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Abstract 

In a complex built environment, the situation changes rapidly during an emergency event. Typically, 

available systems rely heavily on a static scenario in the calculation of safest routes. In addition, 

egress route calculation and evacuation simulations are performed separately from path-finding for 

rescue teams. In this paper, we propose a state-of-the-art dynamic approach, which deals not only 

with a 3D environment, shape of spaces and hazard location, but also with the dynamic distribution 

of occupants during evacuation. A database of densities and information about hazard influence are 

generated and used to calculate optimal paths for rescue teams. Three simulation scenarios are 

compared in this study- namely, static with constant density values determined for subsequent 

stages of evacuation, semi-dynamic with densities representing an actual people distribution in a 

building during evacuation simulation, and dynamic with temporal distribution of evacuees stored in 

a database, and dynamically used in optimal path calculations. The findings revealed that static 

simulation is significantly different from semi-dynamic and dynamic simulations, and each type of 

simulation is better suited for the decision task at hand. 
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1. Introduction 

In rapidly growing and complex urban environments, both natural and human induced, are 

inevitable. When an emergency situation happens in populated areas, a reliable hazard mitigation 

plan and rapid response should be in place in order to avoid a large number of casualties, injuries as 

well as economic loss.  Major disaster events may result in fast environmental modifications, such as 

changes to the layout of a building, where plans prepared in advance are no longer applicable in a 

current situation. Consequently, rapid situation analysis should be performed and a new response 

plan swiftly developed. 

Hazard analysis and routing for evacuees and first responders are essential elements of emergency 

support systems [13]. The main issue is to minimise time necessary to get people from a dangerous 

area to a safe zone [4,5]. Different areas affected by disaster are taken into consideration, for 

example regions, urban areas, transportation networks, or buildings [5], or combination of them [9]. 

Evacuation planning in complex buildings, investigated in this paper, are influenced by several 
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factors, including elements such as building layout, location and propagation of hazard, location of 

occupants and emergency personnel, location of safe places including exits, and human behaviour 

[5]. These factors are critical for calculating the shortest or the quickest routes, while information 

about hazard is used to permanently or temporally exclude some areas strongly affected by the 

propagation of a hazard (e.g. fire or smoke) from areas available for navigation.  Information about 

hazard propagation and its influence on evacuation areas, is used to identify routes, which scale 

from areas of a higher hazard value to areas with a lower hazard value – opposite direction is 

avoided.  Although this is deemed to be a reasonable approach, it may be, however justified to move 

to a more dangerous area for a short period of time, instead of remaining longer in an area with a 

moderate hazard level [18]. 

Within evacuation modelling, two major approaches may be distinguished: micro and macroscopic 

[5]. In the first approach, objects such as people, vehicles or interaction between them are 

introduced and their behaviour is modelled, while the latter approach is focused on optimisation 

models and no individual objects are included.  Microscopic simulation is performed using agents 

representing individual objects. It helps to determine densities of objects in certain areas and, thus, 

used to detect congestions and bottlenecks [4].  In order to perform such analysis it is necessary to 

generate a navigable network and apply a path-finding algorithm [2,6,11,14,16,17]. 

In this paper, the proposed methods are scalable to various areas such as outdoors, because strong 

mathematical foundations for network representation, hazard analysis and path-finding algorithms 

were applied [2,18].  A microscopic evacuation planning is used for evacuation simulation, however, 

some aspects typical for macroscopic planning are adapted, such as taking into consideration 

maximum flow and density of evacuees, in people’s movement simulation.  

1.1. Problem statement 

Egress routes from buildings are commonly calculated taking into consideration only limited number 

of factors that influence the shape and characteristics of resulting routes. Very often, the shortest or 

the quickest paths are calculated. Areas affected by hazards (e.g. fire or smoke) are included in 

calculation, but they are often excluded from navigation. In the case of evacuation simulations, 

where the aim is to estimate time necessary to empty a building, various aspects are taken into 

consideration, such as speed of evacuees’ movement, depending on their age and health conditions, 

human and crowd behaviour.  

The evacuation process affects the speed of emergency response. Congestions may be formed at 

bottlenecks, where too many people seek to use the same exit point, with a maximum flow capacity 

much lower than the actual demand.  Typical values of occupancy density at different stages of 

evacuation may be obtained from simulations or from observations during fire drills. When access 

routes for search and rescue teams are calculated, densities are included in the estimation of the 

best possible-safe and quick- egress route. However, typical values may not reflect the real situation 

in various scenarios. In office buildings, various occupancy may be expected during working hours, , 

large events with many visitors and evenings and weekends. Therefore, the initial location of people 

in a building has an effect on densities during evacuation and thus, on the optimal routes for rescue 

teams. 
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In this research, agent-based evacuation simulation is performed in order to estimate occupancy 

density at each node of a navigable network, reconstructed from a 3D building model. The capacity 

of nodes and the maximum flow capacity of links are calculated and used in path-finding 

calculations. During simulation, transient densities are determined and stored in the network. The 

network with the density values is called the database of densities. The ‘database’ term used in this 

paper is understood as a method of data storage in a topologically connected structure with no 

formal query language, such as SQL. It is employed together with information about hazard locations 

and their influence on a building to dynamically calculate optimal paths that are safe and fast for 

search and rescue teams. The aim is to develop an effective and novel approach, where only a small 

set of input parameters are considered in order to achieve results comparable with other, more 

complex, solutions that are computationally more expensive. This makes real-time analysis and rapid 

decision making possible. Additionally, the proposed method can be used for building safety 

evaluation, where detection of bottlenecks in pathways may be detected in the early design stages. 

2. Methodology 

The initial stage in this research is the generation of a navigable network from a BIM model (see 

Figure 1). The method proposed by Boguslawski, et al. [2] is adopted for irregular tessellation of 

space and the variable density network generation. Each network node is associated with a cell of a 

specific area calculated in the tessellation process. A logical structure of the building, including non-

navigable connections among adjacent spaces used for hazard propagation, is also available in the 

spatial model (for more details see [1]).The nine-floor mock model was created based on a typical 

floor plan of the Doha WTC building in Qatar.  Location of indoor spaces is the same on all floors with 

following exceptions: there are exit doors on floor 1 and location of staircases on top floors is 

different than on lower floors; there are  three staircases between floors 1 and 4, and three placed 

on different locations between floors 6 and 9, which meet on floor 5. The rationale for the selection 

of this specific staircase distribution is to introduce more options (i.e. possible exit pathways) for the 

path-finding algorithm, thus allowing better illustration of the method. There are five exit doors 

from the building on floor 1: three main doors in the main lobby and two side doors. 

a) 

 

b) 

 

Figure 1. Generation of a navigable network from a BIM model: a) initial BIM model; b) navigable 
network. Red vertical lines represent staircase links, while blue nodes represent exit doors. 

The navigable network is a core structure for path finding. Any graph-based algorithm may be 

applied to such a network. In this research, Dijkstra’s algorithm is used for determining routes for 

evacuees. Temporal information about evacuees’ density is included in calculations of optimal 

routes for rescue teams in hazardous indoor environments. 
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2.1. Agent-based evacuation simulation 

In order to estimate the density of people in the navigable network during building evacuation, an 

agent-based evacuation simulation is performed. An initial set of agents is generated, involving the 

location of agents in all indoor spaces, except for main communication passageways, for example 

corridors, lobbies and staircases. A specific network node representing a cell is attached to each 

agent that defines its location – no precise location of an agent is calculated. In addition, no agent’s 

size is considered in this research. The number of agents at a single node is then taken into 

consideration for calculation of the node occupancy and, consequently, agent’s speed. The speed 

depends on the travel time calculated for all network links and local agent’s density calculated for 

nodes.  

In the next step, the quickest routes to the closest exit are generated for all agents. It should be 

noted that uncontrolled evacuation is considered in this research. This reflects the situation, when 

evacuees are acquainted with building layout and available closest exit routes, but they have no 

information about hazard or congestions on the pathway. If they reach a congested area, instead of 

waiting in one place, they may decide to use a different route to exit the building. 

In order to apply the path-finding algorithm, it is necessary to calculate the travel time through 

network links, which is a function of the length and speed of movement: 

 𝑇(𝐿) =
𝐷(𝐿)

𝑆(𝐿)
 (1) 

where T is the travel time [s] through link L, D is the link length [m], and S is the speed of movement 

[m/s]. 

The speed depends on density and it is calculated using Nelson-MacLennan-Pauls’ formula [7,8]: 

 𝑆(𝐿) = {
0.856   if  00.54
(1 − 0.266)   if  0.543.75 

 (2) 

where  is the average of the population density [people/m2] in two cells corresponding to the 

bounding nodes of link L, and K is defined as follows: 

K = 1.40 for horizontal movement, 

K = 1.08 for moving downstairs, 

K = 0.81 for moving upstairs. 

The link travel time is considered by Dijkstra’s algorithm as a weight, which is the cost of travelling 

through the link. Therefore, the route calculated for an agent is the quickest one. The quickest 

routes may be replaced by alternative egress paths if necessary, where different criteria, such as 

safety or complexity, are of higher importance. For example, the safest routes can be calculated 

using the method proposed by Zverovich, et al. [19]. However, in this research, the central issue is 

evacuees’ density estimation and, thus, different criteria for agent’s egress routes are not 

investigated. 

Once routes for agents are calculated, simulation of their movement can be performed. It is an 

iterative process, where, in each step, the actual location of agents is determined based on their 

speed, which in turn is influenced by the actual density at network nodes and the flow through links. 
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After each iteration, the actual densities at network nodes are stored and used later. In order to 

apply this procedure, it is necessary to calculate the maximum capacity of nodes and maximum flow 

for links. Because nodes represent spaces of irregular shape and different area, the maximum 

capacities of nodes are calculated based on the corresponding space areas. Equation 3 determines 

the maximum number of agents that can be accommodated at any given time. It should be noted 

that density of 3.75 people/m2 (see max. value of  in Equation 2) causes that people stop moving 

because of lack of space. In order to avoid such a situation, a constant 3.5 is used. 

 𝐶𝐴𝑃𝑁 = 3.5 𝐴𝑁 (3) 

where: CAPN is the maximum capacity of node N, AN is the area of the cell associated with node N. 

Then, the maximum flow CAPL is determined for links connecting nodes, associated with adjacent 

cells. Algorithm 1 is used to determine an average number of agents that can move from one cell to 

another within 1 second. 

Algorithm 1:  Maximum link flow calculation 

Input:   Link L 

Output: Maximum link flow CAPL 

1. If L is a door link: CAPL = 1.3 (𝑊𝐷𝑜𝑜𝑟 − 0.3), where WDoor is the door width 

2. If L is a staircase link: WStair = 0.385 √𝐴𝑆𝑡𝑎𝑖𝑟𝑐𝑎𝑠𝑒, where WStair is the width of stairs and AStaircase 

is the floor area of the staircase 

a. For the upstairs direction:  CAPL = 0.83( 𝑊𝑆𝑡𝑎𝑖𝑟 − 0.3) 

b. For the downstairs direction:  CAPL = 1.04( 𝑊𝑆𝑡𝑎𝑖𝑟 − 0.3) 

3. If L is a link between two cells:  

a. If an edge between cells is bounded by a wall surface at two ends: CAPL = 1.3( 𝑊𝐶𝑒𝑙𝑙 − 0.4) 

b. If an edge between cells is bounded by a wall surface at one end:  CAPL = 1.3( 𝑊𝐶𝑒𝑙𝑙 − 0.2) 

c. Otherwise: CAPL = 1.3( 𝑊𝐶𝑒𝑙𝑙), where WCell is the width of an edge between cells connected 

by L  

4. Report CAPL. Algorithm stops.  

 

The maximum flow of a link is based on the effective width, which is the actual width reduced by a 

some distance from walls, door frames and railings: 15 cm for each door and staircase bounding 

walls, and 20 cm for cells adjacent to a wall [7]. It worth noting that due to the lack information in 

the original model about the width of stairs, it is approximated based on the staircase area (step 2 of 

Algorithm 1).  It is assumed that staircases have rectangular shape with ratio of 3/5 between the 

short and long edge. In case of a staircase, the flow is different for upstairs and downstairs 

directions. Constant values used to calculate CAPL are derived from parameter K used in Equation 2 

and adjusted for maximizing the flow (e.g. the density is 1.88 people/m2). 

The illustration of the actual width is demonstrated in Figure 2a-c while the effective width is 

explained in Figure 2d using the connection between two cells. 
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Figure 2. Actual and effective width in maximum flow calculations: a) actual width of a door WDoor; b) 
actual width of a connection between cells WCell; c) actual width of a stair flight WStair; d) effective 
width of connections between cells adjacent to walls. 

In each iteration, the distance covered by an agent is calculated based on the agent’s actual speed 

and the iteration time step according to the formula: 

 𝐷(𝑎) = 𝑆(𝑎) 𝑇𝑠𝑡𝑒𝑝 (4) 

where D(a) is the distance covered by the agent, S(a) is the agent’s speed calculated from Eq. 2 and 
Tstep is the simulation input parameter giving the iteration time step. 

The distance is used to determine a new location of and agent along the route. Before the agent is 

placed in the new location, the occupancy and flow criteria must be met. These tests are performed 

only if the new location appears in a cell different from the current one. Technically, it is checked if 

the agent passes the midpoint of a link.  

Firstly, it is checked if the current occupancy OCCN of the next node is smaller than its maximum 

capacity CAPN , where the occupancy determines the number of agents occupying the node. As it 

would be impossible to move through nodes when the capacity is smaller than one, an unused 

capacity (i.e. maximum capacity reduced by current occupancy) of neighbouring cells is temporarily 

added to the node before the occupancy criterion is checked. Secondly, it is checked if the actual 

flow of agents OCCL through the link does not exceed the maximum allowed flow CAPL. 

If these two tests are passed, then the agent is allowed to move from one cell to another. In other 

words, the cell represented by the second node can accommodate the agent. The occupancy 

attribute OCCN is increased by one for the second node, and reduced by one for the previous node. 

In addition, the actual flow attribute for the link OCCL is increased by one. In order to determine the 

actual flow of agents, OCCL for each link in the network is reduced by CAPL multiplied by Tstep after 

each iteration, when all agents are moved to the new locations. The minimum value of OCCL is zero. 

Conversely, if one of the tests is not passed, then the agent needs to wait. If the maximum waiting 

time T1 specified for individual agents is achieved, then the agent is marked for rerouting. 

Additionally, if the agent’s waiting time exceeds the global maximum waiting time T2 defined for 
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simulation or if the ratio OCCL/CAPL of the current link associated with the agent is greater than a 

certain threshold T3, the current link is temporarily marked as blocked and is not considered for path 

finding. New routes for the marked agents are calculated after the current iteration is completed, 

and at the same time the individual agent’s waiting time is increased by a specific value (e.g. 5 s). 

Once the agent is allowed to move, the individual waiting time is reset to the initial value. 

After each iteration, the database of densities is updated. The density value, OCCN/CAPN, is 

calculated for each node. Because this value is attached as an attribute to the related nodes, the 

navigable network is considered as a database. It is used in calculations of optimal routes for search 

and rescue teams. 

It should be noted that in the reported version of simulation, the hazard influence is not taken into 

consideration in route calculations for agents. It is assumed that agents have no knowledge of 

hazard locations and they seek to find the quickest way to exit the building. However, routes for 

search and rescue teams are calculated taking into consideration hazard information, as they are 

expected to have access to the central management system where hazard influence in the building is 

mapped in a digital model. 

The method described above is formalized in the following  algorithms 2 and 3. Algorithm 2 is the 

main evacuation simulation implemented as an iterative process based on the list of agents. It stops 

when all the agents reach their destinations outside the building. Algorithm 3 describes a single 

move of an agent made within time Tstep in step 2 of Algorithm 2. Each agent is represented as an 

object a with the following properties:  L – current link, N – current node, R – egress route, Pxyz – 

current location, wait – current waiting time, maxWait – maximum waiting time, NewRouteRequired 

– true/false. 

Algorithm 2:  Evacuation simulation  

Input:   Navigable network NN 

 List of agents LA 

 Time step Tstep  

1. Calculate routes for agents in LA 

2. For each agent a in LA call MoveAgent(a, Tstep) 

3. For each agent a in LA calculate new egress routes  a.R  if  a.NewRouteRequired=True 

4. For each link L in NN update OCCL = max(0, OCCL – CAPL*Tstep) and if OCCL=0 then L.blocked=False  

5. For each node N in NN determine current density OCCN / CAPN 

6. If any agent in LA did not reach the route end goto 2 

7. Algorithm stops 

 

 

Algorithm 3:  Move Agent 

Input:   Agent a 

 Time step Tstep  

 Agent’s waiting threshold T1 

 Maximum waiting time T2 
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 OCC/CAP threshold T3 

Output: Single move on an agent within Tstep 

1. Calculate distance to cover: D(a) = S(a) * Tstep (see Eqs. 2 and 3)  

2. L  a.L (get the current link) 

3. NNext  next node on the route a.R 

4. if D(a) < Distance(a.Pxyz, NNext) then goto 10 

5. L  next link on the route a.R 

6. If OCCL >= CAPL * Tstep  then  a.wait= a.wait+1  and goto 18 

7. D(a) = D(a) – Distance(a.Pxyz, NNext) 

8. a.L  L  and  a.Pxyz  NNext 

9. goto 2 

10. Calculate new location Pxyz on the L (at distance D(a) from the previous route node) 

11. if (a.N == NNext) or (Distance(Pxyz, NNext) > Distance(Pxyz, a.N)) then goto 17 

12. If OCCL >= CAPL * Tstep  then  a.wait=a.wait+1  and goto 18 

13. If OCCN >= CAPN  then  a.wait=a.wait+1  and goto 18 

14. OCCN= OCCN-1 

15. a.N  NNext 

16. OCCN= OCCN+1  and  OCCL= OCCL+1 

17. a.Pxyz  Pxyz, a.wait=0  and   a.maxWait=T1 

18. if  a.wait * Tstep > a.maxWait  then  a.NewRouteRequired=True  and  a.maxWait=a.maxWait+T1 

19. if  a.wait* Tstep > T2  or  OCCL / CAPL > T3  then  L.blocked=True 

20. Algorithm stops 

 

2.2 Agent-based simulation scenarios for route calculation 

The algorithms proposed in the previous section will be used in three simulations, where optimal 

routes for rescue teams are calculated and different evacuees’ densities are considered: a) static 

with constant values for four stages of evacuation; b) semi-dynamic with values obtained during 

evacuation simulation; c) dynamic with values stored in a database. 

In the static simulation a), constant density values are assigned to nodes in selected areas of the 

navigable model. They are based on typical evacuation scenarios, where occupancy in a building is 

roughly estimated [18]. Four scenarios are taken into consideration: Scenario 1 is an initial stage of 

evacuation involving evacuees being located in corridors and staircases after leaving their rooms. 

Density values (people/m2) in this scenario are as follows: 0.0 for any room, 1.0 for all staircases, 0.5 

for corridors. The middle stage of evacuation is reflected in Scenario 2 with the following densities: 

3.0 for staircases, 2.0 for the areas on the ground floor between staircases and entrances to the 

building, as well as in the areas on floor 5 where people switch staircases, and 0.0 for all other 

spaces. In the final stage of evacuation, Scenario 3, these values are: 3.0 for staircases between the 

ground floor and floor 4, 2.0 in the areas on the ground floor between staircases and entrances to 

the building, 0.0 for all other spaces. The empty building after completion of evacuation is Scenario 

4. Figure 3 illustrates all four scenarios. 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 3. Constant values of evacuees’ densities for different evacuation stages: a) Scenario 1 – initial 

stage; b) Scenario 2 – middle stage; c) Scenario 3 – final stage; d) Scenario 4 – empty building after 

evacuation. Different colours represent different density: from yellow (0.5 people/m2) to red (3 

people/m2) 

In the semi-dynamic simulation b), density values are calculated during evacuation simulation. These 

values represent a static picture of the current state of evacuation. The evacuation process is 

stopped and actual evacuees’ densities are used in path finding for a rescue team. The values of 

densities do not change in the process of path calculations. 

The dynamic simulation c) also uses densities calculated in evacuation simulation, which are stored 

in the database together with temporal information. After each iteration of evacuation simulation, 

densities of agents at network nodes are attached at these nodes. The density is the ratio of the 

number of agents associated with the node to the area represented by the node. Updates are 

performed every Tstep period. This means that evacuees’ densities during the evacuation process may 

be determined at any time. These values are used for optimal path calculations for rescue teams. A 

variable defining a starting time is an input parameter for the path-finding algorithm, where time 0 is 

the beginning of the evacuation. Densities from the database are dynamically selected depending on 

path calculation progress. 

3. Testing setup, results and discussion 

3.1. Agent-based evacuation  

In the presented experiment, agent-based simulation of evacuation from a building described in 

Section 2 is performed with an initial density value 0.07 p/m2. This results in the total number of 

agents equal to 990, which means 110 agents per floor on average. Agents associated with a certain 
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space are distributed evenly among network nodes belonging to that space. In case the number of 

agents is different than the number of nodes, the remaining agents are put at random nodes. It is 

important to notice that too big value of initial density will result in cell occupancy greater than 3.5 

people/m2, which may cause congestions at the initial stage of evacuation simulation.  

Figure 4 shows the initial agent distribution in one of the rooms with floor area 288.88 m2. The 

number of agents is equal to 21. It should be noted that agents represented as spheres may overlap 

and be put at the same location, because in this research the focus is put on a total cell occupancy 

rather than collisions among individual agents. Numbers at spheres indicate a number of agents 

located in a cell. 

 

Figure 4. Initial distribution of agents in a selected room. Numbers indicate the agent occupancy of 

cells associated with network nodes. The navigable network, tessellation and building geometry are 

shown in green, grey and blue, respectively.  

Other parameters are as follows: Tstep = 1 s, T1 = 10 s, T2 = 30 s, T3 = 3. They indicate that a new 

location for each agent is calculated every 1 s, a new path for an agent is calculated after 10 s of 

waiting at the same location caused by congestions, and a link is temporary marked as blocked if an 

agent is stuck at this link for more than 30 s or the ratio of link occupancy to maximum capacity is 

greater than 3. Therefore, an agent’s behaviour may be considered a waiting strategy followed by 

obstacle avoidance in crowded areas, where some passages are too congested to follow the initial 

path.  

The building becomes empty after 502 s. The evacuation progress is shown in Figure 5, while 

distribution of agents reflected in the navigable network is illustrated in Figure 6. Original locations 

of agents are random, but agents are evenly distributed in rooms (see Figure 6a). After some time, 

most evacuees are in staircases (see Figure 6b). However, at floor 5, where top-floor staircases meet 

the lower-floor ones, agents must move to another staircase. This causes congestions at staircase 

doors. New paths for agents, which cannot move, are calculated. As a result, agents move to less 

dense areas and change the originally selected staircase (see Figure 6c). Subsequently, most of the 

agents use the lower-floor staircases without changing them because densities are lower and 
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smooth movement without congestion is possible (see Figure 6d). Finally, agents leave the staircases 

(see Figure 6e) and the building (see Figure 6f). 

 

 

 

Figure 5. Number of people evacuated during simulation 

a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 

Figure 6. Agent distribution during evacuation simulation after: a) 0 s (original agent’s distribution); 

b) 120 s; c) 240 s; d) 360 s; e)  480 s; f) 502 s (end of evacuation). 
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The evacuation time in this experiment, i.e. 502 s, compared to the results obtained in other studies 

[3,8] shows it is higher. Two nine-storey office buildings were evacuated in practice in 270 s and 330 

s, while simulated evacuation time was 216 s and 360 s respectively [3]. The biggest difference 

between the buildings is the area of staircases (total staircase area per floor: 64 m2 and 38 m2 

respectively), which influences the evacuation time. The total area of staircases in the building used 

in this paper is about 40 m2/floor. The difference may be caused by a different building layout, 

especially the number and size of staircases and doors, which are critical elements influencing 

evacuation in high-rise buildings. Also, bottlenecks with a high density of agents were observed at 

doors inside the building, which was not investigated in other studies. Congestions significantly slow 

down the movement of people and, in result, the total evacuation time is higher. 

3.2. Optimal routing for rescue teams 

Optimal paths for a rescue team are calculated based on the algorithm proposed by Zverovich, et al. 

[18]. Five hazard locations are introduced on various floors in the model. Different starting times of 

the rescue operation are considered, where time 0 is the beginning of evacuation simulation. Travel 

times, safety levels and shapes of paths depend on agents’ densities in the building, which are 

changing over time. In this experiment, the origin location for path calculation is outside of the 

building, and the rescue team has to reach a room on floor 8. Figure 7 illustrates travel times of 

quickest paths for three different evacuation simulations: static, semi-dynamic and dynamic, where 

hazard influence is not taken into consideration in path calculations. 

Because in the static simulation there are only four scenarios representing evacuation stages, these 

scenarios were distributed over simulation time based on their description illustrated in Figure 3 and 

evacuees’ distribution (see Figure 6). Therefore, Scenario 1 starts at time 60 s after the agents leave 

the rooms and they are located in corridors and staircases. Scenario 2 starts at time 180 s when 

agents are in staircases and on the floor, where they change staircases. Scenario 3 starts at time 360 

s when all top-floor staircases are empty and agents are located in the ground-floor staircases and in 

areas between staircases and exits from the building. Scenario 4 is the empty building after 

evacuation. 

a) 

 

b) 
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c) 

 

Figure 7. Quickest path travel time [s] depending on starting simulation time: a) static simulation; b) 
semi-dynamic simulation; c) dynamic simulation.  

It should be noted that the travel time in the static simulation in Scenarios 2 and 3 is much higher 

(respectively 514 s and 364 s in Figure 7a) than in other simulations (maximum 224 s in semi-

dynamic in Figure 7b , and 214 s in dynamic in Figure 7c ), where densities are calculated in the 

evacuation simulation. The reason for such a difference is that in the static scenario densities in 

staircases are constant (3.0 p/m2) throughout the optimal path-finding process, which in a real-life 

scenario is rather unrealistic. Evacuees are moving downstairs and gradually releasing spaces on 

higher floors. In the density database, density 3.0 p/m2 and above are observed at some staircase 

nodes and only for a short period. Reducing a level of density in staircases to 2.0 p/m2, the travel 

time decreases to 318 s and 253 s, respectively, for Scenarios 2 and 3 of the static simulation. 

Figure 8 shows travel times of optimal paths, where a safety criterion has the highest weight and is 

followed by time and complexity criteria. Similar to the quickest paths, the optimal paths obtained 

for the static simulation have travel time much higher than in the case of semi-dynamic and dynamic 

simulations. In addition, optimal travel times for the semi-dynamic and dynamic simulations are 

higher than for the quickest paths. The paths are longer, but they are located further from the 

hazard locations hence are safer. Hazard proximity indices [19] calculated for optimal paths are 

shown in Figure 9. The higher the proximity index, the safer the path is.  

a) 

 

b) 

 
 

c) 

 

Figure 8. Optimal path travel time depending on starting simulation time: a) static simulation; b) 

semi-dynamic simulation; c) dynamic simulation. 
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It should be noted that the safety of paths in dynamic simulation decreases after about 90 s after 

evacuation had started. It is caused by high density values for all staircases, which reduce the speed 

of rescue teams. This means that they need to stay longer in hazardous conditions. Then the safety is 

improved in 240 s because top floors are almost empty and the movement of rescue teams is not 

delayed. 

a) 

 

b) 

 
 

c) 

 

Figure 9. Optimal path hazard proximity indices depending on starting simulation time: a) static 

simulation; b) semi-dynamic simulation; c) dynamic simulation. 

Selected optimal paths are shown in Figure 10 – static simulation, Figure 11 – semi-dynamic 

simulation, and Figure 12 – dynamic simulation. The shape of paths depends only on evacuees’ 

distribution, as hazard locations and other parameters remain unchanged. 

a) 

 

b) 

 
c) 

 

d) 
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Figure 10. Selected optimal paths in the static simulation calculated for a) Scenario 1 – initial stage; 

b) Scenario 2 – middle stage; c) Scenario 3 – final stage; d) Scenario 4 – empty building. 

a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 

Figure 11. Selected optimal paths in the semi-dynamic simulation calculated after a) 0 s; b) 120 s; c) 

240 s; d) 360 s; e) 480s; f) 502 s from the beginning of evacuation. 

a) 

 

b) 
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c) 

 

d) 

 
e) 

 

f) 

 

Figure 12. Selected optimal paths in the dynamic simulation calculated after a) 0 s; b) 120 s; c) 240 s; 

d) 360 s; e) 480s; f) 502 s from the beginning of evacuation. 

Travel times obtained in Scenarios 2 and 3 of the static simulation are much higher than in semi-

dynamic and dynamic simulations. Densities in these scenarios are higher in most of the critical 

spaces, such as staircases and near the exits, than in case of other simulations. Although similar high 

density values are experienced at some nodes, the occupation level in the rest of the navigable 

network is relatively low in comparison to the static simulation.  

To conclude this section, the similarity of simulations is compared. There are three simulations 

resulting in three time series. This comparison is important because simulations require different 

information and the computational complexities of the corresponding algorithms are not the same. 

It is generally accepted that when measuring the similarity of two time series, a simple, robust and 

accurate method is the Euclidean distance (see, e.g. [15]). More importantly, Serrà and Arcos [10] 

showed that the Euclidean distance is the best performing measure between two time series. 

For two time series x and y, let xi and yi denote their i-th elements, respectively, and let M be the 

length of the time series. Then, the Euclidean distance between the two time series can be 

calculated using the following formula: 

𝐿2(𝒙, 𝒚) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑀

𝑖=1

 

Let us denote our three time series by S (static), SD (semi-dynamic) and D (dynamic). Because the 

former time series starts at time 60, we calculate the Euclidean distances between series for the 

time interval [60; 502]: 

L2(S,SD) = 591.5,   L2(S,D) = 651.4,   L2(SD,D) = 164.7 
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When comparing time series, it is often recommended to normalise them for tolerating different 

ranges. Therefore, we will also compare the normalized time series. The first pre-processing step is 

to subtract from each time series, its mean value. The second step is to normalise the amplitude, i.e. 

divide by the standard deviation of the series. This approach yields the following normalized 

Euclidean distances: 

L2(SN,SDN) = 4.5,   L2(SN,DN) = 4.3,   L2(SDN,DN) = 1.6 

Both sets of Euclidean distances reveal that the static time series is rather far from two other time 

series, whereas the semi-dynamic time series is similar to some extent to the dynamic time series.  

4. Conclusions 

In this paper, a method for determining evacuees’ distribution in buildings was proposed. Agent-

based evacuation simulations were performed in the navigable network generated from 3D BIM 

model, where individual egress routes for agents are calculated and their movements are 

determined by actual densities and the flow in the network. The results of the simulation show that 

evacuation times are comparable with previous findings by other studies. It was achieved without 

taking into consideration parameters, which are normally included in micro-scale simulations, e.g. an 

agent’s size or precise location. Our simulations are based on effective algorithms, which are more 

intuitive and simpler for implementation. 

Evacuees’ densities calculated in simulations are then used to generate optimal paths for rescue 

teams. Three simulation scenarios were considered: static with constant density values specified for 

four stages of evacuation, semi-dynamic with densities representing an actual people distribution in 

a building during evacuation simulation, and dynamic with temporal distribution of evacuees, stored 

in a database and dynamically used in optimal path calculation. 

The static simulation offers an occupancy estimation and it is better suited for simulations, when 

there is no or little knowledge about building occupancy, while the semi-dynamic and dynamic 

simulations are based on the initial distribution of people and they offer scenarios that are more 

realistic.  The semi-dynamic simulation is better tailored fit for emergency response scenarios, 

where the actual occupancy can be estimated based on occupancy sensors, and where rapid 

calculation of optimal paths for rescue teams is needed. The dynamic simulation may be more useful 

for emergency preparedness applications, where different evacuation scenarios are tested. A 

different building design or initial distribution of people depending on indoor space functionality 

may be analysed in order to achieve safer buildings, and effective building management. 

 

In future developments, it would be desirable to use real occupancy information from sensors, 

which would increase the accuracy of simulations. In addition, algorithms for individual path finding 

for agents and their movement may be improved by adopting real-time information about people 

locations in buildings. 
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