positions whose val-

es are v . If Q contains only one element we represent the veil-

ng light V as the RGB value of the white-balanced image I W ( x )

n that position. When Q contains multiple pixels we take their

ean value in the corresponding positions of I W ( x ). Likewise for

 = argmin 

x 
( f p (x )) for images with pure haze regions. 

. Transmission-based pure haze segmentation 

A hazy image can be modelled as 

(x ) = J(x ) t(x ) + (1 − t(x )) V, (4)

here I ( x ) is the observed intensity at x, J ( x ) is the haze free scene

adiance, t ( x ) is the transmission and V the veiling light ( He et al.,

011 ). J ( x ) t ( x ) describes how scene radiance deteriorates through

 medium and (1 − t(x )) V models the scattering of global atmo-

pheric light in a hazy environment. Transmission is expressed

s t(x ) = e −br(x ) , where b is the scattering coefficient and r ( · ) is

he estimated distance between objects and the camera ( He et al.,

011 ). 

We aim to find the transmission t ( x ) where the dehazed im-

ge J ( x ) does not suffer from oversaturation due to bright pixels

nd noise/artefacts in the pure haze regions. We first generate an

nitial transmission map with the green-blue dark channel θd GB 
(x )

 Drews-Jr et al., 2013 ) ( Fig. 5 (a)). Low t ( x ) values lead to bright

ixels in an image becoming oversaturated in the final dehazed

mage. Therefore, we flag locations where truncation outside of the

ange [0,1] occurs in either the green or blue colour channels 1 of

 ( x ) ( Emberton et al., 2015 ). To aid fusion with the initial transmis-

ion map we employ a sliding window approach on local patches
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Fig. 5. Examples of transmission maps generated from the first frame from sequence S 4 ( Fig. 8 (a)). (a) Map estimated with green-blue dark channel ( Drews-Jr et al., 2013 ). 

(b) Map with adapted transmission values. (c) Map refined with Laplacian image matting filter ( Levin et al., 2008 ). (d) Output frame. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Sample unsmoothed and smoothed estimated parameters. Large variations 

between neighbouring frames cause temporal artefacts (flicker). This is particularly 

apparent for the green V G and blue V B channels of the veiling light estimates at 

frames 45, 85 and 95. V R : red channel of veiling light estimate. T v : threshold value 

indicating amount of pure haze. τ : estimate smoothed with Eq. 6 . (For interpreta- 

tion of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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T  
nd for these flagged areas we select the lowest values for t ( x ) that

void truncation in J ( x ). 

We treat images with pure haze as a special case in the gen-

ration of the transmission map as we only slightly dehaze pure

aze regions in order not to produce artefacts. Pure haze regions

an be found through locating the peak of dark pixels in the bi-

odal distribution of η
′ 
(x ) ( Fig. 4 (g)). To automatically find the

alley between the two peaks and to ensure only two local max-

ma remain we iteratively smooth the distribution by threshold-

ng ( Prewitt and Mendelsohn, 1966 ). We define T v ∈ [0, 1] as the

ocation between these two maxima. For example, for the distri-

ution shown in Fig. 4 (g), T v = 0 . 42 . To ensure small variations

ithin a desirable and limited range ∼ [0.6,0.7] we allocate pure

aze regions a frame-specific transmission value which we define

s μη = μ
(
η

′ 
(x ) > T v 

)
, and the pure haze-adapted transmission

ap as 

 

p (x ) = 

{
μη if η

′ 
(x ) ≤ T v 

t(x ) if η
′ 
(x ) > T v . 

(5) 

n adapted transmission map can be seen in Fig. 5 (b) where all

he pixels in the pure haze region were assigned a transmission

alue of 0.66. As the transmission map requires refinement, we

se a Laplacian soft image matting filter ( Levin et al., 2008 ), which

s more suitable to preserve details ( Lee et al., 2016 ) ( Fig. 5 (c)).

e use the estimates for the veiling light and transmission map in

q. 4 to generate the dehazed image ( Fig. 5 (d)). 

Next, we employ a two-pass moving average filter to smooth T v 

nd use weights to increase smoothing at neighbouring frames and

ecrease smoothing for distant frames. We define the smoothed

alues for the k th frame of T v , T v τ (k ) , as 

 

v 
τ (k ) = 

1 

(2 W + 1) 2 

2 W ∑ 

i = −2 W 

[ (2 W + 1) − | i | ] T v ( k + i ) , (6)

here W is the number of neighbouring frames either side of

 

v 
τ (k ) and 2 W + 1 is the window size. The value W = 10 ensures

 good temporal coherence for a frame rate of 25 fps, based on

ests on training videos. To maintain temporal coherence for the

oolean threshold value T b we apply a 21-frame moving average

nd take the mode of the samples to maintain a binary value. 
In addition to T v we smooth each channel of E XYZ and V with

q. 6 as variations in these parameters between neighbouring

rames ( Fig. 6 ) cause temporal artefacts in the output such as

hanges in colour and exposure ( Fig. 7 ). 

. Experiments 

.1. Video dehazing analysis 

To validate the proposed approach, we compare the proposed

ethod against a fusion method ( Ancuti et al., 2012 ) and a method

hich uses stereo reconstruction to simultaneously dehaze and es-

imate scene depth ( Li et al., 2015 ). 

We run the comparison on six diverse and challenging se-

uences ( S 1 , ���, S 6 ) of a dataset provided by the Australian Centre

or Field Robotics’ marine systems group ACFR . To reduce process-

ng time and increase the amount of varied footage to be processed

y the methods we temporally subsampled all sequences by a fac-

or 4, except for S 2 (subsampled by 8) and S 6 (subsampled by 16).

his resulted in videos between 110 and 157 frames. The frames
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Fig. 7. Variation in estimates between neighbouring frames introduces temporal 

artefacts. Intensity values of the green (row 1) and blue (row 2) colour channels 

of dehazed frames (a) 44, (b) 45 and (c) 46 of sample sequence with no temporal 

smoothing ( Fig. 6 ). The veiling light estimate in frame 45 is a different colour and 

intensity to frames 44 and 46, which leads to a change in colour and exposure in 

the dehazed frame and is particularly evident in the green and blue channels. Orig- 

inal videos provided by ACFR . (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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were spatially resized to 768 × 432 pixels and for this spatial res-

olution the following parameter settings were selected. Before es-

timating the illuminant the input frame I ( x ) is spatially smoothed

with a median filter with a patch size of 5 × 5 pixels. A 9 ×
9 patch size is used to generate η( x ) which is used to locate pure

haze regions and θd GB 
(x ) which is used as an initial estimate for

the transmission map. We use six layers in the veiling light esti-

mation step. 

To quantify performance we use UCIQE, Underwater Color Im-

age Quality Evaluation ( Yang and Sowmya, 2015 ), as well as a sub-

jective evaluation. UCIQE is an underwater-specific no-reference

metric that takes into account the standard deviation of chroma

σχ , the contrast of lightness ψ 

L ∗ and the mean of saturation μs .

The metric is defined as 

UCIQE = ω 1 σ
χ + ω 2 ψ 

L ∗ + ω 3 μ
s , (7)

where ω i are the weighted coefficients. Chroma χ = 

√ 

a 2 + b 2 ,

where a and b are the red/green and yellow/blue channels of the

CIE L ∗a ∗b ∗ colour space, respectively. Saturation = 

χ
L ∗ and ψ 

L ∗ is

defined as the difference between the bottom 1% and the top 1%

of pixels in the lightness channel L ∗ of the CIE L ∗a ∗b ∗ colour space.

We carried out a subjective evaluation as a single-stimulus sub-

jective test with 12 participants and multiple linear regression to

determine the weighted coefficients ( ω 1 = 0.3921, ω 2 = 0.2853 and

ω 3 = 0.3226) for the individual parts of the measure on the PKU-

EAQA dataset of 100 unprocessed underwater images ( Chen et al.,

2014; Yang and Sowmya, 2015 ). 

The subjective evaluation of the processed videos consists of a

paired-stimulus approach where participants were shown two pro-

cessed sequences of different methods and asked to decide which

they preferred (if any). The experiment was set up as a webpage

which meant that it was easier to access a wide range of partici-

pants than a traditional laboratory study. It also meant that certain

recommendations for subjective evaluation experiments were not

followed such as that pertaining to the equipment used for view-

ing the images (e.g. screen resolution and contrast levels), the envi-

ronment (e.g. temperature and lighting levels) and the distance to

the screen ( ITU-R, 2012 ). 36 non-expert participants were shown

all of the methods compared with each other for the six video se-

quences. 

Visual inspection of the processed videos reveals that for the

method of Ancuti et al. (2012) ( Fig. 8 (b)) the contrast is over-

enhanced giving an oversaturated and unnatural appearance and

there are also often red artefacts created in dark regions. The

method of Li et al. (2015) only slightly dehazes the sequences

( Fig. 8 (c)), which is evident from the transmission maps ( Fig. 9
b)) that either lack detail or are wrong. The proposed method

erforms well for most of the sequences (in particular S 4 and S 5 )

xcept when they contain large bright objects, such as seabed re-

ions ( Fig. 8 (d)). Our method successfully inhibited the production

f noise and artefacts in the pure haze regions, unlike the other

ethods. 

It is possible to notice that the main limitation of the proposed

ethod is with scenes that contain bright objects larger than the

atch size, when the transmission map generated with the Dark

hannel Prior fails as these nearby objects are incorrectly esti-

ated as being far away. For this reason these objects are given

ow transmission values and are therefore overly dehazed. Even

hough our method inhibits the truncation of pixel colour, dis-

ortions are created in these areas, e.g. the bright seafloor in S 3 
 Fig. 8 (d)). Features such as a depth map created from stereo re-

onstruction ( Li et al., 2015 ) or geometric constraints ( Carr and

artley, 2009 ) could be used to improve the transmission map in

hese situations. Also, no white balancing is applied to these se-

uences, as they are categorised as blue water type, which may

ave helped to improve the colour distortion. 

Table 2 shows quantitative and subjective evaluation results for

he video methods. The proposed approach performs the best over-

ll on the subjective evaluation. However, it is subjectively rated

orse than the method of Ancuti et al. (2012) on S 2 and S 3 , be-

ause the estimated transmission map introduced spectral distor-

ion in areas containing large bright objects, such as the seafloor. 

The proposed method achieves the best scores for μs and sec-

nd best on ψ 

L ∗. For σχ the proposed method achieves the best

esults on S 4 , S 5 and S 6 . Li et al. (2015) achieve the worst results

n most of the metrics for most of the sequences. The method

f Ancuti et al. (2012) achieves the best overall UQICE score as

t attains the best results by far for the contrast of lightness ψ 

L ∗

n all the sequences. This performance is obtained because of the

se of contrast-enhancing filters that ensure a large range be-

ween light and dark pixels. However, the resulting images be-

ome overexposed (e.g. see the grey-white output images in S 4 , S 5 
nd S 6 in Fig. 8 (b)), thus leading to poor results for the mean

f saturation μs and the standard deviation of chroma σχ for

ncuti et al. (2012) . 

Interestingly, the results of σχ most closely correspond with

he subjective evaluation results. However, artefacts and false

olours produced by dehazing methods can be counted as pos-

tive by the metric. As an example, Table 3 compares UCIQE

esults for the proposed method ( Fig. 10 (c)) and that of

ncuti et al. (2012) ( Fig. 10 (b)) for four images from the PKU-

AQA dataset ( Chen et al., 2014 ): the red artefacts produced by the

ethod of Ancuti et al. (2012) are counted as positive by the σχ

etric and high values of ψ 

L ∗ lead to a high overall UCIQE score.

his analysis demonstrates the importance of conducting a subjec-

ive evaluation when assessing the quality of dehazed images and

ideos. 

.2. Image dehazing analysis 

We complement the video evaluation with a large-scale subjec-

ive evaluation experiment as well as a comparison with related

ethods. Our subjective evaluation experiment was completed by

 total of 260 participants (both experts and non-experts) on a di-

erse dataset of underwater images from the PKU-EAQA dataset

 Chen et al., 2014 ). Images are captured in a range of water types

62 blue, 22 turquoise and 16 green), depths and contain a vari-

ty of objects (humans, fish, corals and shipwrecks). In this sub-

ective evaluation we compare our proposed method to the re-

ults of four enhancement methods provided with the dataset,

hree underwater-specific methods ( Ancuti et al., 2012; Chao and
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Fig. 8. Video results. (a) Input: first frame of sequences S 1 − S 6 . Output images with (b) ( Ancuti et al., 2012 ), (c) ( Li et al., 2015 ) and (d) Proposed. Original videos provided 

by ACFR . 

Table 2 

Evaluation results for underwater video methods. UCIQE ( Yang and Sowmya, 2015 ) includes standard deviation of chroma σχ , contrast of light- 

ness ψ 

L ∗ and mean of saturation μs . Subjective evaluation ( SE% ) calculated as percentage preference. 

Ancuti’12 ( Ancuti et al., 2012 ) Li’15 ( Li et al., 2015 ) Proposed 

σχ ψ 

L ∗ μs UCIQE SE% σχ ψ 

L ∗ μs UCIQE SE% σχ ψ 

L ∗ μs UCIQE SE% 

S 1 0.44 0.91 0.81 0.69 31.02 0.36 0.71 0.83 0.61 22.22 0.44 0.72 0.87 0.66 46.76 

S 2 0.44 0.89 0.76 0.67 37.50 0.33 0.61 0.82 0.57 27.31 0.42 0.61 0.85 0.61 35.19 

S 3 0.49 0.88 0.77 0.69 4 4.4 4 0.34 0.65 0.85 0.59 23.15 0.40 0.86 0.85 0.68 32.41 

S 4 0.23 0.98 0.81 0.63 31.02 0.22 0.57 0.77 0.50 11.57 0.29 0.76 0.86 0.61 57.41 

S 5 0.23 0.96 0.74 0.60 39.35 0.18 0.48 0.78 0.46 13.43 0.26 0.64 0.84 0.55 47.22 

S 6 0.19 0.94 0.73 0.58 36.57 0.11 0.35 0.76 0.39 20.37 0.25 0.71 0.75 0.54 43.06 

Average 0.34 0.93 0.77 0.65 36.65 0.27 0.58 0.81 0.53 19.68 0.35 0.71 0.85 0.61 43.67 

Table 3 

Quantitative results for the method of Ancuti et al. (2012) ( Fig. 10 (b)) and the 

proposed method ( Fig. 10 (c)) for images 1, 2, 40 and 47 of the PKU-EAQA dataset 

( Chen et al., 2014 ). Individual parts of UCIQE ( Yang and Sowmya, 2015 ) include 

standard deviation of chroma σχ , contrast of lightness ψ 

L ∗ and mean of saturation 

μs . 

Ancuti’12 ( Ancuti et al., 2012 ) Proposed 

σχ ψ 

L ∗ μs UCIQE σχ ψ 

L ∗ μs UCIQE 

Image 1 0.34 0.80 0.78 0.61 0.32 0.65 0.84 0.58 

Image 2 0.31 0.67 0.86 0.59 0.13 0.58 0.83 0.48 

Image 40 0.32 0.67 0.83 0.58 0.27 0.85 0.89 0.63 

Image 47 0.47 0.58 0.73 0.59 0.30 0.50 0.85 0.53 
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ang, 2010; Wen et al., 2013 ) and a histogram adjustment method

 Chen et al., 2014 ). 

We use the same parameter settings and follow the same

aired preference experiment detailed in the previous section. As

ach participant compared random image pairs this resulted in
ome pairs being evaluated more than others. Each image pair

omparing each method was evaluated on average around 26 times

at least 15 times and no more than 36 times). To compare two

ethods we count the number of times each method is preferred

or each image pair with the most popular being awarded a point.

o points were awarded when no preference was given for either

ethod. 

To detect outliers we followed the β2 test ( ITU-R, 2012 ) and

one of the participants were rejected. To test the validity our al-

ernative hypothesis ( H a ), ‘the number of images for which one

ethod performs better than another is higher than expected by

hance’, we used a Chi-squared test 

2 = 

N ∑ 

n =1 

M ∑ 

m =1 

(O 

f 
n,m 

− E f n,m 

) 2 

E f n,m 

, (8) 

here O 

f 
n,m 

is the observed frequency at row n and column m ; and

 

f 
n,m 

is the expected frequency for row n and column m . O 

f 
n,m 

is the
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Fig. 9. Transmission map results. (a) Input: first frame of sequences S 1 − S 6 . Transmission maps with (b) ( Li et al., 2015 ) and (c) Proposed. Original videos provided by ACFR . 
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total amount of image pairs preferred for each method and E 
f 
n,m 

is

50 for each method, i.e. those expected by chance. Larger values of

χ2 indicate a stronger evidence for H a . We set the level of signif-

icance to 0.05. If χ2 > 3.841 the null hypothesis ( H 0 ), ‘the number

of images for which one method performs better than another is

not higher than expected by chance’, can be rejected. 

The results of our subjective evaluation on enhancement meth-

ods for all 100 underwater images ( Fig. 11 ) show there is a prefer-

ence for the proposed method in comparison to the other meth-

ods. This is most pronounced in comparison to the methods of

Wen et al. (2013) and Ancuti et al. (2012) and less so in compari-

son to Histogram adjustment and Chao and Wang (2010) . The pref-

erence is statistically significant for the proposed method in com-

parison to the other methods. 

Fig. 12 shows that the proposed approach outperforms all the

other underwater dehazing methods for all the waters types. The

histogram adjustment method, which was not specifically devel-

oped for enhancing underwater scenes, performs the best in green

waters. However, this approach performs poorly in blue waters as
ed artefacts are introduced. These results suggest that a method

ased on histogram adjustment is promising to address the spec-

ral distortion problem for images captured in green waters. 

To complete our analysis, at the end of the subjective evalua-

ion experiment we asked participants to provide details of the se-

ection criteria used when choosing preferred images. Participants

ere encouraged to tick multiple boxes to indicate the selection

riteria they used and 60% chose ‘I used different criteria for differ-

nt images’, 47% ‘the least blurry’, 21% ‘the most colourful’, 19% ‘the

ost similar to images taken outside water’ and 12% ‘the brightest’.

s we gave participants the option of explaining their selection cri-

eria in more detail, their comments suggest there is a preference

or images that are more colourful, higher in contrast and where

he visibility of objects in the scene increased as long as the im-

ges remained ‘natural’ and no noise, artefacts and false colours

ere introduced. 

We also demonstrate the advantages of our proposed ap-

roach through a comparison with two closely-related methods

i.e. the Underwater Dark Channel Prior ( Drews-Jr et al., 2013 )
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Fig. 10. Image results provided with the PKU-EAQA dataset ( Chen et al., 2014 ) where artefacts and false colours can bias quantitative metrics. (a) Input images (1, 2, 40 & 

47). Enhanced images with: (b) ( Ancuti et al., 2012 ) and (c) Proposed. 
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Fig. 11. Subjective evaluation results for underwater images. The percentage preference for the proposed method in comparison to other enhancement approaches (Histogram 

adjustment ( Chen et al., 2014 ), Chao’10 ( Chao and Wang, 2010 ), Ancuti’12 ( Ancuti et al., 2012 ) & Wen’13 ( Wen et al., 2013 )) for the 100 images in the PKU-EAQA dataset 

( Chen et al., 2014 ). The χ2 test results (with a level of significance of 0.05) are 6.33, 13.76, 28.86, and 48.02, respectively. For values > 3.841 the null hypothesis can be 

rejected. Preference for the proposed method is higher than expected by chance in comparison to all the other methods. 
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nd our previous method for dehazing single underwater images

 Emberton et al., 2015 )). The width and height of the images is no

arger than 690 pixels. A patch size of 9 × 9 pixels is used for the

eneration of the dark channel in all of the methods. 

Table 4 shows quantitative results of the three methods with

he UCIQE metric ( Yang and Sowmya, 2015 ) previously described

n Section 6.1 for 10 underwater images previously used to evalu-

te underwater enhancement methods ( Emberton et al., 2015 ). Al-

hough quantitative measures are not always reliable these results

uggest an improved performance for the proposed method. 
Fig. 13 compares the dehazed output and Fig. 14 the trans-

ission results for the image ‘Galdran9’. The approach of Drews-

r et al. (2013) produces dehazed output with dark green/blue

olour distortions and this is due to the veiling light estimation

hich is taken from the brightest pixel in the green-blue dark

hannel ( Fig. 13 (b)). In turquoise and green scenes the advan-

age of the proposed method’s white balancing step is demon-

trated ( Fig. 13 (d)). The transmission refinement method of the

roposed approach maintains more image details than the method
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Fig. 12. Subjective evaluation results for underwater images arranged into (a) green, (b) turquoise and (c) blue water types. The percentage preference for the proposed 

method in comparison to other enhancement approaches (Histogram adjustment ( Chen et al., 2014 ), Chao’10 ( Chao and Wang, 2010 ), Ancuti’12 ( Ancuti et al., 2012 ) & 

Wen’13 ( Wen et al., 2013 )) for the images in the PKU-EAQA dataset ( Chen et al., 2014 ). (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Table 4 

Quantitative results for related methods. UCIQE ( Yang and Sowmya, 2015 ) includes standard deviation of chroma σχ , contrast 

of lightness ψ 

L ∗ and mean of saturation μs . 

Drews-Jr’13 ( Drews-Jr et al., 2013 ) Emberton’15 ( Emberton et al., 2015 ) Proposed 

σχ ψ 

L ∗ μs UCIQE σχ ψ 

L ∗ μs UCIQE σχ ψ 

L ∗ μs UCIQE 

Ancuti1 0.23 0.64 0.86 0.55 0.24 0.68 0.84 0.56 0.27 0.81 0.88 0.62 

Ancuti2 0.29 0.49 0.88 0.53 0.33 0.40 0.81 0.51 0.35 0.64 0.89 0.61 

Ancuti3 0.33 0.64 0.89 0.60 0.38 0.65 0.85 0.61 0.39 0.66 0.88 0.62 

Shipwreck 0.24 0.73 0.95 0.61 0.36 0.88 0.87 0.67 0.38 0.99 0.87 0.71 

Fish 0.41 0.76 0.91 0.67 0.59 0.85 0.79 0.73 0.60 0.91 0.77 0.74 

Galdran1 0.25 0.73 0.91 0.60 0.44 0.90 0.80 0.69 0.38 0.94 0.82 0.68 

Galdran9 0.21 0.71 0.95 0.59 0.44 0.85 0.77 0.66 0.37 0.89 0.79 0.65 

Reef1 0.32 0.94 0.91 0.69 0.42 0.91 0.84 0.70 0.36 0.97 0.86 0.69 

Reef2 0.40 0.84 0.91 0.69 0.61 0.98 0.77 0.77 0.60 0.98 0.76 0.76 

Reef3 0.35 0.67 0.92 0.62 0.47 0.95 0.81 0.71 0.43 0.93 0.80 0.69 

Average 0.30 0.71 0.91 0.62 0.43 0.80 0.82 0.66 0.41 0.87 0.83 0.68 

 7
of Emberton et al. (2015) and the pure haze segmentation is less

prone to failure ( Fig. 14 ) 2 . 
2 The results for all of the images and videos can be found in the supplementary 

material. 
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a  

o  

i  

i  
. Conclusion 

We presented a method for underwater image and video de-

azing that avoids the creation of artefacts in pure haze regions by

utomatically segmenting these areas and giving them an image

r frame-specific transmission value. The presence of pure haze

s used to determine the features for the estimation of the veil-

ng light. To deal with spectral distortion we introduced a seman-
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Fig. 13. Image dehazing result. (a) Input image (Galdran9). Output images with (b) ( Drews-Jr et al., 2013 ), (c) ( Emberton et al., 2015 ) and (d) Proposed. Image taken from 

Galdran et al. (2015) . 

Fig. 14. Transmission map result. (a) Input image (Galdran9). Output transmission maps with (b) ( Drews-Jr et al., 2013 ), (c) ( Emberton et al., 2015 ) and (d) Proposed. Image 

taken from Galdran et al. (2015) . 
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ic approach which selects the most appropriate white balancing

ethod depending on the dominant colour of the water. Our find-

ngs suggest a histogram adjustment method may be advantageous

n green-dominated waters. For videos we introduced a Gaussian

ormalisation step to ensure pure haze segmentation is coherent

etween neighbouring frames and applied temporal smoothing of

stimated parameters to avoid temporal artefacts. 

Our approach demonstrated superior performance in compar-

son to the state of the art in underwater image and video

ehazing. Out of three metrics ( σχ , ψ 

L ∗ and μs ( Yang and

owmya, 2015 )) used to quantitatively assess underwater image

uality we found that σχ , the standard deviation of chroma, most

losely corresponded with the subjective evaluation results. How-

ver, we also highlighted examples when the results of this metric

o not show agreement with subjective assessment as processed

mages containing false colours are counted as positive by the met-

ic. 

The main limitation with our method and, in general, of meth-

ds based on the Dark Channel Prior is the incorrect estimation of

he transmission map in scenes that contain large bright objects.

or this reason our future work will extend our approach to scenes

ontaining large bright objects such as seabed regions and explore

hite balancing methods that are suitable for all water types. 
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