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A Conditional Regime Switching CAPM 

 

1. Introduction 

The main proposition of the traditional capital asset pricing model (CAPM) of Lintner 

(1965), Sharpe (1964) and Mossin (1966) is that the expected excess return on any stock 

is given by its sensitivity to the market (beta) times the market risk premium. Despite its 

appeal, the CAPM has been largely rejected (Lintner, 1965; Douglas, 1969; Black, Jensen 

and Scholes, 1972; Fama and MacBeth, 1973; Fama and French, 1992).   

   There are two major explanations for the failure of the CAPM. The first is that beta is not 

the sole measure of systematic risk. Characteristics such as the earnings-price ratio (Basu, 

1977), market capitalization (Banz, 1981), and leverage (Bhandari, 1988) were found to 

have additional explanatory power for average returns. Additional sensitivities to factors 

other than the market were also found to be important. The most prominent models are the 

three factor model of Fama and French (1993) and the four factor model of Carhart (1997). 

The former extended the CAPM by adding size and value factors, whereas Carhart 

extended the Fama and French three factor model by adding a momentum factor based on 

previous stock performance. Another stream of research extended the CAPM by allowing 

additional moments (Lambert and Hubner, 2013; Vendrame et al., 2016). 

   The second potential explanation for the failure of the CAPM is the fact that the CAPM 

is actually a conditional model. As Jagannathan and Wang (1996) emphasized, even if the 

CAPM held period by period, it would not necessarily hold unconditionally. A separate 

stream of research has therefore followed this track by considering conditional versions of 

the CAPM. The basic argument of the proponents of conditional models is that the 

unconditional CAPM fails to explain the cross-section of returns as it ignores the fact that 

both the risk and the price of risk are time-varying. In this paper, we pursue this line of 

enquiry and investigate whether a simple conditional CAPM can explain the cross section 

of average returns. 

   The unconditional implementation of the CAPM implies that both stock betas and 

investor risk aversion are constant over time. This is clearly a naïve assumption. The 

original CAPM is a one-period model whereas empirical tests of the model use data 

observed over many periods. When the investors’ horizon is more than one period, their 
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risk aversion as well as market conditions may change from one period to another. This 

implies a time-varying risk and risk premium.  

  In the real world, investors’ marginal utility of consumption, and hence the risk premium, 

should vary over the business cycle (Cochrane, 2001; Yogo, 2006; Campbell and Shiller, 

1988; Fama and French, 1988). The observed variation in the credit spread is clear evidence 

of such variation. In addition, the covariance between asset returns and the market 

portfolio, and hence systematic risk, is time-varying (Adrian and Franzoni, 2009; Avramov 

et al., 2005; Bollerslev et al., 1988).  

   In this paper we propose a conditional CAPM with a time-varying beta and risk premium. 

The time variation is captured using two well-established dynamic processes, namely the 

dynamic conditional correlation model of Engle (2002) and the Markov regime switching 

model of Hamilton (1994). Our approach has the advantage of being easily implementable 

using standard econometrics packages, which makes it readily available to both researchers 

and practitioners. 

   We assume two types of markets: bull and bear. Each market has a specific risk premium. 

A large ex-ante risk premium associated with an extremely bearish market might help to 

explain the empirical anomalies of the CAPM. Indeed, if the risk sensitivity of stocks that 

yield higher average returns were to increase with the risk premiums required by investors, 

the conditional change in both factor loadings and risk premiums might explain the 

difference in returns across different assets in the cross-section of returns.  

   Our starting point is Pettengill et al. (1995), who propose a conditional model based on 

distinguishing bull and bear markets using the sign of the market return. That is, when the 

market return is positive (negative) the market is deemed to be bullish (bearish). The 

limitation of this approach is obvious since the true market regime is unobservable. The 

sign of the market return is spurious because it is a deterministic predictor of market 

regimes. We tackle this problem by recognising that, at any given period of time, a market’s 

bull or bear regimes are random variables that can only be known with a certain probability. 

The Markov switching model is a useful approach to determining these time-varying 

probabilities.  

   Our first contribution is therefore to overcome the limitation of Pettengil et al. (1995) 

and recognise the probabilistic nature of bull and bear markets. We use a Markov switching 
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model to estimate market regime probabilities. Because we use time-varying betas, the bull 

and bear risk premiums cannot be estimated in cross sectional regressions. Our second 

contribution is to use a panel data approach to identify and estimate the two risk premiums 

associated with bull and bear markets. Our results provide strong support for a conditional 

CAPM, with beta explaining both bull and bear markets.  

   We find that, ex-post, while the bear market risk premium is negative, the weighted 

average risk premium is positive and highly significant. One point warrants clarification. 

Our conditional premiums are derived using ex-post returns. Therefore, it is possible for 

some ex-post (realised) premiums to be negative even though the ex-ante risk premium is 

positive. Intuitively, investors realise that there is some probability that they will be 

rewarded with a negative return. This is what we call a negative (ex-post) risk premium. 

However, even conditionally the expected (weighted across all states) return should be 

positive (although, empirically there may be cases where the weighted ex-post premium is 

negative). The transition from the ex-post to the ex-ante universe is problematic. Cox et al. 

(1985) noted that while theories are couched in ex-ante terms, they need to be linked with 

ex-post realisations to be testable. As emphasised by Brown et al. (1995), the ex-post risk 

premium can be a biased approximation of the ex-ante risk premium. The common 

approach to proxy ex-ante risk premiums is averaging, although Jorion and Goetzman 

(1999) argue that we do not have data long enough to solve the problem, and suggest 

extending the data in the cross section dimension. A second approach that alleviates the 

bias is the use of portfolios. Blume and Friend (1973: 26) argue that the “realized returns 

for portfolios will tend to be less affected by the vagaries of individual securities and 

therefore may give a more efficient ex-post estimate of the ex-ante conditional expected 

return”. 

   Thus, following standard practice, we proxy the unobservable risk premiums by taking 

time averages and using portfolios. Our assumption is that the average ex-post premiums 

are a good proxy for the ex-ante risk premium; just as the average realised returns are 

considered a good proxy for (ex-ante) expected returns.1  

                                                           
1 Counterintuitively, during a bear market the ex-post risk premium is low (or negative) since riskier stocks 
tend to lose most in value on average. This loss of value is also evidence that the ex-ante risk premium is 
higher for riskier stocks as lower prices imply higher future returns on average. 
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    We use the widely adopted 25 size and value portfolios to carry out tests on the implied 

risk premium from both the static and conditional models. The implied cross section 

relation between betas and the risk premium is flat for the static CAPM and positive for 

the conditional CAPM. We show that the static CAPM is a special case of our conditional 

CAPM, in which the bull and bear ex-post risk premiums are constrained to be equal. Our 

tests reject the standard CAPM on the basis that the bull and bear risk premiums are 

statistically different. Finally, we carried out some tests based on the time series and cross 

section performance of the two versions of the CAPM. In the time dimension, the 

conditional CAPM explains both size and momentum, whereas the static CAPM only 

explains momentum. In the cross section tests, we find that the conditional CAPM has 

lower pricing errors than the static CAPM. However, the conditional CAPM fails to explain 

the value or momentum anomalies. Nevertheless, the static CAPM is in addition unable to 

explain size.  

   The rest of the paper is organised as follows. In Section 2, we discuss the literature related 

to the time variation of parameters in asset pricing, and in Section 3 we discuss the use of 

conditional models in the existing literature. In Sections 4 and 5 we outline the data and 

methodology employed, respectively. Section 6 presents the empirical results for the bull 

and bear regimes and the individual fixed effects panel for the CAPM. Section 7 conducts 

robustness checks using alternative portfolios, and Section 8 concludes. 

 

2.  Conditional Models in the Existing Literature 

Although many conditional models are built on sound theoretical foundations, their 

implementation in practice is rather complex. There are two common problems for 

conditional models. First, it is not clear how to identify the set of predictive variables in 

such models. Second, it is uncertain how we might model the dynamics of the risk premium 

and beta over time. Thus, existing conditional models vary both in relation to the approach 

used to model the time-varying parameters and the choice of the time-varying parameters 

themselves. 

   One approach is to directly exploit the covariation between the market and the test assets. 

Engle (2002) and Bali and Engle (2010) estimate time-varying betas using multivariate 

dynamic conditional correlation models. Bali and Engle find that a conditional CAPM, 
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where the conditional covariances are obtained from a multivariate GARCH-in-mean 

model, and with a dynamic conditional correlation (DCC), explains well the cross-sectional 

average returns of various factor portfolios. They test the model for four groups of ten 

portfolios formed on size, book-to-market, momentum, and industry membership over the 

period 1926-2009, and find a significant positive risk premium for the size, book-to-

market, and industry portfolios, though not for momentum. However, when the CAPM is 

tested unconditionally on a cross-section of portfolios, the estimated market premium is 

insignificant, and for the industry portfolios it even becomes negative. The authors suggest 

that the GARCH model with DCC produces time-varying conditional betas that covary 

significantly with the market risk premium, thereby explaining asset pricing anomalies 

with the exception of momentum.  

   Bollerslev et al. (1988) estimate a CAPM with time-varying covariances using a 

multivariate GARCH for T-bills, bonds and stocks. They test their model over the period 

1959-1984 for quarterly returns, and find a significant positive risk premium for the market 

covariance, supporting the conditional covariance in preference to the unconditional 

covariance as a measure of risk.  

   Fama and MacBeth (1973) and Lewellen and Nagel (2006) employ rolling regression 

approaches. While the former use monthly returns over a five year window, the latter use 

daily, weekly, and monthly returns over a variety of interval lengths (monthly, quarterly, 

semi-annually, and yearly). The main rationale for this approach is that in a short window, 

beta should vary very little, thereby allowing estimation of the time variation in beta 

without much bias. The latter show that while conditional betas are time-varying, they are 

neither sufficiently large nor so positively correlated with the expected risk premium as to 

explain the large pricing errors of the unconditional CAPM.  

    Finally, Pettengill et al. (1995) argue that there is a positive risk premium in up markets 

and a negative risk premium in down markets, and show that conditional tests of the CAPM 

based on such market trends provide more support for the model.  

   A different approach to incorporating time variation in beta expresses beta as a function 

of selected instrumental variables (Jagannathan and Wang, 1996; Lettau and Ludvigson, 

2001; Dittmar, 2002). Certain approaches model beta as a linear function of 

macroeconomic variables such as interest rates, the credit spread, and the consumption-to-



7 
 

income ratio (Ferson and Harvey, 1999; Lettau and Ludvigson, 2001), or as a function of 

microeconomic variables such as firm earnings-to-price and book-to-market ratios (Bauer 

et al., 2010; Avramov et al., 2005).  

   Bauer et al. (2010) investigate the performance of a conditional three-factor model on 25 

portfolios of pan-European stocks, sorted on size and the book-to-market ratio, where the 

time variation in betas is modelled as a linear function of the default spread, size, the book-

to-market ratio, and the interaction between these variables. They find that the explanatory 

power of the model increases with time-varying betas, and that the hypothesis that betas 

are time-varying is supported. Further, they estimate a cross-sectional regression of 

portfolio net returns to determine whether additional variables such as size, the book-to-

market ratio, and momentum are significant. They conclude that a conditional version of 

the three-factor model outperforms the static unconditional version, and is able to explain 

the size and the book-to-market effects, but not momentum.  

    Avramov and Chordia (2005) test whether conditional versions of the CAPM can 

explain market anomalies by allowing beta to vary with stock characteristics such as market 

capitalization, book-to-market, and macroeconomic variables related to the business cycle. 

They estimate cross-sectional regressions of risk-adjusted returns for individual stocks, 

rather than gross returns, against market characteristics and momentum. When they allow 

for time variation in the factor loadings, size, book-to-market, and momentum should all 

be insignificant in the regression of adjusted returns to market characteristics and 

momentum. They test several models, from the CAPM to the Fama and French three-factor 

model, through the Pastor and Stambaugh (2003) liquidity model. Their unconditional and 

conditional CAPM perform poorly, whereas the conditional Fama and French three-factor 

model captures size and book-to-market characteristics. This is not surprising since the 

factor loadings were conditioned on size, book-to-market, and the default spread. The main 

drawback of such conditioning, however, is that there is no risk factor rationale for 

conditioning the factor loadings on size or the book-to-market ratio.  

   More complex statistical techniques have also been applied. State-space models treat beta 

as an unobservable latent variable, which is estimated by means of Markov Chain Monte 

Carlo (MCMC) or Kalman filter models (Durbin and Koopman, 2001). Examples of this 

approach are found in Adrian and Franzoni (2009) and Jostova and Philipov (2005). 
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Finally, other studies estimate a time-varying beta using high frequency data (Andersen et 

al., 2003). The advantages of this approach are that no assumptions of conditioning 

variables are needed, and that high frequency data are usually richer in information than 

lower frequency data. The disadvantage, however, is the lack of high frequency data for 

the vast majority of assets. 

   A common limitation of many of the conditional approaches discussed above is that they 

assume a constant risk premium.2 However, there is ample evidence that the risk premium 

is also time-varying. Cochrane (2001) argues that asset price variations are largely the 

result of changes in the expectation of future returns (that is, required returns). 

Furthermore, the price/dividend ratio, the default spread, and the term spread, among other 

variables, have been shown to predict stock returns well (Cochrane, 2001). Given that such 

variables are related to the business cycle, this would also suggest that expected returns 

and risk premiums vary over the business cycle (Campbell and Shiller, 1988).  

   Ferson and Harvey (1991) study the relationship between the predictability of returns and 

changes in risk premiums. They argue that most of the variation in the predictability of 

returns is due to changes in risk premiums rather than betas. It is therefore important to 

consider the time variation in risk premiums.  

   Time-varying risk premiums have been considered by many. Jagannathan and Wang 

(1996) derive a conditional CAPM with human labour income and time-varying risk 

aversion in which the conditional risk premium is a linear function of the default premium, 

proxied by the bond default spread. They compare three models on 100 portfolios of stocks 

sorted first on size and then on pre-ranking beta, and find that the static CAPM is rejected, 

whereas the conditional CAPM is not rejected for their dataset using the Hansen-

Jagannathan distance (Hansen and Jagannathan, 1997). 

   In their seminal work, Lettau and Ludvigson (2001) use the consumption to aggregate 

wealth ratio as an instrumental variable to describe the state of the economy and thereby 

capture time variation. Their conditional CAPM is tested using portfolios of stocks sorted 

on size and the book-to-market ratio, and their results confirm the poor performance of the 

CAPM in explaining the cross section of average returns. However, when the test is 

                                                           
2 The exceptions are Jagannathan and Wang (1996), Lettau and Ludvigson (2001), and Ferson and Harvey 
(1991).  
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conducted for the conditional model, the risk premiums associated with the market return 

and the time-varying component of the risk factor are significant when jointly considered.  

   Bodurtha and Nelson (1991) derive a conditional CAPM in which the expected risk 

premium, the variance, and the covariance are all time-varying and follow an 

autoregressive process. They test their model on five size portfolios for US stocks over the 

period 1926-1985 using a GMM approach, and find that the CAPM with a constant beta is 

rejected, and that the null hypothesis that the market risk premium is constant is also 

rejected.  

   Ang and Chen (2007) introduce a conditional CAPM with conditional betas, time-

varying market risk premiums, and stochastic systematic volatility in which the conditional 

betas follow an endogenous AR(1) latent process, the market risk premium follows a mean-

reverting latent process, and the market excess return has a conditional market risk 

premium and stochastic systematic volatility, i.e. it follows a Brownian motion. The 

conditional betas of value stocks they obtain vary from 0.5 to 3, whereas the betas of growth 

stocks are close to 1. Therefore, the conditional betas were found to have significant time-

variation and were positively correlated with the market risk premium. 

   Morana (2009) implements a conditional CAPM, consistent with Jagannathan and Wang 

(1996), with realised betas for daily data for the 25 Fama and French size/book-to-market 

(henceforth ME/BM) portfolios over the period 1965-2005, and his model explains 63% 

of the cross-sectional variation of returns and outperforms the CAPM and the Fama and 

French model.  

 

3. A Conditional Test of the CAPM  

The static CAPM expresses expected returns as a function of systematic risk. For any asset 

𝑖𝑖 the expected return in excess of the risk free rate is proportional to beta,  

 

𝐸𝐸(𝑅𝑅𝑖𝑖) − 𝑅𝑅𝑓𝑓 = 𝜆𝜆 𝛽𝛽𝑖𝑖         (1) 

 

where 𝜆𝜆 = 𝐸𝐸�(𝑅𝑅𝑚𝑚) − 𝑅𝑅𝑓𝑓� is the risk premium, 𝐸𝐸(𝑅𝑅𝑖𝑖)  is the expected excess return of 

stock 𝑖𝑖, 𝐸𝐸(𝑅𝑅𝑚𝑚) is the expected return to the market portfolio, 𝑅𝑅𝑓𝑓 is the risk-free rate, and 

𝛽𝛽𝑖𝑖 is the standardised covariance between asset 𝑖𝑖 and the market portfolio.  
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   The standard CAPM tests typically estimate cross section models  𝐸𝐸(𝑅𝑅𝑖𝑖) − 𝑅𝑅𝑓𝑓 = 𝛼𝛼 +

𝜆𝜆 𝛽𝛽𝑖𝑖  and then test the joint hypothesis that  𝛼𝛼 = 0 and 𝜆𝜆 > 0. However, given that the 

CAPM is grounded in the economic model of Markowitz (1952), which is a one period 

model, the CAPM is at best only valid period by period.  

  One of the simplest conditional models is proposed by Pettengill et al. (1995). They 

reason that, even though the expected market return is greater than the risk free rate, there 

must be a positive probability that the realised market return falls below the risk free rate. 

Otherwise, investors would not wish to hold the risk free security. Consequently, it is 

possible for realised returns with a positive beta to be negative. To test for a conditional 

relationship, the authors split the sample into upmarket and downmarket periods, defined 

as months with positive or negative ex-post market excess returns, respectively. Having 

estimated betas from a first pass, the authors define a conditional CAPM as: 

𝑅𝑅𝑖𝑖𝑖𝑖 = 𝛾𝛾�0𝑡𝑡 + 𝛾𝛾�1𝑡𝑡 ∙ 𝛿𝛿𝑡𝑡 ∙ 𝛽𝛽𝑖𝑖 + 𝛾𝛾�2𝑡𝑡 ∙ (1 − 𝛿𝛿𝑡𝑡) ∙ 𝛽𝛽𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (2) 

where 𝛿𝛿𝑡𝑡 = 1 if the realised market excess return is positive, and 0 otherwise. 

   The model is estimated for each t, that is, there are T cross sectional regressions, yielding 

T risk premiums. These are then split into two samples depending on whether the excess 

market return implies an upmarket regime (positive) or a downmarket regime (negative). 

Pettengill et al. propose that a conditional relationship can be inferred from the averages 

of estimated risk premiums. A systematic conditional relationship between beta and 

realised returns is supported if 𝛾̅𝛾1 > 0 and 𝛾̅𝛾2 < 0. 

   However, such an approach has limited economic appeal as far as the risk-return relation 

is concerned as asset pricing models are stated in terms of expected or required returns 

rather than realised returns. Pettengill et al. then propose an unconditional test on the basis 

that the positive risk premium should on average be greater than the negative risk premium. 

Specifically, they test the hypotheses: 

𝐻𝐻0: 𝛾̅𝛾1 + 𝛾̅𝛾2 = 0 

𝐻𝐻𝑎𝑎: 𝛾̅𝛾1 + 𝛾̅𝛾2 ≠ 0 

using a two-population t-test. However, as Freeman and Guermat (2006) show, this test is 

not well specified since the sum is different from zero under both the null and the 

alternative hypotheses. More importantly, the sum of the two average premiums does not 

reflect the probability (or frequency) of the up and downmarket events occurring. To 



11 
 

illustrate, suppose in a thousand day sample, a high average return of, say, 10% is expected 

to occur on only two days, while a small but negative return of, say, -1%, occurs on the 

998 remaining days. A test of averages such as this does not take into account the frequency 

of losses and will show a significant (positive) test statistic provided the returns in each 

state are not too volatile. Thus, while by definition expected returns are computed as the 

sum of outcomes weighted by their respective probabilities, the Pettengill et al. test simply 

assumes equal weighting (as if the probabilities of being in an up and downmarket were 

equal). 

   In our paper, in contrast to Pettengill et al., we address this problem by taking into 

account the fact that the up and downmarkets are not observed with certainty. Instead, at 

any point in time, the market states are random variables that are realised with a certain 

probability. To motivate the test, suppose that there exists an investment opportunity where 

the investor is paid a return of 𝛾𝛾�1𝛽𝛽 if a favourable state (upmarket) is realised and a return 

of 𝛾𝛾�2𝛽𝛽 otherwise (downmarket). Suppose the probability of an upmarket is p. The expected 

return is therefore 

 

𝐸𝐸(𝑅𝑅) = (𝑝𝑝𝛾𝛾�1 + (1 − 𝑝𝑝)𝛾𝛾�2)𝛽𝛽 (3) 

 

   Logically, the investor will not invest if the expected return is negative or zero. For 

positive risk (beta), this means that 𝑝𝑝𝛾𝛾�1 + (1 − 𝑝𝑝)𝛾𝛾�2 > 0. For a given investment to be 

viable, the wins must be large, more likely, or both, relative to the losses. Returning to the 

conditional test of the CAPM, we relax the strong assumption of Pettengill et al. that the 

sign of the excess market return is a perfect predictor of the state of that market. Since the 

states cannot be known with certainty, the sign and scale of the excess market return can 

be exploited to indicate the probability that the market is in a certain state. Thus, in each 

period t, returns are generated by the up state with probability 𝑝𝑝𝑡𝑡, and by the down state 

with one minus that probability. 

 

𝑅𝑅𝑖𝑖𝑖𝑖 − 𝛾𝛾�0𝑡𝑡 = [𝑝𝑝𝑡𝑡𝛾𝛾�1 + (1 − 𝑝𝑝𝑡𝑡)𝛾𝛾�2]𝛽𝛽𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (4) 

 

where 𝛾𝛾�0𝑡𝑡 is the risk free (or zero beta) rate. Taking unconditional expectations gives  



12 
 

 

𝐸𝐸(𝑅𝑅𝑖𝑖𝑖𝑖 − 𝛾𝛾�0𝑡𝑡) = 𝐸𝐸(Γ𝑡𝑡)𝐸𝐸(𝛽𝛽𝑖𝑖𝑖𝑖) + 𝐶𝐶𝐶𝐶𝐶𝐶(Γ𝑡𝑡, 𝛽𝛽𝑖𝑖𝑖𝑖) (5) 

 

where Γ𝑡𝑡 = 𝑝𝑝𝑡𝑡𝛾𝛾�1 + (1 − 𝑝𝑝𝑡𝑡)𝛾𝛾�2. 

   Therefore, a simple test can be devised by examining the average of the beta (conditional) 

slope: 

𝐻𝐻0: 𝐸𝐸(Γ𝑡𝑡) = 0 

𝐻𝐻𝑎𝑎: 𝐸𝐸(Γ𝑡𝑡) > 0 

 

   Note that the proposed conditional test includes the standard unconditional CAPM as a 

special case. The unconditional test of the CAPM obtains when the downmarket risk 

premium is equal to the upmarket risk premium. In that case: 

 

𝐸𝐸(𝑅𝑅𝑖𝑖𝑖𝑖 − 𝛾𝛾�0𝑡𝑡) = 𝐸𝐸([𝑝𝑝𝑡𝑡𝛾𝛾�1 + (1 − 𝑝𝑝𝑡𝑡)𝛾𝛾�1]𝛽𝛽𝑖𝑖𝑖𝑖) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑝𝑝𝑡𝑡𝛾𝛾�1 + (1 − 𝑝𝑝𝑡𝑡)𝛾𝛾�1, 𝛽𝛽𝑖𝑖𝑖𝑖) 

                             = 𝛾𝛾�1𝐸𝐸(𝛽𝛽𝑖𝑖𝑖𝑖) 
(6) 

 

   A strong implication of the unconditional test is that both up and down market premiums 

must not only be equal, but also positive. The conditional test therefore presents an 

advantage as it allows the two premiums to be both of different size and potentially 

different sign. We can also test for the unconditional CAPM by testing for the equality and 

positive sign of the two risk premiums. Further, while the static CAPM imposes a zero 

intercept, the conditional CAPM implies a non-zero intercept, even unconditionally.  

   An implication of the Pettengill et al. test is that a proper testing procedure will yield the 

standard unconditional test of Fama and MacBeth (1973), as the up and down states are 

strictly related to the market realised returns. Suppose the market is positive for 𝑁𝑁+ months 

and negative for 𝑁𝑁−  months. In this case the weighted average of the up and down 

premiums will simply be the average of all of the premiums. Thus, weighting the Pettengill 

et al. average gives  

Γ� =
𝑁𝑁+

𝑁𝑁+ + 𝑁𝑁−
𝛾̅𝛾1 +

𝑁𝑁−
𝑁𝑁+ + 𝑁𝑁−

𝛾̅𝛾2 =
1

𝑁𝑁+ + 𝑁𝑁−
�� 𝛾𝛾�1𝑡𝑡 +
𝑡𝑡∈𝑁𝑁+

� 𝛾𝛾�2𝑡𝑡
𝑡𝑡∈𝑁𝑁−

� (7) 
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   This equates to the Fama and MacBeth average risk premium. 

   One possible alternative to Pettengill et al. is to use sample splitting threshold models 

(Hansen, 2000). The advantage of threshold models is that the determination of the market 

return at which a transition from bull to bear markets occurs is determined statistically and 

not arbitrarily as in Pettengill et al. However, our primary concern is that bull and bear 

markets cannot be observed with certainty, and thresholds, whether estimated or 

determined arbitrarily, imply deterministic states. The regime switching model has the 

advantage that it provides the probability of a regime shift rather than providing a value at 

which a regime shift occurs with certainty. 

   In our paper, the state probabilities are obtained from Markov switching models applied 

to the market return. However, one issue with estimating the risk premiums is that they are 

estimated from cross sectional regressions and thus there is only one beta but two 

parameters, and as a result a time series of risk premiums as in Fama and MacBeth cannot 

be obtained. To address this issue, panel data models are used to obtain estimates of the 

two premiums, after which the statistical test on Γ𝑡𝑡 is undertaken. Specifically, given 𝛽𝛽𝑖𝑖𝑖𝑖 

and 𝑝𝑝𝑡𝑡, a panel regression can be run: 

𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑓𝑓𝑓𝑓 = 𝛾𝛾0 + 𝛾𝛾12𝑝𝑝𝑡𝑡𝛽𝛽𝑖𝑖𝑖𝑖 + 𝛾𝛾2𝛽𝛽𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖     (8) 

where 𝛾𝛾12 = 𝛾𝛾1 − 𝛾𝛾2. 

 

   Once 𝛾𝛾�1 and 𝛾𝛾�2 are obtained, we are able to conduct a time series test on the mean of 

Γ�𝑡𝑡 = 𝑝𝑝𝑡𝑡𝛾𝛾�1 + (1 − 𝑝𝑝𝑡𝑡)𝛾𝛾�2 as in Fama and MacBeth. While such estimates can be treated as 

time series of (unconditional) risk premiums which can be tested using a simple t-test, we 

use heteroscedasticity and autocorrelation consistent standard errors corrected for 

autocorrelation to mitigate potential serial correlation or heteroscedasticity in the estimated 

risk premiums. The standard errors were calculated using Newey-West weighting with four 

lags. Our risk premiums are estimated using a three-pass approach, and are therefore 

subject to the errors-in-variables problem. Standard errors are usually corrected using 

Shanken (1992), Jagannathan and Wang (1998) or Kan et al. (2013) corrections. However, 

all of these corrections are designed for unconditional betas whereas our betas are time-

varying. Instead, we use the wild bootstrap to mitigate this problem. 
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The wild bootstrap is chosen because it preserves the first and second moments of the 

parent distribution. Let the residuals be 𝜀𝜀𝑡̂𝑡 = Γ𝑡𝑡 − Γ�. In the wild bootstrap we create the 

bootstrap residuals 𝜀𝜀𝑡̂𝑡∗  as the product of the original residuals and an independent random 

variable, 𝜂𝜂𝑡𝑡, with zero mean and unit variance. This guarantees that the bootstrap variance 

will be the same as that of the parent distribution. For example, when 𝜂𝜂𝑡𝑡 is standard normal 

𝐸𝐸(𝜀𝜀𝑡̂𝑡∗) = 𝐸𝐸(𝜂𝜂𝑡𝑡)𝐸𝐸(𝜀𝜀𝑡̂𝑡) = 0  and 𝑉𝑉(𝜀𝜀𝑡̂𝑡∗) = 𝑉𝑉(𝜂𝜂𝑡𝑡)𝑉𝑉(𝜀𝜀𝑡̂𝑡) = 𝑉𝑉(𝜀𝜀𝑡̂𝑡) . We use 1,000 bootstrap 

replications. In each replication, we draw a standard normal variable and compute the t-

statistic. The p-value is obtained from the empirical distribution of the bootstrapped t-

statistic. Because our data is potentially skewed and leptokurtic, we also computed p-values 

for skewness preserving and kurtosis preserving bootstraps (see Davidson et al. (2007) for 

details). These were very similar to the standard wild bootstrap and are therefore omitted 

for the sake of space.  

 

4. State Probabilities and Conditional Betas  

One of the aims of this paper is to provide a simple and replicable approach to estimating 

a conditional asset pricing model. Similar to the two-pass approach used in the standard 

CAPM, we adopt a three-pass methodology. In the first pass, we estimate the bull and bear 

probabilities using a Markov switching model on market returns. In the second pass, we 

estimate conditional betas using a bivariate dynamic conditional model for each test 

portfolio with the market portfolio. Apart from simplicity, our choice of separating the state 

model from the beta model is driven by the need to avoid two problems. First, including 

all test portfolios in a combined dynamic conditional model and a regime switching model 

would provide a single set of probabilities, but would suffer from the curse of 

dimensionality and the estimation of such models generally fails to converge. Second, 

combining the Markov switching model with each test portfolio in a bivariate model will 

result in many different sets of probabilities, and there is no general guidance as to which 

set of probabilities to adopt. Once the estimates of state probabilities and conditional betas 

are obtained, the third pass will consist of estimating the bull and bear risk premiums. 

   The regime is determined by the market excess return following the stochastic process 

𝑅𝑅𝑀𝑀 − 𝑅𝑅𝑓𝑓 = 𝜇𝜇𝑀𝑀𝑀𝑀 + 𝜎𝜎𝑀𝑀𝑀𝑀𝜀𝜀𝑖𝑖             (9) 
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   Here, the coefficients 𝜇𝜇𝑀𝑀𝑀𝑀, and 𝜎𝜎𝑀𝑀𝑀𝑀, for state 𝑖𝑖 = 1,2, take one of two values, depending 

on the regime, and 𝜀𝜀𝑖𝑖 is a random disturbance which is assumed to be normally distributed. 

In our paper, we assume two states, bull and bear markets, consistent with a simple Markov 

process. The procedure is briefly outlined in this paper, but full details of the estimation 

procedure may be found in Hamilton (1989). To specify how the state evolves over time, 

it is assumed that the state transition probabilities follow a first-order Markov chain. Let 

𝑝𝑝11 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑆𝑆𝑡𝑡 = 1|𝑆𝑆𝑡𝑡−1 = 1)  be the probability of staying in state 1, and 𝑝𝑝12 =

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑆𝑆𝑡𝑡 = 1|𝑆𝑆𝑡𝑡−1 = 2) be the probability of moving from state 2 to state 1. At any given 

period, t, the probabilities, 𝜋𝜋𝑡𝑡|𝑡𝑡−1, and the likelihood functions are calculated recursively 

as follows 

 

𝜋𝜋𝑡𝑡|𝑡𝑡−1 = 𝑝𝑝11𝜋𝜋𝑡𝑡−1|𝑡𝑡−1 + 𝑝𝑝12(1 − 𝜋𝜋𝑡𝑡−1|𝑡𝑡−1)                (10) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙�𝜋𝜋𝑡𝑡|𝑡𝑡−1𝑓𝑓1(𝑅𝑅𝑚𝑚𝑚𝑚|Ω𝑡𝑡−1, 𝜃𝜃) + (1 − 𝜋𝜋𝑡𝑡|𝑡𝑡−1)𝑓𝑓2(𝑅𝑅𝑚𝑚𝑚𝑚|Ω𝑡𝑡−1, 𝜃𝜃)�                   (11) 

 

   The updated probabilities are then obtained from the likelihood function 

 

𝜋𝜋𝑡𝑡|𝑡𝑡 = 𝜋𝜋𝑡𝑡|𝑡𝑡−1𝑓𝑓1�𝑅𝑅𝑚𝑚𝑚𝑚�Ω𝑡𝑡−1, 𝜃𝜃�
𝜋𝜋𝑡𝑡|𝑡𝑡−1𝑓𝑓1�𝑅𝑅𝑚𝑚𝑚𝑚�Ω𝑡𝑡−1, 𝜃𝜃�+�1−𝜋𝜋𝑡𝑡|𝑡𝑡−1�𝑓𝑓2(𝑅𝑅𝑚𝑚𝑚𝑚|Ω𝑡𝑡−1,𝜃𝜃)

                      
(12) 

 

   The parameters of the model are estimated using the maximum likelihood method. Let θ 

be the vector of parameters in the likelihood function. The conditional density functions of 

the residuals (assumed to come from different stochastic processes with a different mean 

and standard deviation) according to regime i will be: 

 

𝑓𝑓𝑖𝑖�𝑅𝑅𝑀𝑀,𝑡𝑡|Ω𝑡𝑡−1, θ� = 1
�2𝜋𝜋𝜎𝜎𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒 �−(𝑅𝑅𝑀𝑀,𝑡𝑡−𝜇𝜇𝑚𝑚,𝑖𝑖𝑖𝑖)2

2𝜎𝜎𝑖𝑖𝑖𝑖
�                      (13) 

 

where i = 1,2 denotes the regime and Ω𝑡𝑡−1 denotes the information set available at time t.    

The filtered probabilities are estimated using the EM algorithm of Hamilton (1989).  
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   The time-varying conditional systematic risks, 𝛽𝛽𝑖𝑖𝑖𝑖 , are estimated using the dynamic 

conditional correlation (DCC) model of Engle (2002), a multivariate development of the 

generalised autoregressive conditional heteroscedasticity (GARCH) model which allows 

us to obtain dynamic covariances. We estimate the models in two steps: (i) the conditional 

variances are estimated using a univariate GARCH; and (ii) the conditional correlations 

are then estimated using a multivariate model. Since our estimates are obtained using pairs, 

we briefly outline the DCC for two variables. The DCC proposed by Engle is given by the 

following equations 

    𝑦𝑦𝑡𝑡 = 𝜇𝜇𝑡𝑡 + ∑ 𝑧𝑧𝑡𝑡
1
2
𝑡𝑡  

    Σ𝑡𝑡 = 𝐷𝐷𝑡𝑡𝑅𝑅𝑡𝑡𝐷𝐷𝑡𝑡  

𝐷𝐷𝑡𝑡 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎11,𝑡𝑡
1/2 …𝜎𝜎𝑘𝑘𝑘𝑘,𝑡𝑡

1/2)                                               (14) 

where 𝑦𝑦𝑡𝑡, 𝜇𝜇𝑡𝑡 and  𝑧𝑧𝑡𝑡 are, respectively, vectors of returns, conditional means, and residuals. 

Σ𝑡𝑡 is the conditional covariance matrix with elements 𝜎𝜎𝑖𝑖𝑖𝑖,𝑡𝑡.  

   The positive definite matrix of (pseudo) correlations is given by 

𝑄𝑄𝑡𝑡 = (1 − 𝛼𝛼 − 𝛽𝛽)𝑅𝑅 + 𝛼𝛼𝑢𝑢𝑡𝑡−1𝑢𝑢𝑡𝑡−1′ + 𝛽𝛽𝑄𝑄𝑡𝑡−1                                (15) 

 

where 𝑢𝑢𝑡𝑡 = (𝑢𝑢1𝑡𝑡 𝑢𝑢2𝑡𝑡)′ , 𝑢𝑢𝑖𝑖𝑖𝑖 = (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖𝑖𝑖)/�𝜎𝜎𝑖𝑖𝑖𝑖,𝑡𝑡   and 𝑅𝑅  is the unconditional covariance 

matrix of 𝑢𝑢𝑡𝑡.  Engle proposes the following estimator of the correlation matrix 

𝑅𝑅𝑡𝑡 = (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)−1/2𝑄𝑄𝑡𝑡(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)−1/2                                      (16) 

 

A typical element of 𝑄𝑄𝑡𝑡 is given by 

𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡 = 𝜌̅𝜌𝑖𝑖𝑖𝑖(1 − 𝛼𝛼1 − 𝛼𝛼2) + 𝛼𝛼1𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡−1 + 𝛼𝛼2𝑢𝑢𝑖𝑖𝑖𝑖−1𝑢𝑢𝑗𝑗𝑗𝑗−1                       (17) 

 

where 𝜌̅𝜌𝑖𝑖𝑖𝑖 is the unconditional covariance (correlation) between 𝑢𝑢𝑖𝑖𝑖𝑖 and 𝑢𝑢𝑗𝑗𝑗𝑗. 

   A typical element of the correlation estimator 𝑅𝑅𝑡𝑡 is  

𝜌𝜌𝑖𝑖𝑖𝑖,𝑡𝑡 = 𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡/�𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡𝑞𝑞𝑗𝑗𝑗𝑗,𝑡𝑡                                                 (18) 

   To recover conditional covariances we simply multiply these conditional correlations by 

the conditional standard deviations, i.e. 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑡𝑡 = 𝜌𝜌𝑖𝑖𝑖𝑖,𝑡𝑡�𝜎𝜎𝑖𝑖𝑖𝑖,𝑡𝑡𝜎𝜎𝑗𝑗𝑗𝑗,𝑡𝑡. 
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5. Results 

We use 25 portfolios of stocks sorted on market capitalization and the book-to-market ratio 

to test the conditional CAPM. The portfolios are sourced from the Kenneth R. French data 

library website. They are obtained from the intersection of five portfolios formed on size 

(ME, market equity) and five portfolios formed on the book-to-market ratio (BM, book 

equity-to-market equity). The size breakpoints are the market equity quintiles at the end of 

June of year t, the BM breakpoints are book-to-market ratio quintiles obtained as book 

equity as at the fiscal year end t-1 divided by market equity at the same date. Portfolios are 

held from July of year t to June of year t+1, and they are reformed each year in July. 

   Table 1 provides descriptive statistics for the 25 ME/BM portfolios. Panel A shows the 

results for the full sample period 1926-2015. The average excess return increases 

monotonically with the BM ratios ranging from 0.56% for the smallest stocks with the 

lowest book-to-market ratios to 1.36% for the smallest stocks with the highest book-to-

market ratios. The monotonic pattern is evident for all of the quintiles. Interestingly, the 

value portfolios have a higher beta.  

   Panel B of Table 1 provides descriptive statistics for the 25 ME/BM portfolios for the 

subsample period 1980-2015. The evidence of a value premium is even more evident here, 

with returns increasing monotonically with BM ratios for all of the quintiles. The panel 

shows that standard deviations are negatively correlated with market capitalization, while 

value portfolios are characterized by negative skewness and larger kurtosis than the other 

portfolios. Finally, in unreported results, we found that beta tends to be negatively 

correlated with size and positively correlated with the book-to-market factor. 

 

[Insert Table 1 about here] 

 

5.1. The bull and bear regimes 

The results of the standard Fama and MacBeth methodology (1973) to test the CAPM are 

reported in Panel A of Table 2 for the periods 1926-2015 and 1980-2015, respectively. The 

results strongly contradict the underlying theory. The CAPM is rejected for each period as 

the risk premium is positive but insignificant for the full sample, and negative though 

insignificant for the more recent period. The intercept is positive and highly significant, 
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especially for the subsample, a result which is inconsistent with the standard CAPM. Such 

a positive intercept suggests that some risk factors may have been omitted from the model. 

However, a positive intercept, though not perhaps of this magnitude, may also be explained 

by the zero beta rate being different from the risk-free rate. For example, if the true return 

generating process were  

𝑅𝑅𝑖𝑖𝑖𝑖 = 𝛾𝛾𝑧𝑧𝑧𝑧 + 𝛽𝛽𝑚𝑚𝑚𝑚𝑅𝑅𝑚𝑚𝑚𝑚 + 𝛽𝛽𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖 

where 𝛾𝛾𝑧𝑧𝑧𝑧 = 𝑅𝑅𝑓𝑓𝑓𝑓 + 𝛾𝛾0𝑡𝑡  is the zero beta rate, and 𝐹𝐹𝑡𝑡  is some pricing factor. Taking 

expectations gives,  

𝐸𝐸(𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑓𝑓𝑓𝑓) = 𝐸𝐸(𝛾𝛾0𝑡𝑡) + 𝐸𝐸(𝛽𝛽𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡) + 𝛽𝛽𝑚𝑚𝑚𝑚𝐸𝐸(𝑅𝑅𝑚𝑚𝑚𝑚) 

   So ignoring 𝐸𝐸(𝛾𝛾0𝑡𝑡) or 𝐸𝐸(𝛽𝛽𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡) creates the potential for having a significant intercept in 

a standard CAPM. Thus, the common empirical problems of the CAPM documented by 

the vast majority of existing studies are confirmed at this point. 

 

[Insert Table 2 about here] 

 

   In Panel B of Table 2, we introduce two regimes, bull and bear, based on the ex-post 

excess market return of Pettengill et al. (1995). The table confirms asymmetry in the 

market premiums. The full sample shows a positive return of 2.82% in bull markets and a 

negative return of -3.71% in bear markets. For the subsample 1980-2015, the returns are 

1.98% and -4.18%, respectively.  

   One limitation of the dual test of Pettengill et al., in which two different risk premiums 

are estimated conditional on the sign of the excess market return, is that investors do not 

know, ex-ante, whether the market will be bullish or bearish at any given moment in time. 

Moreover, a bullish/bearish market might evidence some negative/positive market excess 

returns, even though it is fundamentally characterised by an overall positive/negative trend. 

Therefore, to reflect real-world observation, some negative (positive) return periods should 

actually be accommodated within the bullish (bearish) estimation.  

   The filtered probabilities of the bull and bear regime, estimated using the Expected 

Maximization algorithm of Hamilton (1989), are reported in Figure 1. The two regimes are 

each estimated with a different mean and different standard deviation. When applying the 

switching regimes methodology, the mean in the bearish market is found not to be 
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significantly different from zero. Specifically, the bear market average return is found to 

be -1.45% but with a t-statistic of -1.28, which is insignificant at the 5% level. Therefore, 

the switching regime is repeated, imposing the average return in a bear market to be zero. 

 

[Insert Figure 1 about here] 

 

   From Table 3, it can be noted that the bullish regime is the more likely of the two, and is 

characterized by a positive average market return of 0.94% and a standard deviation of 

3.83%. In contrast, the bearish market is characterized by low returns (on average 0%) and 

a high standard deviation of 10.96%. The bullish regime is typical of the 1940s, 1950s, 

1980s, for a prolonged period in the 1990s, and in the recovery following the dotcom crisis 

in the early years of the new millennium. The bearish regime is typical of the year 1929, 

the mid-1970s, the early and late 1980s, the high volatility period of the late 1990s, the 

early years of the new millennium, and of course the financial crisis of 2007. Both regimes 

are persistent with very small transition probabilities. Indeed, there is a 10.04% transition 

probability from a bearish regime to a bullish regime, and only a 1.44% transition 

probability from a bullish regime to a bearish regime. 

 
[Insert Table 3 about here] 

 
 
   The two regimes are quite distinct. The bullish regime has a positive average return and 

low volatility, whereas the bearish regime has a low average return and high volatility. 

Contrary to the logic of Pettengill et al. (1995), many realised market returns are positive 

during a bear market. Our results also suggest that the positive returns actually offset the 

negative ones. This is consistent with increased volatility during market turmoil. 

   The bullish and bearish regimes might then be defined more precisely as a bullish quiet 

regime and a bearish high volatility regime that might lead to swings between high positive 

and high negative returns. As the risk premium for the market portfolio is a function of 

both the degree of risk aversion and volatility, the two regimes (while different in terms of 

volatility and returns) should capture the variation in risk aversion and hence reveal the 
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time-varying risk premium. Thus, while risk aversion is not modelled directly in this paper, 

it is revealed indirectly by the time-varying risk premium which depends on the regime. 

   Figure 1 shows that the market is located, with high probability, in a bullish regime 

87.46% of the time, and in a bearish regime only 12.54% of the time. This observation is 

important as the different risk premiums demanded in a bull and a bear market may produce 

a positive weighted average risk premium. In particular, it might be the case that the 

conditional risk premiums and the time-varying factor sensitivities are correlated in such a 

way that they explain the main anomalies of the standard CAPM. 

 

5.2. Individual fixed effects panel for the conditional CAPM  

We use an individual fixed effects panel data model, such that the intercepts are allowed 

to vary across individual assets (the 25 ME/BM-sorted portfolios), but are kept constant 

over time. The intercepts are thus able to capture an individual effect that impacts upon the 

portfolios but does not change over time. However, one consequence of using fixed effects 

estimation is that the intercept is removed and therefore only the two risk premiums are 

obtained. In unreported results, we estimated random effects models as alternatives to the 

fixed effects models. In each case the random effects model was rejected by the Hausman 

(1978) specification test. 

   Table 4 reports results on the risk premiums, the unconditional CAPM, and the 

conditional CAPM. The betas for the unconditional model are obtained from five year 

rolling window estimates as in Fama and MacBeth (1973). The conditional model is 

obtained first using a DCC GARCH approach to obtain the betas, and then using a panel 

model to estimate the risk premiums. We use excess returns in all cases. The results show 

that for the full sample period, the bear risk premium is significant and negative (-0.62% 

per month), whereas the bull risk premium is significant and positive (1.26% per month). 

Therefore, the conditional signs of the risk premiums are both significant and consistent 

with expectations. The unconditional CAPM is strongly rejected as the difference between 

the two risk premiums for the full sample is 1.88%, and is statistically significant at the 5% 

level.  

   When the time series of the risk premium is tested using an autoregressive model with 

standard errors corrected for autocorrelation, the results show that the risk premium 
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becomes significantly positive at 1.02% per month for the full sample (and 0.38% for the 

subsample). Our results therefore support a conditional CAPM in which beta is priced, 

particularly in bullish markets. This finding is interesting as it potentially provides a partial 

explanation for the cross-section of returns observed in the most challenging portfolios in 

the empirical asset pricing literature. 

   For the more recent sub-period of 1980-2015, which is widely held to be the most 

challenging to explain, the results show a positive market premium in the bullish market 

of 0.70%, with a negative risk premium in the bearish market of -2.75% which is clearly 

of larger magnitude in absolute terms than in a bull market. More interestingly, the 

weighted average risk premium is positive and significant at 0.38% per month or 4.65% 

annualised. Thus, the risk premium has declined over the sample period, a phenomenon 

well documented in the existing literature, though it also confirms that the systematic risk 

measured by beta is still rewarded by the market, as we expect from theory, even for 

portfolios sorted on market capitalization and the book to market ratio. The unconditional 

CAPM is again strongly rejected as the difference between the two risk premiums is 3.45%, 

and is statistically significant at the 5% level.  

 

[Insert Table 4 about here] 

 

6. Time series and cross section explanation of returns  

Although the statistical significance of the estimated conditional risk premiums is useful 

evidence that our conditional model is a non-trivial improvement on the static CAPM, this 

evidence is nevertheless incomplete and should be complemented by contrasting the cross 

sectional and time series performance of the conditional model with that of the static model. 

In this section, we first provide some time series results on the premiums associated with 

size, value and momentum. We then discuss the pricing errors of the static and conditional 

models. 

   If our conditional model explained size, value and momentum, then the loadings from 

the three factors should not be priced. Thus, we run  𝑇𝑇 cross sectional regressions with the 

three factors on net returns 
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𝑅𝑅𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜆𝜆𝑡𝑡0 + 𝜆𝜆𝑡𝑡𝑠𝑠𝛽𝛽𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜆𝜆𝑡𝑡ℎ𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑚𝑚𝑚𝑚 + 𝜆𝜆𝑡𝑡𝑚𝑚𝛽𝛽𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜀𝜀𝑖𝑖𝑖𝑖                                (19) 

 

The time series test is then performed on sample means of 𝜆𝜆𝑡𝑡𝑠𝑠, 𝜆𝜆𝑡𝑡ℎ, and 𝜆𝜆𝑡𝑡𝑚𝑚.  

The net returns are given by   𝑅𝑅𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑓𝑓𝑓𝑓 − 𝛾𝛾�12𝑝𝑝𝑡𝑡𝛽𝛽𝑖𝑖𝑖𝑖 − 𝛾𝛾�2𝛽𝛽𝑖𝑖𝑖𝑖  for the conditional 

CAPM (the conditional betas are obtained from a DCC model). For the static CAPM, the 

net returns are given by  𝑅𝑅𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑓𝑓𝑓𝑓 − 𝜆𝜆𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖, where the betas are obtained from a 

five year rolling window and 𝜆𝜆𝛽𝛽 is the standard CAPM estimated risk premium. 

   The loadings, 𝛽𝛽𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠, 𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑚𝑚𝑚𝑚 and  𝛽𝛽𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 are estimated from time series models using five 

year rolling windows   

 

𝑅𝑅𝑖𝑖𝑖𝑖𝑒𝑒 = 𝛽𝛽0 + 𝛽𝛽𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑚𝑚𝑚𝑚𝑒𝑒 + 𝛽𝛽𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 + 𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑚𝑚𝑚𝑚𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 + 𝛽𝛽𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖 

 

where 𝑅𝑅𝑒𝑒  indicates excess return. Table 5 provides tests for the (time) average risk 

premiums for the three factor sensitivities. For the conditional CAPM, only the value 

premium is significant. Size and momentum appear to be explained by the model. On the 

other hand, for the static CAPM both size and value remain unexplained.  

 

[Insert Table 5 about here] 

 
   For the cross section comparison, we calculate the pricing errors from the two models as 

follows: 

 

𝜖𝜖𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐸𝐸(𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑓𝑓𝑡𝑡) − 𝐸𝐸(𝛤𝛤𝑡𝑡)𝐸𝐸(𝛽𝛽𝑖𝑖𝑖𝑖) − 𝐶𝐶𝐶𝐶𝐶𝐶(𝛤𝛤𝑡𝑡, 𝛽𝛽𝑖𝑖𝑖𝑖)                               (20) 

𝜖𝜖𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐸𝐸(𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑓𝑓𝑡𝑡) − 𝜆𝜆𝛽𝛽𝐸𝐸(𝛽𝛽𝑖𝑖𝑖𝑖)                                (21) 

 

where, as before, the conditional betas are from a DCC model, the standard CAPM betas 

are from five year rolling univariate regressions, and 𝜆𝜆𝛽𝛽 is the standard CAPM estimated 

risk premium. The pricing error from the static CAPM is more than double that of the 

conditional CAPM. The average absolute error is 0.28% for the conditional model, against 

0.65% for the static model.  
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   Another way of looking at the pricing error is by visually comparing the performance of 

the two models. In Figure 2, we plot the fitted expected returns from the two models against 

the realised average return. A perfect fit requires fitted returns to lie on the 45-degree line 

through the origin. Clearly, neither model is anywhere near a perfect fit. However, the 

conditional fit improves on two fronts. First, in terms of level, the static CAPM under-

estimates average realised returns, which explains why the intercept in the estimated model 

is positive and highly significant. More importantly, the relationship between fitted and 

observed returns is almost perfectly flat, due mainly to a small and insignificant risk 

premium. Note that the static CAPM risk premium for the later period (1980-2015) is 

negative, so the fit is even worse for that period. On the other hand, the scale of the 

conditional fit is closer to that of the realised average returns. Apart from four outliers (top 

left of Figure 2), the relationship is steeper relative to the static CAPM. These outliers are 

all at the bottom BM (growth) stocks. This is in line with our earlier finding that the 

conditional model fails to explain the value anomaly. Moreover, most predicted returns are 

over-stated. This is possibly due to either an excessively high risk premium and/or low 

variability in the beta estimates which flattens the relationship between fitted and realised 

average returns. 

 

[Insert Figure 2 about here] 

 

   Finally, we regress both sets of pricing errors on the size, value and momentum 

sensitivities. We use two types of estimates. The first was standard multivariate betas, 

obtained from a single time series for each portfolio 𝑖𝑖 = 1, … ,𝑁𝑁 

 

𝑅𝑅𝑖𝑖𝑖𝑖𝑒𝑒 = 𝛽𝛽0 + 𝛽𝛽𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑚𝑚𝑚𝑚𝑒𝑒 + 𝛽𝛽𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 + 𝛽𝛽𝑖𝑖ℎ𝑚𝑚𝑚𝑚𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 + 𝛽𝛽𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖  (22) 

 

   The second set of sensitivities is obtained from five year rolling regressions for each 

portfolio, and averaging sensitivities. That is, for each portfolio  𝑖𝑖 = 1, … ,𝑁𝑁, we perform 

T regressions 

𝑅𝑅𝑖𝑖𝑖𝑖𝑒𝑒 = 𝛽𝛽0 + 𝛽𝛽𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑚𝑚𝑚𝑚𝑒𝑒 + 𝛽𝛽𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 + 𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑚𝑚𝑚𝑚𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 + 𝛽𝛽𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖 (23) 
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   The cross section of sensitivities, (𝛽̅𝛽𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠,  𝛽̅𝛽𝑖𝑖ℎ𝑚𝑚𝑚𝑚,  𝛽𝛽�𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚), are obtained by averaging across 

time. Table 6 presents the cross section regression results of pricing errors on the factor 

sensitivities. There is little difference between the multivariate and rolling betas, except 

that the rolling betas are slightly more correlated with the pricing errors as can be seen by 

the coefficient of determination. Regardless of the sensitivity estimates, the conditional 

CAPM clearly explains away the size effect as the slope associated with the size beta is 

highly insignificant. The static CAPM, on the other hand, does not explain size. Both 

models, however, fail to explain value and momentum effects in the cross section. 

 

[Insert Table 6 about here] 

 

6. Robustness check 

In order to check the robustness of our conditional approach, the empirical test is conducted 

on a set of different portfolios obtained from the website of Kenneth R. French, that of 10 

ME, 10 BM, 10 Momentum, 25 ME/Momentum, 10 Beta, 40 industries, and the 65 

combined ME/BM  and industry portfolios. The results, reported in Table 7, confirm that 

the Fama and MacBeth test leads to a firm rejection of the unconditional CAPM (only the 

full sample, 10 ME portfolios, show a significant estimated risk premium). In other words, 

the unconditional CAPM produces no evidence of a positive risk premium. The conditional 

CAPM produces positive and significant risk premiums for all choices of portfolios. 

However, the scale of the premium appears to depend on the number of portfolios, varying 

between 1.3% and 1.9% for 25 or less portfolios, but dropping to 0.2% for the 40 industries 

portfolios and 0.6% for the 65 ME/BM  and industries portfolios.  

   Overall, our version of the conditional CAPM consistently rejects the static CAPM, and 

finds positive risk premiums for all portfolio groups. But, it does not seem to be robust to 

the choice of test portfolios, with larger sets producing lower risk premiums. The results, 

however, seem to be robust to the choice of the sample period. The sign and significance 

of the risk premiums are unchanged for the sub-sample (1980-2015), and the scale of the 

premiums is similar except for the 10 BM portfolios.  

 

[Insert Table 7 about here] 
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7. Conclusion 

This paper investigates the performance of a conditional CAPM using both conditional 

time-varying risk sensitivities and conditional time-varying risk premiums. Conditional 

market betas are estimated using a DCC GARCH approach. The conditional risk premiums 

are estimated by first identifying the probability of a bull and a bear regime according to a 

Markov Switching process, and then estimating the conditional risk premiums using a 

panel regression.  

   Our main empirical findings are several fold. First, the unconditional model is always 

rejected in favour of a conditional model incorporating time-varying beta and risk 

premiums. Second, although the conditional model is supported for the full as well as the 

sub-sample, the implied unconditional risk premiums appear to have changed substantially 

in the recent period. The conditional CAPM suggests a risk premium of 1.02% for the full 

sample, but this drops to 0.38% per month for the period 1980-2015. Moreover, the results 

are not robust across alternative test assets. The risk premium is significant but particularly 

low for the industry portfolios. Third, despite statistical significance, our conditional model 

fails to explain the value and momentum anomalies. However, conditioning appears to 

explain the size anomaly.  

   Our results suggest that while beta risk is priced unconditionally, estimating and testing 

the unconditional risk premium is only possible through the use of conditional models. 

Using both time-varying betas and time-varying risk premiums is logical as well as 

empirically sound.  

   Although we do not model time-varying risk aversion directly, risk aversion is accounted 

for indirectly through the consideration of two market regimes in which investors tolerate 

negative realised premiums during bear markets in exchange for positive premiums during 

bull markets. Thus, unconditionally risk averse investors may appear to be conditionally 

risk seekers during downturns by accepting negative returns. But they only do this in the 

knowledge that, in probability, the upmarket will compensate them for bearing the bear 

market losses.  

   The bull and bear regimes are only known with a probability, which we estimate using a 

Markov Switching process. This enables us to avoid exogenous identification of the regime 

by, for example, using the sign of the monthly market return. 
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   Our simple conditional model provides evidence that beta is positively rewarded by the 

market. Unconditional models are unable to provide such evidence, not because beta is 

irrelevant, but simply because the unconditional version of the CAPM employed in 

previous tests is misspecified. Nevertheless, although the conditional CAPM is a clear 

improvement on the static CAPM, we cannot claim that it is a definitive answer to the three 

or four factor model. The small growth portfolios remain largely unexplained by our 

conditional beta despite the high estimated price of risk. However, this limitation is not 

unique to the conditional CAPM. The Fama and French (1996: 57) three factor model also 

leaves “… a large negative unexplained return for the portfolio of stocks in the smallest 

size and lowest BE/ME quintiles.” Their model also fails to explain the continuation of 

short-term returns, and was in any case rejected by the Gibbons, Ross and Shanken (1989) 

test. 

   Our paper has four main limitations. First, we use a three-pass approach. In the first two 

passes, the market state probabilities and the conditional betas are estimated, respectively. 

These estimates are then used in the third pass to estimate the risk premiums. There is a 

clear risk that the errors-in-variables problem has affected our conclusions. Although the 

errors-in-variables problem is usually less important when portfolios are used as test assets, 

we have tried to mitigate this problem partially by using the wild bootstrap to calculate p-

values. Nevertheless, future work should consider estimating both sets of parameters 

simultaneously in a multivariate conditional model. However, this is no simple task 

because of the curse of dimensionality. Second, our conditional betas appear to be flat. We 

have relied on the dynamic conditional model of Engle (2002) to estimate conditional 

betas, but future work should consider possibly simpler alternatives such as those employed 

by Lewellen and Nagel (2006). Third, in contrast to the unconditional CAPM, the pricing 

error is not expected to be zero. The conditional CAPM implies an additional term, namely 

the covariance between beta and the risk premium. Future work should therefore focus on 

testing the additional hypothesis that the pricing error is equal to the beta-risk premium 

covariance. It should be noted, though, that this is not a straightforward task as it involves 

testing the equality of two cross sectional series of unobserved variables. Last, and most 

important, the Fama and French three factors model remains hard to beat, and the 25 

ME/BM portfolios hard to explain. We have specifically chosen these portfolios because 



27 
 

they are hard to explain. However, both our model and the three factor model fail to explain 

growth portfolios. This leaves the potential for a conditional three or four factor model in 

which the conditional expected return (ex-post risk premium) depends on the probabilities 

of bull and bear markets.  

   A different direction would be to extend a multi-moments asset pricing model such as 

Vendrame et al. (2016). In that paper, the size premium could not be explained away. 

Conditioning on the bull and bear market could improve a multi-moments explanation of 

average returns.  
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Figure 1. Filtered probabilities of the bull and bear regime for the period 1926-2015 
 
 

 
 
 

 
 
 

 
Figure 2. Fitted expected returns versus realized average returns 
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Table 1. Descriptive statistics for the 25 ME/BM portfolios 
 

 B1 B2 B3 B4 B5 B1 B2 B3 B4 B5 
 Panel A. 1926-2015 
 Means Standard Deviations 
S1 0.56 0.69 1.00 1.17 1.36 12.32 9.89 9.06 8.37 9.38 
S2 0.61 0.90 1.00 1.07 1.23 8.02 7.53 7.30 7.49 8.74 
S3 0.71 0.89 0.94 1.00 1.14 7.46 6.51 6.56 6.94 8.50 
S4 0.71 0.74 0.86 0.95 1.03 6.28 6.14 6.50 6.85 8.70 
S5 0.61 0.63 0.66 0.68 0.92 5.39 5.33 5.70 6.54 8.48 
 Skewness Excess Kurtosis 
S1 3.13 2.98 2.23 2.84 3.11 32.05 34.20 18.97 32.38 31.17 
S2 0.79 1.59 1.87 2.10 1.87 9.60 18.29 20.58 22.76 18.79 
S3 0.87 0.13 1.06 1.84 1.98 9.32 5.88 13.47 20.21 19.36 
S4 -0.20 0.54 1.34 1.70 2.13 3.98 10.15 16.96 19.31 23.44 
S5 -0.12 0.37 0.94 1.33 1.94 5.04 8.19 16.02 18.09 24.44 

 
 B1 B2 B3 B4 B5 B1 B2 B3 B4 B5 
 Panel B. 1980-2015 
 Means Standard Deviations 
S1 0.04 0.80 0.84 0.98 1.04 7.85 6.69 5.60 5.24 5.64 
S2 0.46 0.78 0.95 0.95 0.88 7.09 5.74 5.15 5.08 5.79 
S3 0.60 0.84 0.84 0.85 1.07 6.59 5.37 4.90 4.86 5.19 
S4 0.78 0.75 0.75 0.82 0.84 5.95 5.16 5.15 4.66 5.17 
S5 0.65 0.71 0.59 0.59 0.73 4.70 4.57 4.54 4.37 5.07 
 Skewness Excess Kurtosis 
S1 0.04 -0.02 -0.42 -0.66 -0.86 2.99 4.13 3.25 3.60 3.31 
S2 -0.40 -0.78 -0.84 -1.03 -1.00 1.63 2.98 3.41 3.48 3.27 
S3 -0.50 -0.71 -0.75 -0.60 -0.95 1.69 3.11 2.70 2.62 3.60 
S4 -0.29 -0.81 -0.81 -0.65 -0.75 2.00 3.84 3.71 2.06 3.18 
S5 -0.44 -0.59 -0.52 -0.58 -0.51 1.46 2.18 2.48 1.96 1.47 

The table shows descriptive statistics for portfolios double sorted on market capitalization and the book-to-
market ratio from July 1926 to September 2015 and from January 1980 to September 2015. S1 through S5 
show the five quintiles (from the smallest to the largest) in terms of market capitalization. B1 through B5 
show the five quintiles (from the highest to the lowest) in terms of book-to-market. The means are the average 
excess returns over the risk-free rate of a Treasury Bill. Jarque-Bera reports the probability under the null 
hypothesis of the normality of returns.  

  



34 
 

Table 2. The static CAPM and the Pettengill conditional CAPM results  
 

Panel A (Static CAPM) 
 1926-2015 1980-2015 

𝛼𝛼 0.0066 
(2.57)* [0.002] 

0.0117 
(3.89)* [0.000] 

-0.0043 
(-1.20) [0.891] 

𝜆𝜆𝛽𝛽 0.0021 
(0.70)  [0.250] 

Panel B (Pettengill et al.) 
 1926-2015 1980-2015 
 Bull Bear Bull Bear 

𝜆𝜆𝛽𝛽 0.0282 
(6.87)* 

-0.0371 
(-11.00)* 

0.0198 
(4.46)* 

-0.0418 
(-8.67)* 

Panel A reports the results of the monthly cross-sectional regressions of the 25 ME/BM portfolios on the 
single factor of the CAPM for the full sample 1926-2015 and for the latter period 1980-2015. The tests follow 
the Fama and MacBeth (1973) methodology. Each coefficient is estimated using a cross sectional regression. 
For the standard CAPM, the coefficients are obtained from  𝑅𝑅𝑖𝑖,𝑡𝑡 − 𝑅𝑅𝑓𝑓,𝑡𝑡 = 𝛼𝛼𝑡𝑡 + 𝛽̂𝛽𝑖𝑖,𝑡𝑡−1𝜆𝜆𝛽𝛽𝑡𝑡. The time series of 
the resulting coefficients are used to produce a t-test. Panel B reports the results for Pettengill’s conditional 
CAPM. Coefficients are estimated using 𝑅𝑅𝑖𝑖,𝑡𝑡 − 𝑅𝑅𝑓𝑓,𝑡𝑡 = 𝛼𝛼𝑡𝑡 + 𝛽̂𝛽𝑖𝑖,𝑡𝑡−1𝜆𝜆𝛽𝛽𝑡𝑡 , and the resulting 𝜆𝜆𝛽𝛽𝑡𝑡 are split into two 
time series based on the sign of the market excess return. A t-test is then performed on each subsample.  The 
t-statistics are reported in brackets. Significant coefficients at the 5% level are indicated with an asterisk. The 
bootstrap p-values are shown in square brackets. 

 

 

   Table 3. Markov switching parameters for the market model 

 
Parameters Coeff. T-Stat. 

𝜇𝜇1 0.0094 7.02 
𝜇𝜇2 0.0 - 
𝑝𝑝12 0.0144 2.87 
𝑝𝑝21 0.1004 3.12 
𝜎𝜎1 0.0383 36.73 
𝜎𝜎2 0.1096 21.16 

 

The table shows the parameters of the Markov switching process for the market model, 𝑅𝑅𝑀𝑀 − 𝑅𝑅𝑓𝑓 = 𝜇𝜇𝑀𝑀𝑀𝑀 +
𝜎𝜎𝑀𝑀𝑀𝑀𝜀𝜀𝑖𝑖 . The parameters reported are the two means, the transition probabilities, and the two standard 
deviations.  
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Table 4. Conditional CAPM Results  
 
 1926-2015 1980-2015 

Risk Premium Bull Bear Bull Bear 
(𝛾𝛾1, 𝛾𝛾2) 0.0126 

(6.40)* 
-0.0062 
(-2.97)* 

0.0070 
(2.21)* 

-0.0275 
(-7.23)* 

Test for 
Unconditional 

CAPM (𝛾𝛾1 − 𝛾𝛾2) 

 
0.0188 

(13.03)* 

 
0.0345 

(14.46)* 

Conditional CAPM  
(Γ) 

 
0.0102 

(33.30)* [0.000] 

 
0.0038 

(5.94)* [0.000] 
This table reports the results of the panel data regressions with individual-fixed effects for the 25 ME/BM 
portfolios over the period 1926-2015 and 1980-2015. The coefficients are reported for the conditional beta, 
the tests of differences in the risk premium, and for the weighted average beta. The t-statistics are reported 
in brackets and the significant coefficients at the 5% level are indicated with an asterisk. The risk premia are 
obtained from the following panel regression 𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑓𝑓𝑓𝑓 = 𝛾𝛾0 + 𝛾𝛾12𝑝𝑝𝑡𝑡𝛽𝛽𝑖𝑖𝑖𝑖 + 𝛾𝛾2𝛽𝛽𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖; where 𝛾𝛾12 = 𝛾𝛾1 − 𝛾𝛾2; 
and 𝛤𝛤𝑡𝑡 = 𝑝𝑝𝑡𝑡𝛾𝛾�1 + (1 − 𝑝𝑝𝑡𝑡)𝛾𝛾�2. The t-statistics are reported in brackets and are from a heteroscedasticity and 
autocorrelation consistent regression. Significant coefficients at the 5% level are indicated with an asterisk. 
The bootstrap p-values are shown in square brackets.  
 

 
Table 5. Time Series Explanation of Size, Value and Momentum 
 

 Static CAPM  Conditional CAPM 
 

Mean 
t-stat 

(p-val) 
 Mean t-stat 

(p-val) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 0.010 5.093 
 (0.000)  -0.003 -1.602 

 (0.109) 

Size 0.002 2.496 
(0.013)  0.000 -0.015 

 (0.988) 

Value 0.004 3.699 
 (0.000)  0.004 3.884 

 (0.000) 

Momentum 0.000 -0.080 
 (0.937)  0.002 0.991 

 (0.322) 
This table reports the test on sample means of the loadings 𝜆𝜆𝑡𝑡𝑠𝑠, 𝜆𝜆𝑡𝑡ℎ, and 𝜆𝜆𝑡𝑡𝑚𝑚 obtained from  𝑇𝑇 cross sectional 
regressions based on the model  𝑅𝑅𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜆𝜆𝑡𝑡0 + 𝜆𝜆𝑡𝑡𝑠𝑠𝛽𝛽𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜆𝜆𝑡𝑡ℎ𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑚𝑚𝑚𝑚 + 𝜆𝜆𝑡𝑡𝑚𝑚𝛽𝛽𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜀𝜀𝑖𝑖𝑖𝑖 as described in Section 6. 
The tests are for the 25 ME/BM portfolios over the period 1926-2015.  
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Table 6. Cross section regression of factor sensitivities on pricing errors 

 Static CAPM 

 Standard One-Pass Betas  Average Rolling Betas  
 Coefficient t-stat (p-val)  Coefficient t-stat (p-val) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 0.004 10.849 (0.000)  0.005 12.873 (0.000) 
Size 0.001 2.052 (0.053)  0.002 3.443 (0.002) 

Value 0.005 6.541 (0.000)  0.005 8.137 (0.000) 
Momentum 0.018 2.851 (0.013)  0.030 3.665 (0.001) 

𝑅𝑅2 0.7033   0.7997  
 Conditional CAPM 
 Standard One-Pass Betas  Average Rolling Betas 
 Coefficient t-stat (p-val)  Coefficient t-stat (p-val) 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 -0.003 -6.187 (0.000)  -0.003 -6.598 (0.000) 
Size 0.000 -0.854 (0.403)  0.000 0.085 (0.933) 

Value 0.005 6.236 (0.000)  0.005 6.787 (0.000) 
Momentum 0.028 3.769 (0.001)  0.041 4.101 (0.001) 

𝑅𝑅2 0.6778   0.7204  
This table reports the results of cross section regression 𝜖𝜖𝑖𝑖 = 𝑓𝑓(𝛽𝛽𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠, 𝛽𝛽𝑖𝑖ℎ𝑚𝑚𝑚𝑚, 𝛽𝛽𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) where 𝜖𝜖𝑖𝑖  is the pricing 
error obtained from the conditional CAPM (equation 20) and the static CAPM (equation 21). The standard 
one-pass multivariate betas are obtained from N time series four factor model (equation 22). The average 
rolling betas are obtained from T regressions for each portfolio (equation 23). The tests are for the 25 ME/BM 
portfolios over the period 1926-2015.  
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Table 7. Conditional CAPM results for alternative data sets 
 

 Static CAPM  Conditional CAPM 
 1926-2015 1980-2015  1926-2015 1980-2015 

 10 BM portfolios 

𝛼𝛼 
0.0021 

(0.69)   [0.261] 
0.0104 

(3.03)* [0.001] (𝛾𝛾1 − 𝛾𝛾2) 
0.0211 
(9.77)* 

0.0340 
(9.51)*  

𝜆𝜆𝛽𝛽 0.0052 
(1.49)  [0.069] 

-0.0041 
(-1.11) [0.854] 𝛤𝛤 0.0181 

(52.95)*  [0.000] 
0.0077 

(12.41)* [0.000] 
 10 ME portfolios 

𝛼𝛼 -0.0047 
(-1.09)   [0.846] 

0.0030 
(0.62)  [0.254] (𝛾𝛾1 − 𝛾𝛾2) 0.0209 

(9.56)* 
0.0340 
(9.45)* 

𝜆𝜆𝛽𝛽 0.0120 
(2.54)*  [0.004] 

0.0038 
(0.74)  [0.219] 𝛤𝛤 0.0135 

(39.87)* [0.000] 
0.0163 

(26.14)* [0.000] 
 40 Industries portfolios 

𝛼𝛼 
0.0064 

(4.53)*  [0.000] 
0.0075 

(3.38)* [0.000] (𝛾𝛾1 − 𝛾𝛾2) 
0.0234 

(18.83)* 
0.0297 

(13.50)* 

𝜆𝜆𝛽𝛽 0.0014 
(0.79)   [0.195] 

-0.0007 
(-0.26)  [0.584] 𝛤𝛤 0.0028 

(7.35)*  [0.000] 
0.0024 

(8.28)* [0.000] 
 10 Momentum portfolios 

𝛼𝛼 
0.0060 

(2.10)* [0.012] 
0.0079 

(1.84) [0.032] (𝛾𝛾1 − 𝛾𝛾2) 
0.0182 
(8.46)* 

0.0194 
(5.32)* 

𝜆𝜆𝛽𝛽 0.0014 
(0.46) [0.311] 

-0.0020 
(-0.45)  [0.663] 𝛤𝛤 0.0182 

(61.78)* [0.000] 
0.0156 

(43.83)* [0.000] 
 25 ME/Momentum portfolios 

𝛼𝛼 
0.0048 

(2.05)* [0.018] 
0.0037 

(1.15)  [0.130] (𝛾𝛾1 − 𝛾𝛾2) 
0.0150 

(10.36)* 
0.0227 
(9.78)* 

𝜆𝜆𝛽𝛽 0.0044 
(1.70) [0.034] 

0.0031 
(0.89) [0.185] 𝛤𝛤 0.0190 

(78.08)* [0.000] 
0.0158 

(38.01)* [0.000] 

25 ME/BM + 40 Industries portfolios 

𝛼𝛼 0.0063 
(4.46)* [0.000] 

0.0086 
(4.02)* [0.000] 

(𝛾𝛾1 − 𝛾𝛾2) 0.0211 
(22.49)* 

0.0316 
(19.27)* 

𝜆𝜆𝛽𝛽 0.0019 
(0.98)  [0.146] 

-0.0016 
(-0.58) [0.718] 

𝛤𝛤 0.0059 
(17.30)* [0.000] 

0.0027 
(4.67)* [0.000] 

The table reports the results of the standard CAPM and the conditional CAPM for alternative portfolio 
formations. The CAPM tests follow the Fama and MacBeth (1973) methodology. For the standard CAPM 
each pair of coefficients is estimated using a cross sectional regression from  𝑅𝑅𝑖𝑖,𝑡𝑡 − 𝑅𝑅𝑓𝑓,𝑡𝑡 = 𝛼𝛼𝑡𝑡 + 𝛽̂𝛽𝑖𝑖,𝑡𝑡−1𝜆𝜆𝛽𝛽𝑡𝑡. 
The time series of the resulting coefficients are used to produce a t-test. For the conditional CAPM, the bull 
and bear risk premia are obtained from the following panel regression 𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑓𝑓𝑓𝑓 = 𝛾𝛾0 + 𝛾𝛾12𝑝𝑝𝑡𝑡𝛽𝛽𝑖𝑖𝑖𝑖 + 𝛾𝛾2𝛽𝛽𝑖𝑖𝑖𝑖 +
𝜀𝜀𝑖𝑖𝑖𝑖 ; 𝛾𝛾12 = 𝛾𝛾1 − 𝛾𝛾2 ; and 𝛤𝛤𝑡𝑡 = 𝑝𝑝𝑡𝑡𝛾𝛾�1 + (1 − 𝑝𝑝𝑡𝑡)𝛾𝛾�2 . The t-statistics are reported in brackets and are from a 
heteroscedasticity and autocorrelation consistent regression. Significant coefficients at the 5% level are 
indicated with an asterisk. The bootstrap p-values are shown in square brackets.   
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