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Abstract—The present paper considers emerging Internet of
Things (IoT) applications and proposes a Long Short Term
Memory (LSTM) based neural network for predicting the end
of the broadcasting period under slotted CSMA (Carrier Sense
Multiple Access) based MAC protocol and Energy Harvesting
enabled Wireless Networks (EHWNs). The goal is to explore
LSTM for minimizing the number of missed nodes and the
number of broadcasting time-slots required to reach all the nodes
under periodic broadcast operations. The proposed LSTM model
predicts the end of the current broadcast period relying on the
Root Mean Square Error (RMSE) values generated by its output,
which (the RMSE) is used as an indicator for the divergence of
the model. As a case study, we enhance our already developed
broadcast policy, ADAPCAST by applying the proposed LSTM.
This allows to dynamically adjust the end of the broadcast
periods, instead of statically fixing it beforehand. An artificial
data-set of the historical data is used to feed the proposed LSTM
with information about the amounts of incoming, consumed, and
effective energy per time-slot, and the radio activity besides the
average number of missed nodes per frame. The obtained results
prove the efficiency of the proposed LSTM model in terms of
minimizing both the number of missed nodes and the number of
time-slots required for completing broadcast operations.

Keywords—IoT, wireless networks, energy harvesting, green
computing.

I. INTRODUCTION

Green IoT is an emerging concept that envision reducing
energy consumption of IoT devices through innovative tech-
nologies and solutions for the purpose of achieving sustainable
environments for futuristic applications. We abstractly con-
sider in this paper a generic IoT system in which a central
station, we call it a base station (BS), is connecting wireless
devices (WD) to the Internet. Those devices can be sensor
nodes, mobile devices, or any tiny devices featured by limited
energy supply and using wirless communications. Considering
this generic setting, a particular problem is dealt with in this
paper; periodic broadcasting service that allows to disseminate
messages from the BS to all WD in its vicinity. The problem
resides in computing schedules with the minimum number of
broadcast time-slots such that the BS can reach the maximum
number of WDs with minimum retransmissions. To preserve

energy, WDs are generally duty cycled and alternate between
active/sleep modes according to their schedules. They tend
to be at sleep mode for a much longer period and wake
up only for short periods. Another emerging technique is
the energy harvesting (EH) from the environment, in which
WDs take advantage from the ambient energy sources (solar,
wind, EM waves, etc.) to opportunistically collect energy.
The amount of energy that can be collected by WDs varies
from a technology to another, but is generally very limited
and allows to charge only small capacitors. While EH is
potentially promising to face the battery limitations, relying
on EH is constrained and not yet effective as the incoming
energy is not stable and largely vary over time and space.
Duty cycling is then still required in EH environments for
low power WDs. The environment considered in this paper
consists thus in both EH and duty cycled, which elevates the
complexity of the problem. A WD readiness for receiving
broadcast messages is not only constrained by its schedules,
but also by the availability of ambient energy. This makes
optimal broadcasting in EHWNs extremely challenging. Given
the variability of the environment, it is inevitable that the
scheduling should be dynamic.

The big problem that is dealt with in this paper is to
define a policy for deciding on re-schedule as a function
of the environment changes, i.e., detect at the right moment
that the current schedule becomes inefficient and should be
updated. Broadcast protocols in wireless networks, including
our previous solution (ADAPCAST) [1], aim at constructing
schedules with a minimum number of time-slots and thus
minimum latency. However, the schedules are formed for static
long periods without updates. When time-slots dedicated for
broadcasting becomes no more appropriate for most nodes, the
schedule should be updated. Therefore, a generic mechanism
that allows to plug such a dynamic rescheduling policy to
broadcast protocols is required. The policy should adapt the
length of the period to the changing parameters such as the
effective energy and the random variable (r.v.) related to the
incoming amount of energy. For this purpose, we explore



machine learning (ML) approaches in this paper, particularly
the advanced type of neural networks, the Long Short Term
Memory (LSTM) [2]. LSTM allows to face many of the
forecasting problems by analyzing sequences as time series
where data can be defined as a chronological sequence of
observations for a selected variable [2].

Motivated by all this, a generic LSTM is proposed for
periodic broadcasting policies in EHWN that dynamically
predicts the end of the broadcast period. In the present work,
the MAC layer is supposed to be ruled by a slotted CSMA
(Carrier Sense Multiple Access) mechanism [3], [4], which
is used by most IoT enabled technology such as Zigbee and
WiFi. The proposed LSTM allows for the BS to decide at
the end of each frame about the end of the current period
according to the Root Mean Square Error (RMSE) [5] value
generated by the output layer. As proof of concept and without
loss of generality, the proposed LSTM is applied to ADAP-
CAST. However, the proposed solution is generic and remains
applicable to any time-slotted broadcast policy over CSMA
that needs forecasting to decide about scheduling updates.
The LSTM enforced ADAPCAST evaluated by simulation
and the obtained results show a clear enhancement in terms
of minimizing the number of missed nodes and the number
of time-slots devoted to broadcasting during each frame. The
reminder of this paper is organized as follows: Section II gives
an overview about the area of research and the related work.
The proposed solution is detailed in Section III, while Section
IV presents the simulation tests. Finally, Section V draws the
conclusion.

II. RELATED WORK SND BACKGROUND

A. LSTM for Energy Forecasting: short literature review

Many complex predictive models have been proposed in-
cluding decision trees, K-means clustering [6], Bayesian in-
ference [7], and advanced neural networks such as LSTM,
which are appropriate for time series problems. Cheng et al.
[8] proposed PowerLSTM, an LSTM-based power demand
forecasting model for a smart grid system. It considers weather
conditions besides time features. Selvin et al. [9] proposed a
deep learning model that applies a sliding window approach
for predicting future price values on a short term based on
Nash-Sutcliffe Efficiency, then it lists listed companies and
compares their performance based on percentage error. Many
works considered EH for a particular of WN, the wireless
sensor networks (WSN). Cui et al. in[10] considered solar EH
enabled WSN and addressed uncertainty of solar energy. An
LSTM neural network was proposed to predict solar energy
for three days based on historical solar energy collection data
and environmental data. Based on energy prediction results, a
predictive task scheduling strategy is put forward to improve
the performance of the WSN. Wang et al. [11] introduced the
concept of multi-energy interaction characteristic of regional
energy system. They proposed an energy prediction approach
based on LSTM in which a multi-task learning model is
used to achieve interaction among multi-energy system. LSTM
model was also introduced by [12] for building electrical

energy forecasting based on prediction. LSTM and ML based
methods have also been used for other related applications
such as the prediction of the locations, e.g., deep Fuzzy-LSTM
in [13], the prediction of optimal deployment for wireless
sensors [14], and many smart city related IoT applications
such as energy management in smart buildings [15], urban
traffic management [16], [17], pedestrian collective behavior
analysis, [18], etc.

B. ADAPCAST

A short description of ADAPCAST is provided here as
the protocol used later for the case study. More details are
available in [1]. ADAPCAST is a centralized solar EH based
broadcast policy proposed for WSN. It runs at the BS level
and the node level. First, the BS maintains and updates
the required information to run a Hidden Markovian Model
(HMM) [19] corresponding to every sensor node (SN). The
BS level runs in three phases. i) The first phase generates
observation sequences by running the HMMs. ii) The second
phase consists in applying an optimal set selection algorithm
as a heuristic of the covering set problem to determine the
optimal broadcast time-slots. Finally, iii) the third phase uses
the Baum-Welch learning algorithm to adjust the initial HMMs
of SN’s to increase the likelihood of meeting the most appro-
priate sequences that produce the broadcast time-slots obtained
in phase (ii). The BS communicates the derived HMM models
to theirs corresponding nodes. This process is executed at the
initialization of the network. It was supposed abstractly that the
obtained scheme is used for a long period until a "significant
change" on the HMMs parameters takes place. However, no
details has been provided on how to infer or estimate such a
change. This problem addressed in the current paper and an
LSTM model is proposed for this purpose.

C. Long Short Term Memory (LSTM)

LSTM is is a special kind of recurrent neural network
capable of handling long-term dependencies and mitigating the
vanishing and exploding gradient problems faced by Recurrent
Neural Networks(RNNs) over time [20]. The key component
in LSTM models is the cell state. As shown in Fig.1, each
cell is considered as a block. It integrates filters called gates
to regulate the flow of information where activation functions,
e.g., sigmoid and tanh are used. There are three kind of gates,
input, forget, and output.

III. PROPOSED SOLUTION

The LSTM model proposed herein aims at maximizing node
coverage efficiency for broadcast operations in EHWNs, i.e.,
minimizing the number of missed nodes and the required
number of timeslots. It applies to any broadcast method
operating under time-slotted CSMA MAC protocol. Without
loss of generality, we present the proposed model when applied
to ADAPCAST [1] and show the enhancement that can be
achieved from LSTM. The principal is to dynamically adapt
to the weather conditions changes by predicting the end of
the current period according to the obtained RMSE value [5],



Fig. 1. LSTM cell block

which is the output of the proposed LSTM as illustrated in Fig
2. The obtained RMSE values represent the difference between
the predicted values form the testing (validation) set and those
from the training set of the proposed LSTM, with respect to the
following features, the average number of timeslots required,
the average number of missed nodes, the average amount of
incoming energy, the average amount of effective energy, and
the gap between the optimal (desired) observations and the
generated ones with respect to the activity of the radio. The
later is expressed as the Hamming distance per frame [21].

Fig. 2. Proposed LSTM model

Fig. 3 illustrates the LSTM-enhanced ADAPCAST. At the
end of each time frame, the BS has to assess the need to
ending the current broadcasting period. This is by measuring
the gap between the predicted and the current values through
RMSE and compare it with a given threshold, say δ. The latter
represents the degree of sensitivity of the LSTM model, in
which the gap is proportional to the number of missed nodes.
Notice that the higher the gap is, the higher the number of
missed nodes will be. The LSTM model is divided into three
parts as presented in Fig.3, 1) input layer, 2) single hidden
layer, 3) output layer. The input layer designates the dataset
that is divided into equal-size subsets, while the hidden layer is

trained based on the training set. Through the Adam optimizer,
the parameters are optimized using the minimum loss value
as the measurement principle. Finally, notice the output layer
corresponds to the predictions made according to the learned
RMSE.

Fig. 3. LSTM based version of ADAPCAST

In order to avoid the rise in the number of missed WDs
while waiting for the end of the predetermined period, the
proposed LSTM allows to dynamically decide whether the
current period has to be stopped or not (i.e., reversely starting
a new period). This is by predicting the next RMSE values
(with respect to the input vector, y) that is given by,

RMSE =

√√√√ 1

(n)

n∑
i=1

(ŷi − yi)2, (1)

where ŷi designates the predicted value, yi is the real value,
and N designates the number of observations of the variable
y. Each vector, yi, includes the following:





yi,1 : Average number of missed nodes

yi,2 : Activity of the radio (Eq.2)

yi,3 : Average. number of broadcast slots

yi,4 : Average effective energy

yi,5 : Average incoming energy

Let us consider a cycle of, n, time slots, and denote the
activity by a vector a, i.e., ai = 1 if the radio is active at time
slot ti and 0 otherwise. yi,2 is given by the following formula:

yi,2 =
1

(n− b)

n∑
i=1

(ái
⊕

âi), (2)

where âi is the generated vector of activity, á is optimal
one,

⊕
is the "exclusive or" (XOR) operator, and b is the

number of time slots required to accomplish the broadcast.
The use of the proposed LSTM allows to dynamically de-

termine the length of the periods. For this purpose, the data set
is first generated by cumulating values related to the different
parameters including the generated sequences, the effective
energy, the radio activity, the number of missed WDs, and the
incoming energy. This is by running the HMMs at the BS. The
obtained dataset is then split into equal-size subsets that are
introduced to the LSTM (Fig.3). The RSME is generated by
the LSTM at the output layer. Small gap between the current
and the previous RMSE values means that the model is still
valid and can be kept, while a high value triggers alarm for
rescheduling. Moreover, the gap between the previous and
the current RMSE values determines the sensitivity of the
proposed model where the changes in the inputs (especially
the changes related to the weather conditions) directly affect
this gap. We propose a bias denoted by (δ) that designates the
degree of the sensitivity of the model. This is a very important
parameter and should be set very carefully. The smaller δ
is, the more sensitive the model becomes, which means re-
scheduling needs to be performed more frequently. The impact
of this parameter will be investigated empirically in the next
section.

IV. SIMULATION STUDY & DISCUSSION

This section is devoted to the evaluation by simulation of
the proposed LSTM model when applied to ADAPCAST. The
proposed LSTM is implemented using python and a "Radean
HD8600 M series" GPU. The Datasets used in the test were
artificially generated, and each batch is composed of 1000
sets. Due to the limitation in terms of memory and computing
resources, we limited the proposed LSTM to a single hidden
layer (shallow LSTM). The input layer that is composed of
50 cells. The obtained results are compared with those of
the original version of ADAPCAST. Table I summaries the
simulation parameters.

Parameter Value
Simulation duration(frames) [50,250]
Unit of incoming energy Er(mj) 100
θ 0.1,0.5,0.9
Threshold of effective energy Ethr(mj) 250
Time_Slot length (ms) 5
Frame length (Time_Slot) 20
environment Python , Theano

TABLE I
SIMULATION PARAMETERS.
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The purpose of the simulation tests is to investigates the
number of missed nodes and the number of broadcasting time-
slots required for maximizing the nodes coverage, as well as
the impact of the model sensitivity parameter (δ). In ADAP-
CAST, the geographical locations and the weather condition
make the gain in terms of incoming energy slightly different
from a node to another. This is modled by the parameter θ.
the latter is used with random values ∈ [0.1, 0.9] in each
scenario, and average values of the performance parameters
are plotted. In a further step of the study, the performance
of the proposed LSTM model under harsh weather conditions
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(i.e, rainy weather) is investigated, where θ is set to 0.1. Fig 4
shows how the proposed LSTM helps reducing the number of
missed nodes (averaged per time frame). Notice the increasing
gap between the two plots with the rise in the number of nodes.
Ultimately, the LSTM allows to reduce this number from 90
to 60 for 200 nodes.

Fig. 5 plots the average number of the selected broadcast
time-slots per time frame vs. δ. Here θ has been set to 0.1
(simulate raining condition) while the number of nodes has
been set to 25 nodes. The figure shows clear improvement
by the LSTM, which allows to define schedules that use low

number of time-slots according to the sensitivity of the model
expressed by δ. The enhanced ADAPCAST takes between 1
to 2 time slots on average, while the standard ADAPCAST
uses 3 on average.

Fig.6 evaluates the performance of the proposed LSTM
in terms of the loss function between the test set and the
validation set of the entire historical data-set. This is composed
of the results related the number of missed nodes per frame,
the incoming energy, the effective energy, the number of
broadcasting time-slots, and the gap between the optimal
(desired) observations and the generated ones expressed in



terms of Hamming distance [21]. The results reported in Fig.6
confirm that the training of the proposed LSTM model for
different values of δ improves the efficiency of the learning
model in terms of the accuracy in prediction. The results
also confirm the predictive (testing) values are in line with
those of the training set in all scenarios. However, note that
overfitting is still possible in case of severe changes in the
weather conditions causing random picks to Θ which was not
investigated in this study.

V. CONCLUSION & PERSPECTIVES

This paper we have dealt with enhancing periodic slotted
MAC (medium access control) based broadcast policies in
EHWN (energy harvesting wireless networkss) and have ex-
plored the use of forecasting methods for optimizing the broad-
cast scheduling. An LSTM (long short term memory) model
was been proposed for this purpose. The model allows to
dynamically decide about the end of broadcasting period and
the need of rescheduling in response to the variable changes in
environmental conditions (e.g., weather). The model was been
described when applied to our previous broadcast protocol
(ADAPCAST) as a case study. However, it applies to any time-
sloted broadcast policy that can take advantage of forecasting
to decide about scheduling updates. The proposed model has
been evaluated by simulation and its impact on enhancing
ADAPCAST has been investigated. The obtained results prove
the efficiency in terms of decreasing number of missed nodes
and the number of time-slots that are required for broadcasting.
This confirms that the efficient prediction of the optimal
broadcast cycle period (time frame) reduces the impact of
the divergence of the energy harvesting parameters (derived
with the HMMs of the WDs in case of ADAPCAST). This
ultimately enables reaching a maximum number of nodes
with minimum retransmissions of the broadcast messages
(broadcast count). As a perspective, we plan to design a
multi-layer LSTM for more accuracy, and examine cases of
overfitting in case of severe changes in the weather conditions
causing random picks to Θ. These scenarios are not likely
to be realistic, and if so extremely rarely, but evidence based
analysis is needed. We are also exploring the use of realistic
datasets to evaluate the proposed LSTM for this purpose.
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