
1 
 

Development and Biological Evaluation of Fluorophosphonate-Modified 1 

Hydroxyapatite for Orthopaedic Applications 2 

 3 

Gráinne Nearya*, Ashley W. Bloma, Anna I. Shielb, Gabrielle Whewayb and Jason P. Mansellb*  4 

a Musculoskeletal Research Unit, University of Bristol, Level 1 Learning and Research Building BS10 5NB, UK. 5 

b Department of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, 6 

Bristol BS16 1QY, UK. 7 

 8 

 9 

*Corresponding author email addresses:  10 

grainne.neary6@gmail.com, jason.mansell@uwe.ac.uk 11 

 12 

 13 

 14 

 15 

 16 

  17 

Manuscript Click here to download Manuscript Fluorophosphonate
Functionalised HA with revision.docx

Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

mailto:grainne.neary6@gmail.com
mailto:Jason.mansell@uwe.ac.uk
http://www.editorialmanager.com/jmsm/download.aspx?id=263663&guid=9e5e94ad-7bd7-4e59-94ac-3691c45e1207&scheme=1
http://www.editorialmanager.com/jmsm/download.aspx?id=263663&guid=9e5e94ad-7bd7-4e59-94ac-3691c45e1207&scheme=1
http://www.editorialmanager.com/jmsm/viewRCResults.aspx?pdf=1&docID=14697&rev=2&fileID=263663&msid={8FAAFC4C-63AA-4EDB-99DF-D6CE3096E887}


2 
 

1. Introduction  1 

Hydroxyapatite (HA) is a widely used biomaterial in orthopaedic implant technology as a bone graft substitute 2 

[1, 2, 3, 4, 5] and as a coating for titanium implants [6, 7, 8, 9]. Traditional bone implant technologies have 3 

focused on the mechanical properties of implants to optimise their performance [10]. However, it is now known 4 

that the biological milieu has a significant impact on implant performance [11].  To this end, the use of 5 

composite orthopaedic implant devices supplemented with bioactive agents is a prominent theme in biomaterials 6 

research [12]. 7 

The term lysophosphatidic acid (LPA) is a moniker that refers to a diverse range of glycerophospholipids. The 8 

LPAs are lipid growth factors involved in a wide variety of cell functions [13, 14] including proliferation [15, 9 

16, 17], differentiation [18, 19] migration [20, 21], apoptosis and survival [22, 23]. Importantly the LPAs have 10 

been shown to converge with active vitamin D3 metabolites to promote the maturation of osteoblast-like cells 11 

[24, 25]. These features of LPA, its small size and ability to co-operate with D3 make it an especially desirable 12 

molecule for implant functionalization. 13 

 LPAs sit within a class of compounds known as phosphonic acids (PA). Bisphosphonate drugs, which are used 14 

to reduce bone resorption in conditions such as malignancy and calcification disorders, are also members of the 15 

PA family. The ability of bisphosphonates to lock onto the mineral (HA) fraction of bone via their polar, 16 

phosphor head groups is widely recognised [26]. This ability to avidly bind HA was exploited by Torres and co-17 

workers [27] who used an inert alkane PA, octadecylphosphonic acid (ODPA), for the subsequent addition of 18 

silver to create an antibacterial HA finish.  19 

In this study, we explored the use of (3S)1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP), a 20 

phosphatase-resistant LPA analogue, as a bioactive surface coating for HA. The effect of the FHBP coating on 21 

MG63 cell maturation and proliferation was assessed. Survivorship of the coating after autoclaving, storage, 22 

mechanical cleaning and reuse of the implant was determined. To our knowledge this is the first report of the 23 

use of a bioactive LPA analogue as a surface coating for HA for orthopaedic implant use. 24 

  25 
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2. Materials and Methods 1 

2.1. Tissue Culture 2 

Human osteoblast-like cells (MG63, ECACC, item code: 86051601) were cultured in conventional tissue culture 3 

flasks (750mL, Greiner, Frickenhausen, Germany) in a humidified atmosphere at 37°C and 5% CO2. Cells were 4 

grown to confluence in Dulbecco’s modified Eagle medium (DMEM)/F12 nutrient mix (Gibco, Paisley, 5 

Scotland) supplemented with sodium pyruvate (1mM final concentration), L-glutamine (4mM), streptomycin 6 

(100 ng/mL), penicillin (0.1 units/mL) and 10% v/v foetal calf serum (Gibco, Paisley, Scotland). The growth 7 

media was also supplemented with 1% v/v of a 100X stock of non-essential amino acids.  For experimental 8 

purposes MG63 cells were seeded and maintained in the same growth medium but devoid of both serum and 9 

phenol red (SFCM). 10 

2.2. Biomaterial optimisation  11 

2.2.1. Determining the optimal FHBP concentration  12 

HA disks (Solid Hydroxyapatite Discs, item code: HAD60, Hitemco Medical, USA) were autoclaved (121⁰C 13 

for 30 minutes) prior to use. Two different sizes of disks were used over the course of the study; small disks 14 

with a surface area of 195.49mm2 and large disks with a surface area of 304.02mm2. Results are expressed per 15 

mm2 to account for this difference in disk sizes.  FHBP (LPA analogue, item code: L-9118-0.5mg, Tebu-bio 16 

Ltd., UK) was reconstituted to 500µM using 1:1 ethanol: cell culture-grade water and stored at - 20⁰C. To 17 

ascertain the optimal FHBP steeping concentration to functionalise the HA specimens, sample disks were placed 18 

into 24-well tissue culture plates and exposed to varying concentrations of FHBP (0.25µM - 5µM) for a period 19 

of 24 hours. Cell culture-grade water was used as the diluent. Unmodified, control HA disks were immersed in 20 

cell culture-grade water.  21 

Disks were removed from the wells after 24 hours and they were rinsed three times in cell culture-grade water 22 

before being left to air dry within the tissue culture hood. Once dry they were then transferred to a clean 24-well 23 

plate and seeded with MG63 cells.  The optimal FHBP steeping concentration identified was used for all 24 

subsequent experiments. This test was performed in duplicate with n=4 per time point for each test. 25 

2.2.2. Determining the optimal steeping time 26 

Autoclaved HA disks were transferred to a fresh 24-well plate. 1ml of 2µM FHBP solution was added per well 27 

and disks were steeped for a specified time period (15 minutes, 1 hour, 2 hours, 4 hours or 24 hours) in the 28 
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solution. Control disks were steeped in the vehicle for the specified time period. Disks were removed from the 1 

wells after steeping and they were rinsed 3 times in cell culture-grade water before being left to air dry. Once 2 

dry they were transferred to a clean 24-well plate and seeded with MG63 cells. The optimal steeping time 3 

identified was used for all subsequent experiments.  This experiment was performed in triplicate with n=4 per 4 

time point for each test.  5 

2.3. Comparing cell maturation on FHBP-modified and control disks 6 

HA disks were steeped in a 2µM solution of FHBP for 3 hours. Control disks were steeped in vehicle only. 7 

Modified and control disks were then rinsed 3 times in cell culture-grade water and left to air dry. Once dry the 8 

disks were transferred to a fresh 24-well plate and seeded with MG63 cells. This test was performed a total of 12 9 

times with n=2-4 per group for each test. 10 

2.4. Coating survivorship 11 

2.4.1. Autoclave survivorship 12 

HA disks were steeped in a 2µM solution of FHBP for 3 hours. One half of the batch of modified disks (n=3) 13 

was autoclaved at standard clinical settings (121⁰C for 30 minutes) while the remaining half was not (n=3). 14 

Unmodified autoclaved disks served as a negative control. The disks were transferred to a clean 24-well plate 15 

and seeded with MG63 cells. This test was performed in triplicate with n=3-4 per group for each test. 16 

2.4.2. Storage survivorship 17 

HA disks were steeped in a 2µM solution of FHBP for 3 hours. Control disks were steeped in the vehicle only. 18 

Disks were either seeded with MG63 cells within 24 hours of modification or stored in air for a variable time 19 

period (6 week or 6 months) before being seeded with cells. Tests were performed in duplicate with n=6 per 20 

group for each time point for each test. 21 

2.4.3. Mechanical cleaning and reuse 22 

HA disks were steeped in 2µM FHBP solution for 3 hours.  Control disks were steeped in the vehicle. The disks 23 

were seeded with MG63 cells and incubated under conventional issue culture conditions for 72 hours. After this 24 

initial use, the disks were mechanically cleaned with an electrical toothbrush (ProclinicalTM C250, Colgate) 25 

whilst being held under running tap water for 10 seconds. They were then re-autoclaved (121⁰C for 30 minutes) 26 

prior to a second use. This test was performed 4 times with n=3 per group for each test. 27 
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2.5. Biomaterial tissue culture model 1 

For each of the above experiments disks were seeded with 1ml of a 150,000 cells/ml suspension of MG63 cells 2 

in SFCM spiked with calcitriol (D3) to a final concentration of 100nM [100nM, Calcitriol (10µg) (item code: 3 

D1530-10UG, Sigma)]. Plates were incubated under conventional tissue culture conditions for 72 hours before 4 

the alkaline phosphatase (ALP) activity of adherent cells was assessed.  5 

2.6. Alkaline Phosphatase assay to compare cell maturation on FHBP-modified and control HA disks 6 

After a 72 hour incubation period the medium in each well of a 24-well plate was removed. To ensure that the 7 

ALP activity was only associated with cells attached to HA and not to the surrounding plastic, the sample HA 8 

disks were transferred to a clean 24-well plate before being processed.  An ALP substrate buffer was prepared 9 

according to Delory and King [28]. Briefly, 0.1M sodium carbonate and 0.1M sodium bicarbonate solutions 10 

were blended 7:3 to achieve a pH of 10.3. The resultant solution was supplemented with MgCl2 to a final 11 

concentration of 1mM from a 1M stock solution. A lysis solution was prepared from this buffer by performing a 12 

10-fold dilution using cell culture-grade water followed by spiking with Triton X-100 to a final concentration of 13 

0.1% v/v. The monolayers on the surface of the HA disks were lysed with 0.1ml of this solution. After 2 14 

minutes, each disk was treated with 0.2ml of 15mM p-nitrophenylphosphate (p-NPP, di-Tris salt, Sigma, UK) 15 

prepared in the ALP buffer. Lysates were left under conventional cell culturing conditions for 1 hour. After the 16 

incubation period, 0.1ml aliquots were transferred to a 96-well micro titre plates and the absorbance read at 405 17 

nm. An ascending series of p- nitrophenol (p-NP) (50-500µM) prepared in the substrate buffer enabled 18 

quantification of product formation.  19 

2.7.  MTS/PMS assay to compare cell proliferation on FHBP-modified and control HA disks 20 

HA disks were steeped in a 2µM solution of FHBP for 3 hours. Control disks were steeped in vehicle only. 21 

Disks were seeded with 1ml of a 150,000 cells/ml suspension of MG63 cells in SFCM spiked with D3 to a final 22 

concentration of 100nM. Plates were incubated under conventional tissue culture conditions for 72 hours, after 23 

which the medium from each well was removed and the HA disks were transferred to a fresh 24-well plate 24 

containing 0.5ml of SFCM per well. Cell number was determined using a combination of the tetrazolium 25 

compound 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner 26 

salt (MTS, Promega, UK) and the electron-coupling reagent phenazine methosulphate (PMS). Each compound 27 

was prepared separately in pre-warmed (37 °C) SFCM, allowed to dissolve, and then combined so that 1 ml of a 28 

1 mg/ml solution of PMS was combined to 19 ml of a 2 mg/ml solution of MTS. A stock suspension of MG63 29 
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cells (1 X 106 cells/ml) was serially diluted in SFCM to give a series of known cell concentrations down to 25 X 1 

103 cells/ml to generate a standard curve. Each 0.5ml sample in the 24-well plate (HA disks) or in 2 

microcentrifuge tubes (standard curve samples) was spiked with 0.1 ml of the MTS/PMS reagent mixture and 3 

left for 45 min within a tissue culture cabinet. Once incubated, the medium surrounding the disks in the 24-well 4 

plate was harvested and 0.1ml of each sample was dispensed onto a 96-well microtitre plate and the absorbances 5 

read at 492 nm using a multiplate reader. Plotting the absorbances against known cell number, as assessed 6 

initially using haemocytometry, enabled extrapolation of cell numbers for the experiments described herein. 7 

2.8. ALP gene expression analysis in MG63 cells 8 

2.8.1. RNA purification 9 

MG63 cells were grown to 80% confluency in T75 flasks and subsequently serum starved for 24 hours. 24 hours 10 

later, cells were treated with either media alone (control), D3 (100nM), FHBP (250nM) or vitamin FHBP/D3 in 11 

combination. After 24 hours of treatment, total RNA was extracted from cells using TRI reagent (Sigma 12 

Aldrich). RNA samples were treated with a TURBO DNA-free™ Kit (Ambion Inc.) using conditions 13 

recommended by the manufacturers, and then cleaned with an RNA Clean & Concentrator™-5 spin column 14 

(Zymo Research Corp). RNA was tested for quality and yield using a NanoDrop 1000 spectrophotometer and an 15 

Agilent 2100 Bioanalyzer. Three independent biological replicates were prepared (n = 12). 16 

2.8.2. Library preparation 17 

Twelve total RNA samples were supplied and prepared into sequencing libraries of ~500ng by Bristol Genomics 18 

Facility using the Illumina TruSeq Stranded mRNA kit. Briefly, RNA was polyA-selected, chemically 19 

fragmented to approximately 200 nt in size (4 minute fragmentation time), and cDNA synthesized using random 20 

hexamer primers. Each individual library received a unique Illumina barcode and pooled.  21 

2.8.3. RNA sequencing 22 

RNA-seq was performed on an Illumina NextSeq500 instrument with 12 libraries multiplexed and run across 4 23 

lanes per flow-cell using 75 bp single end reads in high output mode. This resulted in more than 400 Million 24 

reads per flow cell, with an average of 38 million reads per sample.  25 

2.8.4. RNA sequence analysis 26 
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Raw reads from 4 lanes per sample (4 FASTQ files) were aligned to the human (Homo sapiens) full genome 1 

(GRCh38/hg38) using STAR, a splice-aware aligner [29], with GRCh38.92.gtf gene model for splice junctions. 2 

Again, using GRCh38.92.gtf, raw gene counts were estimated on merged BAM files using HTSeq, using the 3 

union method and –stranded=reverse options [30]. Differential gene expression was analysed using DESeq2 4 

[31] and normalised read counts were obtained. 5 

2.9. Statistical Analysis 6 

Results are expressed as mean ± standard deviation (SD). Statistical analyses were performed using GraphPad 7 

Prism 7.00 software. Unless otherwise stated all data was subjected to a one-way analysis of variance (ANOVA) 8 

to test for statistical significance. A post hoc Tukey's multiple comparisons test was performed between all 9 

groups where a P-value of <0.05 was detected.  An unpaired t-test (2-tailed) was used to compare means of 10 

modified and unmodified disks, and of freshly used and stored modified disks. P-values of <0.05 were 11 

considered significant.   12 
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3. Results 1 

3.1. Biomaterial Optimisation 2 

3.1.1. Optimal FHBP concentration 3 

There was a significant increase in cellular ALP expression for all modified groups steeped in concentrations of 4 

≥ 0.5µM FHBP solution compared to the unmodified control. There was no significant difference in ALP 5 

expression between the 0.5, 1, 2 and 5µM FHBP treatment groups. Therefore an “optimal” concentration of 6 

2µM FHBP was empirically selected from this concentration range (Fig1).  7 

3.1.2. Optimal FHBP steeping time 8 

ALP expression was significantly greater for all FHBP-modified disks compared to control disks irrespective of 9 

steeping time. ALP expression was not significantly different following steeping for 2, 6 or 24-hour time 10 

periods. Therefore an “optimal” steeping time of 3 hours was empirically chosen from this range (Fig2). 11 

The optimal conditions identified (2µM FHBP for 3 hours) were used for all subsequent experiments.  12 

3.2. Comparing cell maturation on FHBP-modified and control disks  13 

Cellular ALP activity was significantly greater for FHBP-modified disks (mean [p-NP] (µM) = 52.83 ± 34.71) 14 

compared to control disks (mean [p-NP] (µM) = 17.42 ± 5.934). This difference was significant (p <0.0001) 15 

(Fig3). 16 

3.3. Comparing cell proliferation on FHBP-modified and control disks 17 

Cellular proliferation was significantly greater on FHBP-modified disks (mean cell number x1000=110.97 ± 18 

38.8) compared to control disks (mean cell number= 76.3 ± 35.92). This difference was significant (p= 0.0087) 19 

(Fig4).  20 

3.4. Autoclave survival 21 

ALP expression did not significantly differ between the FHBP-modified autoclaved and non-autoclaved groups 22 

(mean [p-NP] (µM) = 58.83 ± 30.78 and 60.75 ± 27.98 respectively, p= 0.9813). The mean ALP activity of 23 

modified groups (autoclaved and non-autoclaved) was significantly greater than that of the control group 24 

(p=0.0024 and 0.0015 respectively) (Fig5). 25 

 26 
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3.5. Storage survival 1 

The mean ALP activity of the modified stored groups was greater than that of the control groups after storage 2 

for 6 weeks and 6 months. This difference was significant at both time points (p <0.001). This information is 3 

summarised in Table 1.  4 

3.6. Mechanical Cleaning and Reuse 5 

There was a 67% decline in cellular ALP activity for reused FHBP-modified disks compared to single use 6 

FHBP-modified disks (mean [p-NP] (µM) = 26.84 ± 11.74 and 81.56 ± 49.28 respectively). This difference was 7 

significant (p= <0.0001). ALP activity did not significantly differ between the reused FHBP-modified group and 8 

the control (single use and reused) groups (p= 0.9947 and 0.8438 respectively) (Fig6).  9 

3.7. ALP gene expression analysis 10 

MG63 cells were treated in culture with either media alone (control), D3, FHBP, or a combination of FHBP and 11 

D3. Treatment with the FHBP/D3 combination resulted in a significant increase in normalised ALP gene 12 

expression compared to all other treatments (p≤0.0001), and, notably, a 7-fold increase in ALP expression 13 

compared to treatment with FHBP alone (Fig7).  14 
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4. Discussion 1 

Autogenous bone grafts remain the gold standard in bone defect repair [32, 33]. However, there are issues 2 

associated with autogenous graft use, including donor site morbidity, limited tissue availability and prolonged 3 

operative time [34, 35]. Synthetic bone substitutes are being increasingly used in the clinical setting [32], 4 

providing an impetus to develop bone substitutes that satisfy the criteria of an “ideal bone graft”.  5 

Synthetic HA is a widely used bone substitute. It is a non-toxic compound with a similar chemical composition 6 

to human bone mineral [36, 37]. It is traditionally regarded as an osteoconductive material [35], providing a 7 

mechanical framework to support bone repair.  8 

We have shown that coating HA with FHBP enhanced the maturation of MG63 cells in the presence of D3, 9 

thereby improving its osteoinductive properties. In agreement with this, MG63 cells that were co-treated with 10 

FHBP and D3 in tissue culture flasks showed elevated ALP gene expression. The MG63 cell line is an 11 

osteosarcoma-derived, transformed human cell line that exhibits features of the immature osteoblast, including 12 

trivial basal ALP expression. Maturation towards a mature osteoblast phenotype is associated with increased 13 

expression of ALP, an event that is synonymous with bone tissue formation [38, 39]. In the context of 14 

orthopaedic implants this is expected to improve osseointegration. Since our discovery that LPA and D3 co-15 

operate to synergistically enhance osteoblast ALP expression we consistently find that the marked increase in 16 

this enzyme consequent to LPA/FHBP co-stimulation is not a result of raised cell number [40, 41] and therefore 17 

in keeping with a pro-differentiating function of this steroid hormone. We compared cell number between 18 

FHBP-modified and control HA disks. Although we observed an increase in cell number on FHBP-treated disks 19 

compared to control disks, this increase was modest (1.5x) compared to the increased ALP activity observed 20 

(3x). This suggests that the increased ALP activity observed was not simply a consequence of increased cell 21 

proliferation but also a consequence of accelerated cell maturation. This is further supported by our ALP gene 22 

expression data which provides compelling evidence for an increase in ALP gene expression for FHBP/D3 co-23 

treated MG63 cells, an effect that has not been paralleled by an increase in cell number in our previous works 24 

[40, 41].  25 

There are several reasons why we used an LPA analogue as a surface coating for HA. Firstly, LPA, in 26 

combination with D3, synergistically enhances human osteoblast maturation [24, 25]. LPA analogues are 27 

amenable to large scale production. Their natural affinity for HA simplifies manufacturing, and, because of their 28 

small size and lysophospholipid properties, they are robust molecules resistant to the rigours of implant handling 29 
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and sterilisation. Finally, antimicrobial properties of LPA family members have previously been reported [42, 1 

43]. Although not investigated as part of this study, it has previously been shown that surface modification of 2 

titanium with an LPA analogue (16: 0 MPPA) deterred the attachment of methicillin-resistant Staphylococcus 3 

aureus to the implant surface [38]. Identifying strategies to prevent implant infection is a prominent theme in 4 

biomaterials research and has important public health implications in terms of reducing the reliance of modern 5 

medicine on antimicrobials.   6 

In order to be considered for clinical applications, an implant coating must be safe, stable, resistant to 7 

sterilisation, amenable to reuse and resilient to mechanical forces. We have shown persistent bioactivity of the 8 

FHBP coating following ambient storage for 6 months. The coating survived autoclaving at standard clinical 9 

settings, and the coating process was performed as a single-step procedure under physiological conditions, 10 

thereby eliminating biocompatibility and cytotoxicity concerns. These features are expected to improve the 11 

translational prospects of this technology.  12 

There was a significant loss of FHBP bioactivity following mechanical cleaning and reuse, which represents a 13 

limitation of its utility as an implant coating. Although implants are generally intended for single clinical use, 14 

there are a variety of circumstances in which they may need to be reused. Cleaning and sterilisation are key 15 

steps in reconditioning the implant to its initial state for reuse [44]. The reason for the loss of bioactivity is 16 

unclear and it contrasts with the findings of Mansell et al. [45] for their work on FHBP- and LPA-modified 17 

titanium. A possible explanation for this discrepancy relates to differences in the material properties and 18 

physical robustness of titanium and HA. 19 

Failure to demonstrate successful adhesion and proliferation of MG63 cells on the modified HA disks represents 20 

a potential limitation of this work. However, HA is widely recognised as a biocompatible substance, hence its 21 

widespread use as a bone graft substitute and as a coating for metallic prostheses [46]. Indeed, in a previous 22 

work by us we have depicted osteoblasts firmly attached on the surface of HA disks together with evidence of 23 

proliferation in response to an LPA analogue [47]. 24 

Surface characterisation using techniques such as x-ray spectroscopy, scanning electron microscopy and/or 25 

atomic force microscopy, are commonly used to validate the presence of coatings on biomedical implants. 26 

However, we elected to focus on the identification of a biologically active surface, which we consider to be a 27 

more suitable test for a product that is ultimately intended for clinical applications.  28 
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This work represents a logical progression from the work of Torres et al. [27] who exploited the natural affinity 1 

of members of the phosphonic acids for HA by using ODPA as a linker molecule to attach silver ions. To our 2 

knowledge ours is the first report of the use of a phosphonic acid as a biomimetic coating for HA. Evaluating the 3 

antimicrobial potential of the coating and improving its resilience to mechanical stress and reuse are important 4 

next steps in the translational process.  5 
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5. Conclusions 1 

To our knowledge this is the first report of successful functionalization of a HA construct intended for 2 

orthopaedic applications with FHBP to improve the biological properties of the implant. This was achieved in a 3 

facile and scalable manner. Accelerated maturation of osteoblasts is predicted to secure superior integration of 4 

the implant with host bone, thereby minimising implant micro motion. Further work is required to improve the 5 

survivorship of the coating to mechanical cleaning and reuse.   6 

  7 
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Fig1  

The optimal concentration of FHBP solution to coat HA disks for enhanced MG63 maturation lies 

between 0.5-5µM.  There was a significant increase in ALP expression for all treated groups compared to the 

control vehicle group at concentrations of ≥ 0.5µM FHBP. There was no significant difference in ALP 

expression between the 0.5, 1, 2 or 5 µM FHBP groups. The data depicted represent the mean and standard 

deviation of 4 replicates and are representative of 2 pooled experiments. Significant differences are depicted by 

asterisks (**** P ≤ 0.0001, *** P ≤ 0.001, ** P ≤ 0.01, ns P > 0.05) 
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Fig2  

The optimal steeping time in FHBP solution for enhanced maturation of MG63 cells on modified HA 

disks lies between 2-24 hours.  ALP expression was significantly greater by MG63 cells adherent to FHBP-

modified disks compared to unmodified disks at all time points investigated. There was no significant difference 

in ALP expression between the 2, 6 or 24-hour groups. The data depicted represent the mean and standard 

deviation of 3 (n=1) or 4 (n=2) replicates and are representative of 3 pooled experiments. Significant findings 

are depicted by asterisks (**** P ≤ 0.0001, *** P ≤ 0.001, ** P ≤ 0.01, * P≤ 0.05, ns P > 0.05) 

  



 

 

 

Fig3  

Modification of HA disks with a surface coating of FHBP accelerates the maturation of adherent MG63 

cells. This figure shows that the ALP activity of MG63 cells adherent to the surface of a HA disk that had been 

modified by a surface coating of 2µM FHBP was greater than that of MG63 cells adherent to the surface of an 

unmodified HA disk. The data depicted represent the mean and standard deviation of a minimum of 2 replicates 

and are representative of 12 pooled experiments Significant difference are depicted by asterisks (**** P ≤ 

0.0001) 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig4 

Modification of HA disks with a surface coating of FHBP promotes cell proliferation. This figure shows 

that surface modification of HA disks results in an increased number of adherent MG63 cells. However the 

increase in cell number is modest compared to the increased cell maturation that is observed when MG63 cells 

are grown on FHBP-modified HA disks (see Fig3). The data depicted represent the mean and standard deviation 

and are representative of 3 independent experiments with 6 replicates per group. The significant difference is 

depicted by an asterisk (** P ≤ 0.01).  

  



 

 

Fig5 

The FHBP coating can withstand autoclaving at standard clinical settings. There was no significant 

difference in ALP activity between MG63 cells adherent to autoclaved (AC) or non-autoclaved FHBP-modified 

disks. The data depicted represent the mean and standard deviation of a minimum of 3 replicates and are 

representative of 3 pooled experiments. Statistical significance is depicted by asterisks (** P ≤ 0.01) 

  



 

Fig6 

The bioactivity of the FHBP coating is lost following mechanical cleaning, irrigation and reuse. This figure 

shows that there was a significant decline in cellular ALP activity once the FHBP-modified HA disk had been 

mechanically cleaned and reused compared to single use FHBP- modified disks. The data depicted represent the 

mean and standard deviation of 3 replicates and are representative of 4 pooled experiments. Significant results 

are depicted by asterisks (**** P ≤ 0.0001) 

  



 

 

 

Fig7 

Co-treatment of MG63 cells in tissue culture with FHBP and D3 results in a significant increase in ALP 

gene expression compared to treatment with D3, FHBP, or vehicle. Significant differences are depicted by 

asterisks (**** P ≤ 0.0001, *** P = 0.0001).  

 

 

 

 

Note: All figures shown have been created using GraphPad Prism 7.00 software.  



 

 

Time Vehicle [p-NP] (µM) 2µM FHBP [p-NP] (µM) P-Value (Test versus 

Control) 

Baseline   75.81 ± 22.14 121.52 ± 25.92 0.0017* 

6 weeks 69 ± 

12.97  
 

165.67 ± 50.47 <0.0001* 

6 months   16.92 ± 9.8 108.36 ± 55.13 <0.0001* 

 

Table 1: Summary of the osteoblast ALP activity at control and FHBP-modified HA surfaces – a six 

month ambient storage study. At the specified times Human (MG63) osteoblasts were seeded on to control 

and FHBP-functionalised HA discs at a density of 15x104 cells/ml/disc in the presence of 100nM D3. After a 

three day conventional culture the discs were processed for total ALP activity using p-nitrophenylphosphate as 

the substrate and quantification of p-nitrophenol (p-NP). An increase in p-NP for the FHBP-HA discs reflects a 

greater extent of osteoblast maturation at these surfaces compared to non-functionalised controls.   This 

difference in mean ALP activity was significant at all time points investigated (p<0.05). Significant differences 

are depicted by asterisks.  
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Depicted is a stylised summary of hydroxyapatite (HA) surface modification using an analogue of lysophosphatidic acid, FHBP. A. 

HA surfaces are simply steeped in an aqueous solution of 2µM FHBP. B. The polar head group of some FHBP molecules react 

with available hydroxyl residues at the mineral surfaces forming robust HA–O–P bonds leaving acyl chain extensions perpendicular 

to the HA surface. These fatty acyl chains provide points of integration for other FHBP molecules to facilitate their self-assembly. 

This final surface finish enhanced the human osteoblast maturation response to calcitriol, the active vitamin D3 metabolite.  
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Abstract 

There is an incentive to functionalise hydroxyapatite (HA) for orthopaedic implant use with bioactive agents to 

encourage superior integration of the implants into host bone. One such agent is (3S) 1-fluoro-3-hydroxy-4-

(oleoyloxy) butyl- 1-phosphonate (FHBP), a phosphatase-resistant lysophosphatidic acid (LPA) analogue. We 

investigated the effect of an FHBP-HA coating on the maturation of human (MG63) osteoblast-like cells. 

Optimal coating conditions were identified and cell maturation on modified and unmodified, control HA 

surfaces was assessed. Stress tests were performed to evaluate coating survivorship after exposure to mechanical 

and thermal insults that are routinely encountered in the clinical environment. MG63 maturation was found to be 

3 times greater on FHBP-modified HA compared to controls (p <0.0001). There was no significant loss of 

coating bioactivity after autoclaving (P= 0.9813) although functionality declined by 67% after mechanical 

cleaning and reuse (p<0.0001). The bioactivity of modified disks was significantly greater than that of controls 

following storage for up to 6 months (p<0.001). Herein we demonstrate that HA can be functionalised with 

FHBP in a facile, scalable manner and that this novel surface has the capacity to enhance osteoblast maturation. 

Improving the biological performance of HA in a bone regenerative setting could be realised through the simple 

conjugation of bioactive LPA species in the future. 

Keywords: Hydroxyapatite; Lysophosphatidic acid; Biomaterial functionalisation; Bone graft; vitamin D. 
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