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Abstract The thermosolutal instability of double-diffusive convection in an inclined fluid-saturated porous
layer with a concentration-based internal heat source is investigated. The linear instability of small-amplitude
perturbations to the system is analyzedwith respect to transverse and longitudinal rolls. The resultant eigenvalue
problem is solved numerically utilizing the Chebyshev tau method. It is shown that an increasing inclination
angle causes a strong stabilization in the transverse rolls irrespective of the internal heat source or vertical
solutal Rayleigh number. Furthermore, substantial qualitative changes are demonstrated in the linear instability
thresholds with variations in the inclination angle and concentration-based heat source.
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1 Introduction

The investigation of thermosolutal convection driven by a concentration-based internal heat source with an
inclined porous layer is vital due to its importance in real-life applications such as groundwater transportation,
geothermal reservoirs, oil recovery, food processing and the transport of pollutants (Bendrichi and Shemilt
[1], Chen and Angui [2]) and in more general environmental processes (Gill [3]).

The inclined porous layer was first studied by Bories and Combarnous [4] and later extended byWeber [5]
and Caltagirone and Bories [6]. In more recent contributions, Rees and Bassom [7] investigated the thermal
instability properties of Darcy flow in an inclined porous medium, highlighting the complex geometry of
the neutral curves, and various asymptotic limits. The unicellular flow model in an inclined porous layer is
explored in Barletta and Storesletten [8], with a constant heat flux boundary on the inclined porous channel
further investigated by Rees and Barletta [9], and the thermal instability of Darcy Hadley flow in an inclined
channel further explored by Barletta and Rees [10]. Nield [11] also commented on the inclined porous layer
for preferred patterns of the natural convection, and thereafter, Nield et al. [12] studied the effect of the viscous
dissipation influence on the onset of instability in an inclined porous channel. A collection of comprehensive
theories on the inclined porous layer is surveyed in the recent book of Nield and Bejan [13]. Further surveys
on porous media convection can be found in Ingham and Pop [14] and Vafai [15].
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With more specific relation to recent work on internal heat sources, Parthiban and Patil [16] analyzed the
thermal convection due to non-uniform heating boundaries with inclined thermal gradients in the presence
of an internal heat source, followed by the extension to an anisotropic porous layer by Parthiban and Patil
[17]. Rionero and Straughan [18] and Alex and Patil [19] examined the effect of variable gravity and an
internal heat source, with Hill [20] reporting on double-diffusive convection with a concentration-based heat
source. Bhadauria [21] and Capone et al. [22] further analyzed double-diffusive convection in a fluid-saturated
anisotropic porous medium with an internal heat source. More recently, an inclined porous layer with an
internal heat source was analyzed by Barletta et al. [23], where the upper wall was isothermal and the lower
wall was either isothermal or adiabatic.

The main aim of this study is to analyze the stability of thermosolutal convection within an inclined porous
layer including the effect of a concentration-based heat source. The externally imposed thermal gradient and
heat source lead to a possibly unstable thermosolutal stratification in the inclined porous layer. The solutions of
the linear instability analysis reduce to generalized eigenvalue problems which have been derived numerically
using the Chebyshev tau technique [24].

2 Mathematical analysis

An infinite inclined porous layer saturated by a fluid with thickness H is considered. The inclination angle
of the porous layer along the x∗-axis is denoted by φ, where the z∗-axis is chosen to be vertically upward. A
physical representation of the model is given in Fig. 1.

The flow in the porous layer is described by Darcy’s law (where the linear Boussinesq approximation is
applicable) such that

μ

K
q∗ + ∇∗P∗ = −ρg (sin(φ)e1 + cos(φ)e3) (1)

where q∗ = (u∗, v∗, w∗) is the Darcy velocity, P∗ is the pressure, g is acceleration due to gravity, μ is
viscosity, K is permeability with the vectors e1 and e3 being (1, 0, 0) and (0, 0, 1), respectively. Denoting
the temperature to be θ∗ and concentration to be C∗, we assume that the density of the fluid ρ has a linear
temperature and concentration dependence of the form

ρ(θ∗, C∗) = ρ f
(
1 − γθ (θ

∗ − θ0) + γc(C
∗ − C0)

)
(2)

where ρ f , θ0 and C0 are reference values of density, temperature and concentration, respectively, and γθ and
γC are the coefficients for thermal and solutal expansion.

Combining (1) and (2) with the incompressibility condition and equation of energy and solutal balance
yields the governing system

∇∗·q∗ = 0, (3)

H

g

porous medium

φ

x∗

y∗z∗
θ∗ = θ0

C∗ = C0

θ∗ = θ0 + �θ

C∗ = C0 + �C

Fig. 1 Schematic diagram of the physical system
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μ

K
q∗ + ∇∗P∗ = −ρ f g

[
1 − γθ (θ

∗ − θ0) + γc(C
∗ − C0)

]
(sin(φ)e1 + cos(φ)e3) , (4)

(
ρ f c

)
m

(
∂θ∗

∂t∗

)
+ (

ρ f cp
)
f q

∗· ∇∗θ∗ = km∇∗2θ∗ + Q∗(C∗ − C0), (5)

Φ

(
∂C∗

∂t∗

)
+ q∗· ∇∗C∗ = Dm∇∗2C∗, (6)

with the following boundary conditions:

z∗ = 0 : w∗ = 0, θ∗ = θ0 + �θ C∗ = C0 + �C

z∗ = H : w∗ = 0, θ∗ = θ0 C∗ = C0 (7)

Here Φ is the porosity of the porous layer, c denotes the specific heat, km is the thermal conductivity, and Dm
is the solutal conductivity. The internal heat source is modeled linearly with respect to concentration, which
is represented by the introduction of the Q∗(C∗ − C0) term in the heat equation, where Q∗ is some constant
of proportionality. The subscripts f and m are referred to fluid and porous medium, respectively.

Let us now consider the basic steady-state solution of (3)–(7) of the form

q∗
s = (u∗

s (z), 0, 0), P∗
s (x∗, y∗, z∗), θ∗(z∗), C∗

s (z
∗).

Assuming there is no net flow in horizontal direction (such that
∫ H
0 u(z∗) dz∗ = 0), the steady state is given

by

u∗
s (z

∗) = Kρ f g

μ

[
γθ Q∗H2�C

24km

(
4(z∗)3

H3 − 12(z∗)2

H2 + 8z∗

H
− 1

)

+ (�θγθ − �Cγc)

(
1

2
− z∗

H

)]
sin(φ), (8)

θ∗
s (z∗) = Q∗H2�C

6km

(
(z∗)3

H3 − 3(z∗)2

H2 + 2z∗

H

)
+ θ0 + �θ − �θ z∗

H
, (9)

C∗
s (z) = C0 + �C − �Cz∗

H
. (10)

To assess the stability of the steady solution, a perturbation (q, P, θ, C) is introduced to this steady state,
such that

q∗ = q∗
s + q, P∗ = P∗

s + P, θ∗ = θ∗
s + θ, C∗ = C∗

s + C,

with a non-dimensionalization with scalings of

(
x∗, y∗, z∗

) = H (x, y, z) , t∗ = aH2

αm
t, q = αm

H
q, P = μαm

K
P,

θ = θ�θ, C = C�C .

Substituting the perturbations and non-dimensionalized variables into system (3)–(7) we derive

∇·q = 0, (11)

q + ∇P =
[
Rzθ − Sz

Le
C

]
(sin(φ)e1 + cos(φ)e3) , (12)

∂θ

∂t
+ q· ∇θ + F(z)w + G(z)

∂θ

∂x
= ∇2θ + QC, (13)

(
Φ

a

)
∂C

∂t
+ q· ∇C − w + G(z)

∂C

∂x
= 1

Le
∇2C, (14)
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Fig. 2 Variation of Rz with Le at φ = 15◦ and Q = 0

where

Q = H2Q∗�C

km�θ
, αm = km(

ρ f cp
)
f

, a =
(
ρ f c

)
m(

ρ f cp
)
f

, Le = αm

Dm
,

Rz = ρ f gγθK H�θ

μαm
, Sz = ρ0gγCK H�C

μDm
,

such that Rz and Sz are the vertical temperature and concentration Rayleigh numbers, respectively. Here

F(z) = Q

6

(
3z2 − 6z + 2

) − 1,

G(z) = sin(φ)

[
RzQ

24

(
4z3 − 12z2 + 8z − 1

) +
(
Rz − Sz

Le

)
(0.5 − z)

]
,

with the boundary conditions

z = 0 : w = 0, θ = 1, C = 1

z = 1 : w = 0, θ = 0, C = 0. (15)

3 Linear stability analysis

To proceed with the linear analysis, the nonlinear terms from (11) to (14) are discarded. As the resulting system
is linear and autonomous, we may seek solutions of the form

[
q, θ,C, P

] = [
q (z) , θ (z) ,C (z) , P (z)

]
exp {i [kx + ly] + σ t} ,

where k and l are wave numbers in the x and y directions and σ ∈ C is the growth rate.
Letting D = d

dz and taking the double curl of the linearized version of (12) where the third component is
chosen (and the fact that q is solenoidal), we have the linearized system

(
D2 − α2)w + (

α2 cos(φ) − k2sin(φ)
)
[
Rzθ − Sz

Le
C

]
= 0, (16)

(
D2 − α2 − ikG(z)

)
θ − F(z)w + QC = σθ, (17)
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Fig. 3 Variation of Rz with Le at φ = 15◦ and Q = 1

Fig. 4 Variation of Rz with φ at Le = 10 and Q = 0

(
1

Le

[
D2 − α2] − ikG(z)

)
C + w = σC. (18)

Equations (16)–(18) are subject to boundary condition (15), which gives an eigenvalue problem for a vertical
thermal Rayleigh number Rz .Here, α = √

k2 + l2 is the overall wave number. Eigenvalue problems (16)–(18)
were solved by means of the Chebyshev tau method [24], where the results presented in Sect. 4.

4 Results and discussion

In this study the inclination angle φ is varied from 0◦ to 20◦, where we set Φ/a = 1 and Le = 10 to
represent a physical sugar or salt system. Here, the critical vertical thermal Rayleigh number (Rz) is defined
as the minimum of all Rz values over the wave number α. The critical values of transverse rolls are compared
with the longitudinal rolls, where the longitudinal disturbances are characterized by k = 0 and the transverse
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Fig. 5 Variation of Rz with φ at Le = 10 and Q = 1

Fig. 6 Variation of Rz with Q at Le = 10 and φ = 0◦

disturbances are characterized by l = 0. Dotted lines represent the transverse roll results, and solid lines
represent longitudinal roll results in Figs. 2, 3, 4, 5, 6, 7, 8 and 9.

Variations of Rz as a function of Le, for various values of Sz in both transverse and longitudinal rolls with
inclination angle φ = 15◦, are given in Fig. 2 (absence of a concentration-based internal heat source Q = 0)
and Fig. 3 (presence of a concentration-based internal heat source Q = 1). In both Figs. 2 and 3, the critical
values of Rz for the transverse rolls decrease up to approximately Le = 30 for negative values of Sz , with
insignificant variation thereafter. A similar behavior is demonstrated for positive values of Sz , although the
critical values of Rz increase (as oppose to decrease) up to approximately Le = 30. In both Figs. 2 and 3, the
critical values of Rz for Sz = 0 demonstrate minimal change with respect to a varying Le for transverse rolls.

However, when considering longitudinal rolls, there is a considerable difference between the absence and
presence of a concentration-based internal heat source. For Q = 0 in Fig. 2 there is no variation in Rz for
Sz = 10 and S0 as Le increases. However, for Q = 1 in Fig. 3, there is a clear destabilization (represented by
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Fig. 7 Variation of Rz with Q at Le = 10 and φ = 15◦

Fig. 8 Variation of Rz with Sz at Le = 10 and Q = 0

a decreasing Rz) as Le increases. For Sz = −10 the destabilization caused by an increasing Le is significantly
more pronounced for Q = 1 in Fig. 3 than for Q = 0 in Fig. 2.

The variation of critical values of Rz as a function of inclination angle φ is given in Figs. 4 and 5, for the
absence and presence of a concentration-based heat source, respectively, with different combinations of Sz . As
the inclination angle φ is increased from 0◦ to 20◦, the critical values of Rz increase in both the transverse and
longitudinal rolls, although the effect is much more pronounced in the transverse rolls. Similar quantitative
behavior is demonstrated for varying φ in both the absence (Fig. 4) and presence (Fig. 5) of a concentration-
based internal heat source for all values of Sz , although the presence of heat source is more destabilizing than
without. In all the above observations, the transverse rolls are more stable than the longitudinal rolls.

A visual representation of Rz as a function of concentration-based internal heat source (Q) in both the
absence and presence of inclination angle φ is shown in Figs. 6 and 7, respectively. In the absence of an
inclination angle (φ = 0 i.e., porous layer is horizontal), the critical values of Rz for transverse and longitudinal
rolls coincide, where the critical Rz values decrease (i.e., the system becomesmore unstable) with an increasing
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Fig. 9 Variation of Rz with Sz at Le = 10 and Q = 1

heat source for all values of Sz (as shown in Fig. 6). It is interesting to observe that in the presence of inclination
angle (φ > 0 i.e., an inclined porous layer), the critical values of Rz for transverse and longitudinal rolls differ
more substantially at lower values of Q than at higher values of Q as shown in Fig. 7. Similarly to Fig. 6,
the critical Rz values decrease (i.e., the system becomes more unstable) with an increasing heat source for all
values of Sz in Fig. 7.

The variation of Rz with vertical solutal Rayleigh number Sz in the absence and presence of a concentration-
based internal heat source is shown in Figs. 8 and 9, respectively, with different combinations of inclination
angles φ. The critical values of the transverse and longitudinal rolls show that an increase in the vertical solutal
Rayleigh number destabilizes the system for both Q = 0 and Q = 1. In both Figs. 8 and 9, the longitudinal
roll is more unstable than the transverse ones. Similarly to Fig. 8, the critical Rz values decrease (i.e., the
system becomes more unstable) with an increasing heat source for all values of Sz in Fig. 9. In all the above
observations, the transverse rolls are more stable than the longitudinal rolls.

5 Conclusion

The onset of double-diffusive convection in an inclined fluid-saturated porous medium in the presence of
concentration-based internal heat source is analyzed, where the thermosolutal instability analysis is explored
through transverse and longitudinal rolls. The results demonstrate that:

– an increase in the concentration-based internal heat source causes strong destabilization in both the trans-
verse and longitudinal rolls;

– in the absence of an inclination angle, the instability thresholds for the transverse and longitudinal rolls
coincide;

– an increasing inclination angle causes a strong stabilization in the transverse rolls irrespective of the internal
heat source or vertical solutal Rayleigh number;

– the critical Rz values are higher in transverse rolls as compared to longitudinal rolls irrespective of the
internal heat source and inclination angle;

– the critical Rz values decrease as Sz increases irrespective of the heat source and inclination angle;
– overall, substantial qualitative changes appear in the critical Rayleigh number subject to variations in the
inclination angle and heat source.
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