
  

 

Abstract: This article presents a novel adaptive finite time stabilization technique based on global sliding mode for 

disturbed chaotic flow with a single unstable node. The considered chaotic flow has unusual characteristics containing 

attractor merging, symmetry breaking, attracting tori and different forms of multi-stability. A nonlinear function is 

employed in the global sliding surface to modify damping ratio and improve the transient performance. The damping 

ratio of the closed-loop system is improved when the states converge to the origin. Using the new chattering-free 

controller, the reaching mode is removed and the sliding behavior is presented right from the first instant. The 

adaptive finite-time tuning law eliminates the requirement of the information about the disturbances’ bounds. 

Illustrative simulations are provided to display the efficiency of the proposed scheme. 
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1. Introduction 

Sliding mode control (SMC) is efficiently applied for the stabilization control of wide range of linear / 

nonlinear dynamic systems such as chaotic systems [1-4], power converters [5], singular systems [6], quad-

rotor aircraft [7], inverted pendulum [8], seesaw systems [9], robotic manipulators [10], electronic circuits 

[11], power processing [12, 13], secure communication [14], vehicular following system [15], etc. SMC is a 

powerful control technique and has ability of achieving desirable performance in the presence of 

disturbances and uncertainties [16-18]. Of the important properties on SMC are the superior transient 

performance, insensitivity to the bounded disturbances and robustness to the uncertainties in comparison 

with the other control methods [19]. SMC design procedure is separated into these phases: (i) sliding phase, 

(ii) reaching phase. A switching surface is specified in the sliding phase so that the controlled system 

displays promising dynamic performance [20]. A sliding mode controller is used in the reaching phase to 

converge trajectories of the states to the switching surface [21]. For the purpose of the influence of the 

switching surface on the stabilization and transient response, the design procedure of the switching surface 

is the most significant subject [22, 23]. SMC uses a discontinuous control signal to drive the states to a 

predesigned sliding surface on which the desired performance and system’s stability are achieved [24]. 

However, SMC cannot fulfill the convergence of the state trajectories to zero in the finite time. In reality, 

particularly in some engineering aspects, it is required that the convergence of the dynamical system is 

obtained in the finite time rather than infinite time [25, 26]. The problem of finite time control has been 

investigated by quite a few researchers from different viewpoints [27]. Through the reaching phase of SMC, 

the system doesn’t have the robust performance, and the parametric uncertainties and external disturbances 

can destabilize the control system.  

http://en.cnki.com.cn/Article_en/CJFDTotal-KZLY201005004.htm


  

In the past years, the theory of global sliding mode control (GSMC) has been presented for a general 

framework to remove the reaching period of SMC and overcome undesired chattering phenomenon. In 

GSMC, via an extra term in the surface, the reaching mode is removed and the states of the control system 

move on the sliding surface right from the initial instant. In recent decade, more attention has been paid for 

the use of GSMC method [28]. In [29], a GSMC scheme is offered for the stabilization control of a 

helicopter with disturbance and input-delay. A fuzzy GSMC based on backstepping is proposed in [30] for 

tracking control of multi-joint robotic manipulators. The problem of network congestion control based on 

GSMC and linear matrix inequality (LMI) is studied in [31] for TCP network systems with state-delays and 

external disturbances. In [32], a global quasi-SMC technique is investigated to ensure zigzag motion with 

small bound throughout the entire response for the achievement of disturbance rejection in  discrete time. In 

[33], the design problem of adaptive GSMC is studied for linear helicopter systems with actuator fault and 

time-delay. The adaptive fast terminal sliding mode (FTSM) control method joined with GSMC scheme is 

planned in [34] for tracking control of the uncertain nonlinear third-order systems. In [35], an adaptive 

GSMC via radial basis function (RBF) neural-network is offered for the identification purpose and tracker 

design of micro-electro-mechanical system (MEMS) gyroscope. A novel GSMC technique based on LMI 

and Lyapunov stability theory is studied in [36] for the stabilization control of uncertain nonlinear dynamic 

systems with perturbation. In [37], an adaptive global nonlinear switching surface is proposed for the 

nonlinear dynamic systems with external disturbances. In [38], an LMI-based GSMC law is suggested to 

improve the stability and robustness of the underactuated systems with external disturbances. In [39], a 

dynamic proportional-integral-derivative (PID) GSMC based on an adaptive RBF neural estimator is 

developed to satisfy the stability and robustness of MEMS gyroscope. An adaptive super-twisting GSMC is 

proposed in [40] for the tracking control of n-link rigid robotic manipulators. In order to improve the control 



  

performance of GSMC, a fast GSMC technique is presented in [41] to accelerate the system response by 

changing the exponential decay function to an exponential bilateral decay function.  

In this article, an adaptive GSMC method is investigated to remove the reaching phase and overcome the 

chattering phenomenon. In the presence of the nonlinear function   in the global sliding surface, the 

damping ratio of the chaotic flow with external disturbance is improved and the robustness of the chaotic 

flow is enhanced. Besides, an adaptation process is used in GSMC which approximates the disturbances’ 

unknown upper bounds and satisfies the finite time convergence of state trajectories to the global sliding 

surface. As a final point, some numerical simulations on chaotic flow with a single unstable node are 

provided to validate the efficiency of the suggested approach. The main purpose of this article is to propose 

an adaptive GSMC framework to stabilize the chaotic systems in the existence of external disturbances with 

unknown bounds.  

The organization of this article is formed as follows: Section 2 covers the problem description of the 

chaotic flow with a single unstable node. Section 3 presents the design approach of the adaptive finite time 

stabilizer using global sliding mode scheme. In Section 4, the designed adaptive finite time stabilization 

technique is employed on the disturbed chaotic flow in comparison with the other techniques. Finally, in 

Section 5, conclusions are drawn.  

2. System description 

A modified jerk system is studied, as the simplest chaotic flow with a single unstable node, using a form 

that has successfully given other chaotic flows with hidden attractors (see references [42] and [42] for more 

details). The chaotic flows with hidden attractors are significant and potentially problematic in engineering 

applications [43-45].   



  

Consider the chaotic flow with single unstable node described as [42] 

,

,

,

22

2

2

2

133

113212

21

dubxaxxx

duxxxx

xx













 (1) 

where Txxxx ],,[ 321 ,  
Tuuu ],[ 21  and 

Tddd ],[ 21  denote the states of the system, control signals, and 

external disturbances, respectively. The chaotic flow (1) can be represented as 
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Assumption 1: Assume 
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Hence, it is obtained from (2) that the pair ),( 1211 AA  is controllable. Therefore, for any positive constant w , 

there exists a unique positive scalar p  as the solution of the Lyapunov condition )2(12 pwFA  , where 

TFFF ][ 21  is a constant gain vector.  

3. Main results 

The global switching surface for chaotic flow (2) is chosen by 

 0Hxx  , (3) 

with 



  

1 12 2( ( )) TF p x t A I     , (4) 

where 
0x  is the initial condition of x ; 

2I  is two-dimensional identity matrix; p  denotes a positive scalar; 

F  is a constant gain vector; 1( ( ))x t  is a diagonal matrix with non-positive nonlinear scalar functions of 

)(1 tx , and )]exp(),exp(),diag[exp( 321 tttH   , where 
321 ,,   are positive constants. The 

subsequent inequality is obtained for some positive constants   and q  

).exp( tqH   (5) 

The nonlinear function 1( ( ))x t  is selected in the form of a diagonal matrix with exponential terms as 

1 1 1 2 1( ( )) [ ( ( )), ( ( ))]x t diag x t x t   , 
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where 
i  and i  are positive constants. The function 

1( ( ))i x t  varies its value from zero to 
i  while the 

state )(tx  converges to zero from the initial value, with 
1 0 1( ( )) ( (0)) 0i ix t x   . From now, we denote 

1 1( ( ))x t  as 1 .  

On the sliding surface 0 , one can attain from (3) that 
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where 
0ix  is the initial condition of 

ix . Substituting 2x  from (8) into the first equation of chaotic flow (2), 

one achieves 

 (9) 



  

Theorem 1: Consider the dynamics (9) and suppose Assumption 1 fulfilled. As a result, the state )(1 tx  of 

the sliding mode dynamics (9) converges to zero, exponentially.   

Proof:  Define the Lyapunov candidate functional as 

2

15.0 pxVa  . (10) 

Differentiating (10) along trajectories of (9) yields 
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The infinite limit of H  is found as 
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and using the Lyapunov criterion )2(12 pwFA  , we can obtain from (11) that 
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Because 01   and 0w , then Eq. (13) is found as 

,05.0 1
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with pw1 . 

Theorem 2: Consider the disturbed chaotic flow (2) with a single unstable node. Applying the control 

inputs as 
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where   10111120221 )exp()exp( xtxpFxtx   ,   3033101122 )exp()exp( xtxxtxF   , 

01 k , 12 dk  , 23 dk  , then, the states of the chaotic flow (2) are moved from initial conditions to the 

global surface (3) in the finite time and stay on the surface forever.   

Proof: Describe the Lyapunov candidate functional as  

 T

bV 5.0 .  (17) 

Time-derivative of 
bV  along states of the chaotic flow (1) is calculated as  
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Substituting (15) and (16) into (18), we achieve  
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Hence, the states of the disturbed chaotic flow (1) are converged to the global surface 0  in the finite 

time and after that, stay on it.         □ 

In practice, the upper bounds of the disturbance terms 1d  and 2d  are unknown. In the following theorem, 

the adaptive gain tuning laws are planned to estimate the unknown bounds of the external disturbances. 

Theorem 3: Consider the disturbed chaotic flow (2) and the global switching surface (3). Suppose that the 

external disturbances are unknown but bounded, that is, 12 dk   and 23 dk  , where 2k  and 
3k  are 



  

unknown positive scalars. Assume that 
2k̂  and 3k̂  are the estimation values of 2k  and 

3k  which are provided 

by the adaptive gain tuning laws as    

2 2 1
ˆ ,k     (20) 

3 3 2
ˆ ,k     (21) 

where 2  and 
3  are two positive constants. Applying the adaptive controllers as 
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then, the finite-time convergence of the states of disturbed chaotic flow (2) to the sliding surface 0  is 

satisfied.  

Proof: The Lyapunov candidate functional is described by  
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where substituting (20)-(23) in (25), we have  
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Since  12 dk  , 23 dk  , 121   and 132  , then we obtain from (26) that  
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where          012,12,2,2min 232212112312  dkdk . Thus, the states of the 

disturbed chaotic flow (2) are converged to the global switching surface 0  in the finite time.  □ 

4. Simulation results 

In what follows, to specify the effectiveness of the scheme, to conduct simulation tests in comparison 

with the method of [1]. Consider the chaotic flow having a single unstable node [42] with some changes as 
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where )2sin(4.0)3cos(3.0 2111 xxxd   and )2cos(3.0)2sin(2.0 1322 xxxd  . The modified system (27) 

includes external disturbances d
1
 and d

2
, and control laws u

1 and u
2
 to stabilize it in finite time. The 



  

system proposed in [42] has a chaotic behavior in a wide parameter range. As shown in Fig. 1, the orbits of 

the states for the uncontrolled chaotic flow display chaotic behavior and clear sensitivity to initial 

conditions. This system demonstrates strange double-scroll attractors as illustrated in Fig. 2. 
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Fig. 1. Chaotic response of the uncontrolled chaotic flow. 
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Fig. 2. Chaotic attractors for 4,894.8  ba . 

Simulation results are performed via Matlab® software. The initial states are chosen as 5.0)0(ˆ
2 k , 

0)0(ˆ
3 k ,  Tx 7.08.30)0(  . The constant parameters are chosen as 4.02  , 3.03  , 21 k , 11  , 

22  , 33  ,  
1 20  , 1 2   and  0.8 0.4

T
F  . By solving the Lyapunov function )2(12 pwFA   

for 2w , one obtains 25.1p . Fig.3 illustrates the time histories of the states of the chaotic flow. 

According to the inequality (27), finite time period can be calculated as follows:  

By dividing two sides of 0.5

c cV V   (Eq. (27)) to term 0.5

cV , one achieves 0.5

c cV V  , where after 

some calculations, it yields 1 0.5

c cdt V dV   . Now, using integration from 
0t  to 

st , one attains 
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2
(0)s ct t V 


. Hence, finite time period is obtained as 0

2
(0)s ct t V 


. The settling times of the 



  

proposed controller, linear sliding surface (without the nonlinear function )(x ) and the method of [1] are 

calculated for 1( )x t  as 1.493 s, 2.177 s and 6.2915 s; for 
2( )x t  as 1.04 s, 2.047 s and 4.366 s; for 

3( )x t  as 

0.893 s, 1.904 s and 5.63 s, respectively. It is demonstrated that the states converge to the origin quickly 

compared with the results of the linear sliding surface (without the nonlinear function )(x ) and the 

method of [1]. It is an obvious evidence from Fig.3 that the settling-time and overshoot of the system states 

decrease noticeably using the proposed control approach. Thus, the presence of the nonlinear function 

)( 1x  helps for the improvement of the value of damping ratio.  

 
Fig.3. State histories of the chaotic flow. 



  

 

Fig.4. Time histories of the control inputs. 

Inspection of time trajectories of the control inputs in Fig.4, it is obvious that the recommended 

controllers produce faster responses than the results of the other methods. Time histories of the global 

sliding surfaces are plotted in Fig.5, which demonstrates that the surfaces approach to the origin in the finite 

time. It i observed from Fig.5 that the GSMC surfaces start from zero and the reaching phase is removed. 

Hence, the robustness of the system to the external disturbances is satisfied right from the beginning of the 

entire response.    
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Fig.5. Time trajectories of the global surfaces. 

Variations of the nonlinear function 
1 1( )x  and system’s eigenvalue   are presented in Fig.6. It is 

obvious from Fig.6 that the value of the nonlinear function 
1 1( )x  decreases from zero to negative high 

amount as the norm of the states converges to zero. Time trajectories of the adaptive gains 
2k̂  and 3k̂  are 

shown in Fig.7. The obtained values for the adaptive gains are 96.0ˆ
2 k  and 67.0ˆ

3 k . Simulation results 

indicate the success of the planned control technique compared to the control signal without nonlinear 

function )(x  and the control method of [1].   
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Fig.6. Variations of the nonlinear function 
1( )x  and eigenvalue  . 
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Fig.7. Time histories of the adaptive gains. 



  

5. Conclusions 

This article proposes a new adaptive finite-time stabilization method based on global sliding mode to 

advance the steady-state and transient performances of a class of chaotic flows in the presence of 

disturbances. The considered chaotic flow is an unusual model of a three-dimensional dissipative chaotic 

flow with a single unstable node. Using the nonlinear function in the global switching surface, the damping 

ratio of the overall system is bettered and the fast settling-time and small control signals are obtained. The 

proposed control scheme fulfills the robustness in contrast to the nonlinearities and disturbances, and also 

removes the chattering phenomenon and reaching mode. The global sliding mode is designed to form a 

switching surface for deletion of the reaching interval. The designed adaptive controller is used for the 

removal of the effects of the nonlinearities and disturbances, and also satisfied the finite time convergence 

to the defined global sliding surface. Lastly, a chaotic flow with a single unstable node exhibits the 

efficiency of the proposed method in comparison with the method of [1]. The further studies in this aspect 

can be extended to neuron networks via the results stated in [46, 47].  
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