
Available online at www.sciencedirect.com 

Review Article 

Recent advancements in real-world microbial fuel cell 
applications 

Iwona Gajda 

1 , ∗, John Greenman 

1 , 2 and 

Ioannis A. Ieropoulos 

1 , 2 , ∗

This short review focuses on the recent developments of the 
Microbial Fuel Cell (MFC) technology, its scale-up and 

implementation in real world applications. Microbial Fuel Cells 
produce (bio)energy from waste streams, which can reduce 
environmental pollution, but also decrease the cost of the 
treatment. Although the technology is still considered “new”, it 
has a long history since its discovery, but it is only now that 
recent developments have allowed its implementation in real 
world settings, as a precursor to commercialisation. 
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Introduction 

Although the Microbial Fuel Cell (MFC) technology was
firstly presented by Michael Potter in 1911, the knowl-
edge and interest in this type of environmental–focused
technology continues to expand. The microbial-derived
electrochemistry sprung into Bioelectrochemical Systems
(BES) that exploit the process of bioelectrochemical utili-
sation of organic matter via microbial metabolism, to gen-
erate usable by-products, fuels and bio-electricity. BES
includes MFCs, Microbial Desalination Cells (MDCs)
and Microbial Electrolysis Cells (MECs) amongst others,
however it is only the MFC that is purposefully designed
to deliver direct electric current from the breakdown of
multiple substrates and sources of waste [1] . The technol-
ogy is versatile as it offers direct power but also feedstock
www.sciencedirect.com 
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treatment [2] , nutrient recovery [3] and sensing [4] for
real-time monitoring of processed substrates. The imple-
mentation of MFC technology is a promising alternative
to the use of classical aerated activated sludge treatment
processes [5 

•] . Therefore any pilot study, field trial, or pro-
totype installation is adding a valuable body of knowledge
contributing to the technology readiness for real world
implementation and a wider market. There is a large
body of literature that focusses on laboratory based sys-
tems, analytical techniques and improvements achieved
from novel materials [6] , including non-platinum-group
electrocatalysts for improved oxygen-reduction-reaction
(ORR) at the cathode [7] , structurally and morpholog-
ically modified electrode materials [8 

•] , as well as hy-
draulic and electrical stacking of multiple units [9] and
power optimisation methods [10 

•] . However pilot studies
are uncommon due to the complexity of installation and
operating procedures as well as other engineering and en-
vironmental factors. Historically in 1931 Barnett Cohen,
connected multiple 10 mL bacteria –based fuel cells to-
gether in series forming the first MFC stack, generating a
total of 2 mA and 35 V [11] . From that time the potential of
MFC technology has been widely demonstrated however
rarely implemented in practice and real life environments.

As with any prototype development, several key perfor-
mance factors are investigated for optimisation, which set
the agenda for trialling out a particular technology in the
field. For MFCs these can be categorised as follows: 

MFC unit design 

MFC performance is affected by the reactor architecture
and its individual components. However these are all de-
termined by specific application requirements, as MFCs
can be used in pilot applications for power production,
treatment and sensing; this study is primarily focused on
system performance and cost. Developing anode materi-
als suitable for use in microbial fuel cells needs to meet
the criteria of high electrical conductivity, high surface
area and biocompatibility that would allow for efficient
electrochemical “wiring”(attachment) of living bacterial
cells [12 

•] but also high conductivity, corrosion resistance
and chemical stability with cost as the primary driver. An-
ode component is critical in terms of the surface area avail-
able for the development of the microbial biofilm and
for the purpose of meeting all the criteria, carbon based
materials either fabric-based such as cloth, mesh, felt etc
Current Opinion in Electrochemistry 2018, 000 :1–6 
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r granular are usually chosen [13] . Research studies have
stablished that by increasing the anodic surface area to 

olume ratio [14,15 

•] and anode packing [16,17] would 

acilitate cost-effective improvement in power density.
part from enhancing electricity generation this can boost 

reatment efficiency and degradation of pollutants [17] .
he development of new low cost solutions such as stain-

ess steel wool [18] or carbon sponge [19] is a promising
node alternative and requires testing in long term ex- 
eriments. Optimizing cathode components is based on 

he reduction reaction occurring in the cathodic half-cell.
RR that is taking place at the MFC cathode which is of-

en the limiting reaction and therefore a source of losses
20 

•] . The most feasible cathode configuration for large-
cale application of MFCs is an air-breathing cathode;
owever it shows limited performance under static oper- 
tion mode [21] . This is often connected to the cathode
caling with precipitated salts and its deactivation in time 

22,23] . It is then required to configure the cathodic cham-
er accordingly to avoid salt precipitation. One way is via
he development of a catholyte-generating half-cell which 

rovides good long-term performance since the generated 

iquid washes away the deposits [24] and provides addi- 
ional electrochemical treatment through disinfection and 

acterial killing [25] . 

embrane or membrane-less configuration 

lthough membrane-less systems can be characterized 

y less complex design, decreased internal resistance,
nd lower cost due to the absence of membrane, they
evertheless lose efficiency due to the occurrence of 

onic species crossover and side-reactions. Due to sim- 
licity and low cost they can be implemented in water
odies for bioremediation [26] and environmental sens- 

ng [27 

•,28 

••] , or to provide a power source for charg-
ng mobile phones [29] . However, for the purpose of the
nolyte/catholyte separation a membrane is required and 

his needs to be chosen appropriately to the application 

hat is then a subject of cost and simplicity of assem-
ly/manufacturing [30] . The choice of robust and low cost
embrane materials should be considered to meet the cri- 

eria of mechanical strength and longevity under various 
perating conditions in real world applications. 

cale 

ultiplication and miniaturisation 

ower and current densities significantly decrease with 

he enlargement of the physical (geometrical) size of the 

eactor [31] . For example, a module with a total volume of
50 L consisting of two MFC units achieved a relatively
ow power density of 0.47 W m 

3 [32] . This is because of
he increase in the internal resistance in the anodic, ca-
hodic, membrane and electrolyte components. Miniatur- 
sation of MFCs is one direction that allows for increased
ower densities and can be implemented in MFC stacks 
9,33–35] . In order to overcome the practical challenges,
he reactor should consist of modules involving multiple 
urrent Opinion in Electrochemistry 2018, 000 :1–6 
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lectrodes and/or multiple MFC units. Division into mod- 
les (parts of the whole system), hydraulic isolation of
hese modules, and multiplication of units is necessary for
tepping-up the voltage values, when connected in series,
n order to avoid short circuiting [ 36 

•]. The modularity is
ere represented by the components of the module (an-
des and cathodes) that can be connected electrically in
arallel due to the fact that they share the same electrolyte
herefore they form a group of multiple MFC units. 

arge-scale studies 

he power output generated from an individual MFC
nit is insufficient for most practical applications, there-
ore to increase power, series configuration of individ- 
al MFC units needs to be implemented into a stack.
here are several ways of testing large-scale prototypes.
ne way is the integration of the MFC based system
ith in a wastewater treatment facility. In terms of large

cale, pilot studies have recently presented an integra-
ion of membrane-less 45-L stack [37 

••] into a munici-
al wastewater treatment plant that showed stability even 

hen operated on low concentration of Chemical Oxy- 
en Demand (COD). Another study focused on a 72-
 stack made of 5 membrane-based MFC units with
 power density of 50.9 W/m 

3 however it suffered from
lectrical current losses in the parallel circuit [38 

••] . A
ilot study utilising brewery wastewater of a total vol-
me of 90 L [39 

•] (five 18 L modules) used cloth separa-
or to prevent short-circuiting between the anode and the
athode and used the produced electricity to drive the
umping system. Another modular 200 L implementation 

reating primary effluent reported by Ge and He was able
o reach 75% removal of total chemical oxygen demand
sing generated electricity to drive the catholyte recircu-

ation pump [40 

••] . Large-scale reactors can include up
o 1000-L made of 50 modules achieving up to 90% COD
emoval and up to 60 W/m 

3 when operated on real munic-
pal wastewater for 1 year [41 

••] . Another study tested low
ost MFC system treating brewery wastewater for almost
 year and showed up to 98% COD removal [42 

••] which
ight be associated to low flow rate and high hydraulic

etention time (HRT). 

odularity and stacking as a means of 
caling up 

icrobial fuel cell in stacks. Electrical and hydraulic 

onnections 

icrobial Fuel Cell technology is currently at the lab-
ratory level stage of analysis and evaluation, but some
ew and ingenious designs have been developed in
he recent years to incorporate MFCs into real world
mplementations. This includes the development of 
tackable units in order to multiply MFC compo- 
ents. Stacking MFCs can be done for the purpose
f the wastewater treatment by connecting multiple 

nits/modules that share a common fuel feed passage in
 flow through system. The tubular approach is a viable
www.sciencedirect.com 
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option and connecting 5 units [43] in a parallel config-
uration was reaching up to 175.7 W/m 

2 and up to 77%
COD removal. However, when the two identical MFCs
were connected in series, the systems suffered from an
open circuit voltage loss when connected, both electri-
cally (due to the parasitic current flow in the underper-
forming fuel cell) and hydraulically (due to the internal
ionic short-circuiting) [9,36,46] . Constructing serpentine-
like large number of units (40 MFCs) achieved increased
voltage up to 23 V however the performance deteriorated
in long term operation [45] due to cathode deactivation
by salt deposits. 

The build-up of salts [43,46] and biofilm [47] is a com-
mon problem in long-term operation, especially when an
outer, open to air cathode is employed [43,44,46] and it
was a major obstacle in the first MFC pilot conducted at
Foster’s brewery in Yatala, Queensland in 2008 [48 

•] . One
way to overcome this is by inverting the design where
the cathode is on the inside of the tubular reactor [25,49–
51] protecting it from evaporation or using a partially
submerged cathode to keep it sufficiently hydrated [29] .
Long term operation is important in terms of the practical
reasons including the stability of current generation and
internal resistance that are the key issues relevant to the
pilot studies. 

To achieve high power densities in MFCs, the main ob-
stacle is the system architecture, not the composition or
the ecosystem of the anodic community [52] . However,
the bacterial community is determined by the type of
wastewater that is being processed with a specific or-
ganic loading, pH, chemical composition and salinity, as
well as electrode material that would also affect the in-
ternal resistance of the system. Therefore, the prototype
should be designed according to the specific task (sens-
ing/power/treatment) and environment that it will be in-
stalled in and the type and flow rate of substrate pro-
cessed. 

Manufacturing and cost 
All of the above have been presented from a basic sci-
ence lab-based perspective, conducive with earlier tech-
nology stage development, under controlled conditions.
However, the greatest challenge for any technology mov-
ing into the real world, is its suitability for manufactur-
ing, which in turn, drives economies of scale. The same
applies to the MFC development and this has been part
of the challenge in the technology taking off and be-
coming commercially available. Most of the core parts
and components can be bespoke and therefore expen-
sive, even at prototype level, and there is a scientific chal-
lenge in identifying alternatives that would (i) perform
equally well and for prolonged periods but most impor-
tantly (ii) be inexpensive and widely available. One of
the avenues researchers have explored are the alternative
low cost materials including ceramic [ 53 ,54 ] or cardboard
www.sciencedirect.com 
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[55,56] and plant derived electrodes [57] . As reported by
Ge and He in long term operation of their pilot study in
wastewater treatment plant, over 60% of the material cost
of the MFCs was due to the cation exchange membrane
[40] therefore inexpensive separators such as ceramics are
a valid alternative for this technology. Another important
factor is the availability of the system components (elec-
trodes, membranes, wiring etc) in order to assemble and
implement the technology on a larger scale, for example
one thousand and more units. The knowledge from the
lab-based experiments needs to be explored in the pilot
studies to assess the viability of the technology in a real
environment scenario under various environmental con-
ditions such as temperature/humidity/organic loading or
pH and under operation variables such as flow rate, HRT,
batch or continuous flow. This would benefit the MFC
field in real-time collection of data and in situ knowledge.
MFC reactors can degrade pollutants and generate elec-
tricity simultaneously, potentially decreasing cost, energy
consumption and treatment cycle. From the energy anal-
ysis point of view, 14 Wh achieved at the last Pee Power
field trial at Glastonbury 2017 [58 

•] would be the equiva-
lent to 0.23 British pence of energy saving for every kWh.
This is based on raw power data produced during the field
trial where the MFC stack was operated on neat human
urine and does not take into account the saving that would
be gained for every litre of wastewater treated. 

Further understanding of ion transport selectivity and
economic membrane preparation methods are vital to en-
able wider employment of ion exchange membranes in
technical processes for sustainable development. Further
progress is needed to provide field equipment that is more
robust and reliable over time [59 

•] as well as the de-
velopment of novel energy storage and energy harvest-
ing methods [10] . In energy storage, the use of external
capacitors has been implemented in numerous practical
applications however an integration of internal superca-
pacitors could be a novel way to boost and/or control the
output [60] .The knowledge built on the existing pilot
studies and implementation attempts is driving the inno-
vation towards wider acceptance and market. 

Conclusions 

Only one type of BES can break down waste and
generate electricity, and that is the MFC. Future ad-
vances should be focused on the technology applicabil-
ity and the system design in order to meet the crite-
ria of high performance and low cost in real-world
conditions. The general trend towards the future MFC
scale-up is firstly: the reduction in size of units but
also the multiplicity of the total numbers of units, by
use of modularity, as a way of overcoming transport
limitations and ohmic losses instead of enlarging a sin-
gle unit. Secondly, it is the design of the scaled-up
units (modules) through compacting the system foot-
print to achieve high power densities but at the same
Current Opinion in Electrochemistry 2018, 000 :1–6 
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ime making it functional thus applicable in real-life sce- 
arios. Thirdly, to ensure the longevity of the system 

nd its components, both internal and external elements 
hould be resistant to biofouling, scaling and corrosion.
inally, new developments should include MFC power 
anagement systems and the incorporation of energy har- 

esting and storage systems such as supercapacitors in or- 
er to enhance system performance for practical use. 
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