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One of the challenges in Microbial Fuel Cell (MFC) technology is the improvement of the

power output and the lowering of the cost required to scale up the system to reach

usable energy levels for real life applications. This can be achieved by stacking multiple

MFC units in modules and using cost effective ceramic as a membrane/chassis for the

reactor architecture. The main aim of this work is to increase the power output efficiency

of the ceramic basedMFCs by compacting the design and exploring the ceramic support

as the building block for small scale modular multi-unit systems. The comparison of the

power output showed that the small reactors outperform the largeMFCs by improving the

power density reaching up to 20.4 W/m3 (mean value) and 25.7 W/m3 (maximum). This

can be related to the increased surface-area-to-volume ratio of the ceramic membrane

and a decreased electrode distance. The power performance was also influenced by the

type and thickness of the ceramic separator as well as the total surface area of the anode

electrode. The study showed that the larger anode electrode area gives an increased

power output. The miniaturized design implemented in 560-units MFC stack showed

an output up to 245 mW of power and increased power density. Such strategy would

allow to utilize the energy locked in urine more efficiently, making MFCs more applicable

in industrial and municipal wastewater treatment facilities, and scale-up-ready for real

world implementation.

Keywords: bioenergy, microbial fuel cell, urine, ceramic membrane, stacking, usable power, module

INTRODUCTION

Observing the continuously increasing demand for water and energy in the world, alternative
sources are needed to meet the requirement of a growing population. Microbial Fuel Cell
(MFC) represents one sustainable technology that directly converts organic biomass contained in
wastewater into electric current. Thus, it can be a potential alternative source for energy and water
clean-up (Habermann and Pommer, 1991; Pant et al., 2010). Microbial Fuel Cells generate electric
current as a direct result of microbial metabolism, where the anodic biofilm is the engine of the
process, utilizing substrates, and converting chemical energy to electrical energy. MFC technology
development into commercial applications has been limited by the high cost of materials and the
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Graphical Abstract | Miniaturized Microbial Fuel Cell in a module and 560-unit modular stack.

low efficiency of the energy recovered. Therefore, the successful
scale-up process should involve the optimization of materials
and design which allow a cost and energy effective technology
(Do et al., 2018), as well as more lab-based and field trial -
led research for development of this technology for large scale
applications (Khan et al., 2017). With this approach in mind,
recent advancements bring the technology closer to the real life
implementation thanks to using ceramic for MFC architecture
(Gajda et al., 2015a,c; Pasternak et al., 2016), open to air cathodes
with non-platinum catalysts (Merino-Jimenez et al., 2016; Gajda
et al., 2018) and improved design of multiple MFC units in
the system (Ieropoulos et al., 2008). These advancements were
recently presented in the Pee Power R© stack including multiple
MFC units divided in modules. Each module contained several
MFCs connected both fluidically and electrically in parallel,
whilst the modules could be connected in an electrical array
both in series and in parallel, and fluidically connected in a
cascade configuration. The Pee Power R© stack was tested in
the field demonstrating its capability to be used in real life
applications by powering the internal lighting of a urinal, only
from the urine provided by the users (Ieropoulos et al., 2016).
However, the power output achieved during this trial should be
improved (Ieropoulos et al., 2016). Modular approach is being
developed in numerous studies (Kim et al., 2010; Dong et al.,
2015; Ge and He, 2016) and it shows a good strategy for the
implementation in wastewater treatment facilities (Liang et al.,
2018). However, low performance in large-scale systems is almost
always linked to transport limitations, including ionic transport
and acidity/alkalinity transport from the electrodes (Popat and
Torres, 2016). Efficiency improvement could be achieved by
the miniaturization, as previously shown, where smaller units
outperformed larger reactors of equivalent volume and geometric
foot-print (Ieropoulos et al., 2010); also by increasing the surface
area-to-volume ratio and decreasing the distance between the
electrodes (Qian and Morse, 2011). For example, a micro-scale,
flat-plate MFC with a high surface area to volume ratio enhances

mass transfer coefficient leading to improved power density (Ren
et al., 2014). In addition, the integration of an improved design
in stacked modules results in a more efficient electrochemical
treatment and higher usable electricity levels, for example to
power indoor lighting. However, the power output obtained in
small scale reactors does not linearly increase in proportion with
the scale of the reactor (Logan et al., 2015). Thus the power
density, which represents the actual power of the MFC divided
by reactor volume (W/m3) or the surface projected area of the
electrode (W/m2), generally decreases with increasing scale. The
changes in power density during scale-up result from changes
in many important factors, such as reactor volume, electrode
spacing and electrode specific surface area (surface area per
volume; Cusick et al., 2011) which determine internal resistance
of the system (Ieropoulos et al., 2008).

Smaller MFC reactors benefit from lower activation losses,
higher substrate utilization (mass transfer) and improved
diffusion of protons H+ out of the biofilm (Torres et al.,
2008). Furthermore, by increasing the effective surface area while
maintaining short proton diffusion lengths results in higher
surface area-to-volume (SAV) ratio and a more efficient use of
substrates per unit volume (Wang et al., 2011;Walter et al., 2016).

MFCs as power sources for environmental sensors is nearing
practical use as it offers electricity generation without a need
for recharging (Pasternak et al., 2017), showing the stability of
the anodic biofilm (You et al., 2015) with a continuous power
production. Utilizing urine and wastewater as an energy source
has become one of the major research routes toward not solely
energy harvesting but also nutrient recovery (Kuntke et al., 2014),
production of clean catholyte (Merino Jimenez et al., 2017) and
has been shown as a practical demonstration in real life scenarios
and a showcase of the MFC technology to the wider public
(Ieropoulos et al., 2016).

In this work we look into the ceramic reactor size, where
ceramic architecture is important since the ceramic material
is also acting as a membrane. The aim is to increase power
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production from a decreased footprint of the whole system and
to identify the optimum design and running conditions for
large scale manufacturing and operation of MFC stacks. As part
of this aim we present for the first time the development of
a stack made of 560 miniaturized MFC units to study power
production from urine in laboratory conditions. This work
presents a technology scale-up through the miniaturization and
multiplication of the individual components resulting in the
overall decrease in the total footprint of the final modular stack.
The presented design does not use mediators, buffers, chemical
catalysts, or cation exchange membranes therefore it is focusing
on the practical approach of the modularly built MFC systems for
the implementation in real world conditions.

MATERIALS AND METHODS

Individual MFCs
Electrodes
Anodes were made of carbon veil fiber (20 g/m2, PRF
Composites, UK) cut to the desired size (Table 1), folded and
wrapped around the ceramic cylinder attaching a stainless steel
wire (dia. 0.5mm) as a current collector (Figure 1). The cathodes
were prepared in house by mixing Activated Carbon powder
(G Baldwins and Co., UK) and 20% PTFE (60% dispersion in
H2O, Sigma Aldrich, UK) applied onto PTFE treated carbon veil
sheet as previously described (Gajda et al., 2015a). The cathode
material was cut according to the required dimensions (Table 1)
and placed inside the ceramic cylinder as shown in Figure 1. The
anode to cathode ratio was evaluated by keeping it at∼27 (anode
total geometric size was 27 times larger than the cathode) and
comparing it to the ratio of 14 (Table 1).

Small Terracotta MFCs
Terracotta MFCs were made out of small scale terracotta
cylinders which were hand made out of fired, neutral clay
and open at both ends (70mm long, 15mm diameter, 2mm
thickness) (Aquaforest, Ireland). One end was sealed with a
plastic stopper and non-toxic sealant (Wet Water Sticky Stuff,
Aquatrix, UK).

The other two types of small scale ceramic MFCs used in
this study were named S FFC and S FFC 14 assembled using
fine fire clay (FFC) cylinders (ROCA, Spain). The cylinders
dimensions were 50mm height, 22mm outer diameter and 3mm
thickness. They were assembled in two configurations where the
anode/cathode ratio was 28 and 14, respectively. All MFCs were
tested in triplicates.

Large Ceramic Reactors
The MFCs were compared against large tubular MFCs made
of terracotta (Weston Mill Pottery, UK) (100mm long, 42mm
diameter, 3mm thickness) with the same anode to cathode ratio
(27:1) as the small reactors and operated in laboratory conditions.

The difference in thickness is a parameter that was outside of
our control, in acquiring these cylinders and setting them up as
MFC units. All other parameters were kept (proportionately) the
same.

Modular Boxes
The large modular box was assembled as previously described
(Ieropoulos et al., 2016). The small modular box consisted of a
5 L plastic container (Plastor, UK) used as the chassis with an
inlet and an outlet to allow the urine flow (Figure 2). The S FFC
ceramic cylinders (Table 1) were chosen to use for the assembly
due to the availability of this product in large numbers. Anodes
and cathodes were the same as in the individual S FFC 14 setup
(Figure 1) with the anode to cathode ratio of 14. Again, this is
due to the large number of units required for the construction
of the module and this ratio was chosen in order to reduce the
cost of the anode electrode material used for the whole stack.
Once the 28 MFC units were installed in the plastic container, all
the anodes and the cathodes were connected in parallel electrical
configuration (Figure 2).The total volume of the box was 1.8 L
and it was inoculated with a 1:1 activated sludge and urine mix
and kept in batch mode using neat human urine as a feedstock
which was replenished daily.

A modular stack was assembled using 20 modules making a
total of 560 MFC units which again were identical to S FFC 14

FIGURE 1 | Individual MFCs tested using large and small terracotta cylinders.

TABLE 1 | Parameters of the MFCs used in this study.

Name Ceramic cylinder Height Diameter SAV of the Anode Cathode Anode to cathode

(cm) (cm) ceramic (cm−1) area (cm2) area (cm2) area ratio

LargeT Large terracotta 10 4 1 2,430 90 27

SmallT Small terracotta 7 1.5 2.7 560 21 27

S FFC Small fine fired clay 5 2.2 1.8 560 20 28

S FFC 14 Small fine fired clay 5 2.2 1.8 280 20 14
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used in the individual tests. The boxes were fluidically connected
using L-shaped and T-shaped connectors and silicone tubing
allowing air gaps between each individual module. Electrically
paired MFC modules were connected in parallel resulting in the
total of 10 pairs which were then connected in series. Due to large
quantity of urine required for the stack operation, artificial urine
were prepared (Table S1) and mixed with real human urine in
the 75% : 25% ratio. The modules were arranged in two fluidic
cascades and periodically fed with the prepared mixture.

Operation and Data Monitoring
All individual MFC units were placed in plastic containers of
200mL for Large MFCs and 50mL volume for small MFCs. The
MFCs were inoculated with anaerobic activated sewage sludge
(Wessex Water, UK) of neutral pH and periodically fed with neat
human urine (pH 9–9.4) in batch mode to evaluate the rate of
performance. The MFC reactors were tested in triplicates under
100Ω resistor. Polarization curve experiments were performed
using an automated device applying a range of resistances from
30 k Ohm to 3 Ohm in the time intervals of 3min (Degrenne
et al., 2012). For the 560-unit modular stack, the polarization
curve experiments were performed using a variable resistance
decade box and changing resistances every 30min within the
range of 500–0.5Ohm.

RESULTS AND DISCUSSION

In terms of absolute power a single large terracottaMFC (LargeT)
produced a maximum of 1.47 mW, while a small terracotta
(SmallT) unit produced 1.01mW (Figure 3B). The small reactors
made of fine fired clay (S FFC14) generated 0.43 mW and
0.69 mW when the anode surface area was doubled (S FFC)
to keep the same anode to cathode area ratio used in LargeT
and SmallT (Table 1). The maximum performance (Figure 3D)
achieved during polarization experiment showed that volumetric
density of the SmallT was 20.4 W/m3 (mean value) while LargeT
units achieved only 7.0 W/m3 which suggests 2.9 times higher
performance of small MFCs. This supports the fact that smaller
MFC devices can take advantage of high surface to volume ratio,
which in this case was calculated as 2.67 cm−1 for SmallT, 1.81 cm
−1 for FFC and 1.0 cm −1 for LargeT units (Table 1). Fine fired
clay performance was lower than terracotta and it might be due
to the type, thickness, porosity and the SAV of the ceramics
used. The higher SAV of the reactor, the better fuel mass transfer
achieved and the smaller resistance obtained (Tsai et al., 2017).

Results showed that the small scale MFCs benefit from
improved power density performance in comparison to the
large tubular MFCs. The large error bars in the electrochemical
behavior of the triplicate in the terracotta MFC was replicable
in repeated polarization data however the diversion of the
performance persisted. This might be due to small diameter of
the cathode chamber, which is not easily accessible and it does
not allow a stable contact, also the connection of the stainless steel
crocodile clip onto the cathode is difficult. As the cathodes were
prepared manually and the stability of the electrical connection
to the cathode in a narrow cathode chamber remains a challenge.

However, more research is necessary to fully characterize and
large deviation even within the same experimental group.

The comparison between the two anode/cathode ratios used
in FFC configurations suggest that the larger anode electrode
area gives a 60% higher power output. It might be due to
the increased total surface area and the anode packing into
more three-dimensional structure for allowing biofilm growth
and sufficiently large channels for substrate supply and product
removal (Baudler et al., 2014). For the future construction of
the MFC stacks, the SAV of the ceramic material should be
taken into account as well as its type, composition, thickness and
porosity. This work might indicate that the increased SAV of the
ceramic structures used here as membranes is favorable and it
also determines the size of the whole reactor. Figure 4 shows the
temporal behavior of the large and small terracotta cylinders. The
maximum power output was 1.15 mW achieved by the LargeT
MFCs and 0.63 mW for the small reactors and in the power
density terms that shows up to 12.7 W/m3 generated by the small
reactors and 5.3 W/m3 for the large MFCs. The data indicates
that the small scale MFCs require frequent feeding as the power
generation drops more rapidly than in the case of large MFCs.
This might suggest quicker utilization of available feedstock and
implies using faster flow/rate/ frequent feeding regime for the
miniaturized MFC systems.

During electrochemical operation, the production of catholyte
on the surface of the cathode electrode was also observed and
driven by electric current. The accumulation of catholyte is
primarily driven by electroosmotic drag, therefore the current
produced by the MFC (Kim et al., 2009; Gajda et al., 2015b)
and it the allows collection of basic catholyte in the ceramic
inner cathode chamber (Gajda et al., 2015a; Merino Jimenez
et al., 2017). It shows a potential of simultaneous treatment
of urine by ion separation (Kuntke et al., 2012; Gajda et al.,
2017). The simplicity of the design is allowing to configure
any number of units in parallel electrical configuration and
use them in any given wastewater tank as a floating system.
This includes MFC use in urinal tanks to power devices in
remote locations or in large wastewater treatment plants to
lower energy cost. This might also help to solve the electricity
and sanitation problem in the Developing World. Efficient
utilization and scale-up allows the technology to come out of
the laboratory to field trails to become useful to society and the
environment. MFCs for wastewater treatment might benefit from
electrically independent and compartmentalized modules similar
to chemical fuel cells, where MFC units are modular, having
many electrochemical cells with short distances between anode
and cathode. Here the distance is kept to the minimum having
the ceramic membrane as the separator where the spacing would
be the function of the ceramic thickness. For this test, the small
terracotta cylinders are the thinnest separators used in this study
and it might be one of the indications of its good performance as
shown previously (Merino Jimenez et al., 2017).

The Modular Boxes and the Stack
Due to ceramics availability and cost of the electrode material the
SFFC 14 units were used to construct stack modules. Figure 5
demonstrates the performance of one module made of 28 MFCs
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FIGURE 2 | A single small scale module consisting of 28 MFC units (S FFC 14) and a modular stack configuration made of 20 modules (560 MFCs in total).

FIGURE 3 | Polarization data showing actual (A) and current density values (C) when the individual cylinders are compared. Power curve data showing actual (B) and

power density (D) values.
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FIGURE 4 | (A) Absolute power of the SmallT and LargeT MFCs tested (mean

value of triplicated data) using urine as a feedstock. (B) Power density of the

individual SmallT and LargeT units. Arrows indicate the addition of new

feedstock (urine).

(SFFC 14 units shown in the individual study) in comparison
to the large stack. While the absolute power obtained from
the small module was over 4 times lower than large module,
the power density increased up to 3 times (Figure 5B). It is
worth mentioning that the large module was assembled using
36 large MFC units therefore the absolute power per MFC unit
was 1.2mW for the large and 0.4mW for the small module
which is in line with the individual MFC tests in Figure 3.
Feeding for the small units required to be more frequent as it
was supplied daily while the large module required less frequent
replenishment. Therefore, the small scale modules would benefit
from lower volume of processed anolyte and smaller footprint of
the assembled system.

The modules were assembled in 20–module stack making a
total of 560 MFCs as shown in Figure 2. Power performance was
monitored over the period of 80 days and it shown up to 245
mW which corresponds to 6.8 W/m3 (Figure 6B), compared to
its predecessor, large-scale stack with large terracotta units and
the total of 300 L was producing 1.3 W/m3 which suggests up
to 5 fold improvement (Ieropoulos et al., 2016). The MFCs in
the modules were electrically connected in parallel due to being
suspended in close proximity in shared electrolyte. The modules
were then connected in series and parallel configuration (two
modules paired in parallel connection and resulting 10 pairs were

connected in series) to show flexibility of the stack electrical
configuration and stability in power output (Figures 6A,B). This
combination was chosen to balance the number of MFC units
connected in parallel (56 MFCs across paired modules) and
in series (10 modular pairs) connections in order to minimize
the possibility of voltage imbalances and avoid cell reversals
(Aelterman et al., 2006) as both tested arrangements resulted
in the same total power output (Figure 6C). The electrical
reconfiguring of MFCs is important factor to increase charging
efficiency of the peripheral components such as capacitors for the
operation of practical applications (Papaharalabos et al., 2014).
Fluidical connections showed the higher power output when the
air gaps were introduced (Figure 6D) which indicates the need of
liquid isolations between the modules that are to be connected
in series due to parasitic current related to cross-conduction
between the anodes (Ledezma et al., 2013).

The pH and conductivity behavior (Figure 7) is similar to
previously reported large stack operated in Glastonbury Festival
in 2015 and showed anodic pH decrease in the cascade and
conductivity increase (Ieropoulos et al., 2016). This might be due
to the power and catholyte generation, biomass accumulation
and evaporation losses. Both anode and the cathode were closely
spaced therefore the durable electrical connection is one of
the key challenges. Reducing internal reactor resistance and
increasing cathodic reaction efficiency is the key challenge to
maximize power. Hardware and operational constraints such
as corrosion, electrical insulation rather than microbial activity,
primarily contribute to limitations in MFC power and long
term stability. While the modular construction of miniaturized
fuel cells assemblies will allow the improvement in power
generation of each module, increasing the number of modules
will be affecting the mechanical and electrical properties. The
challenges that remain in this technology include the electrical
connection stability and avoiding corrosion, it is especially
important in the small scale reactors where the available
connection spacing is limited. The choice of the ceramic material
used as a separator, its thickness, porosity, and composition
is another area that requires further research as well as its
availability and cost for mass manufacturing. While the COD
and Total Nitrogen measurement did not reach desirable levels
(Figures S1, S2) this is an area that requires further investigation
in the future laboratory tests and field trials. This is also
corresponding to the requirement for future characterization of
the anodic population within a MFC operating on anaerobic
sewage sludge and urine in order to study the metabolic
pathways.

MFC architecture is inherently scalable due to good
insulation between the electrodes and a compact architecture.
Real implementations will also include the design of various
ancillary components (wiring, tubing, cabling, insulation,
connectors) that would be durable and adjusted to meet
the electrical and fluidical configuration requirements. MFC
scaled-up systems for real world implementations are complex
in design and materials (Hiegemann et al., 2016) therefore
simple and low maintenance systems would be favorable.
Moreover, the catholyte producing MFC systems will allow long
term operation without cathode clogging and production of
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FIGURE 5 | (A) Actual power (B) Power density of the tested miniaturized module in comparison to large scale module from previous study (Ieropoulos et al., 2016).

FIGURE 6 | (A) Polarization experiment performed on the stack of 20 module boxes tested in laboratory conditions, (B) Power performance of the whole stack in

parallel/series configuration, (C) Polarization curve experiments performed on parallel and series configuration of the paired module units, (D) Polarization curve

experiments performed on modules fluidically connected and disconnected with an air gap between the modules.

disinfectant (Gajda et al., 2016). As the commercialization of
MFCs will require mass manufacturing in a modular format
(Logan et al., 2015) it is also limited by the availability

of the components (in this case terracotta membrane) for
manufacturing and economical approach intomaterials andmass
production.
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FIGURE 7 | Physico-chemical properties of the two cascades in the stack in

terms of the anolyte pH and conductivity.

CONCLUSIONS

This approach leads to improved power density generation
from urine and the development of the off-the-grid
electrochemical system that allows net generation of usable
power and wastewater decontamination. Miniaturized scale
ceramic based MFC modules inherently produce favorable
conditions for high current/power generation because of
(i) a large surface-to-volume ratio of ceramic membrane

(ii) efficient mass transport due to smaller scale and (iii)
short proton/electron travel distances. Also increased anode
surface improves the output of the individual units and it
is a factor that should be taken into account for further
scale-up studies. The series and parallel electrical connectivity
of stacked MFCs have been investigated as a mechanism
to increase the overall voltage and current output and
show a multi-module stack as a flexible tool to achieve
desirable power and voltage levels required for peripheral
hardware.
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