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Abstract: This article presents a novel adaptive finite time stabilization technique based on global sliding mode for
disturbed chaotic flow with a single unstable node. The considered chaotic flow has unusual characteristics containing
attractor merging, symmetry breaking, attracting tori and different forms of multi-stability. A nonlinear function is
employed in the global sliding surface to modify damping ratio and improve the transient performance. The damping
ratio of the closed-loop system is improved when the states converge to the origin. Using the new chattering-free
controller, the reaching mode is removed and the sliding behavior is presented right from the first instant. The
adaptive finite-time tuning law eliminates the requirement of the information about the disturbances’ bounds.
Illustrative simulations are provided to display the efficiency of the proposed scheme.
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1. Introduction

Sliding mode control (SMC) is efficiently applied for the stabilization control of wide range of linear /
nonlinear dynamic systems such as chaotic systems [1-4], power converters [5], singular systems [6], quad-
rotor aircraft [7], inverted pendulum [8], seesaw systems [9], robotic manipulators [10], electronic circuits
[11], power processing [12, 13], secure communication [14], vehicular following system [15], etc. SMC is a
powerful control technique and has ability of achieving desirable performance in the presence of
disturbances and uncertainties [16-18]. Of the important properties on SMC are the superior transient
performance, insensitivity to the bounded disturbances and robustness to the uncertainties in comparison
with the other control methods [19]. SMC design procedure is separated into these phases: (i) sliding phase,
(i) reaching phase. A switching surface is specified in the sliding phase so that the controlled system
displays promising dynamic performance [20]. A sliding mode controller is used in the reaching phase to
converge trajectories of the states to the switching surface [21]. For the purpose of the influence of the
switching surface on the stabilization and transient response, the design procedure of the switching surface
is the most significant subject [22, 23]. SMC uses a discontinuous control signal to drive the states to a
predesigned sliding surface on which the desired performance and system’s stability are achieved [24].
However, SMC cannot fulfill the convergence of the state trajectories to zero in the finite time. In reality,
particularly in some engineering aspects, it is required that the convergence of the dynamical system is
obtained in the finite time rather than infinite time [25, 26]. The problem of finite time control has been
investigated by quite a few researchers from different viewpoints [27]. Through the reaching phase of SMC,
the system doesn’t have the robust performance, and the parametric uncertainties and external disturbances

can destabilize the control system.
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In the past years, the theory of global sliding mode control (GSMC) has been presented for a general
framework to remove the reaching period of SMC and overcome undesired chattering phenomenon. In
GSMC, via an extra term in the surface, the reaching mode is removed and the states of the control system
move on the sliding surface right from the initial instant. In recent decade, more attention has been paid for
the use of GSMC method [28]. In [29], a GSMC scheme is offered for the stabilization control of a
helicopter with disturbance and input-delay. A fuzzy GSMC based on backstepping is proposed in [30] for
tracking control of multi-joint robotic manipulators. The problem of network congestion control based on
GSMC and linear matrix inequality (LMI) is studied in [31] for TCP network systems with state-delays and
external disturbances. In [32], a global quasi-SMC technique is investigated to ensure zigzag motion with
small bound throughout the entire response for the achievement of disturbance rejection in discrete time. In
[33], the design problem of adaptive GSMC is studied for linear helicopter systems with actuator fault and
time-delay. The adaptive fast terminal sliding mode (FTSM) control method joined with GSMC scheme is
planned in [34] for tracking control of the uncertain nonlinear third-order systems. In [35], an adaptive
GSMC via radial basis function (RBF) neural-network is offered for the identification purpose and tracker
design of micro-electro-mechanical system (MEMS) gyroscope. A novel GSMC technique based on LMI
and Lyapunov stability theory is studied in [36] for the stabilization control of uncertain nonlinear dynamic
systems with perturbation. In [37], an adaptive global nonlinear switching surface is proposed for the
nonlinear dynamic systems with external disturbances. In [38], an LMI-based GSMC law is suggested to
improve the stability and robustness of the underactuated systems with external disturbances. In [39], a
dynamic proportional-integral-derivative (PID) GSMC based on an adaptive RBF neural estimator is
developed to satisfy the stability and robustness of MEMS gyroscope. An adaptive super-twisting GSMC is

proposed in [40] for the tracking control of n-link rigid robotic manipulators. In order to improve the control



performance of GSMC, a fast GSMC technique is presented in [41] to accelerate the system response by

changing the exponential decay function to an exponential bilateral decay function.

In this article, an adaptive GSMC method is investigated to remove the reaching phase and overcome the

chattering phenomenon. In the presence of the nonlinear function y in the global sliding surface, the

damping ratio of the chaotic flow with external disturbance is improved and the robustness of the chaotic
flow is enhanced. Besides, an adaptation process is used in GSMC which approximates the disturbances’
unknown upper bounds and satisfies the finite time convergence of state trajectories to the global sliding
surface. As a final point, some numerical simulations on chaotic flow with a single unstable node are
provided to validate the efficiency of the suggested approach. The main purpose of this article is to propose
an adaptive GSMC framework to stabilize the chaotic systems in the existence of external disturbances with

unknown bounds.

The organization of this article is formed as follows: Section 2 covers the problem description of the
chaotic flow with a single unstable node. Section 3 presents the design approach of the adaptive finite time
stabilizer using global sliding mode scheme. In Section 4, the designed adaptive finite time stabilization
technique is employed on the disturbed chaotic flow in comparison with the other techniques. Finally, in

Section 5, conclusions are drawn.

2. System description

A modified jerk system is studied, as the simplest chaotic flow with a single unstable node, using a form
that has successfully given other chaotic flows with hidden attractors (see references [42] and [42] for more
details). The chaotic flows with hidden attractors are significant and potentially problematic in engineering

applications [43-45].



Consider the chaotic flow with single unstable node described as [42]

X = X,,
X, = =X, + XX, +U, +d,, (1)

X, = Xy +ax_ —X,o —b+u, +d,,

where x =[x, x,,x,]", u=[uy, u,]" and d =[d,, d,]" denote the states of the system, control signals, and

external disturbances, respectively. The chaotic flow (1) can be represented as

X =AX + AL, .
2= Ay + Az +Bu+Bf(x,2)+d, ()

where Z:[X2 X3]T, f(Xl,Z):|:aXl2i2:32_b}1 A11:O’ A12:[1 0], B:|:j]’ A21:|:_01j|, A22:|:g 2i|

Assumption 1: Assume A = [Aﬂ Aiz} and B =[0 B"]". The pair (A, B) is completely controllable;
Ay Ay
01 O
because the determinant of the controllability matrix P = [B_‘KB_‘A_\ZB_] =1 0 -1]is ‘FT‘ =-2=0.
1 1 1

Hence, it is obtained from (2) that the pair (A, A,) is controllable. Therefore, for any positive constant w,
there exists a unique positive scalar p as the solution of the Lyapunov condition A,F =w/(2p), where
F =[F, F,]" isa constant gain vector.
3. Main results
The global switching surface for chaotic flow (2) is chosen by
o =T(x—Hx,), (3)

with



T=[F-py(x,t)A;, 1], @)
where x, is the initial condition of x; I, is two-dimensional identity matrix; p denotes a positive scalar;
F is a constant gain vector; w(x,(t)) is a diagonal matrix with non-positive nonlinear scalar functions of
x,(t), and H =diag[exp(—pAt),exp(—p,t),exp(—At)], Where g, 3,3, are positive constants. The
subsequent inequality is obtained for some positive constants p and q

[H]/< aexp(=gt). 5)
The nonlinear function y (X, (t)) is selected in the form of a diagonal matrix with exponential terms as

w (X, (t)) =diag [y (x (1)), w, (X, ()], (6)

w; (X,(t)) =—1; exp (_é‘u ”Xlti)”J , (7)

where 4, and &; are positive constants. The function v, (x,(t)) varies its value from zero to -, while the

state x(t) converges to zero from the initial value, with . (x,(t,)) =v; (x,(0)) =0. From now, we denote
yi(x,(t)) as ;.

On the sliding surface o =0, one can attain from (3) that

Ko = (U~ )06, ~€XD(-A1)%,0) + XD A1 -
Xy =—F, (X, —exp(=At)X,,) +eXp(=B )X 5,

where x,, is the initial condition of x; . Substituting x, from (8) into the first equation of chaotic flow (2),

one achieves

% (0)=(pw, - F)(x, - exp(=B)x,, ) + exp(=B,0)x,,. )



Theorem 1: Consider the dynamics (9) and suppose Assumption 1 fulfilled. As a result, the state x,(t) of

the sliding mode dynamics (9) converges to zero, exponentially.
Proof: Define the Lyapunov candidate functional as
V, =05px”. (10)
Differentiating (10) along trajectories of (9) yields

V, = pxx (11)
= p)(l((pl/ll -k )(Xl - eXp(_ﬂlt)Xlo)"' eXp(_ﬁzt)Xzo)

The infinite limit of H is found as
; _lim(diaaf oAt a5t oFi7)—
!m H= !me(dlag[e ,e 77 e ])—O, (12)

and using the Lyapunov criterion A ,F =w/(2p), we can obtain from (11) that

2

va = p(le - Fl)xl (13)
= pPy,x,” —0.5wx,’.

Because y, <0 and w > 0, then Eq. (13) is found as

V, <-0.5wx,”> < -aV, <0, (14)

with a, =w/p.

Theorem 2: Consider the disturbed chaotic flow (2) with a single unstable node. Applying the control

inputs as

u, =—k,o, -k, sgn(o;) +y, p (Xl - eXp(_ﬂlt)Xlo) (15)
- (Fl - pl//l) (X 2 +ﬂ1 exp(_,B1t )X10)+ X1 —X 2X3 _ﬁz exp(_ﬂzt )X 20
u, = -k, —k;sgn(o,)

- Fz (Xz + 131 eXp(_ﬂlt)Xlo)_ X3 — aX12 + Xz2 +b- 133 exp(_ﬂst)xso’ (16)



where 01=% _eXp(_ﬂzt)Xzo +(F1 - p‘/’l)(xl _eXp(_ﬂlt)Xlo)’ O, = Fz (X1 _9)(|:’(_ﬁ1t))<10)’F X3 _eXp(_ﬂst)Xso’
k, >0, k, >|dy|, ks >|d,|, then, the states of the chaotic flow (2) are moved from initial conditions to the

global surface (3) in the finite time and stay on the surface forever.

Proof: Describe the Lyapunov candidate functional as

Vb =0.56TO'. (17)

Time-derivative of v, along states of the chaotic flow (1) is calculated as

V,=c'6
=o' (I“(x - Hx0)+F(X— HXx, )) (18)
T [_ '/}1 p(xl - exp(_ﬂlt)xlo)"' (F1 -Pp V/l)(xz + :Bl exp(_ﬂlt)xm)_ X+ XoXg +U; + d1 + ﬂz exp(_ﬂzt)xzoJ
Fz (Xz + :31 exp(_ﬁlt)xlo)"‘ X3+ a)(12 - Xz2 —b+ u, + dz + ﬂa exp(_ﬂ3t)xso

Substituting (15) and (16) into (18), we achieve

d, —ko, -k, sgn(o-l)]

V, =o'
i {dz —kio, =Ky 59n(0,)

=d, o, - klalz -k, |al| +d,0, — k10'22 - k3|<72| (19)
<dy]lo| = ky|or| — ko, — kyo, +|d, 0|~ kslos |

<—ko-ko,
=-2k\V, <0.

Hence, the states of the disturbed chaotic flow (1) are converged to the global surface o =0 in the finite
time and after that, stay on it. m
In practice, the upper bounds of the disturbance terms d, and d, are unknown. In the following theorem,

the adaptive gain tuning laws are planned to estimate the unknown bounds of the external disturbances.

Theorem 3: Consider the disturbed chaotic flow (2) and the global switching surface (3). Suppose that the

external disturbances are unknown but bounded, that is, k, >|d,| and k, >|d,|, where k, and k, are



unknown positive scalars. Assume that k, and IZS are the estimation values of k, and k, which are provided
by the adaptive gain tuning laws as

A~

K, =x,|o,], (20)
Ky = x]0,), (21)

where «, and «, are two positive constants. Applying the adaptive controllers as

u, =—k,o, - kAz sgn(o;) +y,p (Xl —exp(=At)X ) —X X3

+Xy— (Fl - le)(Xz +131 exp(_ﬂlt )Xlo)_ﬂz exp(_ﬁzt)x 20" (22)
u, =—k,0, —K,59n(0,) — X, —ax,? +x,? +b
- Fz (X 2 + :Bl exp(—ﬁlt )XlO ) - ﬂs exp(—,B3t )X 30! (23)

then, the finite-time convergence of the states of disturbed chaotic flow (2) to the sliding surface o =0 is

satisfied.
Proof: The Lyapunov candidate functional is described by

V. = 0.5((7T(7 + yllZ; + ;/ZIZSZ) (24)
with IZZ = IZZ —k, and IZS = 123 —k, . Calculating the time derivative of (24) gives

V, =076 + kK, + 7KKy (25)

=o' (F(x— HX0)+F()'( - HXO))+ 7/1<I22 - kz)éz + 72(I23 - k3)23.
where substituting (20)-(23) in (25), we have



. d, —k,o, — K, sgn ~ A
V. = [01 az{d:—kii _ki S?]ﬂi?j)}ijle(kz _k2)01|+72’f3(k3 —k3)02|

=d,o; - k1o-12 - iz2|O-1| +d,0, - k10'22 - kAs|O-z| + 71K2E2|O'1| + 72K3E3|O-2|

: (26)
<[d,or| - K,

01| + 71K2E2|O'1| + k2|o_1| - k2|0-1|

+ |d2||0'2| - |23|(72| + ]/2K3E3|O'2| + k3|0'2| — k3|02|
< _(kz - |d1|)o-1| - (1_ 71K, )k2|0'1| - (ks - |d2|)62| - (1_ }/2K3)k3|0'2|

Since k, >|d,|, k; >|d,|, x, <1 and y,x, <1, then we obtain from (26) that

V. < —(k2 - |d1|)al| - (1— 71K, )IZ2|01|
—(k3 _|d2|}02|_(1_72K3)E3|62|
<—2lk, -0 orl V2 - 2l7. 0 Yol 27
2l ~[a, o)/ - 27, - Yo /27 @
< —min (\/E(kz =) V2(k; ~[d, [} \/2/ 7, (0= 3, o) /277, (- 72’<3)|°'2|)
% ((]oﬂ +loal)/V2 +he /2]y, + IZS/\/%)

<-NV_~

c .

where % = min (V2(k, = [dy |} V2 (ks —[d, |} 2/ 71 (1= 71, Yo} 2/ 7, A= 7,6, Yo, |)> 0. Thus, the states of the

disturbed chaotic flow (2) are converged to the global switching surface o =0 in the finite time. o

4. Simulation results

In what follows, to specify the effectiveness of the scheme, to conduct simulation tests in comparison
with the method of [1]. Consider the chaotic flow having a single unstable node [42] with some changes as

X =Xy,

X, = =X, + X,Xg + Uy +d,, (28)
. 2

X, = X, +8.894%," —x,” —4+u, +d,,

where d, =0.3cos(3x,) —0.4sin(2x,x,) and d, =0.2sin(2x,x,) +0.3cos(2x,) . The modified system (27)

includes external disturbances d, and d,, and control laws u and u, t0 stabilize it in finite time. The



system proposed in [42] has a chaotic behavior in a wide parameter range. As shown in Fig. 1, the orbits of
the states for the uncontrolled chaotic flow display chaotic behavior and clear sensitivity to initial

conditions. This system demonstrates strange double-scroll attractors as illustrated in Fig. 2.
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Fig. 1. Chaotic response of the uncontrolled chaotic flow.
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Fig. 2. Chaotic attractors for a=8.894, b=4.

Simulation results are performed via Matlab® software. The initial states are chosen as IZZ(O):O.S,
k,(0) =0, x(0) = [0 3.8 0.7] . The constant parameters are chosen as «, =0.4, x, =0.3, k, =2, S, =1,
Br=2, f;=3, w4, =20, 6,=2and F =[0.8 0.4]T . By solving the Lyapunov function A,F =w/(2p)
for w=2, one obtains p=1.25. Fig.3 illustrates the time histories of the states of the chaotic flow.
According to the inequality (27), finite time period can be calculated as follows:

By dividing two sides of V_ <-NV_°° (Eq. (27)) to term V_°°, one achieves V_°V_ <—, where after

some calculations, it yields dt <-NV_°°%dv_. Now, using integration from t, to t,, one attains

t. —t, séVC(O)Of’. Hence, finite time period is obtained as t =to+§«ﬁc(0). The settling times of the

S



proposed controller, linear sliding surface (without the nonlinear function y(x)) and the method of [1] are
calculated for x,(t) as 1.493 s, 2.177 s and 6.2915 s; for x,(t) as 1.04 s, 2.047 s and 4.366 s; for x,(t) as

0.893 s, 1.904 s and 5.63 s, respectively. It is demonstrated that the states converge to the origin quickly
compared with the results of the linear sliding surface (without the nonlinear function w(x)) and the
method of [1]. It is an obvious evidence from Fig.3 that the settling-time and overshoot of the system states
decrease noticeably using the proposed control approach. Thus, the presence of the nonlinear function

w(x,) helps for the improvement of the value of damping ratio.
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Fig.3. State histories of the chaotic flow.



0 1 2 3 4 5 6
t(s)
20 .
0 i ‘\_"_ - - N
£ -20 1
N
>
-40 .
-60 .
_80 1 1 1 1 1
0 1 2 3 4 5 6
t(S) = = Method in [1]
====Without ¢ function
= Proposed method

Fig.4. Time histories of the control inputs.

Inspection of time trajectories of the control inputs in Fig.4, it is obvious that the recommended
controllers produce faster responses than the results of the other methods. Time histories of the global
sliding surfaces are plotted in Fig.5, which demonstrates that the surfaces approach to the origin in the finite
time. It i observed from Fig.5 that the GSMC surfaces start from zero and the reaching phase is removed.
Hence, the robustness of the system to the external disturbances is satisfied right from the beginning of the

entire response.
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Fig.5. Time trajectories of the global surfaces.

Variations of the nonlinear function y,(x,) and system’s eigenvalue A are presented in Fig.6. It is

obvious from Fig.6 that the value of the nonlinear function y,(x,) decreases from zero to negative high
amount as the norm of the states converges to zero. Time trajectories of the adaptive gains IZZ and IZS are

shown in Fig.7. The obtained values for the adaptive gains are I22 =0.96 and k, =0.67. Simulation results

indicate the success of the planned control technique compared to the control signal without nonlinear

function w(x) and the control method of [1].
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5. Conclusions

This article proposes a new adaptive finite-time stabilization method based on global sliding mode to
advance the steady-state and transient performances of a class of chaotic flows in the presence of
disturbances. The considered chaotic flow is an unusual model of a three-dimensional dissipative chaotic
flow with a single unstable node. Using the nonlinear function in the global switching surface, the damping
ratio of the overall system is bettered and the fast settling-time and small control signals are obtained. The
proposed control scheme fulfills the robustness in contrast to the nonlinearities and disturbances, and also
removes the chattering phenomenon and reaching mode. The global sliding mode is designed to form a
switching surface for deletion of the reaching interval. The designed adaptive controller is used for the
removal of the effects of the nonlinearities and disturbances, and also satisfied the finite time convergence
to the defined global sliding surface. Lastly, a chaotic flow with a single unstable node exhibits the
efficiency of the proposed method in comparison with the method of [1]. The further studies in this aspect

can be extended to neuron networks via the results stated in [46, 47].
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