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A B S T R A C T 25 

Coastal reservoirs are widely regarded as a viable solution to the water scarcity 26 

problem faced by coastal cities with growing populations. As a result of the 27 

accumulation of anthropogenic wastes and the alteration of hydroecological processes, 28 

these reservoirs may also become the emission hotspots of nitrous oxide (N2O). 29 

Hitherto, accurate global assessment of N2O emission suffers from the scarcity and 30 

low spatio-temporal resolution of field data, especially from small coastal reservoirs 31 

with high spatial heterogeneity and multiple water sources. In this study, we measured 32 

the surface water N2O concentrations and emissions at a high spatial resolution across 33 

three seasons in a subtropical coastal reservoir in southeastern China, which was 34 

hydrochemically highly heterogeneous because of the combined influence of river 35 

runoff, aquacultural discharge, industrial discharge and municipal sewage. Both N2O 36 

concentration and emission exhibited strong spatio-temporal variations, which were 37 

correlated with nitrogen loading from the river and wastewater discharge. The mean 38 

N2O concentration and emission were found to be significantly higher in the summer 39 

than in spring and autumn. The results of redundancy analysis showed that NH4+-N 40 

explained the greatest variance in N2O emission, which implied that nitrification was 41 

the main microbial pathway for N2O production in spite of the potentially increasing 42 

importance of denitrification of NO3−-N in the summer. The mean N2O emission 43 

across the whole reservoir was 107 μg m−2 h−1, which was more than an order of 44 

magnitude higher than that from global lakes and reservoirs. Based on our results of 45 

Monte Carlo simulations, a minimum of 15 sampling points per km2 would be needed 46 
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to produce representative and reliable N2O estimates in such a spatially 47 

heterogeneous aquatic system. Overall, coastal reservoirs could play an increasingly 48 

important role in future climate change via their N2O emission to the atmosphere as 49 

water demand and anthropogenic pressure continue to rise. 50 

Keywords: Nitrous oxide (N2O); Spatial heterogeneity; Spatially resolved 51 

measurement; Wastewater discharge; Subtropical reservoir; IPCC52 
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1. Introduction 53 

Nitrous oxide (N2O) is a potent greenhouse gas with a global warming potential 54 

nearly 300 times that of carbon dioxide (CO2) on a mass basis over a 100-year time 55 

horizon (IPCC, 2013). N2O is also considered to be one of the major substances that 56 

can destroy ozone in the stratosphere (Ravishankara et al. 2009; Shaaban et al., 2018). 57 

The atmospheric averaged N2O concentration reached 331.1±0.1 ppbv in 2018, which 58 

is approximately 23% higher than the pre-industrial (before 1750) levels (World 59 

Meteorological Organization, 2019). There has been a steady increase in atmospheric 60 

N2O at a rate of 0.7–0.8 ppb yr−1 over the past three decades (Davidson 2009; 61 

Saikawa et al. 2014; Xiao, et al., 2019a). Quantifying the potential source strength of 62 

various ecosystems is fundamental for predicting future N2O emission and climate 63 

change (Yang et al., 2020).  64 

Aquatic ecosystems are considered as important sources of N2O emission, 65 

contributing for approximately 25%–30% of global N2O emissions (Zhou et al., 2019). 66 

As an important component of the Earth's surface water systems, man-made reservoirs, 67 

which include those for hydropower, flood management, water supply, and navigation 68 

purposes, are now considered as significant contributors of the atmospheric N2O 69 

(Beaulieu et al., 2019; Cheng et al., 2019; Guérin et al., 2008; Wang et al., 2017; Yang 70 

& Flower 2012). Recent estimates indicated that the amount of N2O emitted from 71 

global reservoirs was approximately 0.03−0.07 Tg N yr−1 (Deemer et al., 2016; 72 

Maavara et al., 2019). However, the estimate of N2O emission from reservoirs, 73 

especially from the ones with anthropogenic disturbances, remains highly uncertain 74 
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due to the data limitation. Additionally, N2O emissions from reservoirs in different 75 

climatic zones exhibited high spatial-temporal variations across and within the 76 

systems (Beaulieu et al., 2015; Cheng et al., 2019; Liang et al., 2019; Liu et al., 2011a, 77 

2015, 2017; Musenze et al., 2014; Shi et al., 2020). This is another source of 78 

uncertainty in reservoir N2O budget. Thus, more in situ measurements with high 79 

spatiotemporal resolution are needed to reduce the uncertainty and to develop more 80 

accurate approaches for upscaling to whole reservoir N2O emissions and further 81 

large-scale assessments of reservoir N2O fluxes. 82 

The N2O production in reservoir is known to mainly derive from the nitrification 83 

and denitrification of terrestrial nitrogen (N). Human activities in the drainage basin, 84 

particularly land use change, sewage discharge and agriculture fertilization, have 85 

severely altered the N transport of from the terrestrial ecosystem to the aquatic 86 

ecosystem (Davidson, 2009; Hosen et al., 2014; Williams et al., 2016), and influenced 87 

the N2O production in reservoirs (Wang et al., 2017). Syvitski et al. (2005) estimated 88 

over 100 billion metric tons of sediment and up to 3 billion metric tons of organic 89 

matter were trapped in the reservoirs in the last five decades. Hence the allochthonous 90 

material load by human activities would play a much more important role for 91 

accelerating N2O emission from reservoirs. To date, some efforts have been made on 92 

the response of N2O emission from reservoirs to the human activities (e.g., agriculture, 93 

urbanization sewage discharges) in the basin, especially in China (e.g., Liu et al., 94 

2011a; Wang et al., 2017; Xiao et al., 2019b). However, the data of N2O emissions 95 

from reservoirs under the impact of human activities are disproportionately scarce in 96 
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comparison to the amount and area of reservoirs. More importantly, the majority of 97 

existing studies only focused on inland freshwater reservoirs, but few studies have 98 

mentioned N2O emission from coastal reservoirs. As coastal reservoirs often 99 

experience a higher salinity and inputs of anthropogenic carbon and nutrients than 100 

inland ones, N2O production and emission rates might differ between the reservoirs in 101 

these two zones. However, there is currently a lack of empirical data to test this 102 

hypothesis and advance our understanding of reservoirs in the global N2O cycle. 103 

In order to fill these knowledge gaps, this study researched high spatial 104 

resolution measurements of dissolved N2O concentrations in a subtropical coastal 105 

reservoir in southeast China over three seasons of a year to estimate the N2O fluxes 106 

across the water-atmosphere interface. The specific objectives of this study are to (1) 107 

quantify the magnitude of N2O emission fluxes from the coastal reservoirs, (2) assess 108 

the spatial variations in diffusive N2O fluxes both within system and among systems, 109 

(3) explore the drivers of the spatial variations of coastal reservoir N2O emissions;  110 

and (4) examine how many measurements sities in space were needed to 111 

representatively cover the observed spatial variability in coastal reservoir N2O 112 

emissions. The results of the present study will provide the scientific basis for the 113 

development of global biogeochemical models and national GHG inventories through 114 

characterizing N2O emission from the reservoirs in coastal areas. 115 

2. Materials and Methods 116 

2.1. Study Area 117 

The study was conducted in Wenwusha Reservoir (25°49′36″–25°54′00″ N, 118 
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119°35′12″–119°38′11″ E), a subtropical reservoir in the coastal area of Fujian 119 

Province, Southeast China (Figure 1). The reservoir was built for irrigation and 120 

flood-prevention. It has a surface area of 5.2 km2, a total volume of 3.20×108 m3, 121 

drainage area of 275 km2, and mean depth of 9.0 m. The reservoir is influenced by a 122 

subtropical monsoon humid climate, with a mean annual temperature of 19.3 °C. The 123 

average annual precipitation is 1390 mm, most of which (approximately 75%) occurs 124 

in the wet season from May to September.  125 

The Wenwusha Reservoir was created by two dams on the Nangyangdong River 126 

estuary. We compartmentalized the reservoir into two reservoir zones according to the 127 

two dam constructed time, topographic feature, and trophic status (Figure 1). The 128 

northern reservoir zone (NRZ) was constructed in 1957, with a surface area of 1.9 129 

km2 and a total volume of 1.40×108 m3. The NRZ is located in highly urbanized 130 

districts and is heavily impacted by human activities, e.g. the sewage discharge from 131 

aquacultural, industrial, and municipal activities. The NRZ also received large 132 

amounts of nutrient input from Nanyangdong river. The southern reservoir zone (SRZ) 133 

was constructed in 2004, with a surface area of 3.3 km2 and a total volume of 134 

1.69×108 m3. Around 70% of its catchment is used for agricultural activities (e.g., 135 

aquaculture and farming), but its immediate surroundings are partly forested and 136 

wetland (Figure 1). The water salinity in NRZ is much lower than that in SRZ 137 

(0.4–1.3‰ versus 0.4–3.7‰), as a result of freshwater dilution caused by the surface 138 

runoff.  139 

2.2. Sampling strategies 140 
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Considering the reservoir size, topographic feature, and pollution source, a total 141 

of 21 transects (10 in the NRZ and 11 in the SRZ) were selected to collect samples to 142 

characterize the variation across the whole reservoir. According to the lengths of the 143 

transects, there were 3-10 sampling sites in the transects (Figure 1). The total number 144 

of sample sites was 103 (56 in the NRZ and 47 in the SRZ). These sites were 145 

distributed in 5 different sewage loading sectors, namely the industrial effluent 146 

loading sector (Sector-I, n = 4), town sewage loading sector (Sector-T, n = 6), river 147 

input sector (Section-R, n = 7), aquaculture sewage loading sector (Section-A, n = 22), 148 

and non-wastewater loading sector (Sector-N, n = 64). At each site, surface-water 149 

samples were collected at a depth of 20 cm. Three in situ whole reservoir surveys 150 

were conducted in mid–November 2018, mid–March and mid–June 2019. Each whole 151 

reservoir survey was completed in two consecutive days to reduce the biases caused 152 

by day-to-day variation. More details about the sampling transects are presented in 153 

supporting information Table S1.  154 

2.3. Measurement of dissolved N2O concentration and diffusive flux 155 

2.3.1. Dissolved N2O concentration 156 

Surface water samples for dissolved N2O concentration analysis were collected 157 

using a 100-mL syringe equipped with three-way stopcocks. After sample was 158 

collected from reservoir, water was quickly transferred into a 55-mL gas-tight glass 159 

serum bottle. Prior to sealing the bottle, 0.2 mL saturated HgCl2 solution was injected 160 

into the sample bottle for inhibiting microbial activity. The bottle was immediately 161 

sealed with an open-topped screw cap equipped with a halobutyl rubber septum to 162 
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exclude any air bubble (Borges et al., 2018; Xiao et al., 2019a; Yang et al., 2020). All 163 

water samples were stored in an ice box, transported to the laboratory within 6 hr, and 164 

analyzed within two days of collection.  165 

Dissolved N2O concentrations in the collected water samples were measured 166 

following the headspace equilibration method described by Yu et al. (2013, 2017). In 167 

the laboratory, ultrahigh purity N2 gas (99.999%) was injected into the sample bottle 168 

via a syringe to create a 25-mL headspace. The bottles were then shaken vigorously 169 

for 10 min in an oscillator to allow the dissolved N2O diffuse out and gases reach 170 

equilibrium between the liquid phase and headspace. After waiting for 0.5 hr, 171 

approximately 5 mL air sample was drawn from the headspace using a syringe 172 

equipped with three-way stopcocks. N2O concentrations in the headspace air were 173 

measured using gas chromatography (GC-2014, Shimadzu, Kyoto, Japan) equipped 174 

with an electron capture detector (ECD). The detection limit for the N2O analysis was 175 

0.02 ppm, and the relative standard deviations of N2O analyses were ≦5.0% (Yang et 176 

al., 2020). Based on the equilibrium temperature, salinity–dependent Henry's law 177 

constant, and the measured headspace gas concentration, dissolved N2O concentration 178 

was calculated using the formula provided by Weiss and Price (1980).   179 

2.3.2. N2O flux from the transfer coefficient method  180 

The N2O flux (FW-A, μmol m−2 h−1) across the water–atmosphere interface was 181 

calculated using the classic boundary-layer model (equation (1)), which has been 182 

widely used for N2O emissions in the lentic ecosystem (e.g., lakes, reservoir and 183 

ponds) (e.g., Cole and Caraco, 1998; Liang et al., 2019; Musenze et al., 2014; Xiao et 184 
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al., 2019b; Yang et al., 2015a). 185 

)(A-W eqobs CCkF −=
                                                 

)1Eq(
  

 186 

where Cobs is the measured dissolved N2O concentration (nmol L-1) in the surface 187 

water (20 cm depth); Ceq in water that is in equilibrium with the atmosphere at the in 188 

situ temperature (nmol L-1); and k is the gas transfer velocity (m h-1).  189 

In the lentic ecosystem, the N2O transfer velocity is mainly driven by wind speed 190 

because no surface water flow (Xiao et al., 2019b). k in the present study was 191 

calculated using a wind-dependent formula (equation (2)) derived from a small 192 

shallow lake as follows (Cole and Caraco, 1998): 193 

)215.007.2()660/( 7.1

10USck n += −

                                 
)2Eq(  194 

where n = 0.66 and 0.50 for wind speeds ≤3 and >3 m s−1, respectively; Sc is the 195 

Schmidt number for N2O and is dependent on the temperature (T, oC); and U10 is the 196 

frictionless wind speed at 10 m high expressed in m s−1. 197 

The Sc and U10 were estimated using the following equations (Crusius and 198 

Wanninkhof, 2003; Wanninkhof, 1992): 199 

32 054350.03173.411.1376.2055 TTTSc −+−=
                   

)3Eq(   200 
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 201 

where Uz is the wind speed (m s-1) at height z (2.0 m in this study) above the water 202 

surface at which wind speed was measured; Cd10 is the drag coefficient at 10 m above 203 

the water surface (0.0013 m s-1); and K is the von Karman constant (0.41). 204 

2.4. Measurement of environmental variables 205 

During each campaign, from 103 sites in the reservoir was also sampled for 206 
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measuring chemical properties. Surface water samples were collected at a depth of 20 207 

cm using a 5 L organic glass hydrophore, and transferred into 150 mL polyethylene 208 

bottles. Approximately 0.5 mL saturated HgCl2 solution was added to each bottle to 209 

inhibit microbial activities (Taipale and Sonninen 2009; Zhang et al., 2013). All 210 

samples were preserved in an ice box, and transported to the laboratory for 211 

measurement. After filtering the samples through a 0.45 μm cellulose acetate filter 212 

(Biotrans™ nylon membranes), the concentration of total dissolved nitrogen (TDN), 213 

nitrate-nitrogen (N–NO3
–), and ammonium-nitrogen (N–NH4

+) was measured using a 214 

flow injection analyzer (Skalar Analytical SAN++, The Netherlands). The detection 215 

limits for TDN, NN–NO3
–, and N–NH4

+ were 3.0, 0.6 and 0.6 μg L-1, respectively. 216 

The relative standard deviations of TDN, NN–NO3
–, and N–NH4

+ analyses were 217 

≦2.0%, ≦3.0% and ≦3.0%, respectively. 218 

Water temperature (WT), dissolved oxygen (DO), pH, electrical conductivity 219 

(EC), and salinity at a depth of 20 cm were also measured in situ at each sampling site. 220 

WT and pH were measured using a portable pH/mV/Temperature meter (IQ150, IQ 221 

Scientific Instruments, USA). DO, EC and salinity were determined using a 222 

multiparameter water quality probe (550A YSI, USA), an electrical conductivity 223 

meter (2265FS EC, Spectrum Technologies, USA) and a salinity meter (Eutech 224 

Instruments-Salt6, USA), respectively. The relative standard deviations of DO, pH, 225 

EC, and salinity analyses were ≦2.0%, ≦1.0%, ≦1.0% and ≦1.0%, respectively. 226 

Meanwhile, the meteorological factors, including the air temperature (AT), 227 

atmospheric pressure (AP) and 2 m height wind speed (WS), were recorded using a 228 
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portable weather meter (Kestrel-3500, USA).  229 

2.5. Statistical analysis 230 

The analysis of variance (ANOVA) to test for significant (p<0.05) effects of 231 

reservoir zone and sewage sector water depth on surface water physicochemical 232 

properties, dissolved N2O concentration and N2O diffusive fluxes using the SPSS 17.0 233 

statistical software package (SPSS Inc., USA). Pearson correlation coefficients were 234 

used to examine the relationships between water physicochemical parameters and 235 

N2O concentration/ fluxes. Principal component analysis (PCA) was also performed 236 

to analyze the relationships between the N2O fluxes and surface water 237 

physicochemical properties to show their pattern at different sampling campaigns. For 238 

quantifying spatial heterogeneity effects by randomizing the high-resolution N2O 239 

measurements, a Monte Carlo analysis was used to evaluate the effect of sample size 240 

on the N2O estimation of the whole reservoir. Without replacements, the N2O 241 

measurements are resampled from the 103 sites (n = 10, 20, 30…, 100). The 242 

resampling process then was repeated 10000 times and the overall mean and standard 243 

deviation of N2O emissions were calculated for each sample size. The results were 244 

presented as means ± SE. Statistical plots were generated using OriginPro 7.5 245 

(OriginLab Corp. USA) and ArcGIS 10.2 (ESRI Inc., Redlands, CA, USA). 246 

Conceptual diagrams were drawn using EDraw Max version 7.3 (EdrawSoft, Hong 247 

Kong, China).  248 

3. Results 249 

3.1. Water Quality Parameters in Reservoir   250 
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There were substantial spatial variations in water chemical parameters (e.g., 251 

salinity, DO, and nutrient concentrations) between both reservoir zones on all three 252 

sampling occasions (p<0.01; Table S2), with lower levels of DO (Figure 2a-c), EC 253 

(Figure 3g-i and Figure S1d) and salinity (Figure 2j-l and Figure S1c) and higher 254 

concentrations of N–NO3
− (Figure 2d-f and Figure S2a-c), N–NH4

+ (Figure 2g-i and 255 

and Figure S2d-f), and TDN (Figure 2j-l and Figure S2g-i) in NRZ than in SRZ. 256 

However, the WT (Figure 3a-c) and pH (Figure 3d-f) were relatively constant across 257 

the reservoir (p>0.05; Figure S1a and b), with the coefficients of variation only ranged 258 

from 4% to 7%, and 1% to 7% over the three sampling campaigns, respectively. 259 

The mean DO, salinity, N–NO3
−, N–NH4

+ and TDN also differed significantly 260 

among the five sewage loading sectors over the three sampling campaigns (Table S3). 261 

Mean N–NO3
−, N–NH4

+ and TDN concentrations were significantly lower in 262 

Sector-N than the other sectors (p<0.05;Table S3), and were generally highest in 263 

Sector-R. In contrast, mean DO concentration and salinity was generally greater in 264 

Sector-N than the other four sectors (Table S3). 265 

The main water quality parameters also showed strong temporal variation across 266 

the whole reservoir (p<0.001, Two-way ANOVAs; Table S2). The water temperature 267 

was highest in summer (29.3 oC), followed by spring (23.1 oC) and autumn (18.3 oC) 268 

(Figure 3a-c). The seasonal patterns of N−NO3
− (Figure 2d-f), TDN (Figure 2j-l), pH 269 

(Figure 3d-f) and salinity (Figure 3j-l), concentrations were contrary to that of water 270 

temperature (Figure 3a-c). The DO varied seasonally, with the peak in spring (Figure 271 

2a-c). In contrast, N−NH4
+ concentrations were significantly lower in spring (Figure 272 
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2g-i). 273 

3.2. Spatial Variation in Surface Water N2O Concentration 274 

Across all sampling sites in the reservoir, dissolved N2O concentration in 275 

November 2018, March 2019 and June 2019 ranged from 8.99 to 86.58, 6.11 to 276 

110.37, and 7.33 to 261.27 nmol L−1 (Figure 4), respectively, with mean N2O 277 

concentration of 46.42±2.03, 58.96±5.90, and 43.96±2.69 nmol L−1 in the three 278 

sampling campaigns. Across the three sampling campaigns, the mean N2O 279 

concentration were significantly greater in NRZ than in SRZ (p<0.05, Two-way 280 

ANOVAs; Table 1 and Figure S3a-c). Meanwhile, dissolved N2O concentration also 281 

showed remarkably differences betwee the wastewater loading area and the 282 

non-wastewater loading area (p<0.05; Table S4 and Figure S4a-c). Across the three 283 

sampling campaigns, specifically, the mean N2O concentration were significantly 284 

lower in Sector-N than the other sectors (p<0.05; Figure 5a), and were generally 285 

highest in Sector-R (Figure 5a). 286 

3.3. Spatial Variation in Diffusive N2O Fluxes Across the Water-Air Interface 287 

Across all sampling sties, the N2O fluxes ranged from 2.61 to 415.61, from 288 

-10.83 to 254.01, and from 2.04 to 711.50 μg m−2 h−1 in November 2018, March 2019 289 

and June 2019, respectively, with mean N2O fluxes of 110.41±9.31, 78.48±6.27, and 290 

153.12±8.61 μg m−2 h−1 in the three sampling campaigns. Overall, the Wenwusha 291 

Reservoir acted as a constant source of N2O to the atmosphere. 292 

N2O fluxes (Figure 6) showed a similar spatial variability to N2O concentration 293 

(Figure 4). Relatively higher N2O fluxes were found in the NRZ of the Wenwusha 294 
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Reservoir. Across all sampling campaigns, the N2O fluxes in the NRZ ranged from 295 

6.87 to 711.50 μg m−2 h−1, with an average of 153.12±8.61 μg m−2 h−1, which was 296 

almost 3 times higher than those from the SRZ (p<0.001, Two-way ANOVAs; Table 1 297 

and Figure S3d-f).  298 

Significant differences in mean N2O emission fluxes were also observed among 299 

the wastewater loading area and the non-wastewater loading area (p<0.05; Table S4 300 

and Figures S4d-f). Across the three sampling campaigns, specifically, Sector-N had 301 

significantly lower mean N2O fluxes than the other four wastewater loading sectors 302 

over the whole study period (Figure 5b), while Sector-R had relatively higher mean 303 

N2O fluxes than other sectors (Figure 5b).   304 

3.5. Water Quality Drivers of Variation in N2O Concentrations and Fluxes 305 

 The simple regressions analysis demonstrated thatthe spatial variation of N2O 306 

concentration and fluxes was positively related to the N−NO3
− (r2 = 0.20−0.87, 307 

p<0.01), N−NH4
+ (r2 = 0.17−0.42, p<0.01 or <0.05) and TDN concentrations (r2 = 308 

0.13−0.88, p<0.01) within each sampling occasion (Table S5, and Figures S5 and S6), 309 

respectively, and negatively correlated with that of salinity and DO (p<0.05 or <0.01; 310 

Table S5). Principal component analysis (PCA) was also employed to explore the 311 

relationships among all these environmental variables over whole reservoir survey 312 

during each sampling campaign (Figure 7a-c). The first component (PCA I), 313 

explaining 93.1% (Figure 7a), 95.8% (Figure 7b) and 95.7 (Figure 7c) of the total 314 

variances during the autumn, spring and summer surveys, respectively, was 315 

significantly correlated with N−NO3
−, N−NH4

+ and TDN. The first component can be 316 
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considered as the influence of water pollution, reflecting the spatial variation. The 317 

second component (PCA II), explaining 3.6%, 3.8% and 4.2% of the variances during 318 

the autumn, spring and summer surveys, respectively, was correlated with the EC, 319 

salinity and DO. In addition, PCA was employed to explore the temporal correlation 320 

between the N2O concentration (or fluxes) and environmental variables. The first and 321 

second components together explained 98.2% of the total variance (Figure 7d). In 322 

particular, the PCA I contributed 93.8% of the total variance and was correlated with 323 

the N−NO3
−, N−NH4

+, TDN and temperature (Figure 7d). 324 

3.6. Effects of Different Sampling Size on the Estimation of Whole-Reservoir N2O 325 

Fluxes 326 

The results of Monte Carlo analysis showed that the accuracies of average 327 

diffusive N2O fluxes across the whole reservoir increased considerably with the 328 

expansion of numbers of sampling sites included in flux estimations (Figure 8). For 329 

each sample size, the resampling process was repeated 10,000 times to create the 330 

boxplots of N2O resampling means (Figure 8a) and the standard deviation of 331 

resampling means  (Figure 8b).  332 

In Figure 8a, the light grey, grey and dark grey shaded areas show the respective 333 

70%, 95%, and 99% of the Highest Probability Density (HPD) ranges which indicate 334 

the variance of standard errors for approximate coverages of the resampling means 335 

from 10,000 simulations for each sample size. With the increase of sample sizes, the 336 

converging HPD ranges of possible resampling mean N2O values indicated the 337 

improving estimation accuracy of N2O flux. In addition, with the expansion of sample 338 
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sizes, the biases of the resampling N2O estimations declined, and the standard 339 

deviations of resampling means decreased exponentially (Figure 8b). Notably, the 340 

results of Monte Carlo analysis showed that increase of the sample size from 10 to 341 

100 markedly reduced the relative standard deviation of mean diffusive N2O flux 342 

from 21% to 1.2%.  343 

The number of samples in Figure 8 could be used to determine an optimal 344 

sample size to produce reasonable flux estimates. However, to achieve less than 5% of 345 

error, more than 80 samples over the whole reservoir were still needed (ca. 15 samples 346 

per km2), due to reservoir heterogeneity. If the sample sizes were less than 80, the 347 

uncertainty range of the resampling simulations increases because of missing some 348 

measurements from the N2O hotspots. Therefore, it is important to conduct high 349 

spatial resolution sampling to include all N2O hotspots to improve the accuracy of 350 

flux estimates.  351 

According to the 10,000 simulations of only 10 samples, a relative standard 352 

deviation of the estimated mean diffusive N2O flux was 22.6% (Figure 8b). Despite a 353 

large range, these means had a median value of 107 μmol m−2 h−1 (Figure 8a). The 354 

bias of the resampling median is small compared to the mean of all samples. 355 

Therefore, the high spatial resolution measurements from different transects can 356 

effectively reduce the estimation bias of N2O flux in the current study.    357 

Moreover, the standard deviations of resampled N2O mean diffusive flux 358 

decreased dramatically from less than 10 μmol m−2 h−1 for the sample size of 40 to 359 

1.29 μmol m−2 h−1 for the sample size of 100 (Figure 8b). The relative standard 360 
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deviation of mean diffusive flux reduced to only 1.2% for the sample size of 100, 361 

indicating that the estimated whole-reservoir N2O emissions approached the actual 362 

mean, with much less variation. Increasing the sample size could effectively reduce 363 

the estimation bias of the whole-reservoir N2O emissions. 364 

4. Discussion 365 

4.1. Subtropical Coastal Reservoir are Atmospheric N2O Sources 366 

 Results from our spatially intensive sampling showed that the average N2O 367 

emission flux from Wenwusha Reservoir were 107.0 µg m-2 h-1. Although, the average 368 

N2O fluxes in the Wenwusha Reservoir were smaller than those in some tropical 369 

reservoirs (Table S6), for example, Tucuruiand reservoir, Samuel reservoir (Lima et 370 

al., 2002), Petit Saut reservoir and Fortuna reservoir (Guérin et al., 2008), the N2O 371 

fluxes in our reservoir were one to two orders of magnitude higher than those in many 372 

reservoirs in subtropical (Liu et al., 2011a; Musenze et al., 2014; Shi et al., 2020; Yu 373 

et al., 2018) and temperate regions (Cheng et al., 2019; Descloux et al., 2017; 374 

Huttunen et al., 2002) (Table S6). The mean N2O emission rates in our reservoir were 375 

also substantially higher than the median emission rate (7.2 µg m-2 h-1) in global 376 

lakes/reservoirs (Hu et al., 2016), and were approximately 2.5 times higher than the 377 

average of China's reservoirs (42.3 µg m-2 h-1) (Li et al., 2018). Compared with lakes 378 

worldwide (Table S6), our reservoir had a larger N2O emission fluxes. For example, 379 

the mean N2O emission rates in our reservoir was approximately 8.7 times higher than 380 

the average of China's lakes (12.2 µg m-2 h-1) (Li et al., 2018). In addition, the mean 381 

N2O emission from our reservoir was approximately 3.9 and 1.9 times higher than 382 
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emissions from Cyperus malaccensis marsh (Wang et al., 2018) and aquaculture 383 

ponds (Yang et al., 2020) in the same subtropical coastal region. Futhermore, high 384 

N2O emission fluxes has been reported in other subtropical coastal reservoirs studies 385 

(e.g., Cheng et al., 2014; Zhang, 2012). These results together indicate that subtropical 386 

costal reservoirs could be important sources of atmospheric N2O and therefore more 387 

attention is needed. 388 

4.2. External Sewage Input Affects the Spatial Pattern of N2O Emission in the 389 

Reservoir 390 

 There are some studies on the small-scale spatial variations in N2O flux across 391 

the water-air interface in inland aquatic ecosystems (e.g., reservoirs, lakes) (Cheng et 392 

al., 2019; Musenze et al., 2014; Zhao et al., 2013; Xiao et al., 2019a). However, such 393 

knowledge is still lacking in coastal reservoirs. In the current study, our intensive 394 

sampling in multiple sites shed light on the marked spatial variation in N2O emissions 395 

in Wenwusha Reservoirin (Figure 6), and the coefficients of variation changed from 396 

81% to 110% in the three sampling campaigns. Notably, the wastewater loading area 397 

only took up 30% of the whole reservoir area, but it contributed approximately 60% 398 

of N2O emissions in the whole reservoir.  399 

Some scholars have found that the microbial processes of N2O production can be 400 

promoted by large provision of of N substrate, subsequently increasing water N2O 401 

concentration and emission to atmosphere (Herrman et al., 2008; Huttunen et al., 2003; 402 

Liu et al., 2011a; Xiao et al., 2019a, 2019b; Yu et al., 2013; Zhao et al., 2014). In this 403 

study, some environmental parameters are relative stable in the whole reservoir, for 404 
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example, air temperature, atmospheric pressure, solar radiation, and wind speed 405 

(wind-dependent gas transfer coefficient) , but some parameters had marked spatial 406 

variations, such as the concentrations of N-NH4
+, N-NO3

-, and TDN (Figure 2). 407 

Located in a catchment with intensive human activity, the Wenwusha Reservoir 408 

catchment is heavily affected by anthropogenic activities, particularly wastewater 409 

discharge from domestic and industrial sources, and drainage from mariculture ponds, 410 

(Figure 1). Results in our reservoir indicated the the highest average concentrations of  411 

N-NH4
+, N-NO3

-, and TDN from the river input sector, suggesting the important effect 412 

of the upstream area in providing nitrogen to the waterbody. Different from other 413 

wastewater loading sectors, non-wastewater loading sector had much lower N-NH4
+, 414 

N-NO3
-, and TDN concentrations and obviously higher DO level (Table S3), 415 

suggesting a improved water quality without the impact of sewage input. Therefore, 416 

the changing levels of sewage discharge was one of the primary factors controlling the 417 

large spatial variation in N2O emissions (Figure 6).  418 

The changes of N2O fluxes between the two reservoir zones (Figure S3) further 419 

confirmed the role of sewage discharge in controlling N2O emissions from the 420 

Wenwusha Reservoir. During our study period, N2O concentrations (Figure 4 and 421 

Figure S3a) and emission fluxes (Figure 6 and Figure S3a) in the NRZ were much 422 

higher than those in the SRZ. This is likely due to that the markedly higher 423 

concentrations of N-NH4
+, N-NO3

-, and TDN (Figure 2) enhanced N2O production in 424 

NRZ, as a consequence of more input from wastewater (Figure 1). The relationship 425 

between sewage input, N substrates, and N2O emission has been found in lakes (e.g., 426 
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Xiao et al., 2019a), coastal river network (Yu et al., 2013), and inland reservoirs (e.g., 427 

He et al., 2017; Liu et al., 2011a, 2017). In the current study, N2O production data is 428 

unavailable. However, the significantly positive relationships between the N2O 429 

concentration (NO2 emission fluxes) and N concentrations in Wenwusha reservoir 430 

(p<0.05 or <0.01; Table S4 and Figures 5-7) confirmed the above explanation.  431 

The dissolved N2O concentrations in the wastewater of municipal sewage 432 

drainage channels, aquaculture ponds, and rivers adjacent to the reservoir were about 433 

3–5 times higher than those in the reservoir surface water, and this caused a direct 434 

input of dissolved N2O into the Wenwusha Reservoir, with a consequence of steeper 435 

gradients of N2O concentrations between the surface water and atmosphere and  436 

large N2O diffusive emissions. Despite some environmental protection measures, a 437 

large amount of sewage was still discharged into the reservoir. This external N2O 438 

input can support N2O emissions continuously from water surface into air, even lack 439 

of internal N2O production inside the water ecosystem. Certainly, the contributions of 440 

sewage discharge to the direct input of N2O into the waterbody should not be 441 

overlooked. Effective measures are urgently needed to reduce and finally stop the 442 

discharge of sewage into the reservoir. 443 

4.3. Role of Salinity in the Spatial Variation in Reservoir N2O Emission 444 

Except for N availability, the spatial variation in N2O concentrations and fluxes 445 

in the Wenwusha Reservoir may be influenced by the difference in salinity. Salinity 446 

controls the mineralization rate of N through its effect on microbial activity, enzyme, 447 

and metabolism, and consequently regulates the rates of N2O production, 448 
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consumption, and emission into the atmosphere. Some studies suggested that high 449 

salinity can reduce microbial diversity (Francis et al., 2003; Li et al., 2020; Moin et al., 450 

2009; Mosier and Francis, 2008) and activity (Wang et al., 2010), especially the 451 

ammonia-oxidizing bacteria (AOBs), with the consequence of reducing sediment / 452 

water N2O production (Rysgaard et al., 1999; Wang et al., 2018). The negative 453 

relationship between salinity and N2O concentrations (flux) has been reported in 454 

coastal wetlands and aquatic ecosystems (Liu et al., 2015; Sun et al., 2015; Wang et 455 

al., 2018; Welti et al., 2017). In the present study, salinity in the surface water showed 456 

remarkable spatial variations (Figure 3j-l), with the NRZ exhibiting significantly 457 

lower salinity than the SRZ (p<0.01; Figure S3c), as a result of freshwater dilution 458 

caused by the river runoff (Figure 1). The salinity (Figure 3j-l) and N2O concentration 459 

(or flux) (Figure 4 and 6) exhibited opposite spatial patterns in the reservoir (p<0.01; 460 

Table S5), indicating that salinity might be an important environmental factor 461 

influencing N2O dynamics between the two reservoir zones. Yet, salinity was likely 462 

not a dominant factor in governing the spatial variations of N2O emission fluxes in 463 

each zone, since the spatial heterogeneity of water salinity within each zone was very 464 

low (Figure 3j-l). Meanwhile, the substantial differences in salinity beween two 465 

reservoir zones also provide additional evidence for that the large contribution of 466 

external N loading to the spatial variation in N2O fluxes within Wenwusha Reservoir. 467 

Further studies merit to explore the exact impacts of salinity on N2O production and 468 

emission.   469 

4.4. Temporal Variation in N2O Emission Fluxes Across the Coastal Reservoir 470 
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In this study, the N2O flux exhibited clear seasonal variation (p<0.01; Table 1), 471 

with significant higher values in summer (Figure 5). Similar seasonal pattern was also 472 

observed in inland freshwaters (Musenze et al., 2014; Xiao et al., 2019a, 2019b; Zhu 473 

et al., 2013). Temperature is generally considered as the most important factor driving 474 

N2O emission temporal patterns due to its stimulation of microbial activity related to 475 

N2O production (Beaulieu et al. 2010; Harrison and Matson, 2003; Hinshaw and 476 

Dahlgren 2013). Larger N2O fluxes in summer than autumn and spring (Figure 5) 477 

coincided with higher warmer temperatures in summer (Figure S1a) across the whole 478 

reservoir. However, an interesting outcome was that, although the water temperature 479 

was higher in spring than autumn (Figure S1a), the N2O concentration and flux 480 

(Figures 3 and 5) showed an opposite patterns with water temperature. This was 481 

probably related to the disturbance of precipitation. In our study period, several 482 

continuous rain events occurred during the spring surveys. The large precipitation not 483 

only dramatically increased water depth in the reservoir, but also increased inflow of 484 

water and soil drained into the reservoir by rain falling on surrounding land, 485 

ultimately causing a dilution effect on many of the reservoir’s biological and chemical 486 

parameters. Thus, instead of higher temperature, the dilution effect from large rainfall 487 

and river flows may be responsible for the lower N2O concentration in spring than in 488 

autumn. Similar results were reported by He et al. (2017) and Outram and Hiscock 489 

(2012). In addition, annual drainage is a typical management activity that is practiced 490 

in autumn period after mariculture harvest, and it is a way to export aquaculture 491 

effluent. Thus, the N2O concentrations and emission fluxes in autumn were larger than 492 
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those in spring also might be related to the aquaculture effluent discharge, which 493 

provides a large amount of N substrate for reservoir’s N2O production. This 494 

hypothesis was supported by the evidence that N2O concentrations and emission 495 

fluxes showed significantly positive relationships with N−NO3
−, N−NH4

+ and TDN 496 

(p<0.01; Table S5), respectively. These results together indicated that the seasonal 497 

variations in the N2O concentrations and emission fluxes in the Wenwusha Reservoir 498 

were regulated synthetically by temperature, precipitation and external N input.      499 

4.5. Implications of Spatially Resolved Measurements of Reservoir N2O Emission 500 

In the past twenty years, scholars have gradually realized the large N2O emission 501 

from reservoirs to atmosphere (e.g., Deemer et al., 2016; Descloux et al., 2017; 502 

Guérin et al., 2008; Li et al., 2018; Maavara et al., 2019; Wang et al., 2017). However, 503 

the accurate contribution of reservoirs to the global N2O budget remains highly 504 

uncertain. Our results show that subtropical costal reservoirs are important 505 

atmospheric N2O sources with substantive spatial variability. The large spatial 506 

variability in N2O fluxes within the reservoir implies a large uncertainty of the whole 507 

reservoir estimate of N2O fluxes provided by earlier studies that were conventionally 508 

based on single site or limited number of site measurements. The results of Monte 509 

Carlo analysis further showed that increasing the sample size from 10 to 100 510 

significantly reduced the relative standard deviation of mean diffusive N2O flux from 511 

22.6% to 1.6% (Figure 8). In the process of extrapolating small-scale N2O fluxes to 512 

the whole reservoir, therefore, our results highlight the importance of conducting high 513 

spatial resolution sampling (>15 samples per km2) to minimize the bias.  514 
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Our high spatial resolution sampling data show significant larger N2O emissions 515 

from the wastewater loading area, indicating the important role of wastewater input 516 

for promoting N2O emissions from reservoirs. With the world entering anthropocene, 517 

human activities, particularly wastewater discharge, have severely increased the input 518 

of anthropogenic nutrients to aquatic ecosystems, particularly in developing countries 519 

with poor wastewater treatment system (Hosen et al., 2014; Williams et al., 2016; 520 

Yang et al., 2013; Yu et al., 2013), but insufficient attention has been given to 521 

anthropogenic activities as an accelerator influencing the N2O and other greenhouse 522 

gas emissions from water (He et al., 2017; Wang et al., 2017; Xiao et al., 2019a; Xing 523 

et al., 2006; Yang et al., 2008). Clearly, strengthening environmental protection, 524 

particularly wastewater treatment and discharge, is the key to mitigate water pollution 525 

and greenhouse emission in aquatic environment (Yang, 2014; Yang et al., 2015b). 526 

This study, to the best of our knowledge, represents the first attempt to quantify 527 

N2O emission fluxes from costal reservoir at such a high spatial resolution. Overall, 528 

the results provide a valuable data source for model development and validation to 529 

predict N2O emission fluxes from costal reservoirs suffering from intensive human 530 

disturbance.  531 

4.6. Limitations and Future Research  532 

Similar to most studies, there are limitations in the current study. First, diurnal 533 

variations in N2O flux have been reported in inland freshwaters (Baulch et al., 2012; 534 

Laursen and Seitzinger, 2004; Wu et al., 2018; Xiao et al., 2019a; Yang et al., 2011), 535 

and some researches found larger fluxes during nighttime compared with daytime 536 



 

26 

 

(Baulch et al., 2012; Wu et al., 2018; Yang et al., 2011). However, the day–night 537 

pattern of N2O fluxes in the Wenwusha Reservoir is unknown, which may lead to 538 

estimate uncertainty of seasonal or annual N2O budget. Therefore, future long-term 539 

observations along with diurnal temporal scales can further reduce the estimate bias of 540 

N2O emission budget. Moreover, thermal stratification is a phenomenon frequently 541 

happening in reservoirs, particularly in deep reservoir (Straskraba, 1999; Thornton, 542 

1990). The stratification could create barriers to the exchange of material (e.g., 543 

nutrient and DO) between the epilimnion and the hypolimnion (Hayes et al., 2107; Yu 544 

et al., 2015), ultimately resulting in a change of the main pathways of N2O production 545 

in the water profile (Beaulieu et al., 2015; Liang et al., 2019; Salk et al., 2016) and the 546 

subsequent emission to the atmosphere. However, the vertical pattern of N2O dynamic 547 

within reservoir in the current study is unknown, which limits the understanding of 548 

N2O production and spatial patterns. In the future work, therefore, there is an urgent 549 

need for utilizing advancing technologies (e.g., isotopic tracing) to investigate the 550 

vertical profile of N2O dynamic in coastal reservoirs. Furthermore, this study 551 

examined N2O concentrations and fluxes, and basic environmental factors in situ, 552 

while the contributions from other N2O production pathways, and microbial 553 

abundance and activity (nitrifier, denitrifier, and ammonifier) are unclear. Thus, the 554 

future detailed investigation of the more production pathways and microbial 555 

mechanisms of N2O in coastal reservoirs will be helpful for understanding the 556 

mysterious N cycle in aquatic ecosystems.  557 

5. Conclusions 558 
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We estimated N2O emissions from Wenwusha Reservoir based on high spatial 559 

resolution data. Total surface water diffusive N2O fluxes was estimated to be 4.8 Mg 560 

yr-1, with an annual average CH4 flux of 107.0 μg m-2 h-1. Fluxes in N2O were much 561 

greater in sectors in which sewage is discharged to the reservoir, due to greater inputs 562 

of anthropogenic N. As a result of high levels of nutrient and organic matter loading, 563 

areas of wastewater loading (comprising 30% of the reservoir area) acted as potential 564 

N2O emission hotspots, and made a disproportionate contribution (60%) to 565 

whole-reservoir N2O emissions. Our results illustrate that coastal reservoirs are an 566 

important source of atmospheric N2O, where spatial variation in emissions is driven 567 

by anthropogenic activity. To produce representative, accurate estimates of N2O 568 

emissions from coastal reservoirs suffering anthropogenic disturbance, it is essential 569 

they are based on highly spatially resolved data.      570 
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