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Predicting completion risk in PPP Projects using Big Data 

Analytics 

 

Abstract: 

Accurate prediction of potential delays in PPP projects could provide valuable information 

relevant for planning, and mitigating completion risk in future PPP projects. However, 

existing techniques for evaluating completion risk remain incapable of identifying hidden 

patterns in risk behaviour within large samples of projects, which are increasingly relevant 

for accurate prediction. To effectively tackle this problem in PPP projects, this study 

proposes a Big Data Analytics (BDA) predictive modelling technique for completion risk 

prediction. With data from 4294 PPP project samples delivered across Europe between 

1992 and 2015, a series of predictive models have been devised and evaluated using 

linear regression, regression trees, random forest, support vector machine and deep 

neural network for completion risk prediction. Results and findings from this study reveal 

that random forest is an effective technique for predicting delays in PPP projects, with 

lower average test predicting error than other legacy regression techniques. Research 

issues relating to model selection, training and validation are also presented in the study. 

 

Keywords: Big Data; Completion Risk; Forecasting, Public Private Partnerships (PPP); 

Benchmark; Predictive Modelling. 
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1 Background 

In recent decades, the construction industry has been caught up in the frenzy of the 

widespread digital revolution that is shaping global landscape (Bilal et al., 2015). More 

than ever, the industry is witnessing an era of vast accumulation of valuable data needed 

for making informed decisions (Bilal et al., 2015). The rising availability of electronic data 

in diverse formats (multi-dimensional (n-D) CAD data, 3D geometric encoded data, 

graphical data, video, audio, text, etc.) and sizes (terabytes, petabytes etc.) has intensified 

the adoption of fast technologies with strong analytical capabilities within construction 

industry (Caldas et al., 2002). One of these frontier technologies is Big Data.  Big Data are 

enormously large dataset that may be analysed computationally to uncover hidden 

patterns, unknown correlations, trends or preferences (Sagiroglu and Sinanc, 2013). 

Typically, Big Data has three essential attributes, also known as the 3Vs, which 

distinguishes it from traditional data sets (Wu et al., 2014). These are (1) Volume 

(Terabyte, Petabyte, Exabyte etc.); (2) velocity (continuous data streams and fast 

processing) and, (3) variety (disparate datasets in graphics, texts, pictures, audio, video, 

graphs etc.). These 3Vs are clearly apparent in most construction project data in recent 

times, providing opportunities for unravelling useful information from large data sample.  

 

With robust analytical and data mining capabilities, Big Data conducts advanced analytics 

such as Inferential Analytics, Predictive Analytics, Prescriptive Analytics and Descriptive 

Analytics (Ohlhorst, 2012; Talia, 2013; Hu et al., 2014). While inferential analytics focuses 

on the interactions of explanatory variables with the target variable in the dataset (LaValle 

et al., 2012), descriptive analytics examines what is happening now based on historical 

data (Wu et al., 2014). Predictive analytics is concerned with prediction of future 

probabilities, trends and patterns within a dataset (Sagiroglu and Sinanc, 2013), while 

prescriptive analytics adopts optimization and simulation algorithms to propose best 

possible outcomes and solution (Boyd and Crawford, 2012). In this study, we examine 

predictive modelling of completion risk in PPP projects using big data analytics. Gatzert 

and Kosub (2016) described completion risk in construction projects as the uncertainty 

that a project will be completed at a contractually agreed date. Recent literatures have 

examined completion risk analysis in PPP projects using various statistical tools such as 

Monte Carlo simulation, stochastic method, linear modelling, Project Evaluation Review 

Technique (PERT), critical path method etc.( Kokkaew and Chiara, 2010; Ching, 2014; Le-

Hoai et al., 2008). Despite their immense contributions, most studies have concentrated 
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on few project samples and limited data sources from simple relational databases 

(Soibelman et al. 2008; Kokkaew and Chiara, 2010; Javed et al., 2013). As such, these 

studies have either been adjudged deterministic or fixated on identifying generic factors 

influencing project delay (Kokkaew and Chiara, 2010). This is a major flaw in current 

completion risk analysis tools, as they remain incapable of identifying hidden patterns and 

trends in completion risk behaviour that are relevant for accurate forecasting of 

completion risk across large portfolio of PPP projects. The adoption of Big Data enabled 

predictive modelling techniques is therefore imperative for accurate prediction of 

completion risk within this context. These predictive techniques will enable in-depth 

investigation of the dynamic interaction of underlying factors influencing project delay. In 

this regard, high precision analytics techniques such as Deep Neural Network (ANN), 

Random Forest, Support Vector Machine (SVM), Linear Regression, and Regression Trees 

will be adopted for predictive purposes. The overarching aim of this study is therefore to 

develop the best Big Data Analytics based predictive model that can be used to estimate 

delay in PPP projects. In order to achieve the above aim, the following objectives have been 

identified for the study: 

(1) To identify the factors influencing delay in PPP projects and their dynamic 

interaction in large project samples. 

(2) To use advanced Big Data Analytics techniques to predict completion risk in large 

portfolio of PPP projects 

(3) To compare and contrast the predictive performance of these techniques toward 

completion risk forecasting in large project samples. 

 

This study seeks to examine the behaviour of completion risk across large PPP project 

portfolio. Using big data driven predictive analyses, 4294 PPP projects between year 1992 

and 2015 were examined across Europe for completion risk prediction. Section 2 of this 

study focused on literature review and examines the application of Big Data Analytics in 

construction projects, smart cities and IOT. Existing techniques for completion risk 

evaluation in PPP projects were also discussed under the same section. While section 3 

presents the research methodological framework for the study; Section 4 presents 

analysis of various predictive models for estimating completion risk in PPP projects. This 

is then followed by the implication for practice, while the last section concludes the study. 
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2 Literature Review 
 

2.1 Big Data Analytics for Construction Projects and Smart Cities   

The introduction of Building Information Modelling (BIM) has helped fast-track the 

generation of humongous construction data across domains such as design data, 

Enterprise Resource Planning (ERP) systems, project schedules, financial data, and 

contract data among others. Many of these datasets exist in disparate formats including 

3D Geometric encoded (BIM), DXF (drawing exchange format), ifcFXML (Industry 

Foundation Classes XML), DWG (drawing data), DOC, XLS, PPT (Microsoft format), RVT 

(short for Revit), DGN (short for design), JPEG (image format), RM/MPG (video format) etc. 

With the emergences of sensors and embedded devices allowing facilities to generate real-

time data in large volumes, variety and under high velocity (a.k.a 3V’s), the construction 

industry has been pushed into the Big Data era. Noticeably, despite the euphoria about 

Big Data Analytics in the construction sector, academic literature on the topic is only 

gradually intensifying.  

 

However, a quick review of construction literature revealed two emergent themes of Big 

Data application in the construction sector namely: Waste Analytics or Waste Management 

and Smart Cities vis-à-vis IOTs (Internet of Things).  Lu et al. (2015) in an investigation into 

construction waste performance in Hong Kong developed robust KPIs for benchmarking 

waste generation rate using data from waste disposal records of 5764 projects. The study 

found demolition works as the largest contributor to waste in Hong Kong, with new 

building, renovation and maintenance contributing the least amount of waste to landfill. In 

another relevant literature Bilal et al. (2016) bemoaned existing intelligence-based waste 

management softwares as lacking the necessary ability to encourage stakeholders. The 

study also challenged the inappropriate classification of most wastes as mixed wastes 

under the existing waste management approaches. The study proposed a new Big Data 

architecture for designing-out waste from projects (by integrating Spark with BIM), and 

leveraged data from over 200,000 waste disposal records from 900 UK projects. Similarly, 

Chen et al. (2016) conducted a comparative analysis of construction waste management 

performances in public and private projects under similar waste management governance. 

The study analysed over 2 million waste disposal data from 5700 projects and concluded 

that construction contractors perform better on waste minimization when working on 

public projects than on private projects. In addition, Brown et al. (2011) investigated the 
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readiness of the construction sector for the adoption of Big Data Analytics using sentiment 

analysis. Other relevant studies on Big Data in construction and engineering projects 

include Hampton et al. (2011), Bilal et al. (2015) and Wu et al. (2016). 

 

Conversely, Big Data Analytics along with the wide adoption of embedded devices in hard 

infrastructures have also intensified discussions on Smart Cities and Internet of Things -

IOT (Zanella et al., 2014; Centenaro et al., 2016). Chiang and Zhang (2016) described 

smart cities as urban locations that use advanced communication technologies to collect 

and leverage electronic data via sensing devices. Through sensors, physical objects are 

able to stay connected through the internet and transmit data online (IOT) in way that helps 

manage public assets, improve operational and resource efficiency (Scuotto et al., 2016). 

Within the construction sector, smart cities and IOT have become a new and exciting area 

attracting noticeable research interests (Rathore et al., 2016; Memos et al., 2018; Gaur 

et al., 2015; Scuotto et al., 2016). For instance, whilst Bibri (2018) examined the state-of-

the-art sensor-based big data application that are enabled for IOT in a sustainable 

environment, Osman (2018) investigated the necessary attributes of big data analytics 

algorithms suitable for developing city level smart information services. Also, in a new 

study done by Rathore et al. (2018) on exploiting IOT and big data analytics, sensors 

deployment at smart home, smart parking, surveillance, weather, vehicular networking etc. 

were used to collate real-time data for developing a smart digital city service including 

graphically represented smart transport system. In addition, Alshawish et al. (2016) 

demonstrated practical applications of big data in a smart city under real life situations 

including smart energy, smart traffic systems and smart public safety, by reviewing big 

data algorithms, city data collection, analysis and optimization protocols. Similarly, Ming 

et al. (2018) analysed the intentions behind smart city development in a city using Taiwan 

as a context and proposed a hierarchical model of smart city systems and data flow 

platform that leverages city sensor devices. However, while other studies have continued 

to examine Big data, IOT and smart cities within construction and engineering literature 

(Chakrabarty and Engels, 2016; Wu et al., 2016; Gaur et al., 2015; Scuotto et al., 2016), 

there remains a dearth of relevant literature leveraging data from PFI/PPP projects on big 

data application despite the significant public resources involved. 
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2.2 Existing Techniques for Evaluating Completion Risk in PPP Projects 

 

Earlier studies have examined completion risk in PPPs including Kokkaew and Chiara 

(2010); Fight (1999); André Kik (2013); Ye and Tiong (2003); Hoffman (2008). Fight (1999 

pp.9) defines completion risk as “the risk that projects do not yield (sufficient) revenues 

as a consequence of time and budget overruns”. Similarly, Kokkaew and Chiara (2010) 

refer to completion risk as the uncertainty of construction completion. For the purpose of 

this study, completion risk is considered as the uncertainty that a project will be completed 

at a contractually agreed deadline (Project Delay). Many literatures (i.e. Tam et al., 2004; 

Hoffman, 2008; Shane et al., 2009; Javed et al., 2013) have attributed completion risk to 

a number of factors within the construction process such as defective design of project, 

delayed access to project site, shortage in skilled labour etc. Additionally, studies have 

suggested a number of techniques for completion risk evaluation in construction projects 

(Ye and Tiong, 2003; Jannadi and Almishari, 2003; Kokkaew and Chiara, 2010; Ching, 

2014; Le-Hoai et al., 2008). For instance, Ye and Tiong (2003) argued for the use of 

incentive schemes (bonuses) to project participants towards ensuring timely completion. 

The incentive scheme was assumed a function of time and other factors (such as 

complexity of project, source of revenue etc.), and calculated thus:  

B(t, 𝜆1, 𝜆2, 𝑅) =
𝜆1𝑅(𝑇𝑠 − 𝑡)(0 ≤ 𝑡 < 𝑇𝑠)

𝜆2 𝑅(𝑇𝑠 − 𝑡)(𝑇𝑠 ≤ 𝑡 < ∞)
                 (1)    

𝜆1𝑅(𝑇𝑠 − 𝑡) 

𝜆2𝑅(𝑇𝑠 − 𝑡)

(0 ≤ 𝑡 < 𝑇𝑒)

(𝑇𝑒 ≤ 𝑡 < 𝑇𝑠)
                (2)    

        B(t, 𝜆1, 𝜆2, 𝑅) =   𝜆2𝑅(𝑇𝑠 − 𝑡) (𝑇𝑠 ≤ 𝑡 < 𝑇1)    

              𝜆2𝑅(𝑇𝑠 − 𝑇1) (𝑇1 ≤ 𝑡 < ∞) 

               

 The immense contribution of the US navy in 1950s also saw the development of a tool for 

planning and coordinating large-scale projects, known as Programme Evaluation Review 

Technique (PERT). PERT presents network diagram that provides a visual depiction of the 

critical paths in a project schedule and the sequence in which they must be completed. 

PERT is calculated as: 

        𝑀𝑒𝑎𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 → 𝜇𝑖 = {
𝑎𝑖+4𝑚𝑖+𝑏𝑖

6
} 

    

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 → 𝑉𝑎𝑟𝑖 = {
𝑏𝑖 − 𝑎𝑖

6
} 
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         𝑀𝑒𝑎𝑛 𝑜𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ → �̅� = ∑ 𝜇𝑗,𝑗∈𝐶            

       𝑤ℎ𝑒𝑟𝑒 𝐶 𝑖𝑠 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠   

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ → ∑ 𝑉𝑎𝑟𝑗,

𝑗∈𝐶

 

Other completion risk analysis techniques have also been proposed such as Linear-

scheduling model (LSM), Critical Path Method (CPM), Gantt Chart, Vertical Production  

Method (VPM), Line of Balance (LOB) etc. However, despite their wide adoption overtime, 

André Kik, (2013) argued the reliability of current risk analyses techniques, with their 

associated inaccuracies regarding completion risk is limited by the use of out-dated 

analysis techniques (See Table 1 for Exiting techniques for Project Scheduling and 

Completion Risk Analysis). With the vast accumulation of project data in the construction 

industry, current risk analysis techniques and softwares including COMFAR III Expert 

(UNIDO, 1994), CASPAR (Willmer, 1991), EVALUATOR (Abdel-Aziz and Russell, 2006), and 

INFRISK (Dailami et al., 1999), lack the technological capabilities to hold and analyse large 

volumes of disparate project data at high speed. As such, a Big Data Analytics (BDA) 

predictive modelling of completion risk remains the realistic option. 

2.3 Big Data Predictive Analytics Techniques  

 

Big Data Analytics is predominantly employed for either inference (understanding the 

influence of explanatory variables over response variable) or prediction (predicting values 

of the response variable). Since the aim of this study is twofold i.e., understanding the 

interactions of explanatory variables on completion risk in PPP projects (inference), as well 

as devising a robust completion risk prediction model (prediction), a mix of parametric and 

non-parametric techniques are used for predictive modelling. These techniques are 

discussed in depth in the subsequent sections to fulfil the purpose of this study. 
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     Table 1: Existing Tools for Evaluating Completion Risk in Projects 

Existing Tools for 
Completions Risk 

Analysis 
Origin Features Capabilities Shortcomings Literature References 

Gantt Chart 

Developed by 

Henry Gantt in 

1917 

Gantt displays simple activities 

or events that are plotted against 

time. 

Static break down of tasks, 

deliverables, and milestones, 

analytical 

capabilities 

Deterministic and cannot capture 

uncertainties in construction 

process. 

Bossink (2004), El-Sayegh 

(2008); Kangari (1995), Russell 

and Jaselskis (1992) 

Critical Part 
Method 

Developed by 

Integrated 

Engineering 

Control Group 

(I.E.C) in 1956 

It  represents the longest duration 

in a project as a 

critical path 

, and if activities 

in this path are delayed will result in 

the overall project delay. 

Uses computer algorithm, 

analytical 

capabilities 

It is ineffective and cumbersome for 

scheduling linear continuous 

projects. Impact of uncertain delays 

is omitted 

Ling and Hoi (2006); Russell and 

Jaselskis (1992); Dissanayaka 

and Kumaraswamy (1999), El-

Sayegh (2008) 

Program 
Evaluation 
Review 
technique 

 

 

Developed during 

the 1950s by the 

U.S. Navy 

Can handle extremely large number 

of activities. Also suitable for 

activities that are discrete in nature. 

Planning and coordinating large-

scale projects. Its network diagram 

provides visual representation of 

the major project activities 

Useful only when major elements 

(events) in a have been completely 

identified. and cannot capture 

uncertainties in construction 

process. Sometimes relies on 

inspired guesses. 

 

Le-Hoai et al. (2008), Odeh and 

Battaineh (2002); Yang and Wei 

(2010); Assaf et al. (1995) 

Linear-
scheduling model 
(LSM) 

Proposed by Peer 

and Selinger in 

1970s for 

analysing factors 

impacting 

construction time 

in repetitive 

building projects. 

Handles few activities. It’s usually  

executed along a linear 

path/space, Hard sequence logic. 

Visualization features, ease of 

communication for specific type of 

projects 

LSM is inefficient when scheduling 

complex discrete projects (i.e. 

bridges, buildings, etc.), weak 

analytical capabilities. 

Van Staveren (2006), Fookes et 

al., (1985), Kangari (1995), 

Sanger and Sayles (1979) 

Stochastic 
Critical-Path 
Envelope Method 

Proposed by 

Kokkaew, N and 

Chiara, N (2010). 

Uses simple monte Carlo 

simulations to randomly generate 

project activity durations that will 

later utilise CPM approach to 

determine project duration.  

Generates a probability 

distribution of project duration and 

criticality index of project activities. 

Criticality index shows activity that 

is likely to cause delay 

Lacks capacity to examine large 

project samples. Cannot not serve 

as a benchmarking tool for multiple 

projects.  

Ng and Loosemore (2007); Shen 

et al. (2007); Tam and Fung 

(2008) 

Benchmarking 

Many company’s 

In-house method 

of analysing 

completion risk 

Uses completion time for similar 

projects to define and arrive at 

maximum delay time for project 

Simply relies on large samples of  

historical data 

 It relies on historical data and 

benchmark figures that have no 

predictive value when considering 

new, large and complex projects 

Chan, and Kumaraswamy  

(2002), Yeung et al., (2007), 

Bossink (2004). 
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2.3.1 Regression as the Learning Problem 

When learning problem is about predicting the quantitative response, the problem is 

referred to as regression problem. Regression analysis involves single or multiple 

predictors while predictive modelling. The abstract form of regression analysis is given in 

Eq. 1 as 

𝒀 =  ƒ(𝑿) +  𝝐 1 

Where Y is quantitative response; ƒ is some fixed unknown function of predictors 𝑿, and 𝝐 

is some random error term that is independent of 𝑿 and has a mean of zero. In Eq. 1, ƒ(𝑿) 

provides systematic information about 𝒀 and its relationship with ρ predictors. Formally, 

ƒ(𝑿) can be expressed as shown in Eq. 2  

ƒ(𝑿) =  𝜷𝟎 + 𝜷𝟏 × 𝒙𝟏 + 𝜷𝟐 × 𝒙𝟐 + ⋯ + 𝜷𝒑 × 𝒙𝒑 2 

where 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒑  represents ρ predictors and 𝜷𝟏, 𝜷𝟐, … , 𝜷𝐩  represents coefficients of ρ 

predictors and 𝜷𝟎 is intercept term. These coefficients quantify association between 

predictors and the response. In this study, coefficients are derived from a large array of 

PPP projects using various Big Data Analytics techniques. And to assess predictive 

performance of model, Residual sum of square (RSS) is usually employed. RSS is the 

square of difference of distance between predicted value (ŷ) and actual value (y). Eq. 3 

describes the RSS for regression analysis. 

𝑹𝑺𝑺 =  ∑(𝐲𝒊 −  ŷ𝒊 )
𝟐

𝒏

𝒊=𝟏

 

3 

Big Data Analytics functions for regression of form ƒ(𝑿) = 𝜠( 𝒀 ∣ 𝒙 ) tends to minimise RSS 

among all functions from 𝑿 to Y.  

This study starts predictive analysis with multivariate regression analysis as the baseline 

model for inferential statistics. The R function lm() is used for model development, with 

basic syntax as lm(y ~ x, data), where y is response, x are predictors, and data is dataset 

containing x and y. The summary() function retrieves the details of linear model. For 

attribute importance, p-values near the zero are used to identify predictors with superior 

predictive performance. The predict() function is used to check for test error. Predicted 

values are plotted to visually inspect variations in predictions. Listing 1 shows R code used 

to perform regression analysis in this study.  
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#Creating regression model & checking the sum of squared error for predictions 

linearModel <- lm(DELAY ~ .-PROJECT, data = trainPPP) 

summary(linearModel) 

plot(linearModel) 

linearPredictions <- predict(linearModel, newdata = testPPP) 

linearPredictionsDF <- data.frame(pid = testPPP$PROJECT, pred_delay= 

linearPredictions, ml_func="lm") 

linearRSS <- sum((linearPredictions - testPPP$DELAY)^2)   

rssTB <- data.frame(ml_func = "lm()", rss = linearRSS)  

Listing 1: R code for creating and evaluating regression analysis using lm() function 

2.3.2 Regression Trees 

Tree based models can be used for regression as well as classification problems. 

Regression trees divides the predictor space (𝑿𝟏, 𝑿𝟐, 𝑿𝟑, … , 𝑿𝒑) into a set of non-

overlapping 𝐽 distinct regions (𝑹𝟏, 𝑹𝟐, 𝑹𝟑, … , 𝑹𝒋). A regression tree follows splitting rules, 

starting at the root and divide down the tree into smaller subsets at each split. A regression 

tree comprises non-leaf and leaf nodes. Non-leaf nodes are the decision paths to be 

followed whereas leaf nodes contain decision values. Regions in regression tree are 

constructed as shapes like boxes or rectangles. Regression tree algorithm tries to find the 

boxes (regions) that minimize the residual sum of square, given by Eq. 4, 

𝑹𝑺𝑺 =  ∑  

𝑱

𝒋=𝟏

∑ (𝐲𝒊 −  ŷ𝑹𝒋
 )

𝟐

,

 

𝒌𝝐𝑹𝒋

 

4 

where ŷ𝑹𝒋
 is the average value of response in jth box. Since construction of all possible 

boxes for a tree is computationally infeasible, greedy algorithms such as recursive binary 

splitting are used to construct trees in a reasonable computation and time. During 

recursive binary splitting, every predictor 𝑿𝒋 is selected and a cut s is defined that divides 

predictor space into regions, yielding greatest reduction in residual sum of square. Finally, 

predictor 𝑿𝒋 and cut point is chosen for split among predictors (𝑿𝟏, 𝑿𝟐, 𝑿𝟑, … , and 𝑿𝒑) that 

has the lowest residual sum of square. The same process repeats for successive splits. 

This process of tree construction continues until stopping condition is arrived or no regions 

contain more than five data points. Once regions (𝑹𝟏, 𝑹𝟐, 𝑹𝟑, … ,  𝑎𝑛𝑑 𝑹𝒋) are defined, 
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predictions are made for incoming data by simply using the median or mode of data in the 

region to which new data belong. Regression trees are simplistic, easier to interpret, and 

have nice graphical representation.  

 

Complexity of regression trees bear significant impact on their predictive power. The 

deeper the tree, the more likely for it to over-fit test data; hence poor predictive 

performance. To this end, approaches like pruning regression trees comes in play, where 

larger tree is grown and is pruned back to obtain an optimal sub-tree. This reduction is 

achieved through cost complexity pruning (cp), also called as weakest link pruning. The cp 

considers sub-trees, index by nonnegative parameter 𝜶. When 𝜶 = 𝟎, tree is deepest and 

complex. But as 𝜶 starts increasing, trees with more nodes pay more prices; hence 

complexity gets decreasing. So as 𝜶 increases from 0, branches get pruned. Cost 

validation is often employed to obtain an optimal value of 𝜶 in regression analysis.  

In this study, recursive partitioning and regression tree (rpart) library in R is used to fit 

regression tree model. The size of the tree is decided by cp, which is enforced via cross 

validation. Regression tree is generated accordingly using train() function for different cp 

values. The tree model is used to check for test error using predict() function. Predicted 

values are plotted to visually inspect variations in predictions. Listing 2 shows R code used 

to achieve these steps in RStudio. 

#Cross validating the decision trees 

tr.control <- trainControl(method="cv", number=10) 

cp.grid <- expand.grid(.cp = (0:10)*0.001) 

trainTreeModel <- train(DELAY ~ .-PROJECT, data = trainPPP, method="rpart",  

                 trControl=tr.control, tuneGrid = cp.grid) 

trainTreePredictions <- predict(trainTreeModel, newdata = testPPP) 

trainTreePredictionsDF <- data.frame(pid = testPPP$PROJECT, pred_delay= 

trainTreePredictions, ml_func="train") 

trainTreeRSS <- sum((trainTreePredictions - testPPP$DELAY)^2)   

rssTB <- rbind(rssTB, data.frame(ml_func = "train()", rss = trainTreeRSS)) 

Listing 2: R code for creating and evaluating regression analysis using rpart() function 

2.3.3 Random Forest 
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Regression trees are generally not robust. A small change in data can result in a large 

change in the model. Non-parametric approaches such as bagging, boosting, and random 

forest (RF) are mostly used to overcome these limitations. We limit our discussions to RF 

only. RF improves performance of regression trees by compromising interpretability, i.e., 

by growing many trees ƒ̂
𝟏

(𝒙), ƒ̂
𝟐

(𝒙), ƒ̂
𝟑

(𝒙), … , ƒ̂
𝑩

(𝒙), and then using average of predictions 

to obtain low-variance regression model, given by 

ƒ̂
𝒂𝒗𝒈

(𝒙)=  
1

𝐵
∑ ƒ̂𝒃(𝒙)

𝐵

𝑏=1

 

5 

where B denotes the number of trees. RF grows tree by considering a subset m out of ρ 

predictors. The rule of thumb is to choose 𝒎 ≈ √𝒑 predictors. RF with small m favours 

scenarios, with many correlated predictors. 

In this study, we employed random forest to see if they improve predictive performance by 

growing 500 trees. We used randomForest() function to grow trees on training data set. 

The RF model is used to check for test error using predict() function. Predicted values are 

plotted to visually inspect variations in predictions. Listing 3 shows R code used to model 

development and evaluation. 

#Building the random forest of trees for predicting risk 

forestModel <- randomForest(DELAY ~ .-PROJECT, data = trainPPP, mtry=4, 

importance=TRUE, ntree = 500) 

summary(forestModel) 

plot(forestModel) 

importance(forestModel) 

varImpPlot(forestModel) 

forestPredictions <- predict(forestModel, newdata = testPPP) 

forestPredictionsDF <- data.frame(pid = testPPP$PROJECT, pred_delay = 

forestPredictions, ml_func="randomForest") 

forestRSS <- sum((forestPredictions - testPPP$DELAY)^2)   

rssTB <- rbind(rssTB, data.frame(ml_func = "randomForest()", rss = forestRSS)) 

Listing 3: R code for creating and evaluating regression analysis using randomForest() 

function 
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2.3.4. Support Vector Machine (SVM)     

 

SVM is an ML algorithm with robust regularisation capabilities to generalise to the unseen 

data with a high degree of accuracy. SVM models can be used for both classification and 

regression analysis to solve complex and real-world problems. SVM outperforms on data 

with many attributes even if there are a small number of training examples.  

 

SVM works on a kernel function that transforms input data into a high dimensional space 

and then finds the optimal solution to the problem. The kernel functions can be linear as 

well as Gaussian. Linear kernels translate to linear equations and suits multi-attribute 

training data. The Gaussian kernels convert training data into points in n-dimensional 

space and construct numerous linear equations using nonlinear boundaries within the 

kernel space.  

 

SVM uses epsilon-intensive loss function for regression analysis. The algorithm works by 

finding a function where more data points lie inside the epsilon-wide insensitivity tube. The 

epsilon can be customized through SVM settings. SVM balances the margin of error with 

model robustness to achieve best generalisation for the unseen data. 

 

We used ore.odmSVM() to develop SVM model for regression analysis in this study. 

Automatic data preparation capabilities of ORE are used for one-hot encoding of 

categorical variables. The model is trained on training data and evaluated using test data 

utilizing the ore.predict() function. The predicted values are plotted in figures to inspect 

variations in predictions. Listing 4 shows R code for performing these steps. 

 

svmFormula <- as.formula("DELAY ~ SECTOR + CONTRACT + NOD + FIMP +      

                                            POCI + PODV + PSSL + IMSS + NUSC + PMDS +  

                                            PDMD + NSAI + NDSC + PLAD + NDBW + NODP") 

 

svmModel <- ore.odmSVM(svmFormula,data=trainPPP, "regression", 

kernel.function="gaussian") 

svmPredictions <- predict(svmModel, testPPP[,c(1:16)], supplemental.cols="x") 

svmPredictionsDF <- data.frame(pid = testPPP$PROJECT, pred_delay = 

svmPredictions$PREDICTION, ml_func="SVM") 
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svmPredictionsRSS <- sum((svmPredictions$PREDICTION - testPPP$DELAY)^2) 

rssTB <- rbind(rssTB, data.frame(ml_func = "odmSVM()", rss = svmPredictionsRSS)) 

 

Listing 4: R code for creating and evaluating regression analysis using odmSVM() function 

 

2.3.5 Deep Neural Network 

Working like a brain, deep neural networks (DNN) is leading among nonlinear regression 

techniques (Li et al., 2016; Huang et al., 2016). In DNN, response is modelled as a set of 

intermediate hidden layers that are the linear combination of predictors. DNN employs two 

obviously different transformations. Firstly, nonlinear function 𝓰(. ) such as sigmoidal is 

used for eliciting the nonlinearity of predictors, which is explained by Eq. 6  

𝒉𝒌 =  𝓰 (𝜷𝟎𝒌 + ∑ 𝒙𝒊𝜷𝒋𝒌

𝒑

𝒊=𝟏

) 

6 

where 𝜷 coefficients are similar to that of ordinary linear regression and 𝜷𝐣𝐤 is the effect 

of jth predictor on k hidden layer. Secondly, linear transformation is applied to convert 

outcome back to actual values, using the following Eq. 7. 

ƒ(𝑿)
 

= 𝜸𝟎 + (∑ 𝜸𝒌𝒉𝒌 

𝑯

𝒌=𝟏

) 

7 

 

DNN requires parameter optimization to reduce sum of squared error. To this end, 

specialized numerical optimization algorithms such as back-propagation (Li et al., 2016) 

are used. DNN over fits mostly the relationship between predictors and response due to 

large coefficients, which is combatted through prematurely stopping algorithm or by using 

penalization techniques like weight decay. DNN tries to minimize RSS for the given value 

of 𝝀 using Eq. 8: 

∑(𝒚𝒊 − 𝒇𝒊(𝒙)) 𝟐 + 𝝀 ∑  

𝑯

𝒌=𝟏

∑ 𝜷𝒋𝒌
𝟐

𝑷

𝒋=𝟎

+ 𝝀 ∑ 𝜸𝒌
𝟐

𝑯

𝒌=𝟎   

𝒏

𝒊=𝟏
 

 

8 

This makes model smoother and less susceptible to over fitting. Another challenge of 

employing DNN in regression analysis is adverse correlation effect, which is either 

circumvented manually or by using techniques for feature extraction like principal 

component analysis (PCA).  
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We employed neuralnetwork() library in R to develop DNN model. Using caret() function, 

hyper-parameter tuning for decay size of DNN is calculated and accordingly model is 

developed. The DNN model is used to check for test error using compute() function. 

Predicted values are plotted to visually inspect variations in predictions. Listing 5 shows R 

code used for model development and evaluation. 

 

#Creating the DNN model 

annFormula <- as.formula("DELAY ~ SECTOR + CONTRACT + NOD +  

                                                             FIMP + POCI + PODV + PSSL +  

                                                             IMSS + NUSC + PMDS + PDMD +  

                                                             NSAI + NDSC + PLAD + NDBW + NODP") 

annModel <- neuralnet(annFormula, data=trainPPP, hidden=c(10,5),linear.output=T) 

annPredictions <- compute(annModel, testPPP[,c(1:16)]) 

annPredictionsDF <- data.frame(pid = testPPP$PROJECT, pred_delay = 

annPredictions$net.result, ml_func="ANN") 

annPredictionsRSS <- sum((annPredictions$net.result - testPPP$DELAY)^2)   

rssTB <- rbind(rssTB, data.frame(ml_func = "neuralnet()", rss = annPredictionsRSS))  

Listing 5: R code for creating and evaluating regression analysis using neuralnetwork () 

function 

3 Defining Key Predictors for Completion Risk Analysis using Predictive Modelling 

In order to demonstrate Big Data analytics for completion risk forecasting, data of PPP 

projects between 1992 and 2015 were obtained from database of the European PPP 

Expertise Centre (EPEC), Monthly Statistics of Construction Building Materials and 

Components from UK’s Department of Business Innovation and Skills, UK’s Construction 

Industry Data, Health and Safety in Construction Sector Report of UK, UK’s Office of the 

National Statistics, European Construction Market data (Euro Area Construction data) etc. 

Sixteen (16) key predictors causing time overrun in projects were used for the predictive 

modelling of completion risk. These factors were specifically chosen due to ability to 

quantify them and their potential impact on delay in construction project delivery (Kokkaew 

and Chiara, 2010; El-Sayegh, 2008). The factors are articulated in Table 2 below. 
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Table 2: Key Predictors Influencing Completion Risk (Delay) in PPP Projects 

Values Key Predictors Influencing 

Completion Risk in PPP Projects 

Projects 

                          Sources 

SECTOR Projects chosen cut across nine (9) 

sectors of the economy 

HM Treasury (2014), NAO (2009) 

CONTRACT Projects were either procured via 

turnkey or Design Bid Build 

PartnershipsUK.org.uk 

NOD Av. No of defects in a construction 

project 

Buchholz (2004); Teizer et al. (2010); 

FIMP % fluctuation in construction material 

price index 

Javed et al. (2013); Tam et al. (2004) 

POCI % change in inflation Ahmed et al. (1999); El-Sayegh 

(2008). PODV % of design variations Kangari (1995); Bossink (2004); 

Tatum (1989) PSSL % shortage in skilled labor Tatum (1989); Bossink (2004); 

Tatum (1987) IMSS % of inferior materials supplied to site 

(should be small in value). 

Odeh and Battaineh (2002); Errasti et 

al., (2007) NUSC No of unforeseen  site conditions Dikmen et al., (2007); Flyvbjerg et al., 

(2004) PMDS % of materials damaged on site Ching (2014); Allen and Iano (2011) 

PDMD % Delay in Material delivery Robinson and Scott (2009); Javed et 

al. (2013) NSAI No of site Accidents and injuries Rousseau and Libuser (1997); Shen et 

al. (2007) NDSC No of days for site closure Kaming et al., (1997); Moselhi et al., 

(1997) PLAD % of liquidated and ascertained 

damages in projects 

Mohamed (2002); Tam et al. 

(2004);Tatum (1987) NDBW No of days with bad weather that 

prevented site work 

Tatum (1987); Harty (2005); Tatum 

(1989) NODP Av. No of disputes among parties El-Sayegh (2008); Russell and 

Jaselskis (1992) DELAY Delay in terms of days Shen et al. (2007); Tam and Fung 

(2008) 
1. Sector: The PPP projects selected for the study cuts across nine (9) sectors namely: 

housing, social care, transport, defence, education, health, waste management, 

public buildings and others (comprising comprises prisons, leisure facilities, offices, 

housing, emergency services, courts etc.). 

2. Contract Type: The two principal contract types adopted in all the projects analysed 

are fixed price turnkey and Design Bid Build. Fixed price turnkey ensures a 

contractor delivers project under a lump sum contract, while accepting completion 

risk (Hoffman, 2008). On the other hand, Design Bid Build, which is also known as 

the traditional procurement approach allows a client to contract separate parties 

for design and construction phases of the project (Bing et al., 2005).  

3. Average Number of defects in a construction project: Defects in project delivery is 

a perennial challenge in the global construction industry. According to El-Sayegh 

(2008), defects in construction project contribute significantly to construction 

delay. This could happen as a result of defects in project design or defects due to 

poor communication between the design managers and the contractors (Zwikael 

and Ahn, 2011). 
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4. Percentage (%) fluctuation in construction material price Index: This is often a major 

concern for contractors as material price fluctuation upsets prior financial forecasts 

and impacts project timeline, especially where contractor has no parent company 

cover to bail it out in the event of financial difficulties (Javed et al., 2013). 

5. Percentage (%) change in inflation: Similar to fluctuation in construction material 

price index, sudden upsurge in general inflation portends great danger to 

construction budget, which may result in inability to achieve critical milestones on 

a project (Assaf et al., 1995; Palomo et al., 2007). 

6. Percentage (%) change in design variation: Changes in project design is also a 

common occurrence in construction project and is mostly initiated by the client. 

However, studies such as Tam et al. 2004; Teizer et al. (2010) have argued that 

frequent changes in design, especially critical components of a project have  direct 

impact on timely completion.   

7. Percentage (%) shortage in skilled labour: The direct consequence of not having the 

right number of skilled manpower to deliver a project is excessive delays in 

achieving project completion (Aibinu and Jagboro, 2002).  

8. Percentage (%) of inferior materials supplied to site: Supply chain is crucial to 

successful project completion and so is the quality of construction materials 

supplied to site (Fung et al., 2010). Delays due to discovery of low quality materials 

supplied to site are not unusual and this may cause serious lag in project schedule 

(Kaming et al., 1997).  

9. No of unforeseen site conditions: These can cause project delay as contractors 

have to confront site conditions (i.e. topography or underground conditions) not 

contemplated during the initial construction survey. 

10. Percentage (%) of materials damaged on site: Kangari (1995) and Bossink (2004) 

listed material damage on project site as one of the causes of construction time 

overrun. Such situations impact both project schedule and construction budget and 

may pose danger to the project (Bossink, 2004). 

11. Percentage (%) Delay in Material delivery: The danger of not having a reliable supply 

chain is unwarranted disruption in project schedule (Robinson and Scott, 2009). 

The impact of supply chain delay on a project may be viewed in terms of the 

percentage of construction duration that is lost to delay in material delivery. 
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12. Number of site Accidents and injuries: This can be expressed in terms of man hour 

loss or site closure due to accidents and its impact on project schedule (Le-Hoai et 

al., 2008). 

13. Number of days for site closure: This has an impact on the project timeline and 

does not include estimated closure due to bad weather. Site closures may occur 

due to industrial action by construction workers, force majeure, and closure due to 

potential danger to the public etc. (Flyvbjerg et al., 2004). 

14.  Percentage (%) of liquidated and ascertained damages in projects: Liquidated 

damages are financial penalties levied on contractor for breach of contractual 

obligations (Harty, 2005).  This has negative implications for timely delivery of a 

project, especially where such levy is huge enough to result in financial difficulties 

that prevents contractor from meeting their obligations to sub-contractors (Bossink, 

2004). 

15. Number of days with bad weather that prevented site work: Many attimes, 

protracted and unpredictable weather conditions (high velocity wind, flood etc.) 

may prevent a project from being completed on time (Fung et al., 2010). 

16. Number of disputes among parties: This may be in form of litigation or demand for 

contractual settlements and is a major factor which often results in project delay 

(Kangari, 1995). According to Teizer et al. (2010), the frequency of disputed issues 

on a project has negative implications for timely completion. 

In this study, our goal is to develop an accurate model that can be used to estimate 

completion risk (project delay). In order to achieve this, we assumed a linear relationship 

between Completion Risk (CR) and the predictors (p). The predictors (p) are thus 

considered as input variables (𝑋1,𝑋2,𝑋3 … … … … … . . 𝑋𝜌), thereby establishing a directly 

proportional relationship between CR as X=(𝑋1,𝑋2,𝑋3 ⋯ 𝑋𝜌). In other to achieve this, a 

linear model is thus developed and formally written as:  

 

𝐶𝑅 = 𝑓 (𝑋)  + 𝜖 9 

 

Where f is a fixed unknown function of X1, X2….Xp and 𝜖 represents random error term, 

which is independent of X and has a mean of zero. In the equation above, f(X) provides 

systematic information about the delay in PPP projects, and could be expanded to the 

following equation involving multiple variables to describe this relationship: 
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𝑓(𝐷𝐸𝐿𝐴𝑌) =  𝛽0 + 𝛽1 × 𝑁𝑂𝐷 + 𝛽2 × 𝐹𝐼𝑀𝑃 + 𝛽3 × 𝑃𝑂𝐶𝐼 + 𝛽4 × 𝑃𝑂𝐷𝑉 +

𝛽5 × 𝑃𝑆𝑆𝐿 + 𝛽6 × 𝐼𝑀𝑆𝑆 + 𝛽7 × 𝑁𝑈𝑆𝐶 + 𝛽8 × 𝑃𝑀𝐷𝑆 + 𝛽9 × 𝑃𝐷𝑀𝐷 + 𝛽10 ×

𝑁𝑆𝐴𝐼 + 𝛽11 × 𝑁𝐷𝑆𝐶 + 𝛽12 × 𝑃𝐿𝐴𝐷 + 𝛽13 × 𝑁𝐷𝐵𝑊 + 𝛽14 × NODP 

10 

 

Where 𝛽𝑖 is the coefficients that will be estimated, where 𝑖 = 0, 1, 2, … , 𝑝 employing Big 

Data analytics from the large array of data from PPP Project samples.  

4 Research Methodology 

This section explains the methodology employed in the study. After understanding the 

domain of completion risk in PPP projects, relevant data sources were identified to explore 

the most critical factors that lead to delay in PPP projects. The methodology-steps have 

been described in detail under subsequent sections and shown in Fig. 1 below: 

 

Figure 1: Big Data Analytics Workflow for Predictive Risk Modelling 

4.2 Databases 

The predictive accuracy of the Big Data models depends on the quality and volume of PPP 

projects. Data of 4,731 PPP projects were integrated from a large number of structured 
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and unstructured data sources. The data was distributed in a large number of data 

sources. These include Oracle financials, BIM models, Primavera, Candy, Health & safety, 

Business objects, Customer relationship management (CRM), and a large body of 

unstructured documents. These sources were explored to identify relevant data, structures 

and formats to enable the database design. Fig 2 shows types and sources of data of PPP 

projects used in the study. This effort has resulted in the exploration of 1.01 terabytes of 

data for analysis. This data fulfills all 3V’s of the Big Data that is volume, variety and 

velocity. 

 

 

Figure 2: An overview of Big Data of PPP Projects 

4.2 Data pre-processing and integration 

Data integration task is found the toughest in the overall risk analytics experience. A variety 

of syntactical and semantic heterogeneities were resolved (Halevy et al. 2005; Doan & Noy 

2004). To ensure data completeness, machine learning (ML) programs were used to 

predict missing values for predictors like average defects (Bishop 2006; Goldberg & 
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Holland 1988). Data were standardized with vocabularies for construction sectors and 

contract types. Automatic conversion is augmented to deal with inappropriate 

interpretations especially for date columns. The data normalization is carried out by 

formula given in Eq. 11. 

𝑋′𝑖 =
𝑋𝑖 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 

 
11 

where 𝑋′𝑖 is the scaled result of 𝑋𝑖, 𝑋𝑚𝑖𝑛 is the smallest value of 𝑋 , and 𝑋𝑚𝑎𝑥 is the largest 

value of 𝑋 . The final data analytic sample is restricted to 4,294 PPP projects, which is 

eventually loaded onto Apache Spark—a resilient cluster computer engine for Big Data 

Analytics. Table 3 shows distribution of projects across sectors and contract types. SparkR 

is used for data analysis and R ggolot2 package is used for visualisation.  

  

Table 3: Data Analytic Sample of PPP Projects used for Big Data Analytics 

Sr.#. Sector Contract Type Number of 

Projects 

1 Housing Fixed Price Turnkey (FPTK) 200 

2 Housing Design-Bid-Build (DBB) 261 

3 Social Care Fixed Price Turnkey (FPTK) 227 

4 Social Care Design-Bid-Build (DBB) 250 

5 Transport Fixed Price Turnkey (FPTK) 233 

6 Transport Design-Bid-Build (DBB) 253 

7 Defence Fixed Price Turnkey (FPTK) 243 

8 Defence Design-Bid-Build (DBB) 249 

9 Education Fixed Price Turnkey (FPTK) 219 

10 Education Design-Bid-Build (DBB) 266 

11 Health Fixed Price Turnkey (FPTK) 190 

12 Health Design-Bid-Build (DBB) 251 

13 Waste Management Fixed Price Turnkey (FPTK) 238 

14 Waste Management Design-Bid-Build (DBB) 261 

15 Public Buildings Fixed Price Turnkey (FPTK) 225 

16 Public Buildings Design-Bid-Build (DBB) 260 

17 Others Fixed Price Turnkey (FPTK) 232 

18 Others Design-Bid-Build (DBB) 236 

Total Data Analytic Sample: 4294 

4.3 Descriptive Analytics 
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We started with exploratory analysis to develop better understanding of the overall PPP 

projects data. Descriptive analytics is applied to describe main features of the dataset. 

Important facts are elaborated to get initial impressions of data. Numerical summaries 

and graphical methods are used. Histograms, boxplots, and scatterplots are drawn to see 

the fitness of data for predictive modelling.  

4.4 Predictive Analytics  

Descriptive analytics sets the stage for more flexible predictive analysis, where a series of 

predictive models were developed using various Big Data Analytics techniques and 

evaluated for their predictive performance. The data are split across training and test sets 

using sample() function. We initially developed multivariate linear regression model to 

understand the interactions of predictors on response. This model is treated as the 

baseline model. To improve upon the predictive performance of linear model, regression 

trees were employed. We found different behaviour of delays across different sectors and 

contract types, which are not fully described by linear regression model.  

Though regression trees describe non-linearity to some extent and are highly interpretable. 

But they are not robust; as a slight change in the data can result in a totally variant tree. 

To overcome these limitations in predictive modelling, we employed random forest to see 

if they improve the predictive performance by growing 500 trees. Support vector machine 

(SVM) was also employed to ensure good classification of the data sample. Finally, we 

brought the deep learning based predictive modelling technique called deep neural 

networks (DNN). DNN is a black box approach that knows how to process predictors to 

obtain more accurate matching response. For each model, hyper-parameter tuning is 

performed and approaches like cross validation was employed to devise a robust model 

development strategy. These models were plotted using R gglot2 library for evaluating their 

performance in terms of decreasing the test error. It is shown that random forest is very 

robust and viable option to employ for estimating the completion risk in the PPP projects. 

4.5 Attribute importance and ranking 

Since these models employ different model development strategies, they ranked the 

attributes differently. To aggregate these ranking, a reliable total ranking scheme is 

devised. The scheme used p-value, Gini, impurity, ranked agreement factor (RAF), and 
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percentage ranked agreement factors (PRAF) for ranking predictors for the completion risk 

prediction. 

5 Analysis and Findings 

5.2 Big Data Descriptive Analytics 

We started with exploratory analysis to develop better understanding of the overall PPP 

project data. Descriptive analytics is the kind of first hand analysis applied to describe 

main features of the dataset. Important facts are elaborated to get initial impressions of 

data. Numerical summaries and graphical methods are often rampant. To showcase the 

analysis, correlation matrix plot is discussed here. Covariance test is performed to 

investigate multicollinearity among the 16 predictors in the dataset. In probability statistics 

and theory, covariance help describe the degree to which set of random variables deviate 

from their expected values (Newey and West, 1994). According to Casella et al. (2013), 

positive covariance indicates positive linear relationship whereas negative values mean 

negative linear relationship. Covariance is calculated by the Eq. 12 and colour coded in 

the Fig. 3.  

𝑐𝑜𝑣(𝑋, 𝑌) = ∑
(𝑥𝑖 − 𝑥𝑖)(𝑦𝑖 − 𝑦

𝑖
)

𝑛

𝑛

𝑖=1  
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Figure 3: Correlation plot depicts covariance between variables in PPP projects 

As shown in Fig. 3, the bright brown slots represent the positive linear relationships 

whereas the blue slots depict the negative linear relationship. In addition, strong brighter 

colours represent the strong relationship between the variables, whereas the faded 

coloured regions represent independent variables. It is notable from the graph, that 

response variable (project delay) has strong relationship with most of the variables, which 

is a very good indicator for considering these variables in predictive modelling. However, 

some variables have strong covariance, like number of days with bad weather NDBW and 

unforeseen site condition (UNSC). This shows collinearity issue between these variables 

and informs that these variables tend to add similar predictive capabilities twice. As a 

result, we dropped NDBW for UNSC to reduce the complexity of the model in order to 

achieve higher predictive performance.  

5.3 Big Data Analytics for Estimating Completion Risk in PPP Projects 

In the remainder of this paper, we discuss the development of predictive models for 

completion risk estimation. Since a single model might not be able to entirely capture the 
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true relationship of different KPIs selected in this study with respect to delays in PPP 

projects, a mix of linear as well as non-linear Big Data analytics techniques are employed 

during model development. These techniques have really moved our understanding of 

completion risk to the next level. In addition, a robust completion risk estimation model is 

developed for assessing delays in the future PPP projects. Subsequent sections provide 

more details of these models and their comparisons.  

5.4 Multivariate Linear Regression 

An important reason behind starting with linear regression is to understand the way delay 

in PPP projects are influenced by myriad factors. In this case, we estimated ƒ not for the 

purpose of predicting completion risk in PPP projects. Instead the objective is to 

understand the relationship between predictor ρ and response 𝒀 or more specifically to 

know how 𝒀 changes as a function of ρ. So ƒ̂ is not treated as a black box rather, an 

elaborate description of its exact form. Listing 5 shows the summary of linear regression 

model.  

Call: 
lm(formula = DELAY ~ ., data = trainPPP) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.73954 -0.07309  0.00192  0.05645  0.71047  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.3757610  0.0172054  21.840  < 2e-16 *** 
SECTOR1      0.0072317  0.0105143   0.688  0.49164     
SECTOR2     -0.0096546  0.0104830  -0.921  0.35714     
SECTOR3      0.0005468  0.0102727   0.053  0.95755     
SECTOR4      0.0100831  0.0104072   0.969  0.33270     
SECTOR5     -0.0043815  0.0107594  -0.407  0.68388     
SECTOR6     -0.0073937  0.0103638  -0.713  0.47565     
SECTOR7      0.0018448  0.0103175   0.179  0.85810     
SECTOR8      0.0103248  0.0105442   0.979  0.32757     
CONTRACT1    0.0142038  0.0049633   2.862  0.00424 **  
NOD          2.4175803  1.1975378   2.019  0.04361 *   
FIMP        -0.1712855  0.0804999  -2.128  0.03344 *   
POCI         0.0040691  0.0076285   0.533  0.59380     
PODV         0.7175872  1.1699697   0.613  0.53970     
PSSL        -1.1511576  0.6664203  -1.727  0.08421 .   
IMSS        -0.4591695  0.9651310  -0.476  0.63428     
NUSC         5.9326532  1.2714082   4.666 3.21e-06 *** 
PMDS        -1.9396845  0.8848595  -2.192  0.02846 *   
PDMD        -4.8422194  0.5106527  -9.482  < 2e-16 *** 
NSAI        -4.1452338  1.2620944  -3.284  0.00103 **  
NDSC        -1.0147283  1.0164924  -0.998  0.31824     
PLAD        11.3065432  1.3579018   8.326  < 2e-16 *** 
NDBW        -6.7006330  0.5704384 -11.746  < 2e-16 *** 
NODP         0.0012832  0.0074467   0.172  0.86320     
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--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1283 on 2756 degrees of freedom 
Multiple R-squared:  0.6927, Adjusted R-squared:  0.6902  
F-statistic: 270.1 on 23 and 2756 DF,  p-value: < 2.2e-16 

Listing 4: Summary of the Fitted Multivariate Regression Model for Risk Estimation 

As mentioned earlier, sector and contract type are categorical variables, dummy variables 

are created automatically for each of their elements. The intercept term (𝛽0 = 4.028) is 

implicitly added to the model. Generally, intercept term 𝛽0 is the expected delay when all 

predictors equal to zero. Currently the sector attribute contains 0=hospital, 1=school, 

2=public building, 3=transportation, 4=housing, 5=social care, 6=defence, 7=waste, and 

8=others. The model will mislead if it is applied to data set that contains sectors that are 

not representative within the training data set. The same applies to the contract types as 

well. Interestingly, the model does not describe the relationship of sectors to delays, which 

is reported by higher p-values (0.49164, 0.35714, 0.95755, 0.33270, 0.68388, 

0.47565, 0.85810, and 0.32757) of all sectors respectively. In contrast, contract type has 

virtually zero p-value (0.00424), which indicates strong correlation in predicting delays. 

The implication of this is that delay in project varies based on contract type. 

The parameter estimation is computed using ordinary least squares. The Estimate column 

shows parameter estimation for predictors and Std. Error displays standard error 

associated with each of these coefficients. This is used for hypothesis testing, using t-

distribution column t value, to determine if each coefficient is not statistically different 

from zero. And if so, then the predictor is removed from the model. Analysis show that 

associated hypothesis test p-value in Pr (<|t|) values are small for intercept term, contract 

type, number of defects (NOD), % of fluctuation in materials price (FIMP), number of 

unforeseen site conditions (NUSC), % materials damage (PMDS), % delay in materials 

delivery (PDMD), number of site injuries (NSAI), number of days bad weather (NDBW), and 

number of disputes among parties (NODP). Whereas, the rest of the attributes are removed 

from the model since they have no significance in predicting delay in PPP projects. A small 

p-value corresponds to small probability that such a large t value would be observed under 

the assumption of null hypothesis. In this case, for a given I = 0, 1, 2, …, p-1, the null and 

alternate hypothesis follow: 
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𝐻0: 𝛽𝑖 = 0 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝐴: 𝛽𝑖 ≠ 0 

For small p-values, as is the case with above-mentioned predictors, the null hypothesis 

would be rejected. Whereas for rest of predictors, null hypothesis is not rejected due to 

large p-values of those predictors. Dropping these columns resulted in minimal changes 

to the estimates as well as predictive performance of the model. The last part of summary 

displays some of the vital details of regression model. Specifically, R2, which in this context 

says that the model is capable to explain 69% variation in the data. And the overall p-value 

i.e., < 2.2e-16 is small, which indicates that null hypothesis should be rejected. 

Fig. 4 shows the line plot for observed and predicted delays estimated by the linear 

regression where R2 is relatively good (69%). However, it is evident that the predictions 

are not uniformly accurate. To improve upon these, we employed regression trees to 

capture the non-linear behaviour of predictors on response.   

 

Figure 4: Evaluating observed and predicted delays in the PPP projects  

5.5 Regression Trees 

To explain the non-linearity between the predictors and response variables, regression 

trees are fitted on the data of the PPP projects. Without hyper-parameter tuning, initial 
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regression tree only considered sector variable and ignored rest of all predictors. This is 

quite misleading and is tackled by appropriately configuring the regression tree for risk 

estimation. To this end, cross validation and cost complexity pruning parameters are 

optimised and the regression trees are grown for different cp values. Here the true power 

of regression trees comes into play and its effectiveness to uncover non-trivial relationship 

of predictors could be noticed. Contrary to linear regression, regression tree utilised 

majority of predictors to develop very strong risk estimation model in the dataset. Similar 

to regression analysis, contract type is regarded as the most superior predictor in the 

model; hence taken as the root of the tree. However, the second significant predictor in 

regression tree is considered the sector, which is totally ignored by the multivariate 

regression analysis. Regression tree make decisions at various levels based on the sector. 

So, in this case, the most complex tree is selected by the cross-validation. Fig. 5 shows the 

line plot for observed and predicted delays for linear regression (with accuracy improved 

by 79%). It is evident that predictions improved significantly. To improve upon the 

regression trees, we are employing regression trees to capture the non-linear behaviour of 

predictors on response (see Fig.6 for regression Tree Model).   

 

Figure 5: Evaluating observed and predicted delays in the PPP project 
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Figure 6: Regression tree model for predicting delays in the PPP projects   
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5.6 Random Forest 

Although, the regression tree model developed for completion risk estimation has 

improved the test accuracy drastically, it is a non-robust technique and a slight change in 

data can yield very different regression trees. Hence, we needed to improve the stability of 

the model by employing random forest. Listing 6 shows the attribute importance summary 

generated by fitting a random forest of 500 trees on PPP projects data, where two 

measures of importance are populated. The former is based upon the mean decrease of 

accuracy in predictions on the out of bag samples when a given variable is excluded from 

the model. The latter is a measure of the total decrease in node impurity that results from 

splits over that variable, averaged over all trees. In the case of regression trees, the node 

impurity is measured by the training RSS, and for classification trees by the deviance.  

          %IncMSE IncNodePurity 
SECTOR   55.36064     48.883647 
CONTRACT 21.08694     13.600641 
NOD      12.49698      6.409105 
FIMP     11.29658      5.433949 
POCI     11.94632      6.791739 
PODV     13.71843      6.911212 
PSSL     13.60090      8.059655 
IMSS      7.80614      3.806822 
NUSC     13.55149      6.490616 
PMDS     11.16227      3.717878 
PDMD     12.70519      8.271368 
NSAI     16.43001      7.282481 
NDSC     12.01905      5.592730 
PLAD     13.95778      7.496080 
NDBW     14.17712      6.556476 
NODP     12.86448      6.163925 

Listing 5: Summary of the Attribute Importance by Random forest in Risk Modelling 

Fig. 7 shows the line plot for observed and predicted delays for linear regression (with 

accuracy improved by 81%). It is evident that predictions improved dramatically.   
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Figure 7: Evaluating observed and predicted delays in the PPP projects 

5.6. Support Vector Machine (SVM) 

Since SVM has huge adaptability and can generalise to new data with higher accuracy, the 

SVM algorithm is used to train a predictive model to see its prediction capabilities. We 

started off with SVM for regression analysis using linear kernel, which didn't perform very 

well initially. The error loss was substantial. The Gaussian kernel was used which improved 

the model accuracy significantly. The algorithm started learning patterns into the data with 

respect to completion risks. For hyperparameter settings such as epsilon, manual 

approach was adopted at first, and different combinations of values were tested. This 

approach was cumbersome due to training model for every possible combination. The SVM 

supported automatic parameter tuning which was then used. This system-generated 

hyperparameter mode of SVM was found more reliable and efficient since it used 

advanced optimisation algorithms to identify the best values to maximize model accuracy. 

  Monte-Carlo Sensitivity  

PDMD  0.092 

NODP  0.091 

NDSC  0.087 

PMDS  0.087 

PLAD  0.086 

FIMP  0.086 

NDBW 0.085 

NUSC  0.085 
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PSSL  0.085 

IMSS  0.072 

NSAI  0.066 

POCI  0.053 

NOD  0.010 

CONTRACT 0.005 

PODV  0.003 

SECTOR 0.003 

Listing 7: Summary of the Attributes Importance by SVM in Risk Modelling 

SVM solved the problem by defining an n-dimensional tube around the data points to 

determine the vectors that yield the most extensive intervals. The coefficient vector was 

extracted from the SVM model to see the importance SVM was giving to each predictor for 

predicting the delays in PPP projects. Listing 7 above shows the attribute importance 

summary generated by the trained model using the Monte-Carlo Sensitivity Analysis (M-

CSA). The overall accuracy of the model is 52%. Fig. 8 therefore presents the line plot for 

observed and predicted delays for SVM, which outperforms the linear regression but could 

not uplift the predictive accuracy as the tree-based models yielded for predicting the delays 

in the PPP projects. Although the SVM showed inadequacy in predictive power in this study, 

the mathematical model underpinning the algorithm suits the classification problem more 

than the regression analysis. 

 

Figure 8: Evaluating observed and predicted delays in the PPP projects 
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5.7 Deep Neural Network (DNN) 

Finally, to check if the deep learning technique can enhance the predictive performance 

of the completion risk estimation model, DNN is used. Two hidden layers of 10 and 5 nodes 

respectively are defined for the DNN model. The resultant model is shown in the Fig. 9. We 

can see that the model is not interpretable. This is because neural network is a black box 

methodology to predicitve modeling. It is applied in situation where the objective of the 

research is to make reliable predictions. So all the predictors are taken as input to the 

neural network. Non-linear sigmoidal transformation is done on predictors and the weights 

of the hidden layers are computed. These weights are eventually converted back to the 

linear transformation. Fig. 10 shows the line plot for observed and predicted delays for 

linear regression (with accuracy improved by 13%). It is evident that the predictions look 

very bad. This is partly due to the fact that DNN suits classification problems more than 

regression problems. 
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Figure 9: Deep neural network model for forecasting delays in the PPP projects 
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Figure 10: Evaluating observed and predicted delays in the PPP projects 

5.9  Comparison of Big Data Analytics Techniques  

5.9.1 Comparison based on Residual Sum of Square (RSS) 

In this section, we set out to compare the 5 predictive models employed in the study using 

two major comparison indicators: residual sum square (RSS) and percentage rank 

agreement factor (PRAF). While the RSS compares the predictive performance of the 

model, (flexibility and interpretability were examined separately); PRAF compares each 

predictor’s importance in forecasting project delay. Based on results from data analysis, 

random forest show the least residual error, with an error margin of 1.03 and is considered 

good in flexibility. This is immediately followed by decision tree with RSS score of 2.17. 

Linear regression, support vector machine and deep neural networks however showed 

profound weakness in predictive performance with large error margins of 23.20, 25.64 

and 469.56 between the data and the estimation models respectively. Table 4 below 

shows detailed comparison of the predictive modelling techniques. Further details of the 

results are discussed in greater detail in the next section. 
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Table 4: Comparison of Big Data Analytics Techniques based on RSS 

 Big Data Analytics Techniques RSS Flexibility Interpretability 

1 Random Forest 1.03 Good low 

2 Decision Tree 2.17 average high 

3 Linear Regression 23.20 Low high 

4 Support Vector Machine 25.64 High Low 

5 Deep Neural Network 469.56 High low 
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Table 5: PRAF of the Four Big Data Predictive Models and their Level of Significance (p-Value) 

Sr.#. Predictors 

Ranking of Factors by Models Sum 

Ranks 

(∑) 

RAF PRAF Overall 

Ranking 

Order 

Linear 

Regression 

Regression Tree Random Forest Support Vector 

Machine 

Neural 

Network 

P-value Rank Gini Rank Impurity Rank M-CSA Rank Weight Rank 

1 Percentage shortage in skilled labour 0.08421 4 153.1195 2 8.05966 4 0.085 9 0 0 13 0.81 69.11 1 

2 Percentage Delay in Material delivery < 2e-16 1 55.2312 8 8.27137 3 0.092 1 0 0 19 1.19 54.75 2 

3 Number of site Accidents and injuries 0.00103 2 114.3011 5 7.28248 6 0.066 11 0 0 21 1.31 50.10 3 

4 Percentage of design variations 0.5397 5 173.7692 1 6.91121 7 0.003 15 0 0 24 1.50 42.97 4 

5 Percentage of liquidated and ascertained damages 

in projects 

< 2e-16 1 41.30585 10 7.49608 5 0.086 5 0 0 26 1.63 38.21 5 

6 Number of unforeseen  site conditions 0.5938 5 132.5914 4 6.79174 8 0.053 12 0 0 28 1.75 33.46 6 

7 Percentage  fluctuation in construction material 

price index 

0.00424 2 0.562405 16 13.6006 2 0.005 14 0 0 29 1.81 31.08 7 

8 Percent change in inflation 0.04361 3 141.6945 3 6.40911 11 0.010 13 0 0 29 1.81 31.07 8 

9 Average number of disputes among parties 3.21E-06 1 62.27339 7 6.49062 10 0.085 8 0 0 30 1.88 28.71 9 

10 Number of defects in a construction project 4.48423 5 10.30915 15 48.8836 1 0.003 16 0 0 30 1.88 28.70 10 

11 Number of days with bad weather that prevented 

site work 

0.03344 3 93.32449 6 5.43395 14 0.086 6 0 0 30 1.88 26.33 11 

12 Percentage of materials damaged on site < 2e-16 1 21.89769 14 6.55648 9 0.085 7 0 0 32 2.00 23.95 12 

13 Number of days for site closure 0.02846 3 52.33817 9 6.16393 16 0.087 4 0 0 34 2.13 19.20 13 

14 Projects were either procured via turnkey or Design 

Bid Build 

0.8632 5 40.06702 11 3.71788 12 0.091 2 0 0 34 2.13 19.18 14 

15 Projects chosen cut across 9 sectors of the 

economy 

0.63428 5 36.84742 12 3.80682 15 0.072 10 0 0 37 2.31 12.07 15 

16 Percentage of inferior materials supplied to site 0.31824 5 22.02123 13 5.59273 13 0.087 3 0 0 42 2.63 0 16 
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5.9.2 Percentage Rank Factor 

 

Going further, in order to have an overall agreement in the ranking of all predictors, the 

rank agreement factor (RAF) and PRAF (Elinwa and Joshua, 2001; Chan and 

Kumaraswamy, 2002) were applied. RAF and PRAF are mathematically computed using 

equation 13 and 14 respectively: 

 

𝑅𝐴𝐹 =
Σ(𝐿𝑅)(𝑅𝑇)(𝑅𝐹)(𝑆𝑉𝑀)(𝐷𝑁𝑁)

𝑁
                           13 

𝑃𝑅𝐴𝐹 =
RAFmax − RAFi

RAFmax
× 100%,                   14 

 

Where RAFmax = maximum RAF, RAF i is the RAF for criteria i, N = number of variable 

predictors ranked, and Σ(𝐿𝑅)(𝑅𝑇)(𝑅𝐹)(SVM)(𝐷𝑁𝑁) = sum of the order of rankings of 

Linear Regression, Regression Trees, Random Forest, Support Vector Machine and Deep 

Neural Network. An absolute rank difference of 2, for example, implies more agreement 

as to the importance of the predictor than when the absolute rank difference is 3. The rank 

agreement factor may be >1, with a higher factor indicating more disagreement (Elinwa 

and Joshua, 2001). For the 16 predictors affecting project delay, the maximum RAFmax = 

2.00. A RAF of zero implies perfect agreement. The result RAF for the models is shown in 

the fourteenth column of Table 5. In addition, a cursory look at results of the PRAF in Table 

5 shows the five most important predictors contributing to project delay to be: (1) 

‘Percentage shortage in skilled labour’, (2) ‘Percentage Delay in Material delivery, (3) 

‘Number of site Accidents and injuries’, (4) ‘Percentage of design variations’, and (5) 

‘Percentage of liquidated and ascertained damages in projects’. These predictors are 

further enumerated in the discussion section. 

Additionally, the study ranked the significance of predictors under each of the five models 

using, P-value (linear regression), Gini (regression tree), impurity (random forest), Monte 

Carlo sensitivity analysis (SVM) and weight (DNN). For the linear regression model, the 

study conducted a one-sample t-test to derive p-values for each predictor at 95% 

confidence level. If the mean difference is significantly different from the hypothesised 

value (<.05), it means that the value is statistically important in affecting project delay at 

the 95% confidence level (See column three and four of Table 5 for P-value of each 
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predictor and their ranking). Going further, with regression tree, the study also evaluated 

the importance of some variable  when predicting  by adding up the decreases in 

weighted impurity for all nodes , where  is used (averaged over all trees in the forest, 

but actually, we can use it on a single tree), 

𝐼 (𝑋𝑘) =
𝐼

𝑀
∑ ∑

𝑁𝑡

𝑁𝑡𝑚 ∆𝑖(𝑡)          15 

Where the second sum is only on nodes  based on variable  . If  is Gini 

index, then  is called Mean Decrease Gini function. In addition, in order to identify 

which of the predictor variables are most important for predicting project delay in PPP 

projects, we used random forest to derive the mean decrease impurity importance of each 

predictor from assemblages of randomized trees. The ranking of each predictors derived 

from this process are shown in column 7 and 8 of Table 5. Regarding support vector 

machine, sample data were smoothly segregated based on sectors and contract types. In 

case of DNN, hidden layers are involved with complex interactions, hence, getting a single 

value for attributes is not realistic. As such, zero is set as the weight and rank of these 

attributes in DNN to carry out the overall ranking process.    

6.0  Discussion  

This section discusses results from the study and started by comparing the predictive 

performance of the five models (random forest, linear regression, decision tree, support 

vector machine and deep neural networks) in forecasting delay in PPP projects, their 

flexibility and interpretability respectively. Based on evidences shown in Table 4, a cursory 

look at the residual sum of square (RSS) of the five analytical models suggest that random 

forest has the best predictive performance in terms of reducing error in the model to 1.23. 

This is followed by decision tree with RSS score of 2.17. Linear regression, support vector 

machine and deep neural networks however, show profound weakness in predictive 

performance with large error margins of 23.20, 25.64 and 469.56 between the data and 

the estimation models respectively. According to Theobald (1974), residual sum of square 

is a measure of the variability or error in the data set which is not captured in the model. 

A small RSS therefore suggests a tight fit of the estimation model to the data used for 

analysis (Tibshirani, 1996). This suggests the capability of random forest in this study to 

explain a greater amount of the dataset.  However, considering that residual sum of square 
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alone may not be entirely suitable to judge the correctness of the models (Al-Hazim et al., 

2017), flexibility, and interpretability of the five models were also considered in the study. 

Although, support vector machine (SVM) and deep neural networks (DNN) showed high 

flexibility as evidenced in Table 4, this is only attributed to their ability to accept and review 

new data streaming in and thus help provide a progressively realistic assessment of a 

model (Hopfield, 1988). However, whilst random forest is considered good enough in 

terms of flexibility (Evans et al., 2011; Rodriguez-Galiano et al., 2012; Criminisi et al., 

2012), decision tree and linear regression are rated average and low respectively in model 

flexibility. Additionally, this study examined users’ ability to interpret the model, which is 

also an important factor in deciding which model may be suitable for forecasting 

completion risk. As represented in Table 4, the results show that while decision tree and 

linear regression are high on interpretability, which confirms their wider uptake in risk 

analysis, random forest, and DNN models are rated very low in interpretability. However, 

in the overall, and based on its seeming higher predictive performance (least test error) 

and flexibility, this study therefore suggests random forest for predicting completion risk 

in large portfolio of PPP projects. According to Liaw and Wiener (2002), random forest 

provides a powerful approach to data exploration; analysis and predictive modelling of 

uncertainty (see also Svetnik et al., 2003). With a high error detection rate and easy 

identification of anomalies and outliers in data (Pal, 2017), random forest will enable 

automatic identification of significant predictors influencing PPP project delay (Archer and 

Kimes, 2008). Random forest is therefore considered a desirable technique capable of 

helping to make more accurate decisions toward minimizing time wastage in delivering 

projects. 

 

The second phase of data analysis in this study examines the key predictors contributing 

towards delay in PPP projects out of the 16 predictors investigated (14 numerical and 2 

categorical predictors). As evidenced in Table 5, results of PRAF calculation performed on 

the data relating to the 16 predictors indicate that overall, there are five most important 

predictors contributing towards project delay. These are: (1) ‘Percentage shortage in 

skilled labour’, (2) ‘Percentage Delay in Material delivery, (3) ‘Number of site Accidents 

and injuries’, (4) ‘Percentage of design variations’, and (5) ‘Percentage of liquidated and 

ascertained damages in projects’.  

(1) Percentage shortage in skilled labour –After extensive data analysis, the study 

identified percentage shortage in skilled labour as the first most significant factor 



 

41 

 

contributing to delay in construction projects with a PRAF score of 69.11. This 

confirms Teizer et al. (2010) who suggested that shortage in skilled workers creates 

bottlenecks with various implications on project cost, quality; productivity and 

timely completion (see also Larsen et al., 2015). Usually, the construction industry 

employs subcontractors, direct labour, and third party services including project 

management, and sustainable solutions. However, the recent global recession 

coupled with increased demand for quality infrastructures (Mackenzie et al., 2001), 

has contributed to the massive shortage of skilled work force in the global 

construction industry (Al-Hazim et al., 2017). According to Larsen et al., (2015), the 

huge number of skilled workers that left the construction industry at the wake of 

the financial crisis had a major impact in the industry’s completion rate , with more 

companies identifying insufficient skilled workers as one of the major causes of 

schedule overrun in projects (KPMG Global Construction Industry Report, 2015). 

This situation is also worsened by the insufficient number of new recruits joining 

the industry through apprentiship, resulting in growing skill-gap in areas such as 

carpenters, millwrights and electrical technicians among others (Adam et al., 

2017).  

 

(2) Percentage Delay in Material delivery – Percentage delay in material delivery 

was identified as the second most important predictor of project delay in this study 

showing a PRAF score of 54.75. Existing studies such as Van et al. (2015), Adam 

et al. (2017) and Ching (2014) have also highlighted the above perspective and 

suggested timely completion of projects is often contingent upon trouble-free 

supply to project site. As argued by Al-Hazim et al., (2017), the supply chain is an 

important stakeholder in construction project delivery and ensures the right 

construction material and quantities are delivered in a timely fashion at the right 

location. Al-Hazim et al. (2017) identified some causes of delays in material delivery 

as high demand for construction material, long procedure of purchasing order, poor 

communication between the contractor and the supplier among others ( See also 

Ching, 2014; Javed et al., 2013).  Asides being a major cause of completion risk; 

delay in material delivery to site also results in significant cost overrun to the 

contractor in terms of wasted productive time for workers waiting for materials, 

penalties in liquidated and ascertained damages in the event of project’s failure to 

meet completion deadline etc. (Larsen et al., 2015). 
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(3) Number of site Accidents and injuries – Number of site accidents and injuries 

was ranked as the third important predictor of project delay with a PRAF score of 

50.10. This confirms studies such as Van et al. (2015), Mohamed (2002) Sawacha 

et al. (1999) who have emphasized construction site accidents as one of the 

important factors contributing to project delay. Ching (2014) suggested that unsafe 

behaviour is a most significant contributor to construction site accidents with a 

resulting impact on timely completion of projects. According to Larsen et al. (2015), 

in most instances of site accidents, the project manager is often obliged to either 

temporarily suspend site activities or in a number of fatal cases, call indefinite site 

closure to allow proper investigation and assessment of such accidents. This 

results in man-hour loss and causes disruption to schedule of projects’ activities 

(Van et al., 2015). 

 

(4)  Percentage of design variations – Another important predictor of project delay 

is the percentage of design variations carried out on the project with a PRAF score 

of 42.97. Design variations are a general phenomenon in construction projects 

(Allen and Iano, 2011). Variations have to do with the amendments to original 

project design and ultimately the project scope (Kangari, 1995). Variations are a 

contentious issue in construction project and often cause disputes among project 

stakeholders (Adam et al., 2017; Tam and Fung, 2008). In most instances, 

variations in project are initiated by client (Van et al., 2015). This happens because, 

often times, many clients do not fully make up their mind about what they want in 

terms of project’s designs and other aspects, until the construction commences 

(Van et al., 2015). As such, they tend to make their decisions as the project’s 

construction process progresses, while proposing different variations to original 

project scope and design. Variations have serious implications for timely 

completion of projects and the more or bigger the variations implemented on a 

project, the higher the potential for completion risk (Tam and Fung, 2008). A 

number of studies have suggested better engagement between the client and 

contractor at the pre-construction stage may reduce the number of potential 

variations to a project’s scope (Tam et al., 2004; Pal et al. 2017; Adam et al., 2017). 
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(5) Percentage of liquidated and ascertained damages in projects – 

The study identified percentage of liquidated and ascertained damages (LAD) as 

the fifth most important predictor of project delay with a PRAF value of 38.21. 

According to Hampton et al. (2010), liquidate and ascertained damages arises from 

failure of the construction contractor to successfully put the project into operations 

at the agreed deadline. LAD is often contractual, and the penalty for it is expressed 

as a financial liability to the contractor (Harty, 2005). As argued by Rebeiz (2011), 

except where a project contractor is a big construction firm with strong financial 

capabilities, a huge financial penalty in liquidated damages may cause financial 

distress to the contractor, which may also affect its ability to deliver the project as 

scheduled. As suggested by Backstrom (2013) and Javed et al. (2013) many SME 

contractors in the construction industry had gone bankrupt due to incurring heavy 

financial liabilities via liquated damages, while eventually failing to deliver such 

projects at their deadlines. Studies such as Adam et al. (2017), Sun and Meng 

(2009) argued that quick resolutions of contractual issues without recourse to 

lengthy court actions will mitigate the impact of LAD. 

7.0 Implication for Practice: 

 

Events in the industry over time had prompted arguments about how best to estimate 

project delay to enable benchmarking for future project delivery and help improve 

procurement policies (Lee, 2008; Love, et al., 2012; Fung et al., 2010). Industry 

stakeholders, especially public sector clients had clamoured for realistic forecasting and 

benchmarking of project delays (Pal et al., 2017; Rousseau and Libuser 1997; Shen et al., 

2007; Tam and Fung, 2008). This comes amidst recent statistics suggesting delay as a 

recurring decimal within the construction industry (KPMG Report, 2015; Allen and Iano, 

2011; Robinson and Scott, 2009). By proposing a Big Data predictive modelling approach, 

this study provides a reliable technique 

 for completion risk forecasting by comparing the predictive performance of 5 advanced 

analytical techniques (Deep Neural Networks, Support Vector Machine, Random Forest, 

Linear Regression, and decision tree). The study focused on 16 drivers of project delay and 

proposed Random forest as the best possible analytic technique for predicting completion 

risk.  This is based on evidences from the study, which shows that random forest model 

has the least residual error with good flexibility, and such a good fit for predicting and 
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benchmarking completion risk. This is against the low performances of other four 

predictive models. It therefore has significant implication for construction industry 

stakeholders in terms of choosing the right model that helps accurately predict the 

possibility of delay in PPP projects. Based on the evidences from the study, 5 key predictors 

with significant impact on delay were also considered: (1) ‘Percentage shortage in skilled 

labour’, (2) ‘Percentage Delay in Material delivery, (3) ‘Number of site Accidents and 

injuries’, (4) ‘Percentage of design variations’, and (5) ‘Percentage of liquidated and 

ascertained damages in projects’. These results show that construction industry 

stakeholders will benefit more from including the evaluation of these predictors in their 

strategic framework for risk evaluation and monitoring. This is considered crucial towards 

addressing the growing concern about completion risk in the industry, especially when 

considering mega PPP projects. According to recent statistics from KPMG global 

Infrastructure Report (2015), only 25% of projects delivered globally in the last 3 years 

came within 10% of completion deadline. This excessive time overrun on projects have far-

reaching negative implications especially in the case of PPPs where taxpayers’ money is 

often exposed.  

 

Additionally, this study emerges at an opportune time for policy makers and industry 

stakeholders to reflect on the performance of historical PPP projects in terms of delay and 

ultimately redesign procurement policies to meet existing realities. The big data predictive 

modelling technique will thus be useful at the procurement stage of PPP projects, to 

estimate the potential delay in projects using critical input variables. Looking at a 2005 

report by one of the Not for Profit organisations in the UK (The Tax Payers Alliance), 

statistics show the total net cost overrun for 305 public sector projects was over £23 billion 

above initial estimates, with a significant chunk of the cost  attributed to project delays. By 

estimating potential delay in future projects, policy makers, and contractors will be able to 

adopt effective project management strategies that can deliver cost savings on future 

public procurements. Similarly, considering that 80% to 90% of construction costs in PPPs 

are financed through banks’ limited recourse funds, completion risk forecasts can enable 

financiers to make informed decisions concerning loan life and refinancing for PPP 

investments. With a Big data enabled prediction of completion risk, new industry standards 

in terms of average delay in various types of PPP projects across different sectors can also 

be established as best practice for the construction industry. Additionally, the study offers 

new opportunities to project-based firms, public sector clients, contractors, financiers, and 
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other relevant stakeholders for developing increased capabilities relevant for managing 

completion risk during construction phase of their projects. 

8.0 Conclusion 

Accurate prediction of potential delays in PPP projects is considered vital for providing 

valuable insights that are relevant for planning and mitigating completion risk in future 

PPP projects. This study examined Big Data Analytics driven predictive modelling of 

completion risk (project delay) in PPP projects. In order to forecast potential delay in PPP 

projects, predictive performance of 5 advanced Big Data analytics techniques namely: 

Deep Neural Networks, Random Forest, Support Vector Machine, Regression Trees, and 

Multivariate Linear Regression were compared. Using huge datasets from 4294 PPP 

project samples across Europe between 1992 and 2015, sixteen (16) predictors 

influencing delay in PPPs (i.e. percentage (%) shortage in skilled labour, number of site 

accidents and injuries etc.) were employed to identify underlying pattern in project delay 

and its’ relationship with the identified influential predictors. The data was analysed using 

two categorical variables namely: contract type and sector to introduce dimensions for 

analysing the rest of the predictors and to uncover non-obvious correlations. With 

minimum, maximum and average values for each predictor produced from various 

construction industry data and government statistical reports, trends showing the 

behaviour of delay were generated across the entire dataset. 

 

After extensive analysis of the projects’ data, results show that, out of the five Big Data 

Analytics techniques, random forest has the best predictive performance for forecasting 

delay across large samples of projects. Random forest showed minimum residual sum of 

square error with high predictive performance accuracy compared to the three remaining 

analytics techniques. Evidences from the study also show that five predictors significantly 

with delay across the five models. These are (1) ‘Percentage shortage in skilled labour’, 

(2) ‘Percentage Delay in Material delivery, (3) ‘Number of site Accidents and injuries’, (4) 

‘Percentage of design variations’, and (5) ‘Percentage of liquidated and ascertained 

damages in projects’. These predictors were therefore considered as key contributors to 

project delay in construction PPP projects. The predictors showed higher correlation 

coefficients with delay across 5 sectors (hospitals, schools, public buildings, others, 

defence) and the two contract types (FPTK and DBB). In considering contract type as an 

important predictor of delay, results showed massive delay in PPP projects where Design 
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Bid Build (DBB) approach has been used, as against the fixed price turnkey method. The 

statistical significance of the results was compelling to the extent that large samples of 

projects were discovered to have been delayed beyond 150% of construction duration. 

Other predictors such as number of days with bad weather preventing project work, also 

revealed reasonable level of correlation with delay across the dataset. This study 

contributes to knowledge by proposing a Big Data Analytics predictive model for predicting 

delay in PPP projects. By unravelling the hidden correlations and patterns contributing 

towards delay within the construction process, the negative impact of completion risk on 

project timeline, contractual obligations, and contractors’ margins can be mitigated. This 

study also provides valuable opportunities policy makers and other industry stakeholders 

to consider evidence-based industry benchmarks for delay in future PPP projects. Such 

move is therefore expected to offer additional benefits of efficiency in PPP procurements. 

This study has examined completion risk (project delay) within the context of construction 

PPP projects delivered across few countries in Europe. As such, findings from the study 

should be interpreted within that context. Possible areas for future research are Big Data 

Analytics investigation of critical predictors of cost overrun in historical PPP projects, a Big 

Data driven research into counter-party risk and PPP contracting towards identifying top 

construction contractor practices influencing liquidated and ascertained damage 

payments.  

9.0 References 

Adam, A., Josephson, P. E. B., & Lindahl, G. (2017). Aggregation of factors causing cost 

overruns and time delays in large public construction projects: trends and 

implications. Engineering, Construction and Architectural Management, 24(3), 393-

406. 

Al-Hazim, N., Salem, Z. A., & Ahmad, H. (2017). Delay and cost overrun in infrastructure 

projects in Jordan. Procedia Engineering, 182, 18-24. 

Ahmed, S. M., Ahmad, R., Saram, D., & Darshi, D. (1999). Risk management trends in the 

Hong Kong construction industry: a comparison of contractors and owners 

perceptions. Engineering construction and Architectural management, 6(3), 225-

234 

Ahuja, H. N., & Nandakumar, V. (1985). Simulation model to forecast project completion 

time. Journal of construction engineering and management, 111(4), 325-342. 



 

47 

 

Archer, K. J., & Kimes, R. V. (2008). Empirical characterization of random forest variable 

importance measures. Computational Statistics & Data Analysis, 52(4), 2249-

2260. 

André Kik (2013). Dealing with Completion Risk. Risk Management. (Online) Accessed on 

23rd February, 2016 

[www.ampsdelft.nl/onderzoek_en_publicatie/ControllersMagazine_ENG.pdf] 

Assaf, S. A., & Al-Hejji, S. (2006). Causes of delay in large construction projects. 

International journal of project management, 24(4), 349-357. 

Aibinu, A. A., & Jagboro, G. O. (2002). The effects of construction delays on project delivery 

in Nigerian construction industry. International journal of project management, 

20(8), 593-599.  

Assaf, S.A., Al-Khalil, M. and Al-Hazmi, M., 1995. Causes of delay in large building 

construction projects. Journal of management in engineering, 11(2), pp.45-50. 

Allen, E. and Iano, J., 2011. Fundamentals of building construction: materials and 

methods. John Wiley & Sons. 

A.U. Elinwa and M. Joshua, (2001). Time-overrun factors in Nigerian construction 

industry, J. Constr. Eng. Manage. ASCE 127(5), pp. 419–425. 

doi:10.1061/(ASCE)0733-9364(2001)127:5(419). 

Backstrom, M. (2013). An examination of the independent certification processes of a 

construction contract. Building and Construction Law Journal, 29(5), 406-416. 

Baloi, D., & Price, A. D. (2003). Modelling global risk factors affecting construction cost 

performance. International Journal of Project Management, 21(4), 261-269. 

 Bilal, M., Oyedele, L. O., Qadir, J., Munir, K., Ajayi, S. O., Akinade, O. O., ... & Pasha, M. 

(2016). Big Data in the construction industry: A review of present status, 

opportunities, and future trends. Advanced engineering informatics, 30(3), 500-

521. 

Bilal, M., Oyedele, L. O., Qadir, J., Munir, K., Akinade, O. O., Ajayi, S. O., ... & Owolabi, H. A. 

(2015). Analysis of critical features and evaluation of BIM software: towards a 

plug-in for construction waste minimization using big data. International Journal of 

Sustainable Building Technology and Urban Development, 6(4), 211-228. 

Bing, L., Akintoye, A., Edwards, P. J., & Hardcastle, C. (2005). The allocation of risk in 

PPP/PFI construction projects in the UK. International Journal of project 

management, 23(1), 25-35.  



 

48 

 

Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, 

technological, and scholarly phenomenon. Information, communication & society, 

15(5), 662-679. 

Brown, B., Chui, M., & Manyika, J. (2011). Are you ready for the era of ‘big data’. McKinsey 

Quarterly, 4(1), 24-35. 

Carter, G., & Smith, S. D. (2006). Safety hazard identification on construction projects. 

Journal of construction engineering and management, 132(2), 197-205. 

Centenaro, M., Vangelista, L., Zanella, A., & Zorzi, M. (2016). Long-range communications 

in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE 

Wireless Communications, 23(5), 60-67. 

Chakrabarty, S., & Engels, D. W. (2016, January). A secure IoT architecture for Smart Cities. 

In Consumer Communications & Networking Conference (CCNC), 2016 13th IEEE 

Annual (pp. 812-813). IEEE. 

Chiang, M., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE 

Internet of Things Journal, 3(6), 854-864. 

Bossink, B.A., 2004. Managing drivers of innovation in construction networks. Journal of 

construction engineering and management, 130(3), pp.337-345. 

Baloi, D., & Price, A. D. (2003). Modelling global risk factors affecting construction cost 

performance. International Journal of Project Management, 21(4), 261-269. 

Burati Jr, J.L., Farrington, J.J. and Ledbetter, W.B., 1992. Causes of quality deviations in 

design and construction. Journal of construction engineering and management, 

118(1), pp.34-49. 

Ching, F.D., 2014. Building construction illustrated. John Wiley & Sons. 

Criminisi, A., Shotton, J., & Konukoglu, E. (2012). Decision forests: A unified framework for 

classification, regression, density estimation, manifold learning and semi-

supervised learning. Foundations and Trends® in Computer Graphics and Vision, 

7(2–3), 81-227. 

Davis, K., Ledbetter, W.B. and Burati Jr, J.L., 1989. Measuring design and construction 

quality costs. Journal of Construction Engineering and Management, 115(3), 

pp.385-400. 

Dissanayaka, S. M., & Kumaraswamy, M. M. (1999). Evaluation of factors affecting time 

and cost performance in Hong Kong building projects. Engineering Construction 

and Architectural Management, 6(3), 287-298. 



 

49 

 

Dikmen, I., Birgonul, M.T. and Han, S., 2007. Using fuzzy risk assessment to rate cost 

overrun risk in international construction projects. International Journal of Project 

Management, 25(5), pp.494-505. 

Eccles, R.G., 1981. The quasifirm in the construction industry. Journal of Economic 

Behavior & Organization, 2(4), pp.335-357. 

Errasti, A., Beach, R., Oyarbide, A. and Santos, J., 2007. A process for developing 

partnerships with subcontractors in the construction industry: An empirical study. 

International Journal of Project Management, 25(3), pp.250-256. 

El-Sayegh, S. M. (2008). Risk assessment and allocation in the UAE construction industry. 

International Journal of Project Management, 26(4), 431-438. 

Evans, J. S., Murphy, M. A., Holden, Z. A., & Cushman, S. A. (2011). Modeling species 

distribution and change using random forest. In Predictive species and habitat 

modeling in landscape ecology (pp. 139-159). Springer New York. 

Fan, J.B., Chikashige, Y., Smith, C.L., Niwa, O., Yanagida, M. and Cantor, C.R., 1989. 

Construction of a Not I restriction map of the fission yeast Schizosaccharomyces 

pombe genome. Nucleic acids research, 17(7), pp.2801-2818. 

Fookes, P.G., French, W.J. and Rice, S.M.M., 1985. The influence of ground and 

groundwater geochemistry on construction in the Middle East. Quarterly Journal of 

Engineering Geology and Hydrogeology, 18(2), pp.101-127. 

Flyvbjerg, B., Skamris Holm, M.K. and Buhl, S.L., 2004. What causes cost overrun in 

transport infrastructure projects?. Transport reviews, 24(1), pp.3-18. 

Fung, I. W., Tam, V. W., Lo, T. Y., & Lu, L. L. (2010). Developing a risk assessment model 

for construction safety. International Journal of Project Management, 28(6), 593-

600. 

Fight, A. (1999) Introduction to Project Finance. Oxford: Butterworth–Heinemann. 

Friedman, J. H., & Stuetzle, W. (1981). Projection pursuit regression. Journal of the 

American statistical Association, 76(376), 817-823. 

Gatzert, N., & Kosub, T. (2016). Risks and risk management of renewable energy projects: 

The case of onshore and offshore wind parks. Renewable and Sustainable Energy 

Reviews, 60, 982-998. 

Gaur, A., Scotney, B., Parr, G., & McClean, S. (2015). Smart city architecture and its 

applications based on IoT. Procedia computer science, 52, 1089-1094. 



 

50 

 

Gransberg, D.D. and Molenaar, K., 2004. Analysis of owner's design and construction 

quality management approaches in design/build projects. Journal of Management 

in Engineering, 20(4), pp.162-169. 

Hampton, G., Baldwin, A. N., & Holt, G. (2012). Project delays and cost: stakeholder 

perceptions of traditional v. PPP procurement. Journal of Financial Management of 

Property and Construction, 17(1), 73-91. 

Hampton, S. E., Strasser, C. A., Tewksbury, J. J., Gram, W. K., Budden, A. E., Batcheller, A. 

L., ... & Porter, J. H. (2013). Big data and the future of ecology. Frontiers in Ecology 

and the Environment, 11(3), 156-162. 

Harty, C., 2005. Innovation in construction: a sociology of technology approach. Building 

Research & Information, 33(6), pp.512-522. 

Hopfield, J. J. (1988). Artificial neural networks. Circuits and Devices Magazine, IEEE, 4(5), 

3-10. 

Hu, H., Wen, Y., Chua, T. S., & Li, X. (2014). Toward scalable systems for big data analytics: 

a technology tutorial. Access, IEEE, 2, 652-687 

Hendrickson, C., & Au, T. (1989). Project management for construction: Fundamental 

concepts for owners, engineers, architects, and builders. Chris Hendrickson.  

Javed, A. A., Lam, P. T., & Chan, A. P. (2013). A model framework of output specifications 

for hospital PPP/PFI projects. Facilities, 31(13/14), 610-633. 

Javed, A. A., Lam, P. T., & Zou, P. X. (2013). Output-based specifications for PPP projects: 

lessons for facilities management from Australia. Journal of Facilities Management, 

11(1), 5-30. 

Kaming, P. F., Olomolaiye, P. O., Holt, G. D., & Harris, F. C. (1997). Factors influencing 

construction time and cost overruns on high-rise projects in Indonesia. Construction 

Management & Economics, 15(1), 83-94. 

Kazaz, A., & Ulubeyli, S. (2007). Drivers of productivity among construction workers: A 

study in a developing country. Building and Environment, 42(5), 2132-2140. 

Kim, S. Y., Van Tuan, N., & Ogunlana, S. O. (2009). Quantifying schedule risk in 

construction projects using Bayesian belief networks. International Journal of 

Project Management, 27(1), 39-50. 

KPMG Global Construction Industry Report (2015). Climbing the Curve. Online. [Accessed 

on 12 March, 2015] https://www.kpmg.com/Global/.../global-

construction.../global-construction-survey-201. 

https://www.kpmg.com/Global/.../global-construction.../global-construction-survey-201
https://www.kpmg.com/Global/.../global-construction.../global-construction-survey-201


 

51 

 

Kittusamy, N. K., & Buchholz, B. (2004). Whole-body vibration and postural stress among 

operators of construction equipment: A literature review. Journal of safety research, 

35(3), 255-261. 

Larsen, J. K., Shen, G. Q., Lindhard, S. M., & Brunoe, T. D. (2015). Factors affecting 

schedule delay, cost overrun, and quality level in public construction projects. 

Journal of Management in Engineering, 32(1), 04015032. 

LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big data, 

analytics and the path from insights to value. MIT sloan management review, 52(2), 

21. 

Le-Hoai, L., Dai Lee, Y. and Lee, J.Y., 2008. Delay and cost overruns in Vietnam large 

construction projects: A comparison with other selected countries. KSCE journal of 

civil engineering, 12(6), pp.367-377. 

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 

18-2 

Le-Hoai, L., Dai Lee, Y., & Lee, J. Y. (2008). Delay and cost overruns in Vietnam large 

construction projects: A comparison with other selected countries. KSCE journal of 

civil engineering, 12(6), 367-377.  

Lee, J. K. (2008). Cost overrun and cause in Korean social overhead capital projects: 

Roads, rails, airports, and ports. Journal of Urban Planning and Development, 

134(2), 59-62. 

Ling, F. Y. Y., & Hoi, L. (2006). Risks faced by Singapore firms when undertaking 

construction projects in India. International Journal of Project Management, 24(3), 

261-270 

Lim, E. C., & Alum, J. (1995). Construction productivity: issues encountered by contractors 

in Singapore. International Journal of Project Management, 13(1), 51-58. 

Li, X., Zhao, L., Wei, L., Yang, M. H., Wu, F., Zhuang, Y., ... & Wang, J. (2016). Deepsaliency: 

Multi-task deep neural network model for salient object detection. IEEE 

Transactions on Image Processing, 25(8), 3919-3930. 

Love, P. E., Edwards, D. J., & Irani, Z. (2012). Moving beyond optimism bias and strategic 

misrepresentation: An explanation for social infrastructure project cost overruns. 

Engineering Management, IEEE Transactions on, 59(4), 560-571. 

Lu, W., Chen, X., Ho, D. C., & Wang, H. (2016). Analysis of the construction waste 

management performance in Hong Kong: the public and private sectors compared 

using big data. Journal of Cleaner Production, 112, 521-531. 



 

52 

 

Lu, W., Chen, X., Peng, Y., & Shen, L. (2015). Benchmarking construction waste 

management performance using big data. Resources, Conservation and Recycling, 

105, 49-58. 

Mackenzie, S., Kilpatrick, A. R., & Akintoye, A. (2000). UK construction skills shortage 

response strategies and an analysis of industry perceptions. Construction 

Management & Economics, 18(7), 853-862. 

Memos, V. A., Psannis, K. E., Ishibashi, Y., Kim, B. G., & Gupta, B. B. (2018). An efficient 

algorithm for media-based surveillance system (EAMSuS) in IoT smart city 

framework. Future Generation Computer Systems, 83, 619-628. 

Mohamed, S. (2002). Safety climate in construction site environments. Journal of 

construction engineering and management, 128(5), 375-384. 

Mezher, T. M., & Tawil, W. (1998). Causes of delays in the construction industry in 

Lebanon. Engineering, Construction and Architectural Management, 5(3), 252-260. 

Moselhi, O., Gong, D. and El-Rayes, K., 1997. Estimating weather impact on the duration 

of construction activities. Canadian Journal of Civil Engineering, 24(3), pp.359-366. 

Mustafa, M.A. and Al-Bahar, J.F., 1991. Project risk assessment using the analytic 

hierarchy process. Engineering Management, IEEE Transactions on, 38(1), pp.46-

52. 

Mohamed, S. (2002). Safety climate in construction site environments. Journal of 

construction engineering and management, 128(5), 375-384. 

Ng, A., & Loosemore, M. (2007). Risk allocation in the private provision of public 

infrastructure. International Journal of Project Management, 25(1), 66-76.  

Newey, W. K., & West, K. D. (1994). Automatic lag selection in covariance matrix 

estimation. The Review of Economic Studies, 61(4), 631-653. 

Ohlhorst, F. J. (2012). Big data analytics: turning big data into big money. John Wiley & 

Sons. 

Odeh, A.M. and Battaineh, H.T., 2002. Causes of construction delay: traditional 

contracts. International journal of project management, 20(1), pp.67-73. 

Pal, R., Wang, P., & Liang, X. (2017). The critical factors in managing relationships in 

international engineering, procurement, and construction (IEPC) projects of 

Chinese organizations. International Journal of Project Management, 35(7), 1225-

1237. 

Pal, M. (2005). Random forest classifier for remote sensing classification. International 

Journal of Remote Sensing, 26(1), 217-222. 



 

53 

 

Palomo, J., Rios Insua, D., & Ruggeri, F. (2007). Modeling external risks in project 

management. Risk analysis, 27(4), 961-978. 

Rathore, M. M., Ahmad, A., Paul, A., & Rho, S. (2016). Urban planning and building smart 

cities based on the internet of things using big data analytics. Computer Networks, 

101, 63-80. 

Rebeiz, K. S. (2011). Public–private partnership risk factors in emerging countries: BOOT 

illustrative case study. Journal of Management in Engineering, 28(4), 421-428. 

Robinson, H. S., & Scott, J. (2009). Service delivery and performance monitoring in PFI/PPP 

projects. Construction Management and Economics, 27(2), 181-197. 

Rousseau, D. M., & Libuser, C. (1997). Contingent workers in high risk environments. 

California Management Review, 39(2), 103-123. 

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. 

(2012). An assessment of the effectiveness of a random forest classifier for land-

cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 

93-104. 

Russell, J. S., & Jaselskis, E. J. (1992). Predicting construction contractor failure prior to 

contract award. Journal of construction engineering and management, 118(4), 

791-811. 

Sawacha, E., Naoum, S., & Fong, D. (1999). Factors affecting safety performance on 

construction sites. International journal of project management, 17(5), 309-315. 

Sagiroglu, S., & Sinanc, D. (2013, May). Big data: A review. In Collaboration Technologies 

and Systems (CTS), 2013 International Conference on (pp. 42-47). IEEE. 

Scuotto, V., Ferraris, A., & Bresciani, S. (2016). Internet of Things: Applications and 

challenges in smart cities: a case study of IBM smart city projects. Business Process 

Management Journal, 22(2), 357-367. 

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & 

Dieleman, S. (2016). Mastering the game of Go with deep neural networks and tree 

search. nature, 529(7587), 484. 

Shane, J. S., Molenaar, K. R., Anderson, S., & Schexnayder, C. (2009). Construction 

project cost escalation factors. Journal of Management in Engineering, 25(4), 

221-229. 

Sanger, F.J. and Sayles, F.H., 1979. Thermal and rheological computations for artificially 

frozen ground construction. Engineering geology, 13(1), pp.311-337. 



 

54 

 

Semple, C., Hartman, F.T. and Jergeas, G., 1994. Construction claims and disputes: causes 

and cost/time overruns. Journal of construction engineering and management, 

120(4), pp.785-795. 

Shen, L. Y., Li Hao, J., Tam, V. W. Y., & Yao, H. (2007). A checklist for assessing 

sustainability performance of construction projects. Journal of civil engineering and 

management, 13(4), 273-281. 

Sun, M. and Meng, X., 2009. Taxonomy for change causes and effects in construction 

projects. International Journal of Project Management, 27(6), pp.560-572. 

Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., & Feuston, B. P. (2003). 

Random forest: a classification and regression tool for compound classification and 

QSAR modeling. Journal of chemical information and computer sciences, 43(6), 

1947-1958. 

Tatum, C.B., 1987. Process of innovation in construction firm. Journal of Construction 

Engineering and Management, 113(4), pp.648-663. 

Tatum, C.B., 1989. Organizing to increase innovation in construction firms. Journal of 

Construction Engineering and Management, 115(4), pp.602-617. 

Tolman, F.P., 1999. Product modeling standards for the building and construction industry: 

past, present and future. Automation in construction, 8(3), pp.227-235. 

Talia, D. (2013). Toward Cloud-based Big-data Analytics. IEEE Computer Science, 98-101. 

Tam, C. M., Zeng, S. X., & Deng, Z. M. (2004). Identifying elements of poor construction 

safety management in China. Safety Science, 42(7), 569-586  

Tam, V. W. Y., & Fung, I. W. H. (2008). A study of knowledge, awareness, practice and 

recommendations among Hong Kong construction workers on using personal 

respiratory protective equipment at risk. Open Construction and Building 

Technology Journal, 2, 69-81. 

Tam, C. M., Zeng, S. X., & Deng, Z. M. (2004). Identifying elements of poor construction 

safety management in China. Safety Science, 42(7), 569-586. 

Teizer, J., Allread, B. S., Fullerton, C. E., & Hinze, J. (2010). Autonomous pro-active real-

time construction worker and equipment operator proximity safety alert system. 

Automation in Construction, 19(5), 630-640. 

Theobald, C. M. (1974). Generalizations of mean square error applied to ridge regression. 

Journal of the Royal Statistical Society. Series B (Methodological), 103-106. 



 

55 

 

Teo, E. A. L., Ling, F. Y. Y., & Chong, A. F. W. (2005). Framework for project managers to 

manage construction safety. International Journal of project management, 23(4), 

329-341. 

Tiong, R. L. (1990). BOT projects: risks and securities. Construction Management and 

Economics, 8(3), 315-328. 

Toole, T. M. (2002). Construction site safety roles. Journal of Construction Engineering and 

Management, 128(3), 203-210. 

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the 

Royal Statistical Society. Series B (Methodological), 267-288. 

True, W.R., 1998. Weather, construction inflation could squeeze North American pipelines. 

Oil and Gas Journal, 96(35). 

Van Staveren, M.T., 2006. Uncertainty and ground conditions. A risk management 

approach. 

Van, L. T., Sang, N. M., & Viet, N. T. (2015). A conceptual model of delay factors affecting 

government construction projects. ARPN Journal of Science and Technology, 5(2), 

92-100. 

Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2014). Data mining with big data. Knowledge and 

Data Engineering, IEEE Transactions on, 26(1), 97-107. 

Wu, J., Guo, S., Li, J., & Zeng, D. (2016). Big data meet green challenges: big data toward 

green applications. IEEE Systems Journal, 10(3), 888-900. 

W.M. Chan and M. Kumaraswamy, (2002). Compressing construction durations: Lessons 

learned from Hong Kong building projects, Int. J. Proj. Manag. 20(1), pp. 23–35. 

doi:10.1016/S0263-7863(00)00032-6. 

 

Yang, J.B. and Wei, P.R., 2010. Causes of delay in the planning and design phases for 

construction projects. Journal of Architectural Engineering, 16(2), pp.80-83. 

Zou, P. X., Zhang, G., & Wang, J. (2007). Understanding the key risks in construction 

projects in China. International Journal of Project Management, 25(6), 601-614. 

Zwikael, O., & Ahn, M. (2011). The effectiveness of risk management: an analysis of project 

risk planning across industries and countries. Risk analysis, 31(1), 25-37. 

 


