
Biased compensation recursive least squares based threshold algorithm for
time-delay rational models via redundant ruleI

Jing Chen∗,a, Quanmin Zhub, Juan Lic, Yanjun Liua

aSchool of Science, Jiangnan University, Wuxi 214122, PR China
bDepartment of Engineering Design and Mathematics, University of the West of England, Bristol BS16 1QY, UK
cCollege of Mechanical and Electrical Engineering, Qingdao Agricultural University, Qingdao 266109, PR China

Abstract

This paper develops a biased compensation recursive least squares based threshold (BCRLS-TH) algorithm
for a time-delay rational model. The time-delay rational model is first transformed into an augmented model by
using the redundant rule, and then a RLS algorithm is proposed to estimate the parameters of the augmented
model. Since the output of the augmented model is correlated with the noise, a biased compensation method is
derived to eliminate the bias of the parameter estimates. Furthermore, based on the structures of the augmented
model parameter vector and the rational model parameter vector, the unknown time-delay can be computed
by using a threshold given in prior. A simulated example is used to illustrate the efficiency of the proposed
algorithm.
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1. Introduction

The rational model is a special kind of nonlinear systems which is defined as the ratio of two polynomial
expressions [1]. This type of nonlinear models are widely existed in modern society, for example, in life science,
in chemical engineering and in economic systems [2, 3]. Compared with the polynomial nonlinear model, the
rational model provides a very concise and parsimonious representation for complex nonlinear systems and has
excellent extrapolation properties [4, 5, 6]. Though the rational model has many advantages over the polynomial
model and is widely used in many fields, surprisingly, there is only scattered work reported in the literature
on identification of rational models. The difficulty in identifying the rational models is that the denominator
polynomial terms make the rational model be nonlinear in both the parameters and the regression terms. Thus
the traditional linear system and polynomial nonlinear system identification algorithms cannot be directly used
for rational models [7, 8].

Among various identification algorithms, the off-line algorithms are perhaps the most widely used algorithms
for rational models. For example, Zhu provided an implicit LS algorithm for rational models, the proposed off-
line algorithm is efficient in dealing with the parameter estimation problems associated with nonlinear in the
parameters models [9]. Mu et al studied a globally consistent nonlinear LS estimator for identification of a
nonlinear rational system, where the proposed off-line algorithm is the first globally convergent algorithm for
the nonlinear rational systems [10]. It has been noted that the off-line algorithms usually use the existed
data to update the parameters in real time, while the new data are not involved. On the other hand, the
on-line algorithms have less computational efforts and can update the parameters with new data. Therefore,
the extension of on-line algorithms to rational model identification is becoming a hot and promising spot of
present research. Recently, Zhu proposed an error back propagation parameter estimation algorithm for a class
of rational models, by combining an orthogonal correlation test method, the model structure and the associate
parameters can be estimated simultaneously [11]. Zhu et al also proposed an enhanced linear Kalman filter
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algorithm for parameter estimation of nonlinear rational models, in which the proposed algorithm is an on-
line algorithm [12]. However, all the rational models in above literature are non-time-delay systems, when the
rational models have unknown time-delays, those methods mentioned in above literature are invalid.

Time-delay systems often exist in engineering practice [13, 14, 15]. For example, in the communication
network, due to the network congestion, the signals which are transmitted over a communication channel often
have time delays [16, 17]; in chemical processes, some variables such as chemical component concentrations are
often measured through laboratory analysis, which would introduce time delays [18, 19]. Recently, there exist
many identification algorithms for time-delay systems [20, 21, 22]. Zhao et al developed a variational Bayesian
(VB) approach for ARX models with a Markov chain time-varying time-delays, where the unknown parameters
and the varying time-delays can be estimated iteratively [23]. Liu et al studied a compressed sensing (CS)
recovery algorithm for MISO-FIR systems with unknown time-delays [24]. Both the VB and the CS recovery
algorithms are off-line algorithms. In order to estimate the time-delay systems based on on-line algorithms, Ma
et al provided a Kalman filter-based least squares iterative and a recursive least squares algorithms for time-
delay Hammerstein systems with the assumption that the time-delay is known in prior [25]. Chen et al proposed
a recursive least squares based redundant parameter method for time-delay systems, in which the time-delay
is unknown [26]. To the best of our knowledge, there is no work reported in the literature on identification
of time-delay rational models. Thus the focus of this paper is to develop an identification algorithm for such
models.

In this paper, a BCRLS-TH algorithm is proposed for a time-delay rational model via redundant rule.
The main objective is to apply the redundant rule to transform the rational model into an augmented model,
whose parameters are estimated by using a BCRLS algorithm. Since the estimated parameter vector contains
redundant parameters, a threshold is introduced to pick out these redundant parameters. Then based on the
structures of the augmented model parameter vector and the rational model parameter vector, the unknown
time-delay can be obtained. The main contributions are summarized as follows.

1. Study a biased compensation on-line algorithm for a time-delay rational model.

2. Apply the redundant rule to transform the rational model into an augmented model, by which the time-
delay effect can be ignored.

3. Propose a threshold to divide the augmented model parameter estimates into two parts: the redundant
model parameter estimates and the rational model parameter estimates, then the unknown time-delay can
be obtained based on the two parts.

Briefly, the rest of this paper is organized as follows. Section 2 introduces the rational model. Section 3
develops a biased compensation least squares based threshold (BCLS-TH) algorithm. Section 4 studies a
BCRLS-TH algorithm. Section 5 provides an illustrative example. Finally, concluding remarks are given in
Section 6.

2. The rational model

Consider the following rational model,

y(t) =
a(t− τ)

b(t− τ)
+ e(t), (1)

where y(t) is the output, e(t) a stochastic white noise with zero mean and variance σ2, τ is an unknown integer
time-delay, and a(t− τ) and b(t− τ) are expressed as

a(t− τ) =φT(t− τ)θa,

b(t− τ) =ψT(t− τ)θb.

The information vectors φ(t−τ) and ψ(t−τ) are the products of past inputs {u(t−τ−1), u(t−τ−2), · · · } and
past outputs {y(t−τ−1), y(t−τ−2), · · · }, such as y(t−τ−1)u(t−τ−1), u(t−τ−2) and u2(t−τ−1)y(t−1−τ),
and the structures of φ(t − τ) and ψ(t − τ) are known in prior, θa and θb are the unknown parameters to be
estimated and can be expressed as

θa = [a1, a2, · · · , an]T, (2)

θb = [b1, b2, · · · , bm]T. (3)
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Without loss of generality, assume b1 = 1, then one can get

Y (t) = φT(t− τ)θa + y(t)[−ψT(t− τ)θb + b1ψ1(t− τ)] + b(t− τ)e(t), (4)

in which Y (t) = y(t)b1ψ1(t− τ), and ψ1(t− τ) is the first element of the vector ψ(t− τ). Rewriting Equation
(4) as

Y (t) = ϕT(t)θ + v(t), (5)

where

θ= [a1, a2, · · · , an, b2, · · · , bm]T ∈ Rn+m−1,

ϕ(t) = [φ1(t− τ), φ2(t− τ), · · · , φn(t− τ),−y(t)ψ2(t− τ), · · · ,−y(t)ψm(t− τ)]T ∈ Rn+m−1,

v(t) = b(t− τ)e(t).

Since the time-delay τ is unknown, those elements in ϕ(t) are also unknown, then the LS proposed in [10] and
the enhanced linear Kalman filter algorithm proposed in [12] cannot be applied for this time-delay rational
model. To overcome this difficulty is using the redundant rule proposed in [26].

Define

ϕp(t) := [φ1(t), · · · , φn(t),−y(t)ψ2(t), · · · ,−y(t)ψm(t), · · · , φ1(t− τ), · · · , φn(t− τ),−y(t)ψ2(t− τ), · · · ,
−y(t)ψm(t− τ), · · · , φ1(t−M + 1), · · · , φn(t−M + 1),−y(t)ψ2(t−M + 1), · · · ,
−y(t)ψm(t−M + 1)]T ∈ RM(n+m−1), (6)

θp := [l1,1, · · · , l1,n, l1,n+1, · · · , l1,n+m−1, · · · , a1, · · · , an, b2, · · · , bm, · · · , lM,1 · · · , lM,n, lM,n+1, · · · ,
lM,n+m−1]

T ∈ RM(n+m−1).

Clearly, ls,j , s = 1, · · · , τ, τ + 2, · · · ,M, j = 1, · · · , n+m− 1 are the redundant parameters and the true values
of these parameters are equal to zero, a1, · · · , an, b2, · · · , bm are the true parameters, and all the terms in the
information vector ϕp(t) are known. Then Equation (5) can be transformed into the following augmented model,

Y (t) = ϕT

p (t)θp + v(t). (7)

It is observed from Equations (6) and (7) that the augmented model parameter vector contains two parts, one
is the redundant part which can be expressed as

θrp = [l1,1, · · · , l1,n, l1,n+1, · · · , l1,n+m−1, · · · , lM,1, · · · , lM,n, lM,n+1, · · · , lM,n+m−1]
T ∈ R(M−1)(n+m−1), (8)

and the other is the true part (rational model parameter vector) which can be written as

θ= [a1, a2, · · · , an, b2, · · · , bm, ]T ∈ Rn+m−1. (9)

The idea of the redundant rule is first to pick out the redundant part from the augmented model parameter
vector θp by using a threshold given in prior, and then compute the unknown time-delay based on the structures
of θ and θp. For example, if the unknown time-delay is 2, the order of the true parameter is n +m − 1 = 5.
AssumeM = 4, when apply the LS based threshold method to estimate the unknown parameter vector θp. The

estimate of the augmented model parameter vector is θ̂p = [05,05, θ̂,05]
T (05 = [0, 0, 0, 0, 0]), which means the

position of the first non-zero value is 11. Thus we can get τ = 10/5 = 2.

3. The BCLS-TH algorithm

Collect t input, output and noise data respectively, and define

Y (t) := [Y (t), Y (t− 1), · · · , Y (1)]T,

Φp(t) := [ϕp(t),ϕp(t− 1), · · · ,ϕp(1)]
T,

V (t) := [v(t), v(t− 1), · · · , v(1)]T.

Then it follows that

Y (t) =Φp(t)θp + V (t). (10)
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Based on the LS algorithm, one can get

θ̂LS(t) = [ΦT

p (t)Φp(t)]
−1ΦT

p (t)Y (t). (11)

Define
P (t) := [ΦT

p (t)Φp(t)]
−1.

Substituting Equation (10) into Equation (11) gets

θ̂LS(t) = [ΦT

p (t)Φp(t)]
−1ΦT

p (t)Y (t)

= [ΦT

p (t)Φp(t)]
−1ΦT

p (t)(Φp(t)θp + V (t))

= θp + P (t)[ΦT

p (t)V (t)]. (12)

Rewrite

ΦT

p (t)V (t) = [ϕp(t),ϕp(t− 1), · · · ,ϕp(1)]


v(t)

v(t− 1)
...

v(1)



= [ϕp(t),ϕ(t− 1), · · · ,ϕ(1)]


b(t− τ)e(t)

b(t− 1− τ)e(t− 1)
...

b(1− τ)e(1)


=
[ t∑

i=1

b(i− τ)φ1(i)e(i), · · · ,
t∑

i=1

b(i− τ)φn(i)e(i),−
t∑

i=1

b(i− τ)ψ2(i)y(i)e(i), · · · ,

−
t∑

i=1

b(i− τ)ψm(i)y(i)e(i), · · · ,
t∑

i=1

b(i− τ)φ1(i−M + 1)e(i), · · · ,
t∑

i=1

b(i− τ)φn(i−M + 1)e(i),

−
t∑

i=1

b(i− τ)ψ2(i−M + 1)y(i)e(i), · · · ,−
t∑

i=1

b(i− τ)ψm(i−M + 1)y(i)e(i)
]T

. (13)

Since y(t) is correlated with the noise e(t), Equation (12) means that the proposed LS algorithm is a biased

algorithm. It follows that an unbiased estimate θ̂u(t) can be expressed as,

θ̂u(t) = θ̂LS(t)− P (t)[ΦT

p (t)V (t)]. (14)

Unfortunately, ΦT

p (t)V (t) cannot be obtained because of the unknown polynomial b(i− τ) and unknown noise

e(i) in Equation (13). That is to say, in order to obtain the unbiased estimate θ̂u(t), one should first obtain the
estimates of b(i− τ) and e(i). At time t− 1, the unknown noise e(i), i = 1, 2, · · · , t can be estimated by using

the parameter estimate θ̂u(t− 1), e.g.,

ê(i) = y(i)− a(i)

b(i)
|ˆθu(t−1)

, (15)

in which (x)|ˆθu(t−1)
means the estimate of x by using θ̂u(t − 1). Unlike the work in [9, 10, 11], the colored

noise v(t) in this paper contains unknown time-delay τ , which leads b(i− τ) also be unknown. Thus, to get the
unbiased parameter estimate is more challenging in this paper. One will use the redundant rule to transform
the rational model into an augmented model. Then Equation (1) can be expressed as

y(t) =
a0(t) + a1(t− 1) + · · ·+ a(t− τ) + · · ·+ aM−1(t−M + 1)

b0(t) + b1(t− 1) + · · ·+ b(t− τ) + · · ·+ bM−1(t−M + 1)
+ e(t), (16)

where

ap(t− p) = φ1(t− p)l2,1 + φ2(t− p)l2,2 + · · ·+ φn(t− p)l2,n, p = 0, 1, · · · , τ − 1, τ + 1, · · · ,M − 1,

a(t− τ) = φ1(t− τ)a1 + φ2(t− τ)a2 + · · ·+ φn(t− τ)an, true part,

bp(t− p) = ψ2(t− p)l1,n+1 + ψ3(t− p)l1,n+2 + · · ·+ ψm(t− p)l1,n+m−1,

b(t− τ) = 1 + ψ2(t− τ)b2 + ψ3(t− τ)b3 + · · ·+ ψm(t− τ)bm, true part. (17)
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Equation (7) can be enhanced as

Y (t) = ϕT

p (t)θp + ve(t), (18)

in which

ve(t) = [b0(t) + b1(t− 1) + · · ·+ b(t− τ) + · · ·+ bM−1(t−M + 1)]e(t).

Clearly, the true values of ls,j , s = 1, 2, · · · , τ, τ + 2, · · · ,M, j = 1, · · · , n+m− 1 are all equal 0, thus Equation
(18) is equivalent to Equation (7). Since e(i) is a white noise with zero mean and is independent of the past
inputs and outputs, Equation (13) can be converted as follows,

ΦT

p (t)V e(t) = [ΨT

0 (t), · · · ,Ψ
T

q (t), · · · ,Ψ
T

M−1(t)]
T, q = 0, 1, · · · ,M − 1, (19)

where

Ψq(t) =



0
0
...
0

−
t∑

i=1

(b0(i) + b1(i− 1) + · · ·+ b(i− τ) + · · ·+ bM−1(i−M + 1))ψ2(i− q)y(i)ê(i)

...

−
t∑

i=1

(b0(i) + b1(i− 1) + · · ·+ b(i− τ) + · · ·+ bM−1(i−M + 1))ψm(i− q)y(i)ê(i)


∈ Rn+m−1,

and the unbiased parameter estimate θ̂u(t) can be computed as

θ̂u(t) = θ̂LS(t)− P (t)ΦT

p (t)V e(t). (20)

From Equations (19) and (20), we can see that at time t, b0(i)+b1(i−1)+· · ·+b(i−τ)+· · ·+bM−1(i−M+1), i =

1, · · · , t, can be estimated by using the unbiased parameter estimate θ̂u(t − 1) without the knowledge of the

unknown time-delay τ . Assume that at time t, we have get the unbiased estimate θ̂u(t),

θ̂u(t) = [l1,1(t), · · · , l1,n(t), l1,n+1(t), · · · , l1,n+m−1(t), · · · , a1(t), · · · , an(t), b2(t), · · · , bm(t), · · · ,
lM,1(t), · · · , lM,n(t), lM,n+1(t), · · · , lM,n+m−1(t)]

T. (21)

Since Y (t) only depends on φ1(t − τ), φ2(t − τ), · · · , φn(t − τ),−y(t)ψ2(t − τ), · · · ,−y(t)ψm(t − τ), once the
parameter vector has been estimated, all the redundant parameters ls,j are equal zero, while the rational model
parameter estimates can be estimated as

θ̂(t) = [a1(t), a2(t), · · · , an(t), b2(t), · · · , bm(t)]T ∈ Rn+m−1.

Furthermore, according to the position of θ̂ in θ̂u, we can get the unknown time-delay.
Then the following BCLS-TH algorithm can be summarized as follows,

θ̂
k

u(t) = [ΦT

p (t)Φp(t)]
−1ΦT

p (t)Y (t)− P (t)ρ̂k(t),

ρ̂k(t) == [Ψ̂
T

0,k(t), · · · , Ψ̂
T

q,k(t), · · · , Ψ̂
T

M−1,k(t)]
T, q = 0, 1, · · · ,M − 1,

Ψ̂q,k(t) =



0
0
...
0

−
t∑

i=1

(b̂k
0(i) + b̂k

1(i− 1) + · · ·+ b̂k(i− τ) + · · ·+ b̂k
M−1(i−M + 1))ψ2(i− q)y(i)êk(i)

...

−
t∑

i=1

(b̂k
0(i) + b̂k

1(i− 1) + · · ·+ b̂k(i− τ) + · · ·+ b̂k
M−1(i−M + 1))ψm(i− q)y(i)êk(i)


,
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êk(i) = y(i)− âk(i− τ)

b̂k(i− τ)
, i = 1, · · · , t,

âkr (i) = [ar(i)]|ˆθk−1

u (t)
, r = 0, 1, · · · ,M − 1,

b̂k
r (i) = [br(i)]|ˆθk−1

u (t)
,

where k represents the count of BCLS-TH iteration.
However, the BCLS-TH algorithm is an off-line algorithm which has harder computational efforts and cannot

update the parameters when new data becomes available. In order to overcome this difficulty, a BCRLS-TH
algorithm is introduced in the next Section.

4. The BCRLS-TH algorithm

Define
P (t) := [ΦT

p (t)Φp(t)]
−1.

From Equation (11), one can get

θ̂LS(t) = [ΦT

p (t)Φp(t)]
−1ΦT

p (t)Y (t)

=P (t)

[
Φp(t− 1)
ϕT

p (t)

]T[
Y (t− 1)
Y (t)

]
=P (t)[P−1(t− 1)P (t− 1)ΦT

p (t− 1)Y (t− 1) + ϕp(t)Y (t)]

=P (t)[P−1(t− 1)θ̂LS(t− 1) + ϕp(t)Y (t)]

= θ̂LS(t− 1) + P (t)ϕp(t)[Y (t)− ϕT

p (t)θ̂LS(t− 1)]. (22)

Then the BCRLS-TH algorithm can be summarized as follows,

θ̂u(t) = θ̂LS(t)− P (t)ρ̂(t), (23)

θ̂LS(t) = θ̂LS(t− 1) + P (t)ϕp(t)[Y (t)− ϕT

p (t)θ̂LS(t− 1)], (24)

P (t) = [ΦT

p (t)Φp(t)]
−1, (25)

Φp(t) = [ϕp(t),ϕp(t− 1), · · · ,ϕp(1)]
T, (26)

ϕp(t) = [φ1(t), · · · , φn(t),−y(t)ψ2(t), · · · ,−y(t)ψm(t), · · · , φ1(t− τ), · · · , φn(t− τ),

−y(t)ψ2(t− τ), · · · ,−y(t)ψm(t− τ), · · · , φ1(t−M + 1), · · · , φn(t−M + 1),

−y(t)ψ2(t−M + 1), · · · ,−y(t)ψm(t−M + 1)]T, (27)

ê(i) = y(i)− â(i− τ)

b̂(i− τ)
, i = 1, · · · , t, (28)

ρ̂(t) == [Ψ̂
T

0 (t), · · · , Ψ̂
T

q (t), · · · , Ψ̂
T

M−1(t)]
T, q = 0, 1, · · · ,M − 1, (29)

Ψ̂q(t) =



0
0
...
0

−
t∑

i=1

(b̂0(i) + b̂1(i− 1) + · · ·+ b̂(i− τ) + · · ·+ b̂M−1(i−M + 1))ψ2(i− q)y(i)ê(i)

...

−
t∑

i=1

(b̂0(i) + b̂1(i− 1) + · · ·+ b̂(i− τ) + · · ·+ b̂M−1(i−M + 1))ψm(i− q)y(i)ê(i)


, (30)

âr(i) = [aj(i)]|ˆθu(t−1)
, r = 0, 1, · · · ,M − 1, (31)

b̂r(i) = [bj(i)]|ˆθu(t−1)
. (32)
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It observes from Equation (31) that we should use the threshold to compute the parameter θ̂(t) at each time

t based on θ̂u(t), which leads to heavy computational efforts. In order to overcome this difficulty, one can apply
the following equation to compute the noise e(i)

ê(i) = y(i)− â0(i) + â1(i− 1) + · · ·+ â(i− τ) + · · ·+ âM−1(t−M + 1)

b̂0(i) + b̂1(i− 1) + · · ·+ b̂(i− τ) + · · ·+ b̂M−1(t−M + 1)
|ˆθu(t−1)

, i = 1, · · · , t. (33)

Remark 1: In the BCLS-TH algorithm, we use the same input and output data to update the parameter
vector at each iteration k; while in the BCRLS-TH algorithm, we update the parameter vector at each time t
based on the new input and output data u(t), y(t) and the used data u(t− 1), · · · , u(1), y(t− 1), · · · , y(1), thus
the BCRLS-TH algorithm can update the parameters in real time when new data becomes available.

The steps of computing the parameter estimation vector θ̂(t) by using the BCRLS-TH algorithm are listed
in the following.

1. Let θ̂LS(0) = 1/p0, θ̂u(0) = 1/p0 and P̂ (0) = p0I with 1 being a column vector whose entries are all
unity, I be an identity matrix of appropriate size and p0 = 106.

2. Let t = 1, y(h) = 0, u(h) = 0, e(h) = 0, h 6 0, and give a small positive number ε and a small positive
threshold ϵ.

3. Form ϕp(t) by (27).

4. Form Φ(t) by (26) and P (t) by (25).

5. Compute âr(i) and b̂r(i), r = 0, 1, · · · ,M − 1, i = 1, 2, · · · , t by (31) and (32), respectively.

6. Compute ê(i) by (33), i = 1, 2, · · · , t.
7. Compute Ψ̂q(t) by (30), q = 0, · · · ,M − 1.

8. Compute ρ̂(t) by (29).

9. Update the parameter estimation vector θ̂LS(t) by (24).

10. Compute θ̂u(t) by (23).

11. Compare θ̂u(t) and θ̂u(t − 1): if ∥θ̂u(t) − θ̂u(t − 1)∥ 6 ε, then obtain the θ̂u(t) and go to next step;
otherwise, increase t by 1 and go to step 3.

12. Assume each element of θ̂u(t) is θ̂
s
u(t), s = 1, · · · ,Mn+Mm−M , and compare θ̂su(t) with ϵ: if |θ̂su(t)| < ϵ,

then pick it out and reduce the order of the parameter vector θ̂u(t) by 1; otherwise, keep the order of the

parameter vector θ̂u(t) unchanged.

13. Obtain θ̂(t) based on step 12.

14. Compute the time-delay τ based on the structures of θ̂u(t) and θ̂(t).

Remark 2: In application, systems are often disturbed by noises, which leads to the estimates of the
redundant parameters not be equal to zero. In order to get the time-delay τ , a threshold ϵ should be given
in prior. If the absolute value of a parameter estimate is smaller than ϵ, one can regard the parameter as
a redundant parameter and pick it out. However, the choice of the threshold is difficult and challenging. A
big ϵ may mistake some true parameters for redundant parameters, while a small ϵ may lead some redundant
parameters not be picked out from the parameter vector [26].

5. Example

Consider a time-delay rational model with τ = 1,

y(t) =
0.2y(t− τ − 1) + 0.1y(t− τ − 1)u(t− τ − 1) + u(t− τ − 1)

1 + y2(t− τ − 1) + y2(t− τ − 2)
+ e(t)

=
0.2y(t− 2) + 0.1y(t− 2)u(t− 2) + u(t− 2)

1 + y2(t− 2) + y2(t− 3)
+ e(t). (34)

Then one can get

y(t) = 0.2y(t− 2) + 0.1y(t− 2)u(t− 2) + u(t− 2)−
y(t)y2(t− 2)− y(t)y2(t− 3) + (1 + y2(t− 2) + y2(t− 3))e(t).
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Assume M = 3, then one can get the augmented model,

y(t) = l1,1y(t− 1) + l1,2y(t− 1)u(t− 1) + l1,3u(t− 1)− l1,4y(t)y
2(t− 1)− l1,5y(t)y

2(t− 2) + a1y(t− 2) +

a2y(t− 2)u(t− 2) + a3u(t− 2)− b2y(t)y
2(t− 2)− b3y(t)y

2(t− 3) + l3,1y(t− 3) + l3,2y(t− 3)u(t− 3) +

l3,3u(t− 3)− l3,4y(t)y
2(t− 3)− l3,5y(t)y

2(t− 4) + (1 + y2(t− 2) + y2(t− 3))e(t),

θp = [l1,1, l1,2, l1,3, l1,4, l1,5, a1, a2, a3, b2, b3, l3,1, l3,2, l3,3, l3,4, l3,5]
T

= [0, 0, 0, 0, 0, 0.2, 0.1, 1, 1, 1, 0, 0, 0, 0, 0]T,

ϕp(t) = [y(t− 1), y(t− 1)u(t− 1), u(t− 1),−y(t)y2(t− 1),−y(t)y2(t− 2), y(t− 2), y(t− 2)u(t− 2),

u(t− 2),−y(t)y2(t− 2),−y(t)y2(t− 3), y(t− 3), y(t− 3)u(t− 3), u(t− 3),−y(t)y2(t− 3),

−y(t)y2(t− 4)]T,

the input {u(t)} is taken as a persistent excitation signal sequence with zero mean and unit variance, and {e(t)}
is taken as a white noise sequence with zero mean and variance σ2 = 0.102.

First, Apply the RLS-TH algorithm to estimate the parameters of the time-delay rational model. The
estimation errors τ := ∥θ̂LS − θp∥/∥θp∥ versus t are shown in Figure 1. The parameter estimates and the
estimation errors are shown in Table 1.

Next, we utilize the BCRLS-TH algorithm to estimate the parameters of the time-delay rational model.
The estimation errors τ := ∥θ̂u − θp∥/∥θp∥ versus t are shown in Figure 1. The parameter estimates and the
estimation errors are shown in Table 2. The rational parameters chosen by using different thresholds are given
in Table 3.

Table 1: The RLS-TH algorithm estimates and errors

t 100 200 300 500 1000 True Values

l1,1 0.08848 0.06943 0.04820 0.03636 0.00185 0.00000

l1,2 -0.03102 -0.00915 -0.00954 -0.01238 -0.00259 0.00000

l1,3 -0.00522 -0.00157 0.00097 -0.00164 0.00022 0.00000

l1,4 -0.18408 -0.09982 -0.08178 -0.07129 -0.06369 0.00000

l1,5 0.00930 0.05052 0.06805 0.08018 0.10145 0.00000

a1 0.16799 0.19545 0.16866 0.16988 0.18015 0.20000

a2 0.09244 0.08471 0.09027 0.08531 0.09092 0.10000

a3 0.83042 0.94614 0.97555 0.98914 1.01213 1.00000

b2 0.42528 0.48197 0.50607 0.52275 0.55200 1.00000

b3 0.58081 0.67992 0.66609 0.66855 0.68706 1.00000

l3,1 0.01885 -0.00200 0.01311 0.00071 -0.00902 0.00000

l3,2 -0.00733 -0.00930 -0.00394 0.00328 -0.00315 0.00000

l3,3 -0.02876 -0.02979 -0.01610 -0.01608 0.00062 0.00000

l3,4 0.02054 0.08661 0.07739 0.07903 0.09137 0.00000

l3,5 -0.15168 -0.12362 -0.10028 -0.08935 -0.08286 0.00000

τ (%) 44.47579 36.89364 35.63763 34.65814 32.83981

Assume ϵ = 0.08 and t = 3000. According to Tables 1-3, we can get that the absolute values of the estimates
l̂1,1, l̂1,2, l̂1,3, l̂1,4, l̂3,1, l̂3,2 and l̂3,3 by using the RLS-TH algorithm are all smaller than 0.08, then the estimated
parameter vector by using the RLS-TH algorithm can be expressed as

θ̂LS = [0, 0, 0, 0, 0.10145, 0.18015, 0.09092, 1.01213, 0.55200, 0.68706, 0, 0, 0, 0.09137,−0.08286]T,

the rational model parameter vector estimate can be simplified as

θ̂ = [0.10145, 0.18015, 0.09092, 1.01213, 0.55200, 0.68706, 0.09137,−0.08286]T.

On the other hand, the estimated parameter vector by using the BCRLS-TH algorithm can be expressed as

θ̂u = [0, 0, 0, 0, 0, 0.19957, 0.09970, 0.99331, 0.99471, 0.98899, 0, 0, 0, 0, 0]T,
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Table 2: The BCRLS-TH algorithm estimates and errors

t 100 200 300 500 1000 True Values

l1,1 0.00110 0.02066 0.01726 0.00991 0.00903 0.00000

l1,2 0.00402 0.00002 0.00436 0.00280 0.00043 0.00000

l1,3 0.00265 0.00694 0.00118 -0.00066 -0.00070 0.00000

l1,4 -0.05420 -0.03162 -0.02235 -0.01499 -0.00660 0.00000

l1,5 -0.14496 -0.06149 -0.03979 -0.02434 0.00831 0.00000

a1 0.13838 0.16652 0.18185 0.18866 0.19957 0.20000

a2 0.04614 0.09432 0.08869 0.08724 0.09970 0.10000

a3 0.77605 0.87758 0.92000 0.95004 0.99331 1.00000

b2 0.69149 0.85661 0.89955 0.93012 0.99471 1.00000

b3 0.71927 0.82511 0.89030 0.92699 0.98899 1.00000

l3,1 0.02893 0.00348 -0.00359 -0.00169 0.00101 0.00000

l3,2 -0.00144 0.00890 0.00796 0.00392 0.00065 0.00000

l3,3 -0.00003 -0.01920 -0.01780 -0.00991 -0.00676 0.00000

l3,4 -0.11378 -0.05922 -0.02562 -0.00670 0.02525 0.00000

l3,5 -0.05571 -0.03133 -0.02151 -0.01634 -0.00970 0.00000

τ (%) 29.84687 15.93955 10.38526 6.85983 1.95706

Table 3: The rational parameters chosen by different thresholds

The RLS-TH estimates The BCRLS-TH estimates

ϵ Rational model parameters Rational model parameters

0.1 l1,5, a1, a3, b2, b3 a1, a3, b2, b3

0.09 l1,5, a1, a2, a3, b2, b3, l3,4 a1, a2, a3, b2, b3 (True)

0.08 l1,5, a1, a2, a3, b2, b3, l3,4, l3,5 a1, a2, a3, b2, b3 (True)

0.03 l1,4, l1,5, a1, a2, a3, b2, b3, l3,4, l3,5 a1, a2, a3, b2, b3 (True)

0.02 l1,4, l1,5, a1, a2, a3, b2, b3, l3,4, l3,5 a1, a2, a3, b2, b3, l3,4

and then the rational model parameter vector estimate can be simplified as

θ̂ = [0.19957, 0.09970, 0.99331, 0.99471, 0.98899]T.

Clearly, in the RLS-TH algorithm, some redundant parameters cannot be picked out from θ̂LS (l1,5, l3,4 and

l3,5), while in the BCRLS-TH, all the redundant parameters can be picked out from θ̂u and then the unknown

time-delay can be obtained based on the structures of θ̂u and θ̂. Furthermore, from Table 1, we can conclude
that there is no ϵ which can be used to pick out the redundant parameters from θ̂LS because of the estimates
l1,5 and a2. A big ϵ will mistake a2 for the redundant parameter. On the other hand, a small ϵ will lead to the
redundant parameter l1,5 not be picked out.

Ultimately, we can draw the following conclusions.

1. Figure 1 shows that the BCRLS-TH algorithm is more effective than the RLS-TH algorithm.

2. Tables 1 and 3 declare that when apply the RLS-TH algorithm to estimate the parameters, there will be
no threshold which can be used to pick out all the redundant parameters from θ̂LS .

3. Values in Tables 2 and 3 witness that the threshold can be easily chosen in the BCRLS-TH algorithm,
e.g.,the threshold can be chosen in [0.03, 0.09] and the unknown time-delay is 1.

6. Conclusions

A BCRLS-TH algorithm is proposed for time-delay rational models in this paper. By using the redundant
rule, the rational model can be transformed into an augmented model which consists of two parts: one is the
redundant part and the other is the true part. Then an unbiased parameter estimate can be obtained by
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Figure 1: The parameter estimation errors τ versus t

the BCRLS-TH algorithm, and the unknown time-delay can be computed based on the two structures of the
augmented model parameter vector and the rational model parameter vector. Interesting extensions of this
work can also be pursued in some real rational model estimation [9, 27] where time-delays are likely to occur.

To the best of our knowledge, this is the first on-line algorithm proposed for time-delay rational models. As
a new direction, there are some potential topics associated with this work. For example, if the structures of
the denominator and numerator polynomials are unknown, how to estimate the parameters and the unknown
time-delay? Another topic is can this method be extended to rational models with varying time-delays? These
topics will remain as challenging issues in future.
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