

E-ASSESSMENT OF COMPUTER PROGRAMMING

Rh. Gwynllyw*,a and J. Smithb

a Dept. of Engineering and Mathematics, University of the West of England, Bristol, UK.
b Dept. of Computer Science, University of the West of England, Bristol, UK.

*rhys.gwynllyw@uwe.ac.uk

Abstract

This paper demonstrates how we have used
Dewis, an algorithmic open source e-assessment
system, to automatically assess programming skills,
in particular, in the C programming language.
Teaching and assessing programming skills is
challenging; prior to the implementation of this
automatic assessment system, computing
assessments were marked manually and this proved
unpopular with students and academics due to the
delay in marking and providing feedback. This new
approach enables students to submit their computer
code online through a link on their Virtual Learning
Environment. From a student’s perspective the
marking process takes a matter of seconds before the
student is provided with a mark and feedback. A
number of pre-submission and post-submission
checks are performed on the student’s supplied code.
These are essential to ensure that the student’s code
satisfies certain operational and security
requirements before running on the system.
Typically, the e-assessment system executes the
student’s supplied code a number of times with
different input sets and the student’s code is
evaluated based on their code’s resulting output.
Prior to execution, the student’s code may be
augmented by Dewis-specific code to facilitate
deeper analysis of the student’s code. The analysis of
the code’s output enables the system to respond to
the student’s submission with ‘intelligent feedback’.
This feedback explains to the student, where
appropriate, reasons for their submission not scoring
full marks. There are also in-built detectors for
‘common student errors’ which, when triggered,
further enhances the intelligent feedback. In their
first few weeks at UWE Bristol, students are
presented with a number of mini-tasks involving
assessing C competencies with Dewis. These tasks
are purely formative, support is given to students in
computer lab sessions and students may submit as
many times as they wish. Later on in their first year,
students are given more significant programming
projects (e.g. the n-Queens problem, path-finding
problem), the assessing of which is summative.
Results show that this innovative work is making a
positive impact on students.

Keywords: C programming, e-Assessment, intelligent
feedback

Introduction

The use of e-assessments in the Department of
Computer Science at the University of the West of
England (UWE) is well established both for formative
assessments and for examinations. These assessments
have been designed to primarily assess the students’
knowledge of computer science principles as opposed to
computing in practice. Further, with most of these
assessments being of the form of multiple-choice
questions, there is limited scope for ‘intelligent
feedback’ in response to the students’ input. We do
make extensive use of Blackboard ‘tests’, which provide
a range of different question styles, and considerable
scope for bespoke feedback attached to different
correct/incorrect responses. These have proven highly
successful for summative and formative assessments,
and provided useful cohort-level analysis of different
questions. Some of this work was supported by external
funding (e.g. UK Higher Education Authority grants)
and these resources have been made available for
sharing by the community. However, assessing more
than simply ‘recall’ requires considerable expertise in
question design to test higher level skills in problem
analysis and reflection. The success of these e-
assessments led to the consideration of whether e-
assessments could be applied to test students’ ability in
the practice of computer programming. At the start of
this project we undertook a review of available systems
for providing automated teaching and assessment of
coding. While there is a body of materials available for
interpreted languages such as Python (such as the
courses in Codeacademy.com) there was nothing
available for languages which require code to be
compiled and run (e.g. C, Java/C++) because of the
security implications and difficulties in providing
bespoke feedback related to specific learning activities.

 In previous years, the summative assessment of
computer programming in the module Artificial
Intelligence on the Computer Science award at UWE,
took the form of students submitting computer program
solutions to set assessments via a VLE with the
academic marking each submission by running the code
and assessing the output. The main disadvantage of this
process was, with a large number of student

submissions, the turnaround time it took for the
academic to mark the submissions and provide
feedback. To some extent this can be ameliorated by
arranging for students to provide in-class
‘walkthroughs’ of their code, which provides great
scope for immediate feedback and discussion, but this
creates significant timetabling issues on large modules
and it can be hard to automatically capture face-to-face
feedback for students to reflect on later.

With UWE having their own algorithmic e-
assessment system (Dewis) running on a Linux web-
server, it was decided to develop that system to e-assess
these computer code submissions.

Dewis is an e-assessment system created in 2006 at
the UWE’s Mathematics department (Gwynllyw and
Henderson, 2009; Dewis Development Team, 2012).
The primary purpose of the system was to provide
algorithmic and intelligent e-assessments in numerate
based subjects. In addition, the system was designed to
be data-lossless so that all data for all assessment
attempts is kept on the system’s server. The question-
editing mechanism on Dewis allows significant
flexibility in the design of the question and includes
coding the assessment on the server side (primarily
using Perl) and on the client side (using html, css and
javascript). The Dewis system is used extensively at
UWE Bristol, and its satellite colleges, across several
subject areas including Mathematics and Statistics,
Engineering, Computing, Accounting, Science, Nursing
and Business Studies. It is also used at other UK HEIs.
The system is designed to support both formative and
summative assessments and also has an ‘examination
setting’ designed specifically for e-assessments in
controlled conditions. The success of the system, its
flexibility in the question authoring and its data-lossless
storage made Dewis a natural consideration for hosting
the e-assessment of computer programming at UWE. In
addition Dewis had already been used to communicate
with other programming environments. For example,
Dewis has used system calls to Python/Sympy to
implement a computer algebra system and it has also
been used to interact with R to produce statistics e-
assessments (Gwynllyw, Weir, and Henderson, 2015;
Weir, Gwynllyw and Henderson, 2015).

The Dewis system was modified to allow for
students to submit computer code, concentrating
initially on submissions of the C-programming
language. Two projects were started in 2015 which we
will refer to as project-F (formative) and project-S
(summative) for the purposes of this paper.

Project F (Formative e-Assessment)

Being able to program in C is not an entry
requirement of the Computer Science award at UWE
but it is highly desirable that students learn the basic C
programming syntax at an early stage. Depending on the
award taken, students at UWE may learn C (BSc
Robotics), Java (BSc Computer Science) or C++ (BSc
Games Technology), but in the early stages C is a good
choice as it avoids the issues of object orientation and
the syntax is common to these (and other) languages.

Retention on Computer Science and related awards
is a national problem and, although UWE does well in
this regard compared to other UK HEIs, it is still highly
desirable to increase the retention rate. One contributory
factor to low retention is that some students have
particular problems with programming and it was
recognised that such issues need to be identified and
addressed as early as possible. Further it was recognised
that a large number of computing students are activist
learners and thus it is desirable to support their learning
by supplying formative computing tasks to aid their
learning. Providing such computing tasks with manual
marking and fast feedback is infeasible due to the large
number of students and the lack of staff time on the
award. In a previous year, first year students were
invited to email their tutor with their solutions to a small
programming task. Take-up on this invitation was high
which lead to excessive delays in feedback and a
negative student experience.

Following a ‘works in principle’ period with the e-
assessment of C computer code, it was recognised that
automated assessment could support a 3-week
introductory course in programming starting in
induction week. This course was aimed to remove some
of students’ fears about programming by enabling a
sense of recognised achievement. It was also aimed at
facilitating a rapid understanding of basic C
programming syntax, especially in the use of
conditional statements and loops. The course provided
computer laboratory sessions but students were told
they also had to commit a significant amount of self-
study hours (the pace of delivery was aimed to require
approximately 4 hours per week) and to become used to
the habit of using other resources such as the Faculty’s
drop-in ‘espressoProgramming’ sessions. The use of e-
assessments accommodated for the different work
patterns that students employed and provided instant
feedback on the students’ submitted work, thus
enhancing the student’s experience of the course.

An important part of this project was the monitoring
of student engagement. Students’ engagement with
these e-assessments was monitored through the e-
assessment system’s performance reporter; this
monitoring was in addition to the traditional
engagement measure of attendance recording. Non- or
low-engagement students were emailed directly by the
module team in addition to passing engagement
information on to a dedicated retention monitoring
team.

With regards the e-assessment’s specific
contribution to this short course, eleven formative tasks
were identified by academics to teach basic computer
programming constructs. These C-programming tasks
were as follows:

Task 1: Print out a specified string and then wait
between 5 and 10 seconds, and then terminate. This
assesses the ability to combine and modify simple code
snippets.

Task 2: Print out a specified string and then wait for an
input character from the user. Echo that character back

and terminate. This assesses simple i/o and the use of
‘print and pause’ constructs useful in debugging.

Task 3: Perform the addition of two floating point
numbers that are read interactively during run time from
the keyboard (via scanf). Output the resulting addition if
both the two inputs are numbers, otherwise output
‘invalid input’. This assesses simple interactive
conditional flow.

Task 4: Same as Task 3 except that the inputs for the
program are taken at the start of the run process -
provided via the command line (via arg).

Task 5: Similar to Task 4 except the requirement is for
the calculation of the quotient of two floating point
numbers. If the second number is a zero then output
‘invalid input – division by zero not allowed’. This
assesses simple conditional flow.

Task 6: Read an operation from the command line of
the form 𝑥𝑥 ∘ 𝑦𝑦 where 𝑥𝑥 and 𝑦𝑦 are expected to be
numbers and ∘ is expected to be one of ‘+’, ‘−‘,’×’ or
‘÷’. If the input is not as expected, then output ‘invalid
input’. If the calculated output is not a number then
output ‘invalid output’. Otherwise, output the numerical
value. This assesses more complex conditional flow
(e.g. embedded if or switch constructs).

Task 7: Modify Task 6 to include the option of a
‘running total’ whereby the code accepts, as input, a file
containing a sequence of operations of the form 𝑥𝑥 ∘ 𝑦𝑦.
In addition, if the character 𝑝𝑝 appears in the place of an
expected number, then the 𝑝𝑝 assumes the number in the
immediately preceding calculation. This assesses the
use of mechanisms for storing state/history.

Task 8: Similar to Task 7 but the reading of the input
and its validity testing is done using a call to a function
called ‘read_and_validate_input’. Further, the
implementation of the numerical operations should be
done using calls to functions ‘addition()’,
’subtraction()’, etc., implemented using signatures
supplied to the student. This assesses the use of
modularisation and code re-use.

Task 9&10: Print out an 8×8 checkerboard containing
o’s and x’s generated using two nested ‘for’ (Task 9) or
‘while (Task 10) loops with each execution of the inner
loop producing exactly one character. These two tasks
assess the use of iteration.

Task 11: Read a string via the command line and output
eight strings on different lines, with each output
containing the input string but with the final character
replaced by the loop count (1..8). This assesses the use
of more complex data types such as arrays.

It was an essential requirement of the construction of
these 11 e-assessments that the student experience was a
positive one. This included consideration to the ease of
the student submitting their solutions and the efficacy of

the feedback in the case of a student’s submission being
rejected (e.g. their code containing illegal content or not
compiling) or their submission being incorrect in that
their code does not satisfy the assessment criteria.

The process of submission of C-code involves the
student accessing the relevant module’s web page on the
university’s VLE and, from there, accessing the
assessment task’s specific Dewis page via an LTI link
(such a link allows for Dewis to pass back the student’s
attainment mark back to the VLE’s Grade Centre). The
Dewis system then prompts the student to submit their
C-code. Such a prompt, for Task 1, is shown in Figure
1.

Figure 1: Dewis prompt for the student to submit their
code for Task 1.

The submission process involves Dewis eventually
running the student’s C-code on the Dewis server. This
action has significant security implications and hence
there are a number of checks the Dewis system makes to
ensure that the student’s code cannot be malicious. A
result of this is that there are a number of commands
that Dewis prohibits from being submitted in the student
code. These commands include, for example, potentially
malicious system calls and the inclusion of undesirable
header files. As part of ensuring a positive student
experience of the process, these security checks are
made on the student code when they link their C-code to
their web browser. That is, these checks are made prior
to the student submitting their code to the Dewis
system. On detecting prohibited content, the student is
informed immediately that their submission cannot
proceed together with the reason for the barrier. Text on
the VLE page for each task provides more help in these
cases.

Having submitted the code, the next stage is for
Dewis to compile the code. If the student’s code fails to
compile, the system will echo back to the student the
compilation error. In the case of a common compilation
error being triggered, the system will aim to supply
suggestions to the students to address the error. A
compilation error can be construed as detrimental to the
student experience and, in the case of a student
preparing their code on a different operating system to
that of the Dewis system (Linux), a compilation error
may not have been anticipatable by the novice
programmer. Because of this, most Dewis assessments
of this form have an associated ‘compiler check’
assessment whereby students can check their programs
for compilation on the Dewis server without foregoing
an assessment attempt.

For some of the assessment tasks, prior to executing
the student’s submitted code, the Dewis system will
augment this code with additional code to facilitate the
marking process. For example, for Task 9, augmented
code is used in order to ensure that the correct number
of nested for-loops are used in the construction of the
required output.

An example of the Dewis system detecting a code
submission on this assessment task not satisfying the
criteria is given in Figure 2. The feedback informs the
student as to the reason why their submission was
deemed incorrect. In this example, the student used only
one for-loop (1..8) with each execution producing
complete lines in the grid (‘oxoxoxox’ or ‘xoxoxoxo’).

Following the feedback in Figure 2, this student
subsequently submitted an entry which was unaltered
except that it contained a ‘null’ inner for-loop (1..8)
which produced no output. Again, the Dewis system
informed the student that their submission did not
satisfy the criteria. This later student submission was
presumably an attempt to trick the Dewis system. It was
encouraging to note that the student did eventually
submit code that satisfied the task’s requirement.

Figure 2: Example feedback for Task 9 where the
student’s submission did not use nested for-loops to
generate the required 8 × 8 grid.

In Figure 2, we also show that, in supplying the

student feedback, the system also provides a link to the
student’s original submitted code. This feedback is
available to students at any future time via the
VLE/Dewis link to the assessment so that students may
revisit their past submissions.

 On executing the student’s code, certain system
limiters are applied to ensure that the student’s code
does not consume an excessive amount of the system’s
resources. For example, the student’s code is terminated
if it consumes excessive CPU or memory, or simply
does not terminate within a reasonable period of time. In
such cases the student is informed of the reason for their
submission not being suitable for marking together,

where possible, with suggestions as to how to address
this issue.

Impact

Student uptake on these tasks has been encouraging.

For example, Table 1 shows the uptake results for the
2017/2018 academic year.

Task # # students # attempts # correct

1 189 535 171
2 187 613 163
3 168 836 152
4 151 796 127
5 140 577 111
6 122 783 84
7 64 290 37
8 35 148 17
9 71 180 59
10 88 454 70
11 32 135 17

Table 1: Engagement statistics for the eleven
summative tasks. For each task, the 2nd column lists the
number of students that submitted their C code, the 3rd
column lists the total number of submitted attempts, the
4th column lists the number of students who fully
achieved the tasks’ criteria.

Since these tasks were formative, there was no limit

as to the number of attempts for a student to attempt
these tasks. In most cases the students had several
attempts at each task, seeking targeted help in response
to the system’s feedback and worked through their code
to eventually produce code that met the assessments’
criteria. For example, from Table 1, we see that 171 out
of the 189 students that attempted Task 1, succeeded in
submitting C-code that satisfied the task’s requirement.

This level of engagement is mirrored by the volume
of emails, and hence staff-student interactions
generated. Notably, as we have refined the system over
2-3 years, the volume of emails, particularly regarding
later tasks, has been reduced without the patterns of
engagement changing. The process of identifying
recurring issues in emails and error logs, and then
amending the system to recognise and respond to those
cases, has been successful in moving from manual to
automated feedback. The system is transparent enough
for students to ‘learn how to learn’ – taking more time
to use the automated feedback.

The drop-off in the number of submissions reflects
to some extent the different rates of progress that
students were making on their ‘standard’ programming
modules. Anecdotal evidence via students emails and
anonymous end-of-module feedback also suggests that
some students engaged less if they felt that the system
was ‘overly restrictive or strict’ in terms of the
constructs allowed and the way that exact output
formats are required (e.g. use of capitalisation, spaces
etc.). Capturing this feedback has been invaluable for
staff, and we now pay considerably more attention in-

class to pointing out that the days of the ‘lone
developer’ are largely over, and that all code should be
designed for a specific purpose and tested to meet
specific requirements and interfaces. Being able to pull
specific (anonymised) examples of code that ‘looks
right but does not meet the specifications’ is invaluable
in providing concrete examples of more abstract ideas.

These formative tasks are now being used on several
different modules across various awards and being used
in level two to help students refresh their C-skills as a
form of pre-requisite test.

Anecdotal evidence of the success of this was an
improved performance in the summative assessments
discussed in the next section. Since the introduction of
this system, tutors in-class have noted a significant
increase in the proportion of students discussing
algorithmic issues in more advanced problems as
opposed to programming syntax issues. E.g. students
were more comfortable with writing out algorithms in
pseudo-code to discuss functionality as opposed to
syntax.

A highly positive outcome has been that by the
fourth week of term we are able to get students
collaborating in-class to work on pseudocode designs
and mechanisms for simple algorithms – valuable
learning activities that had been not previously been
possible. Familiarity with basic programming constructs
means that, from far earlier in the module run, lectures
can include pseudo code and code snippets to
demonstrate search and machine learning algorithms.
For many of our students this helps demystify the
abstract definitions.

Other staff who used some of the first activities
during induction week have also commented that these
provided a useful ‘icebreaker’ mechanism to get
students collaborating and problem-solving.

Project S (Summative e-Assessment)

Dewis was also used for the e-assessment of C-
programs in a summative environment in the module
‘Introduction to Artificial Intelligence’, part of the
Computer Science award. There are two such
assessments on this module and initially they were quite
low stakes (each accounting for 12.5% of the total
marks for the module). Although the two assessments
seem quite different, they are closely related in that they
both require the student to produce C-code that solve
problems involving search algorithms. The two
problems are:

• the 8-Queens problem, solved using Depth-
First Search;

• the shortest path problem (SPP) using
Dijkstra’s algorithm on a map modelled by a
square grid.

These two problems are both ‘search’ problems, and

use a common code framework (written by the
academic) provided to the students and used for earlier
tutorial work. One of the intended learning outcomes is

to see how a framework can be used to (i) implement
different algorithms and (ii) tackle very different
problems, with only very minor changes (typically a
few lines).

In previous years, students were given a tool written
in Netlogo that involved PacMan searching a maze
(Smith, 2009). Switches allowed students to choose
policies to apply whenever a junction was made, and
these effectively implemented different algorithms. The
students were then asked to write down their results and
to submit their solutions via the VLE for manual
marking. However, while providing a nice visual
interpretation of the effects on a toy problem, the
module leader wanted the students to implement the
algorithms in actual code with the aim of ensuring a
better understanding of the functionality of the
algorithm.

For the assessment of these search algorithms, the
Dewis marking process will be two-fold, namely:

• the solution is checked for correctness;
• the number of candidate solutions considered is

consistent with the method of search.

The latter criterion was included to ensure that the
student’s code implemented the correct method of
search. Full marks are awarded to the student’s
submission if, and only if, both these criteria are met.

For both types of problems, the student’s code was
executed a number of times for different inputs. The
inputs for the two problems are as follows:

• 8-Queens: the position of the Queen in the first
row of the chessboard;

• SPP: the start and end point of the path on a
square grid, together with the location of the
obstacles on the grid.

In the case of the ‘number of candidate solutions’

considered being incorrect, the marking algorithm
would attempt to identify a pattern in the number
reported by the student’s code. For example, some
students’ code consistently produced a numerical value
one higher than the correct solution. In such a case, the
student would be informed of this, together with stating
common reasons that code consider one more candidate
solution than is required.

The two current metrics effectively perform black
box testing of the supplied code, therefore test problems
have been designed to ensure that different algorithms
give different results. For the next academic year, the
code has been further refined to perform ‘white-box
testing’, via checking of values that student’s code
passes as parameters to supplied functions.

For these summative e-assessments, the student was
only required to provide the ‘main’ function call for
solving the problem. As part of the student’s
development of their code, their code would be built
with pre-supplied code (written by the academic), and
they are told what a subset of the intended results should
be (i.e. for one starting queen position or map).

The student would submit, to the Dewis system,
only the ‘main’ part of the code. That is, the pre-
supplied code that is part of the build, already resides on
the Dewis system. The version that resides on the Dewis
system keeps track of the number of candidate solutions
considered in the search process as well as the final
solution obtained in the search process. As such, the
Dewis system does not depend on the student’s code
telling it the solution nor the number of candidate
solutions. This ensures that the correct solutions are not
obtained artificially (e.g. hard coded in the student
code).

Results

Quantitatively, any difference in the coursework
pass rates is smaller than the annual fluctuations seen on
any course. Qualitatively, feedback from students has
been that they appreciated the opportunity to submit in
their own time – giving them the chance to manage
different demands on their time safe in the knowledge
of the marks they would get.

Following the success of the phase one project, the
assessment regime of the module has been changed to
incorporate a further two exercises (again each worth
12.5%). In the third task, students submit a text file
containing the knowledge base for a chatbot in AIML.
The Dewis system marks and provides feedback by
running a java programme that exploits the file handling
and output-interpreting mechanism developed. Students
are told the ‘questions’ in advance, and marks are
awarded according to how well their knowledge base
exploits different language features.

The final task requires students to submit a C code
implementation of the machine learning algorithm of
their choice, which is assessed via its predictive
accuracy on a number of datasets designed to test
aspects such as handling duplicates, class imbalance etc.

The impact of these two more ‘open-ended’ pieces
of coursework, where competition has been encouraged,
has been incredibly positive. In both the last two years
an ‘arms-race’ has developed with students contributing
specific ideas to discussions of how the tests could be
made harder/ more discriminating – via different
chatbot questions, or datasets with different
characteristics. In the machine learning task some
students implement simple algorithms such as K-nearest
neighbours, but we have seen example of Bayesian
networks, Rule Induction algorithms, and Multi-layer
Perceptrons being submitted.

As we have said previously, many of our students
self-identify as being predominantly activist or
pragmatist learners and many are more likely to submit
credit-bearing work. Dewis’ ‘instant marking and
feedback’ means that the depth of insights displayed
during in-class discussions about the merits of different
approaches has been raised to new levels by the
provision of learning activities more suited to our
students’ styles of learning.

Discussion

The success of the approach described in this paper,
which allow students to “self-learn” programming
skills, has led us to develop the system further.
Competence in programming is desirable in many
academic disciplines, not just for Computing students.
Indeed Bond (2018) recommends that computer
programming becomes a core part of mathematics
degrees. In the forthcoming 2018/19 academic year, the
e-assessment of computer programming will be
extended to Level 3 Mathematics students using Python
on the Numerical Analysis module at UWE Bristol.
Students will be required to write numerical methods in
the Python programming language and this will be
assessed automatically using Dewis.

Previously, a manual marking process was employed
for the Numerical Analysis module but the workload
involved in processing these student submissions
resulted in difficulties in producing appropriate and
timely feedback. The cases whereby the feedback was
delayed resulted in negative student feedback about the
process. The previous deployment of Dewis to e-assess
computer code in C means that the development time
required for Dewis to e-assess Python was significantly
reduced.

The success of this extension to the project will be
evaluated using student feedback via the module
evaluation process and a comparison of student
performance in their programming competencies.

References

Bond, P. (2018). The Era of Mathematics. Retrieved
from https://epsrc.ukri.org/newsevents/pubs/era-of-
maths/

Dewis Development Team (2012) Dewis welcome
page. Retrieved from http://dewis.uwe.ac.uk

Gwynllyw, R. and Henderson, K. (2009). DEWIS: a
computer aided assessment system for mathematics and
statistics. CETL-MSOR 2008 Conference Proceedings,
pp. 38-44.

Gwynllyw, R., Weir, I. and Henderson, K. (2015).
Using DEWIS and R for multi-staged statistics e-
assessments. Teaching Mathematics and its
Applications, 35(1), pp. 14-26.

Smith, J.E. (2009). Learning Through Programming
Games: Teaching AI with Pacman and Netlogo. In Proc
5th UK Conference on AI in Education, Higher
Education Academy Information and Computer
Sciences Subject Centre (HEA-ICS), 2009.

Weir, I., Gwynllyw, R. and Henderson, K. (2015).
Using technology to inspire and enhance the learning of
statistics in a large cohort of diverse ability. In: IATED,
ed. (2015) Edulearn15 Proceedings.

https://epsrc.ukri.org/newsevents/pubs/era-of-maths/
https://epsrc.ukri.org/newsevents/pubs/era-of-maths/
http://dewis.uwe.ac.uk/

