
Building collaboration in multi-agent systems
using reinforcement learning

Mehmet Emin Aydin and Ryan Fellows

Department of Computer Science and Creative Technologies,
University of the West of England,
Frenchay Campus, Bristol, UK

{mehmet.aydin, ryan.fellows}@uwe.ac.uk

Abstract. This paper presents a proof-of concept study for demonstrat-
ing the viability of building collaboration among multiple agents through
standard Q learning algorithm embedded in particle swarm optimisation.
Collaboration is formulated to be achieved among the agents via com-
petition, where the agents are expected to balance their action in such a
way that none of them drifts away of the team and none intervene any
fellow neighbours territory, either. Particles are devised with Q learning
for self training to learn how to act as members of a swarm and how to
produce collaborative/collective behaviours. The produced experimental
results are supportive to the proposed idea suggesting that a substantive
collaboration can be build via proposed learning algorithm.

Keywords: Agent collaboration · reinforcement learning · multi-agent
systems · Q learning · disaster management

1 Introduction

Cutting-edge technologies facilitate the daily-life of individuals and societies with
more opportunities to overcome challenging issues continuously introducing new
smart gadgets day-in day-out. These astonishing technologies introduce changes
with use of smart sensors in most of the time, which places a crucial role in our
daily life as they are literally everywhere any more. Internet of Things (IoT)
is one of key technologies to organise smart sensors in order to facilitate liv-
ing environments with more and more services such as Smart homes and cities,
highly-efficient engineering products, crews/swarms of robots etc. An other hot-
topic attracts much attention nowadays is the swarms of unmanned aerial ve-
hicles (UAVs). A particular example can be the teamed up UAVs to collect
information from disaster areas for predicting/discovering the level of damage
and human suffering and subsequently identifying humanitarian aid and rescue
activities. This is due to the fact that information collection plays a very cru-
cial role in disaster management, where the decisions are required to be done
timely and based on correct and up-to-date information. Swarms of UAVs can
be devised for this purposes, which are expected to remain inter-connected all
the time to deliver the duties collaboratively [4]. Swarms of UAVs can also be



2 M.E. Aydin and R. Fellows

typical implementations area of IoT, where smart sensors and tiny devices, which
are drones (UAVs) in this case, require efficient and robust settings and config-
uration. However, it is not easy to design and run an efficiently exploring swarm
due to various practical issues such as energy limitations. This paper introduces
a proof-of-concept learning algorithm to train multiple individual agents/devices
for smart behaviors and collaboration.

Multi-agent systems (MAS) is an up-to-date artificial intelligence paradigm,
which attracts much attention for modeling intelligent solutions following divide-
and-conquer principle. It imposes dividing the complete functionality into mod-
ules and tasks, so that each task can be delivered by a proactive and smart
entity, so-called agent, which are expected to act autonomously and accumulate
experience to exploit ahead in fulfilling duties more efficiently. It is also expected
that the agents would collaborate for a collective intelligence to deliver the en-
tire functionality. This paradigm has proved success so many times in a wider
problem solving horizon [5, 7, 20, 25]. It proves that developing IoT models and
UAV implementations using MAS paradigm will produce a substantial benefit
and efficiency. However, building a collaboration among multiple agents remains
challenging since MAS studies have not reached to a sufficient level of maturity
due to the difficulties constitute from the nature of the problem.

This paper introduces an approach for implementing a learning algorithm to
build collaboration among multiple agents in order to create collective behaviour.
It is a reinforcement learning algorithm, which best fits real-time learning cases
within dynamically changing environments. The individual agents are expected
to learn from past experiences for which how to stay interconnected and remain
as a crew to collectively fulfill the duties without wasting resources. The latter
purpose enforces the individual agents to compete in achieving higher rewards
through out of the entire process, which makes the study further important since
collaboration has to be achieved while competing. Previously, a competition-
based collective learning algorithm has been attempted with learning classifier
systems for modelling social behaviours [18]. Although there are many other
studies conducted for collective learning of multi-agents with Q learning [15,
29], the proposed algorithm implements a competition-based collective learning
approach extending Q learning with the notion of individuals and their positions
in particle swarm optimisation (PSO) algorithm, which ends up as Q learning
embedded in PSO.

The rest of the paper consists of the following structure; the background and
literature review is presented in Section 2, the proposed reinforcement learning
algorithm is introduced in Section 3, the implementation of the algorithm for
scanning fields is elaborated in Section 4, experimental results and discussions
are detailed in Section 5 and finally conclusions in Section 6.

2 Background

Swarm intelligence is a subfield of artificial intelligence (AI) in which the intelli-
gence in behaviours emerges as the outcome of collective effort by self-organised
simple entities, e.g. agents, organisms, individuals. Simple organisms that live



Collaborating agents with reinforcement learning 3

in colonies; such as ants, bees, bird flocks etc. have attracted the attention of
researchers with their collective intelligence and emergent behaviours manifested
in their activities. A population of such simple entities helps create emergent and
intelligent behaviours through interaction among one another without using any
set of instruction(s) to fulfill, and subsequently construct a swarm intelligence
system [22].

Swarm intelligence approaches reveal the collective behaviour of social insects
in performing specific duties, where modelling the behaviour of those social in-
sects facilitates that such models can be used as the basis of varieties of artificial
entities and emerging collective intelligence. This leads to paving problem solving
for real world problems by exploiting the discovered problem solving capabilities
of social insects in this way. The main aim is to understand and model the be-
haviours of simple individuals and the their local interactions with neighbouring
peer individuals and the entire their environments, so as to attain more com-
plex behaviours that might be useful for solving larger and more complicated
problems, e.g. optimisation problems [12], [32].

Reinforcement learning (RL) is a machine learning approach in which un-
supervised learning rules work alongside with a reinforcement mechanism to
reward an agent based on its action selection activity to respond the stimulus
from its own environment. It can be also called as semi-supervised learning since
it receives a reinforcement point, either immediate or delayed, fed back from the
environment. Let Λ be an agent works in environment E, which stimulates Λ
with its state s ∈ S, where S is the finite set of states of E. The agent Λ will eval-
uate this perceived state and make a decision to select an action a ∈ A, where A
is the finite set of actions that an agent can take. Meanwhile, the reinforcement
mechanism, may also be called as reward function, assesses the action, a, taken
by Λ in response to state s and produces reward r to feed back to Λ. Here, the
ultimate aim of the agent Λ is to maximize its accumulated reward by the end
of the learning period/process, with {max R =

∑∞
i=1 ri}, where∞ is practically

replaced with a finite number such as I to be the total number of learning itera-
tions. Although an agent is theoretically expected to function forever, it usually
works for a predefined time period as a matter of practicality. There are vari-
ous reinforcement learning methods developed with various properties. Among
these, Q Learning [37], [34], TD Learning [8],[33], learning classifier systems [9],
[10] etc are well know reinforcement learning approaches.

Multi agent systems (MAS) are well-known and relatively mature distributed
collective intelligence approaches with which a set of proactive agents act indi-
vidually for solving the problems in collaboration [2]. The motivation is to team
up intelligent autonomous entities for solving the problems in harmony and
composing a certain level of coordination to help individual autonomous agents
act pro-actively and efficiently to contribute and collaborate in problem solving
process demonstrating individual intelligence capacity [5]. It is useful to note
that the main properties of MAS (i.e. autonomy, responsiveness, redundancy,
and distributed approach) facilitate success in MAS applications, which result
in a good record in implementations within many research fields including pro-



4 M.E. Aydin and R. Fellows

duction planning, scheduling and control [28], engineering design, and process
planning [2].

Researchers are conscious on that solving complex and large problems with
distributed approaches remains as a challenging issue due to the fact that there is
not a productive method to commonly use for organising distributed intelligence
(agents in this case) for a high efficiency [24, 29, 35]. In fact, the performances
of multi-agent systems including metaheuristic teams significantly depends on
the quality of collaboration [7]. Swarm intelligence-based agent collaboration is
suggested in [5], while the persistence of this challenging issue is reflected in a
number of recent studies including [16] and [13], where [16] introduces auction-
based consensus among the agents while [13] studies theoretical bases of agent
collaboration through mathematical foundations.

3 Collaborating Agents with Q Learning

Managing an efficient collaboration among concurrently functioning multiple
agents within a dynamic environment is a challenging problem as described
above. The agents are expected to solve a problem in collaboration while acting
individually. Particle swarm optimisation algorithm is known to be an effective,
population-based, nature-inspired algorithm for continuous problem domains. It
can be a good framework for learning multi-agents in 2D spaces and is expected
to result better once embedded with an online learning algorithm such as Q
learning.

3.1 Particle swarm optimisation (PSO)

The PSO approach has been invented inspiring of social behaviours of bird flocks
to solve the optimization problems in which each single solution, called a particle,
joins the other individuals to make up a swarm (population) for exploring within
the search space. Each particle is set to move towards the optimum (ultimate
food) with certain velocity updated each time and is evaluated with a fitness
value calculated through a cost function. The entire swarm of the particles con-
duct search across the problem space following a leading particle, which found to
be nearest to the optimum. A PSO algorithm makes a start with initialising the
population of solutions (the swarm) and keeps updating it iteration-by-iteration,
where a typical PSO algorithm uses particles (solutions) built based on, mainly,
two key vectors; position vector, xi(t) = {xi,1(t), ..., xi,n(t)}, and velocity vector
vi(t) = {vi,1(t), ..., vi,n(t)}, where xi,k(t), is the position value of the ith parti-
cle with respect to the kth dimension at iteration t, and vi,k(t) is the velocity
value of the ith particle with respect to the kth dimension at iteration t. The ini-
tial values for each particular solution, xi(0) and vi(0), are randomly generated
within a range of lower and upper pre-determined boundaries. Once a solution
is obtained, the quality of that solution is measured with a cost function of fi,
defined as fi : xi(t) −→ <.

For each particle in the swarm, a personal best, yi(t) = {yi,1(t), ..., yi,n(t)},
is defined, where yi,k(t) denotes the position of the ith personal best with respect
to the kth dimension at iteration t. The personal bests are equal to the corre-
sponding initial position vector at the beginning. Then, in every generation, they



Collaborating agents with reinforcement learning 5

are updated based on the solution quality. Regarding the objective function, fi,
the fitness values for the personal best of the ith particle, yi(t), is denoted by
fyi (t) and updated whenever fyi (t+ 1) ≺ fyi (t), where t stands for iteration and
≺ corresponds to the logical operator, which becomes < or > for minimization
or maximization problems respectively.

In addition, a global best, which is the best particle within the whole swarm
is defined and selected among the personal bests, y(t), and denoted with g(t) =
{g1(t), ..., gn(t)}. The fitness of the global best, fg(t), can be obtained using
fg(t) = opti∈N{f

y
i (t)}, where opt becomes min or max depending on the type

of optimization. Afterwards, the velocity of each particle is updated based on its
personal best, yi(t) and the global best, g(t) using the following updating rule:

vi(t+ 1) = δwt(c1r1(yi(t)− xi(t)) + c2r2(g(t)− xi(t))) (1)

where w is a parameter known as the inertia weight, and used to regulate the
impact of the previous values of the velocities upon the current ones, where it
is updated by β, decrement factor, through wt+1 = wt × β, δ is known as con-
striction factor that is used to keep the effects of the randomized weight within
the certain range. In addition, r1 and r2 are both random numbers generated
within the range of [0,1] and c1 and c2 are the learning factors for regulat-
ing social and cognitive interactions. The next step is to update the positions
with xi(t + 1) = xi(t) + vi(t + 1) for continues problem domains and with
xi(t + 1) = 1

evi(t+1) for discrete domains as suggested by Kennedy and Eber-
hart [14]. Once the position values of all particles are updated, the fitness value
of each solution is calculated as the last instruction of an iteration. The algo-
rithm proceeds to a new iteration if the predetermined stopping criterion is not
satisfied. For further information, [21] and [32] can be seen.

3.2 Q learning

Q learning is a reinforcement learning algorithm developed based on temporal-
differences handled with asynchronous dynamic programming. It provides re-
wards for agents with the capability of learning to act optimally in Markovian
domains by experiencing the consequences of actions, without requiring them to
build map of the respective domain [36]. The main idea behind Q learning is
to use a single data structure called the utility function (Q(x, a)). That is the
utility of performing action a in state x [37]. Throughout the whole learning
process, this algorithm updates the value of Q(x, a) using x, a, r, y tuples per
step, where r represents the reinforcement signal (payoff) of the environment
and y represents the new state which is obtained as the consequence of execut-
ing action a in state x. Both x and y are elements of the set of states (S) and a is
an element of the set of actions (A). Q(x, a) ∈ Q is defined as Q : S ×A −→ <
and determined via Q(x, a) = E(r+γe(y)|x, a), where γ is a discounted constant
value within the interval of [0,1] as described according to the domain and e(y)
is the expected value of y defined to be e(y) = max{Q(y, a)} ∀a ∈ A.

The learning procedure first initialises the Q values to 0 for each action. It
then repeats the following procedure. The action with the maximum Q value is



6 M.E. Aydin and R. Fellows

selected and activated. Corresponding Q value of that action is then updated us-
ing Qt+1(x, a) = Qt(x, a)+β(r+γe(y)−Qt(x, a)), where Qt(x, a) and Qt+1(x, a)
are the old and the new Q values of action a in state x, respectively. β is the
learning coefficient changing in [0,1] interval. This iterative process ends when
an acceptable level of learning is achieved or a stopping criterion is satisfied. For
more information see Sutton and Barto [31].

3.3 Swarms of Learning Agents

PSO is one of very well know swarm intelligence algorithms used to develop col-
lective behaviours and intelligence inspiring of bird flocks. Although it has a good
record of success, furnishing each individual with learning capability remains an
important aspect to be developed further for an improved collective intelligence.
There are few studies investigating the hybridisation of reinforcement learning
algorithms, especially with Q Learning algorithm for particular applications [11],
[23], [27]. Likewise, Q Learning algorithm has been implemented by various stud-
ies to develop coordination of multi agent systems [19]. However, PSO has not
been considered as the framework of learning agents furnished with Q Learning,
where each particle within the swarm would be able to learn how to collaborate
with other peer particles.

For the purpose of training the particles so that each is to behave in harmony
within its neighbourhood, we propose use of Q Learning algorithm embedded
in PSO in a way that the position vectors, xi, are updated through a well-
designed implementation of Q learning to adaptively control the behaviour of
the individuals towards collective behaviours, where all individual members of
the swarm collectively and intelligently contribute. Hence, we revised PSO, first,
with ignoring the use of velocity vector, vi, so as to save time and energy relaying
on the fact that the position vector, xi, inherently contains vi, and does not
necessitate its use as also discussed by [30], [6]. Secondly, the update rule of the
position vectors, xi is revised as follows:

xi(t+ 1) = xi(t) + f(Q, xi, a) (2)

where x̂i is a particular position vector obtained from f(Q, xi, a) defined as
{x̂i|max[Q(xi, a)] for ∀a ∈ A} in which action a is taken since it has the
highest utility value, Q, returned. The main aim of each particle is to learn
from the experiences gained through received rewards produced by reinforcement
mechanism, where it credits rightly taken actions and punishes the wrongly
taken ones. This learning property helps incrementally develop collaborative
behaviours for each particle.

As clearly indicated before, reinforcement mechanism plays the crucial role
in furnishing particles with learning capabilities. It remains as an independent
monitoring mechanism to assess the actions taken by the particles and supply
them with reinforcing payoff grades. It is usually implemented in a Reward Func-
tion, which is defined as R : S×A −→ R. The reward function is implemented to
consider the situation with a particular state, x, applied with action a, whether
it is or not the correct action taken. A reward, r, is produced as the assessment



Collaborating agents with reinforcement learning 7

level for the situation. Thus, an efficient reward function is required to develop
suitable to the problem domain.

4 Scanning disastrous area with swarm of learning agents

This problem case is adopted to illustrate the implementation of collective in-
telligence achieved using the multi agent learning algorithm proposed in this
study, which is built up through embedding Q learning within particle swarm
optimisation algorithm. Suppose that such an area subjected to some disasters
is required to be scanned for information collection purposes. A flock of artificial
birds (swarm of UAVs); each is identified as a particle and furnished with a list
of actions to take while moving around the area in collaboration with other peer
particles. Each particle is enabled to learn via the Q learning implemented for
this purpose and being trained how to remain connected with the rest of the
swarm.

Since the swarm intelligence framework preferred in this study is PSO, each
individual to form up the swarm will be identified as a particle as is in par-
ticle swarm optimisation. Let M be the size of the swarm, where M particles
are created to form up the swarm; each has a 2-dimensional position vector,
xi = {x1,i, x2,i| i = 1, ...,M}, because the defined area is 2-dimensional and each
particle will simply move forward and/or backward, vertically and/or horizon-
tally. For simplification purposes, each particle is allowed to move with selecting
one of predefined actions, where each action is defined as a step in which the
particle can chose the size of the step only. Using the same notation as Q learn-
ing, the size of the set of actions is A, which includes forward and backward
move with short, middle and long size steps. Hence, a particle can move forward
and backward with selecting one of these six actions. Let ∆ = {δj |j = 1, ..., A}
be the set of steps including both forward and backward ones, which a particle
is able to take as part of the action it wants to do. Once an action is decided
and taken, the position of the particle will change as much as f(Q, xi, a) = πδj ,
where π is a probability calculated based on position and possible move of neigh-
bouring particles. This function can substitute updating rule in PSO to calculate
the new position of the particle under consideration. Here, the neighbourhood
is considered as the other peer particles that has connectivity with the one un-
der consideration, which is determined based on the distance in between. Let
Ni ∈M be the set of neighbouring peer particles (agents) of ith particle, which
is defined as Ni = {xk| ε > d(xi,xk)} ∀k ∈M , where d(xi,xk) is calculated as a
Euclidean distance and ε is the maximum distance, (the threshold), between two
peer particles setup to remain connected. Once a particle moved as a result of
the action taken, the reinforcement mechanism, the reward function in another
name, assesses the decision made for this action considering the previous state
of the particle before transition and the resulted position of neighbouring peer
particles.

The reward is mainly calculated based on the total distance from the par-
ticle to its neighbouring particles,

∑Ni

k=1 d(xi,xk). If there is no neighbouring
particle determined, which means the particle has lost connection, then it will



8 M.E. Aydin and R. Fellows

be punished with −100 negative reward. If there is still connection but is less
then Niε, then the negative reward will be as much as the difference between Niε
and the total distance of

∑Ni

k=1 d(xi,xk). If the total distance from its position
to all other neighbouring particles equals to Niε, then that deserves the whole
(highest) reward, which is 100.

5 Experimental Results

This section presents experimental results to demonstrate a proof-of-concept Q
learning algorithm works to help particles (agents) self-train towards building a
collaboration and behave as a swarm member. The aim is also to revise and anal-
yse how the whole study turned out, judging whether the final implementation
adhered to the expectations pre-set up. The algorithm has been implemented
for a number of swarm sizes using an agent-based simulation tool called NetL-
ogo [38].

5.1 Approximation and Evaluation

Throughout this study, Q learning is embedded in PSO as explained above to
show that both algorithm work hand-by-hand to achieve a swarm of learning
agents which collaborate for collective behavior/intelligence. Rather than testing
the algorithm with speed, it is subject to in depth observation as to whether the
particles are behaving correctly, which itself has intricacies that require close
inspection.

Each particle was made to essentially be ”reactive” to the environment sim-
ilar to a real world environment. So if one particle moved, the others which are
also moving simultaneously would need to take their fellow particles movement
as well as their own into consideration and react accordingly so that they are
always within proximity of their neighbours. This proximity prevents a particle
from invading its neighbours space whilst also not allowing it to drift too far
out of the pre-set radius, if it does either of these it will get punished whereas
if it stays the ”perfect” distance away, it will get the maximum reward. Cor-
responding details are elaborated in our technical report [3]. In order to go for
comparative analysis, two swarms are created for which one was working with
embedded Q learning (will be presented with the acronym of M-QL here-forth)
and the other was run with a standard PSO to demonstrate the collective be-
haviour.

The experimentation is organised to start with the initial swarms as seen
in Fig. 1a and Fig. 1b then the swarms are incremented through iterations as
presented in later figures of Fig. 1, where the behaviors of both swarms, M-QL
swarm and PSO swarm, after 10, 50 and 500 iterations are presented, respec-
tively. As can be observed from Fig. 1, the particles of the swarm, learning with
M-QL, can demonstrate connectivity among themselves via having a connect-
ing distance from one another while the swarm running PSO approximates to
a particular value, where all particles nearly come to overlapping positions. In
fact, the behaviours of the particles in Fig. 1c, 1e, 1g clearly indicates that the
individual particles keeping distance neither much falling apart nor remaining



Collaborating agents with reinforcement learning 9

(a) Initial positions
for M-QL

(b) Initial positions
for PSO

(c) 10 iterations with
M-QL

(d) 10 iterations
with PSO

(e) 50 iterations with
M-QL

(f) 50 iterations with
PSO

(g) 500 iterations
with m-QL

(h) 500 iterations
with PSO

Fig. 1: A set of comparative results to demonstrate the behaviours of the learning
algorithm versus PSO

too close to one another, while the number of iterations increases the distances
become more fitting as Fig. 1c shows some particles are still too close to each
other, but, Fig. 1g indicates a better positioning. On the other hand, Fig. 1d, 1f,
1h demonstrate how particles approximate to a targeted value without consider-
ing any having any distance among one another. More iterations help individual
particles getting closer and taking overlapping positions more and more.

The results confirm that particles are at least capable of learning both in
the individual sense and the subsequent group sense. Although this is a funda-
mentally basic example of learning, it acts as a basis which can be built on in
various ways. From running various parameter configurations in earlier experi-
mentations, it was observed that the particles choose the correct action to take
in relation to the proximity as this showed they had learned which action would
benefit them the most, which also showed the components of state and action
were working correctly.

5.2 Individuals’ learning behaviour

The performance of learning particles were also observed throughout of this re-
search. For observing individual learning performance, three particles are taken
under observation over 100 iterations. Due to the limitations of NetLogo, each
simulation in this regard is physically observed from start to end, for each iter-
ation, particles are individually judged whether each has made a good decision



10 M.E. Aydin and R. Fellows

(a) Particle 0 (b) Particle 1 (c) Particle 2

Fig. 2: Learning behaviours of the three particles.

or a bad decision, good decision means taking the correct action and receiving
positive reward while bad decision indicates taking wrong actions and receiving
negative rewards (penalty). Here, a good decision will be dictated by a particle
moving in such a way it does not get too close to a fellow particle and does not
drift outside of the radius either.

The results of these graphs show that for the most part, the correct decision
is usually made, which shows the proposed algorithm does work. An issue occurs
when two particles move at the same time because they simply cannot predict
what their fellow particles will do which causes proximity problems. This could
simply be rectified by extending the study to deal with simultaneous action and
synchronisation. As can be seen in the graph for particle 2 (Fig. 2c), it started to
make bad decisions for around 10 iterations which also continued after. This was
because it drifted out of the radius of its topology and has not have a stronger
penalty, which also needs to be tackled in the future. A parametric study should
also be conducted for further benefits and limitations of this approach in the
future.

6 Conclusions

This paper presents a proof-of concept study for demonstrating the viability
of building collaboration among multiple agents through standard Q learning
algorithm embedded in particle swarm optimisation. A number of particles fur-
nished with Q learning has been subjected to self training to act as members of
a swarm and produce collaborative/collective behaviours. Following introducing
the algorithmic foundation and structures, an experimental study is conducted
to demonstrate that the formulated algorithm produces results supporting the
aimed behaviours of the algorithm. The results are produced with very simplistic
assumptions, where further enhancements require further extensive theoretical
and experimental studies.

References
1. N. Alechina, and B. Logan: Computationally grounded account of belief and awareness for AI

agents, In Proc. of The Multi-Agent Logics, Languages, and Organisations Federated Workshops
(MALLOW 2010), Lyon, France, August 30 - Sept. 2, 2010, CEUR-WS 627.

2. M.B. Ayhan, M.E. Aydin, and E. Oztemel: A multi-agent based approach for change man-
agement in manufacturing enterprises. Journal of Intelligent Manufacturing, 26 (5), 2015, pp.
975-988.



Collaborating agents with reinforcement learning 11

3. M.E. Aydin, and R. Fellows: A reinforcement learning algorithm for building collaboration in
multi-agent systems. arXiv preprint arXiv:1711.10574, 2017.

4. M.E. Aydin, N. Bessis, E. Asimakopoulou, F. Xhafa, and J. Wu: Scanning Environments with
Swarms of Learning Birds: A Computational Intelligence Approach for Managing Disasters. In
IEEE International Conference on Advanced Information Networking and Applications (AINA),
2011, pp. 332-339.

5. M. E. Aydin: Coordinating metaheuristic agents with swarm intelligence, Journal of Intelligent
Manufacturing, 23(4), 2012, pp. 991-999.

6. M. E. Aydin, R. Kwan, C. Leung, and J. Zhang: Multiuser scheduling in HSDPA with particle
swarm optimization, Lecture Notes In Computer Science, 5484, 2009, pp. 71-80.

7. M. Aydin: Metaheuristic agent teams for job shop scheduling problems. In Holonic and Multi-
Agent Systems for Manufacturing, LNCS 4659, 2007, pp. 185-194.

8. J. Bradtke, and A. G. Barto: Linear least-squares algorithms for temporal difference learning,
Machine Learning, 22(1-3), 1996, pp. 33-57.

9. L. Bull: Two Simple Learning Classier Systems, in Foundations of Learning Classier Systems,
Studies in Fuzziness and Soft Computing, 183,Springer, 2005, pp. 63-90.

10. L. Bull and T. Kovacs: Foundations of Learning Classier Systems, Studies in Fuzziness and Soft
Computing, 183, Springer, 2005.

11. C. Claus and C. Boutilier: The dynamics of reinforcement learning in cooperative multiagent
systems, In Proc. of National Conf. on Artificial Intelligence (AAAI-98), 1998, pp. 746-752.

12. A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian: Ant system for job-shop scheduling.
Belgian Journal of Operations Research, Statistics and Computer Science (JORBEL), 34(1)
1994, pp. 39-53.

13. X. Dong: Consensus Control of Swarm Systems, In Formation and Containment Control for
High-order Linear Swarm Systems, 2016, pp. 33-51. Springer.

14. R. Eberhart and J. Kennedy: A new optimizer using particle swarm theory, in Proc. of the 6th
Int. Symposium on Micro-Machine and Human Science, 1995, pp. 39 - 43.

15. J. Foerster, Y.M.Assael, N. de Freitas, and S. Whiteson: Learning to communicate with deep
multi-agent reinforcement learning, In Advances in Neural Information Processing Systems
2016, pp. 2137-2145.

16. M. Gath: Optimizing Transport Logistics Processes with Multiagent Planning and Control. PhD
Thesis, 2015, Springer, 2016.

17. M. Hammami, and K. Ghediera: COSATS, X-COSATS: Two multi-agent systems cooperating
simulated annealing, tabu search and X-over operator for the K-Graph Partitioning problem,
Lecture Notes in Computer Science 3684, 2005, p. 647-653.

18. L. M. Hercog:Better manufacturing process organization using multi-agent self-organization and
co-evolutionary classifier systems: The multibar problem. Appl. Soft Comput. 13(3),2013, pp.
1407-1418.

19. H. Iima and Y. Kuroe: Swarm reinforcement learning algorithm based on particle swarm opti-
mization whose personal bests have lifespans, Lecture Notes in Computer Science, 5864, 2009,
pp. 169-178.

20. A. Kazemi, M. F. Zarandi, and S. M. Husseini: A multi-agent system to solve the productiondis-
tribution planning problem for a supply chain: a genetic algorithm approach. The Int. Jour. of
Advanced Manufacturing Technology, 44(1-2), 2009, pp.180-193.

21. J. Kennedy and R. C. Eberhart: A discrete binary version of the particle swarm algorithm,” 1997
IEEE Int. Conf. on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation,
Orlando, FL, 1997, pp. 4104-4108.

22. J. Kennedy, R. Eberhart, and Y. Shi.: Swarm Intelligence, Morgan Kaufmann, San Mateo, CA,
USA, 2001.

23. J. R. Kok and N. Vlassis: Sparse cooperative q-learning, in Proceedings of the International
Conference on Machine Learning, ACM, 2004, pp. 481-488.

24. M. Kolp, P. Giorgini, and J. Mylopoulos: Multi-agent architectures as organizational structures,
Autonomous Agents and Multi-Agent Systems, 13, 2006, pp. 3-25.

25. A. Kouider, and B. Bouzouia: Multi-agent job shop scheduling system based on co-operative
approach of idle time minimisation. International Journal of Production Research, 50(2), 2012,
pp.409-424.

26. P. Kouvaros and A. Lomuscio: Parameterised verification for multi-agent systems, Artificial
Intelligence, 234, (May 2016), pp. 152-189.

27. Y. Meng: Recent Advances in Multi-Robot Systems, I-Tech Education and Publishing, 2008,
ch. Q-Learning Adjusted Bio-Inspired Multi-Robot Coordination, pp. 139-152.

28. S. Mohebbi, and R. Shafaei: E-Supply network coordination: The design of intelligent agents for
buyer-supplier dynamic negotiations. Journal of Intelligent Manufacturing 23, 2012, pp.375-391.

29. L. Panait and S. Luke: Cooperative multi-agent learning: The state of the art. Autonomous
agents and multi-agent systems, 11(3),2005, pp.387-434.

30. R. Poli, J. Kennedy, and T. Blackwell: Particle swarm optimization. Swarm Intelligence, 1,
2007, pp. 33-57.

31. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction, MIT Press, Cambridge,
MA, USA, 1998.



12 M.E. Aydin and R. Fellows

32. M. Tasgetiren, Y. Liang, M. Sevkli, and G. Gencyilmaz: Particle swarm optimization algorithm
for makespan and total flow-time minimization in permutation flow-shop sequencing problem.
European Journal of Operational Research, 177(3) 2007, pp. 1930-1947.

33. G. Tesauro: Practical issues in temporal difference learning, Machine Learning, 1992, 8(3-4) pp.
257-277.

34. J. N. Tsitsiklis and R. Sutton: Asynchronous stochastic approximation and Q-learning, Machine
Learning, 1994, 16(3), pp. 185-202.

35. J. Vazquez-Salceda, V. Dignum, and F. Dignum: Organizing multi-agent systems, Autonomous
Agents and Multi-Agent Systems, 11, 2005, pp. 307-360.

36. C. Watkins: Learning from delayed rewards, PhD thesis, Cambridge University, 1989.
37. C. Watkins and P. Dayan: Technical note: Q-learning. Machine Learning, 8, 1992, pp. 279- 292.
38. U. Wilensky and W. Rand: An introduction to agent-based modeling: Modeling natural, social

and engineered complex systems with NetLogo, MIT Press, Cambridge, 2015.


