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Abstract

The well-known Braess’ paradox illustrates situations when adding a new link
to a traffic network might increase congestion in the network. In this article, we
announce a number of new results devoted to the probability of Braess’ paradox
to occur in the classical network configuration, with particular emphasis on the
Erlang distribution of parameters of the travel time function. This distribution
is important in the context of traffic networks. However, other distributions will
be analysed as well because Braess’ paradox can be observed in various applied
contexts such as telecommunication networks and power transmission networks.
Our results revealed that typical probabilities for Braess’ paradox to occur in
the classical network configuration do not exceed 10%, and they are very low
for some distributions of the parameters of travel time functions. If the classical
network configuration consists of motorway sections and class A roads and the
parameters of the travel time functions are modelled by the Erlang-2 distribution,
then the probability of Braess’ paradox to occur is 6%.

Keywords: Braess’ paradox; probability; equilibrium flow; traffic network.

1 Introduction

The classical network configuration introduced by Braess [3] consists of three paths:

P1 = a− b− d, P2 = a− c− d, P3 = a− b− c− d.

This network is denoted by N+ and it has four nodes and five links, where a is the
origin of all travel demand, and d is the destination of all demand (see Figure 1). The
network N is N+ with the link (b, c) removed. In 2006, Valiant and Roughgarden [16]
showed that “the ‘global’ behaviour of an equilibrium flow in a large random network
is similar to that in Braess’ original four-node example”. Thus, Braess’ network
configuration is of fundamental significance.

We assume that every link (i, j) in a network has a linear travel time function

αij + βijfij ,
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Figure 1: Braess’ Network Configuration N/N+, where N = N+ − (b, c).

where αij ≥ 0 is the free flow travel time for the link (i, j), βij > 0 is the delay
parameter for (i, j) and fij ≥ 0 is the flow on the link (i, j). Thus, Braess’ network
has the following linear travel time functions:

α1 + β1fab for link (a, b),

α2 + β2fbd for link (b, d),

α3 + β3fbc for link (b, c),

α4 + β4fac for link (a, c),

α5 + β5fcd for link (c, d).

A path P from the origin to the destination is said to have a vanishing flow if P
carries no traffic from the origin to the destination. Note that some links in the path
P may have a non-zero flow that contributes to the traffic of other paths. A path has
a non-vanishing flow if it carries some traffic from the origin to the destination.

Definition 1 A network with one origin and one destination is said to be at equilib-
rium if

(a) The travel time on paths with non-vanishing flow is the same (it is denoted by
TEq) and

(b) The travel time on paths with no flow is at least TEq.

This fundamental definition is, of course, a re-formulation of Wardrop’s first prin-
ciple [18] and it can be used to determine the equilibrium time and the equilibrium
flow. At equilibrium, no user can decrease their route travel time by unilaterally
switching routes [18]. In other words, if a network is not at equilibrium, then some
users of the network (e.g. drivers) can switch their routes in order to improve their
travel times.

Let Q > 0 denote the total flow in N/N+, that is,

Q = fab + fac = fbd + fcd.
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Note that fij and Q are not necessarily integer numbers. Let us denote

αij = αi + αj , βij = βi + βj ,

for example, α12 means α1 + α2. Also,

α = α45 − α12, ᾱ = α4 − α13, α̂ = α2 − α35,

and
β = β1245 = β1 + β2 + β4 + β5, βijk = βi + βj + βk.

The following identity will be used throughout the article:

α = ᾱ− α̂.

Lemma 1 describes the equilibrium in the network N , which is N+ with the link
(b, c) removed. Note that the case (a) of this lemma corresponds to the situation
when the path P1 has a vanishing flow and P2 has a non-vanishing flow in N . In case
(b) the path P1 has a non-vanishing flow and P2 has a vanishing flow, and in case (c)
no path has a vanishing flow. Also, the cases (a) and (b) in this lemma are mutually
exclusive because one of the numbers −α/β45 and α/β12 is negative, or they both are
equal to zero.

Lemma 1 [20] In the network N , the travel time at equilibrium is as follows:

(a) TEq = α45 +Qβ45 if 0 < Q ≤ −α/β45;

(b) TEq = α12 +Qβ12 if 0 < Q ≤ α/β12;

(c) TEq = α12 + (α+Qβ45)β12/β if Q > max{α/β12;−α/β45}.

The equilibrium in N+ is described by seven cases in Lemma 2. It may be pointed
out that these cases correspond to the following situations in N+:

(a) The only path with non-vanishing flow is P3;

(b) The only path with non-vanishing flow is P2;

(c) The only path with non-vanishing flow is P1;

(d) The only path with vanishing flow is P1;

(e) The only path with vanishing flow is P2;

(f) The only path with vanishing flow is P3;

(g) No path has a vanishing flow.

It is not difficult to see that some of the cases in Lemma 2 are mutually exclusive,
hence the equilibrium in a particular network N+ is described by some of the pre-
sented seven cases. For example, if αi = βi = 1 for 1 ≤ i ≤ 5, then the equilibrium is
given by just one case (f).
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Let us define the Braess numbers Bi for i = 1, 2, 3, 4:

B1 = β1β5 − β2β4, B2 = β135β − β12β45,

B3 = β2
45β134 − β2

4β, B4 = β2
12β235 − β2

2β.

We will also need two parameters µ1 and µ2:

µ1 =
α̂β14 − αβ3

β3β45 + β5β14
, µ2 =

ᾱβ25 + αβ3

β1β25 + β3β12
.

Lemma 2 [20] In the network N+, the travel time at equilibrium is as follows:

(a) T+
Eq = α135 +Qβ135 if 0 < Q ≤ min{α̂/β35; ᾱ/β13};

(b) T+
Eq = α45 +Qβ45 if 0 < Q ≤ min{−α/β45;−ᾱ/β4};

(c) T+
Eq = α12 +Qβ12 if 0 < Q ≤ min{α/β12;−α̂/β2};

(d) T+
Eq = α45 +Qβ45 − (ᾱ+Qβ4)β4/β134 if

max{ᾱ/β13;−ᾱ/β4} < Q ≤ µ1;

(e) T+
Eq = α12 +Qβ12 − (α̂+Qβ2)β2/β235 if

max{α̂/β35;−α̂/β2} < Q ≤ µ2;

(f) T+
Eq = α12 + (α+Qβ45)β12/β if Q > max{α/β12;−α/β45} and

B1 ≥
α̂β14 + ᾱβ25

Q
;

(g) T+
Eq = α12 + (α+Qβ45)β12/β + gB1/β, where

g =
ᾱβ − αβ14 −QB1

β3β + β14β25
,

if Q > max{µ1;µ2} and

B1 <
α̂β14 + ᾱβ25

Q
.

The next definition is devoted to Braess’ paradox [3] in the classical network
configuration N/N+; however, the same definition is valid if N/N+ represents any
network configuration. Basically, the paradox describes a situation when adding a
new link to a network makes a general performance worse.

Definition 2 Braess’ paradox is said to occur in the network configuration N/N+

for a given total flow Q if
T+
Eq > TEq,

where TEq and T+
Eq are travel times at equilibria in N and N+, respectively.
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Thus, Braess’ paradox illustrates situations when adding a new link to a transport
network might not reduce congestion in the network but instead increase it.

Proposition 1 describes all possible situations when Braess’ paradox may occur
in N/N+ in terms of their paths. In fact, it says that Braess’ paradox may occur in
N/N+ only if, at equilibria, both P1 and P2 have a non-vanishing flow in N , and P3

has a non-vanishing flow in N+.

Proposition 1 [20] Braess’ paradox may occur in N/N+ in the following cases only:

(a) At equilibria, both N and N+ have no paths with vanishing flow.

(b) At equilibria, N has no path with vanishing flow, and P3 is the only path with
non-vanishing flow in N+.

(c) At equilibria, N has no path with vanishing flow, and P1 is the only path with
vanishing flow in N+.

(d) At equilibria, N has no path with vanishing flow, and P2 is the only path with
vanishing flow in N+.

In the following theorems, the necessary and sufficient conditions for the exis-
tence of the paradox are formulated. These theorems correspond to the four cases of
Proposition 1.

Theorem 1 [20] Suppose that at equilibria both N and N+ have no paths with van-
ishing flow. Then Braess’ paradox occurs in N/N+ if and only if the Braess number
B1 is positive and

max

{
α

β12
;
−α
β45

;µ1;µ2

}
< Q <

α̂β14 + ᾱβ25

B1
.

Theorem 2 [20] Suppose that at equilibria N has no path with vanishing flow and
P3 is the only path with non-vanishing flow in N+. Then Braess’ paradox occurs in
N/N+ if and only if the Braess number B2 is positive and

max

{
α

β12
;
−α
β45

;
α̂β45 + ᾱβ12

B2

}
< Q ≤ min

{
α̂

β35
;
ᾱ

β13

}
.

Theorem 3 [20] Suppose that at equilibria N has no path with vanishing flow and P1

is the only path with vanishing flow in N+. Then Braess’ paradox occurs in N/N+

if and only if the Braess number B3 is positive and

max

{
α

β12
;
−α
β45

;
ᾱ

β13
;
−ᾱ
β4

;
ᾱβ4β − αβ134β45

B3

}
< Q ≤ µ1.

Theorem 4 [20] Suppose that at equilibria N has no path with vanishing flow and P2

is the only path with vanishing flow in N+. Then Braess’ paradox occurs in N/N+

if and only if the Braess number B4 is positive and

max

{
α

β12
;
−α
β45

;
α̂

β35
;
−α̂
β2

;
α̂β2β + αβ235β12

B4

}
< Q ≤ µ2.
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It might be pointed out that if B1 ≥ 0, then B2, B3 and B4 are positive numbers
because

B2 = β12β13 + β35β45 + B1, (1)

B3 = β2
5β134 + β4(β3β455 + β5β14 + B1), (2)

B4 = β2
1β235 + β2(β1β335 + β2β13 + B1). (3)

Moreover, Theorems 3 and 4 are mutually exclusive in the sense that they cannot
provide intervals for Q simultaneously. This is true because the inequalities ᾱ/β13 <
µ1 and α̂/β35 < µ2 are inconsistent. Note also that if, for example, Theorems 1–3
provide non-empty intervals for Q, then the interval with highest values of Q is given
by Theorem 1, the interval with smallest values of Q is provided by Theorem 2 and
Theorem 3 yields the interval with mid-range values of Q.

The original assumption βi > 0 for all i can be relaxed by allowing βi = 0 for
some i. This can be done by introducing +∞ and −∞ when a non-zero number is
divided by zero.

2 Likelihood of Braess’ Paradox

We develop a new technique to show that the likelihood of Braess’ paradox to occur
in the classical network configuration is rather small. This is demonstrated for differ-
ent distributions of parameters of travel time functions for links in a network, with
particular emphasis on the Erlang distribution because of its importance for traf-
fic networks. For example, we prove mathematically that the probability of Braess’
paradox to happen does not exceed 0.129 when the parameters follow the Erlang-3
distribution. Similar estimates are true for the exponential distribution, the χ2-
distribution, the uniform and other distributions. Our simulation results for different
distributions revealed that typical probabilities for Braess’ paradox to occur in the
classical network configuration do not exceed 10%, and they are very low for some
distributions of the parameters of travel time functions. If the classical network con-
figuration consists of motorway sections and class A roads and the parameters of the
travel time functions are modelled by the Erlang-2 distribution, then the probability
of Braess’ paradox to occur is 6%.

The focus of this section is on the probability of Braess’ paradox to occur in the
classical network configuration when a single link is added/removed, which is consis-
tent with the original definition of the paradox. Under other assumptions, Valiant
and Roughgarden [16] proved that Braess’ paradox is likely to occur in a natural ran-
dom network model. More precisely, they showed that in almost all networks there
is a set of links whose removal improves the travel time at equilibrium for a given
appropriate total flow.

Let us re-formulate and simplify Theorems 1–4 by replacing the condition Bi > 0
for i = 2, 3, 4 by the condition B1 > 0. Actually, the latter is a stronger condition
as discussed after Theorem 4. This modification is given in Theorem 5. Notice that
some of the intervals in this theorem may be empty. If all four intervals are empty
(or B1 ≤ 0), then there is no Braess’ paradox.
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Theorem 5 Braess’ paradox occurs in the network configuration N/N+ if and only
if the Braess number B1 is positive and the total flow Q belongs to the following
intervals:

(A) max
{

α
β12

; −αβ45 ;µ1;µ2

}
< Q < α̂β14+ᾱβ25

B1 ;

(B) max
{

α
β12

; −αβ45 ; α̂β45+ᾱβ12
B2

}
< Q ≤ min

{
α̂
β35

; ᾱ
β13

}
;

(C) max
{

α
β12

; −αβ45 ; ᾱ
β13

; −ᾱβ4 ; ᾱβ4β−αβ134β45B3

}
< Q ≤ µ1;

(D) max
{

α
β12

; −αβ45 ; α̂
β35

; −α̂β2 ; α̂β2β+αβ235β12
B4

}
< Q ≤ µ2.

Let the delay parameters be arranged in a 2 × 2 matrix B, and let α̂ and ᾱ be
presented as a 2-dimensional vector α:

B =

(
β1 β2

β4 β5

)
, α =

(
α̂
ᾱ

)
.

The next important result, which follows from Theorem 5, gives necessary and
sufficient conditions for Braess’ paradox to occur in the classical network configuration
N/N+. Although this result does not provide the interval of values for the total flow
where the paradox is happening, it is very helpful for finding the probability of Braess’
paradox to occur. It is interesting to note that the delay parameter β3 for link (b, c),
which is added/removed in the network configuration, plays no role in the occurance
of Braess’ paradox.

Theorem 6 The statements (a), (b) and (c) are equivalent:

(a) Braess’ paradox occurs in the classical network configuration N/N+.

(b) The determinant of B is positive, and the linear transformation B applied to α
yields a vector with positive components, that is:

|B| > 0 and Bα > 0.

(c) The following inequalities are satisfied:

β1β5 > β2β4, (4)

β1α̂+ β2ᾱ > 0, (5)

β4α̂+ β5ᾱ > 0. (6)

In what follows, we shall assume that the parameters of the travel time functions
in a network are random continuous variables. More precisely, free flow travel times
(αi ≥ 0) for links follow specified probability distributions, and delay parameters
(βi > 0) have some general distribution. Let us define the random variables Ψ and
Φ:

Ψ = min{α2 − α5;α4 − α1} and Φ = max{α2 − α5;α4 − α1}.
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Lemma 3 The probability of Braess’ paradox to occur in the classical network con-
figuration N/N+ satisfies the following bounds:

0.5 P[Ψ− α3 > 0] ≤ P[Braess’ paradox occurs] ≤ 0.5 P[Φ− α3 > 0].

We start with a relatively simple case when free flow travel times for links are
uniformly distributed. Without loss of generality, we assume that those random
variables have support on the interval [0,1].

Theorem 7 Let the free flow travel times (αi) for links in the classical network
configuration N/N+ follow the uniform distribution on [0,1], and let PUN denote the
probability of Braess’ paradox to occur in such a network configuration. Then

0.025 ≤ PUN < 0.142.

The following theorem is devoted to the situation when free flow travel times for
links are exponentially distributed.

Theorem 8 Let the free flow travel times (αi) for links in the classical network
configuration N/N+ follow the exponential distribution, and let PEX denote the prob-
ability of Braess’ paradox to occur in such a network configuration. Then

0.041 < PEX < 0.209.

For traffic networks consisting of motorway sections, class A roads or a mixture
of both, statistical tests showed that the distribution of parameters of travel time
functions follow the Erlang-k distribution for small values of k as well as some other
distributions, which will be discussed in the section devoted to simulation.

Our next theorem is devoted to the situation when free flow travel times for links
follow the Erlang-2 distribution. Similar to the previous results, the formulated lower
and upper bounds are true for any distribution of the delay parameters (βi).

Theorem 9 Let the free flow travel times (αi) for links in the classical network
configuration N/N+ follow the Erlang-2 distribution Γ(2, θ), and let PE2 denote the
probability of Braess’ paradox to occur in such a network configuration. Then

0.025 < PE2 < 0.163.

In the following theorem, we analyse the Erlang-3 distribution for free flow travel
times.

Theorem 10 Let the free flow travel times (αi) for links in the classical network
configuration N/N+ follow the Erlang-3 distribution Γ(3, θ), and let PE3 denote the
probability of Braess’ paradox to occur in such a network configuration. Then

0.016 < PE3 < 0.129.

Our next theorem considers the Erlang-4 distribution for free flow travel times.
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Theorem 11 Let the free flow travel times (αi) for links in the classical network
configuration N/N+ follow the Erlang-4 distribution Γ(4, θ), and let PE4 denote the
probability of Braess’ paradox to occur in such a network configuration. Then

0.01 < PE4 < 0.103.

It may be pointed out that the theorems devoted to the exponential and Erlang
distributions are relevant to the χ2-distribution, which is a particular case of those
distributions if we put θ = 2.

Let us consider a generalisation of the previous results for the Erlang-k distribu-
tion, which converges to the normal distribution for large values of k. As illustrated in
the next section, this distribution might be important in the context of road networks
because a number of consecutive motorway sections can be modelled by a single link.
The parameters of such a link could be described by the Erlang-k distribution, where
k might have large values.

We will only consider the upper bound because the lower bound becomes too
small (< 0.01) for k ≥ 5. Also, for the sake of simplicity, we sacrifice a non-dominant
term (−0.5

∫+∞
0 fΩ(z)dz) in the upper bound, which actually constitutes the afore-

mentioned lower bound.
In contrast to previous theorems, the generalisation will not directly provide an

explicit numerical upper bound for Braess’ paradox to occur. Instead, we will deduce
some formula that can be used for calculation of the numerical upper bound. Note
that in the third sum of this formula, the upper limit (k− 2− f − l) may be equal to
-1, in which case the entire sum is equal to 0.

Theorem 12 Let the free flow travel times (αi) for links in the classical network
configuration N/N+ follow the Erlang-k distribution Γ(k, θ), and let PEk denote the
probability of Braess’ paradox to occur in such a network configuration. Then

PEk <
k−1∑
l=0

k−1−l∑
f=0

(k−1+f
f

)
22k+f

1 +
k−2−f−l∑
j=0

2sj+1−k
(

2k − 3− sj
k − 1

)
sj

k − 1− sj

 ,
where sj = f + l + j.

It is an interesting conjecture that the bound of Theorem 12 tends to 0 as k → +∞.
We will only present numerical values of this bound for some values of the shape
parameter k:

PE5 < 0.090, PE6 < 0.072, PE7 < 0.058, PE8 < 0.047,

PE9 < 0.038, PE10 < 0.031, PE11 < 0.026, PE12 < 0.021,

PE13 < 0.017, PE14 < 0.014, PE15 < 0.012, PE16 < 0.010,

PE28 < 0.001.

9



2.1 Simulation Results

In this section, we present results of a computer simulation for the probability of
Braess’ paradox to occur in the classical network configurationN/N+. The simulation
is based on Theorem 6 and a random generation of the parameters of the travel
time functions from specified probability distributions. More precisely, for a given
probability distribution, the inverse of its cumulative probability density function is
used to generate instances of the free flow travel times (αi), and a similar procedure
is used to generate instances of delay parameters (βi). Up to 1 million instances
were generated for calculation of each probability presented in the following tables;
typically, more instances were needed for small probabilities to reduce simulation
errors. The probabilities are given to one significant figure if they are less than 0.1
and to two significant figures otherwise.

Table 1: Probabilities for Braess’ paradox to occur for different distributions of free
flow travel times and delay parameters.

Delay Parameter, Free Flow Travel Times, αi:
βi: Unif. Exp. Erlang-2 Erlang-4 Erlang-16 Erlang-28

Uniform 0.05 0.09 0.06 0.03 0.0006 0.00002
Exponential 0.05 0.09 0.06 0.03 0.0007 0.00003
Erlang-2 0.05 0.09 0.06 0.03 0.0007 0.00002
Erlang-4 0.05 0.10 0.06 0.03 0.0006 0.00002
Erlang-16 0.05 0.10 0.06 0.03 0.0006 0.00002
Erlang-28 0.05 0.10 0.07 0.03 0.0005 0.00001

Weibull(8,1) 0.06 0.11 0.07 0.03 0.0006 0.00002
Lognormal(0,1) 0.05 0.09 0.06 0.03 0.0006 0.00003

Beta(6,2) 0.05 0.10 0.07 0.03 0.0006 0.00001

Table 1 provides probabilities for Braess’ paradox to occur for different distribu-
tions of free flow travel times and delay parameters. An important observation is
that for a given distribution of free flow travel times, the choice of the distribution
of delay parameters practically does not affect the likelihood of Braess’ paradox to
occur. Some influence of the delay parameters can be observed when free flow travel
times follow the Erlang-28 distribution, however the probabilities themselves are very
small.

Taking into account the observation made above, it seems reasonable to analyse
situations when probability distributions for free flow travel times and delay param-
eters are the same. Our statistical tests for free flow travel times of links in road
networks showed that they can be modelled by the Erlang-k distribution for small
values of k as well as the Weibull and lognormal distributions. This is of no sur-
prise because those distribution can be very similar for some sets of their parameters.
Also, the Erlang-k distribution converges to the normal distribution for large values
of k. On the other hand, with different parameters, the lognormal and Erlang-k dis-
tributions can be extremely right-skewed, which make them very different from the
symmetric normal distribution, whereas the Weibull distribution can be skewed to
any side depending on its parameters.

The next two tables show probabilities of Braess’ paradox to occur when the
parameters of travel time functions follow the Weibull distribution or the lognormal
distribution. As can be seen from Table 2, the probabilities practically do not depend
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on the scale parameter λ if the shape parameter is fixed. Similarly, the probabilities
in Table 3 do not depend on the M -parameter for a given S-parameter.

Table 2: Probabilities for the Weibull distribution Weibull(k,λ).

Scale parameter, λ:
Shape parameter, k: 1 10 50

2 0.03 0.03 0.03
3 0.01 0.01 0.01
4 0.003 0.003 0.003
5 0.0005 0.0006 0.0005
6 0.00009 0.0001 0.00009
7 0.00002 0.00002 0.00003
10 < 10−5 < 10−5 < 10−5

It is interesting to note that the highest probability of 14% in all simulations is
achieved for the lognormal distribution when the S-parameter is at least 5, that is,
when the distribution is extremely right-skewed. Such a distribution, however, is not
common for modelling the parameters of travel time functions of roads and it might
be of rather theoretical interest.

Table 3: Probabilities for the lognormal distribution Lognormal(M ,S).

S-parameter:
M-parameter: 0.5 1 3 5 50

0 0.03 0.09 0.13 0.14 0.14
1 0.03 0.09 0.13 0.14 0.14
5 0.03 0.09 0.13 0.14 0.14

The beta distribution may be important in the context of Braess’ paradox because
of the variety of shapes provided by this distribution, taking into account that Braess’
paradox can be observed in various applied contexts. Table 4 confirms another general
observation that if a distribution is very left-skewed (e.g. A = 5, B = 0.5 for the beta
distribution), then the corresponding probability of Braess’ paradox to occur is very
small; and the highest values of the probability are achieved for very right-skewed
distributions.

Table 4: Probabilities for the beta distribution Beta(A,B).

B-parameter:
A-parameter: 0.5 1 3 5 50

0.5 0.07 0.09 0.10 0.11 0.11
1 0.03 0.05 0.07 0.08 0.09
3 0.0006 0.003 0.01 0.02 0.04
5 0.00001 0.0001 0.001 0.004 0.02

The normal distribution with a ‘large’ negative tail might not be appropriate
to model the random behaviour of free flow travel times. However, because of its
importance, some normal distributions can be used in the context of Braess’ paradox
as a first approximation, and hence we will only consider one family of the normal
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distribution with a rather ‘small’ negative tail, that is, when µ/σ ≥ 3. Note that
in our simulations all generated instances with at least one negative parameter were
rejected.

Table 5: Probabilities for the normal distribution N (µ, σ2).

Standard Deviation, σ:
Mean, µ: 20 24 30 40 48

120 < 10−5 0.0001 0.001 0.007 -
240 < 10−5 < 10−5 < 10−5 < 10−5 0.00009
480 < 10−5 < 10−5 < 10−5 < 10−5 < 10−5

Table 6: (Cntd.) Probabilities for the normal distribution N (µ, σ2).

Standard Deviation, σ:
Mean, µ: 60 80 96 120 160

120 - - - - -
240 0.001 0.007 - - -
480 < 10−5 < 10−5 0.00008 0.001 0.007

As can be seen in Tables 5 and 6, the probability of Braess’ paradox to occur
for the normal distribution of the parameters is approximately the same is the ratio
µ/σ is fixed. A further observation for the normal distribution (and perhaps any
distribution) with a fixed positive mean is that the smaller the standard deviation,
the smaller the probability of Braess’ paradox to occur. This is easy to understand
for a very small standard deviation because in this case, with very high probability,
the parameters αi would be very close to the positive mean, and hence α̂ and ᾱ
would be negative and there would be no Braess’ paradox by Theorem 6, that is, the
probability of Braess’ paradox to happen would be very small.

A marvellous open problem would be to investigate the probability of Braess’
paradox to occur in large traffic networks when a single link is added. Our hypoth-
esis is that such probabilities are rather small. Some insight could be gained from
the generalised traffic network discussed in [20]. Suppose that each of the (a, b)-
path, (b, d)-path, (a, c)-path, (c, d)-path and (b, c)-path consists of eight motorway
sections, and the parameters of travel time functions for each section are modelled
by the Erlang-2 distribution. Using the addition property of this distribution, such
a generalised network can be reduced to the classical network configuration, where
the parameters of travel time functions for each link are modelled by the Erlang-16
distribution. From Table 1, the probability of Braess’ paradox to occur in the gener-
alised network when a link on the (b, c)-path is removed is 0.0006. Another interesting
addition to the aforementioned open problem would be to consider non-linear BPR
functions.

Based on the results of this section, we can conclude that typical probabilities
for Braess’ paradox to occur in the classical network configuration do not exceed
10%, and they are very low for some distributions of the parameters of travel time
functions. If the classical network configuration consists of motorway sections and
class A roads and the parameters of the travel time functions are modelled by the
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Erlang-2 distribution, then the probability of Braess’ paradox to occur is 6%. Also,
let us summarize three observations made in this section:

1. For a given distribution of free flow travel times, the choice of the distribution
of delay parameters practically does not affect the likelihood of Braess’ paradox
to occur.

2. If the distribution of the parameters of travel time functions is very left-skewed,
then the corresponding probability of Braess’ paradox to occur is very small.
The highest values of the probability are achieved for very right-skewed distri-
butions.

3. If the distribution of the parameters of travel time functions has a fixed positive
mean, then the smaller the standard deviation, the smaller the probability of
Braess’ paradox to occur.
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